
LabVIEW Upgrade Notes
Version 8.2

These upgrade notes describe the process of upgrading LabVIEW for
Windows, Mac OS, and Linux to version 8.2, issues you might encounter
when you upgrade, and new features.

If you are upgrading from LabVIEW 7.1 or earlier to LabVIEW 8.2, refer
to the LabVIEW 8.0 Upgrade Notes for information about the
enhancements, changes, and added features in LabVIEW 8.0. National
Instruments recommends that all users upgrading from LabVIEW 7.1 or
earlier read the LabVIEW 8.0 Features and Changes section of the
LabVIEW 8.0 Upgrade Notes in addition to these upgrade notes. Refer to
the National Instruments Web site at ni.com/info and enter the info code
upnote8 to access the LabVIEW 8.0 Upgrade Notes.

Refer to the LabVIEW Help for more information about LabVIEW 8.2
features, as well as for information about LabVIEW programming
concepts, step-by-step instructions for using LabVIEW, and reference
information about LabVIEW VIs, functions, palettes, menus, tools,
properties, methods, events, dialog boxes, and so on. The LabVIEW Help
also lists the LabVIEW documentation resources available from National
Instruments. Access the LabVIEW Help by selecting Help»Search the
LabVIEW Help.

Contents
Upgrading to LabVIEW 8.2.. 2

Converting VIs... 2
Upgrading Toolkits, Instrument Drivers, and Add-Ons 3
Upgrading Additional National Instruments Software 4
Upgrading from Previous Versions of LabVIEW 4

Upgrade and Compatibility Issues .. 5
Upgrading from LabVIEW 8.0 .. 5
Upgrading from LabVIEW 7.x .. 11
Upgrading from LabVIEW 6.x .. 30
Upgrading from LabVIEW 5.x or Earlier Versions 34

™

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=upnote8

LabVIEW Upgrade Notes 2 ni.com

LabVIEW 8.2 Features and Changes...35
LabVIEW Documentation..35
New Example VIs...35
Launch Time Improvement ..35
Block Diagram Enhancements ...35
Front Panel Enhancements ...37
Environment Enhancements...40
New and Changed VI, Function, and Node Enhancements45
New Properties, Methods, and Events..53
LabVIEW MathScript Enhancements ..53
3D Picture Control..56
LabVIEW Object-Oriented Programming57
LabVIEW Project Enhancements...59
Controlling VIs Remotely from Multiple Clients64
Importing Functions from a Shared Library File64
Instrument Driver Templates..64
.NET and ActiveX Enhancements (Windows).................................65
NI Example Finder Enhancements...65
Source Control Enhancements ...65
TDM Enhancements...67
Importing Web Services (Windows) ..68
External Code Functions Changes..68

Upgrading to LabVIEW 8.2
If you are upgrading from a previous version of LabVIEW, read this
section, Upgrading to LabVIEW 8.2, and the Upgrading from LabVIEW x.x
sections in the Upgrade and Compatibility Issues section of this document
first, where x.x is the version of LabVIEW from which you are upgrading.

Converting VIs
When you open a VI last saved in LabVIEW 4.0 or later, LabVIEW 8.2
automatically converts and compiles the VI. You must save the VI in
LabVIEW 8.2, or the conversion process, which uses extra memory
resources, occurs every time you access the VI.

Also, you might experience a large run-time degradation of performance
for any VI that has unsaved changes, including a recompile. Refer to the
LabVIEW Help for more information about this performance and memory
issue.

Note VIs you save in LabVIEW 8.2 do not load in earlier versions of LabVIEW. Select
File»Save for Previous Version to save VIs so they can run in LabVIEW 8.0. Before
saving VIs in LabVIEW 8.2, keep a backup copy of VIs you plan to use in LabVIEW 8.0
or earlier.

© National Instruments Corporation 3 LabVIEW Upgrade Notes

If your computer does not have enough memory to convert all the VIs at
once, convert the VIs in stages. Examine the hierarchy of VIs you want to
convert and begin by loading and saving subVIs in the lower levels of the
hierarchy. Then progress gradually to the higher levels of the hierarchy.
Open and convert the top-level VI last. You also can select Tools»
Advanced»Mass Compile to convert a directory of VIs. However, mass
compiling converts VIs in a directory or LLB in alphabetical order. If the
conversion process encounters a high-level VI first, mass compiling
requires approximately the same amount of memory as if you opened the
high-level VI first.

You can monitor memory usage by selecting Help»About LabVIEW to
display a summary of the amount of memory you currently are using.

Upgrading Toolkits, Instrument Drivers, and Add-Ons
After you install LabVIEW 8.2, make sure you have a compatible version
of any toolkits and add-ons, then reinstall the toolkits and add-ons in the
LabVIEW 8.2 directory. You first might need to uninstall the toolkit from
previous versions of LabVIEW. Refer to the documentation for the
LabVIEW toolkit or add-on for more information about installation.

Note LabVIEW module versions must match the LabVIEW version. For example, you
must use the LabVIEW Real-Time Module 8.2 with LabVIEW 8.2.

You also must mass compile existing toolkit, instrument driver, and add-on
VIs for use in LabVIEW 8.2. Refer to the Converting VIs section of this
document for more information about mass compiling VIs.

The following toolkits, instrument drivers, and add-ons require upgrades or
downloads for use in LabVIEW 8.2:

• If you have the LabVIEW Application Builder, you must upgrade to
LabVIEW Application Builder 8.2. The LabVIEW 8.2 Professional
Development System includes Application Builder 8.2. Refer to the
LabVIEW Application Builder Readme located in the
(Windows) labview\readme directory or (Mac OS and Linux) labview
directory for more information about installing the LabVIEW
Application Builder.

• You must use VI Analyzer 1.1 in LabVIEW 8.x. Refer to the National
Instruments Web site at ni.com/info and enter the info code exd8yy
to access the Upgrade Advisor and purchase VI Analyzer 1.1.

• You must download additional VIs to use the Internet Toolkit 6.0 with
LabVIEW 8.x. Refer to the National Instruments Web site at
ni.com/info and enter the info code itkver6 to download the
necessary VIs.

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=exd8yy
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=itkver6

LabVIEW Upgrade Notes 4 ni.com

• The instrument driver for the HP/Agilent 34401A Digital Multimeter
(DMM) now more closely resembles the National Instruments DMM
template driver. This driver is not compatible with the HP34401A
driver that LabVIEW 7.x and earlier use. If you need compatibility
with the LabVIEW 7.x HP34401A driver, download that driver
from the National Instruments Instrument Driver Network at
ni.com/idnet.

Upgrading Additional National Instruments Software
You must use NI TestStand 3.5 or later in LabVIEW 8.x. Refer to the
National Instruments Web site at ni.com/info and enter the info code
exd8yy to access the Upgrade Advisor and purchase NI TestStand 3.5 or
later.

Upgrading from Previous Versions of LabVIEW
Upgrading to new versions of LabVIEW does not affect previous versions
of LabVIEW on the computer because the new versions install in a
different directory. LabVIEW 5.x and earlier install in the labview
directory. LabVIEW 6.0 and later install in the labview x.x directory,
where x.x is the version number. You can install LabVIEW 8.2 without
uninstalling previous versions of LabVIEW.

Replacing an Existing Version of LabVIEW
To replace your existing version of LabVIEW, uninstall the existing
version of LabVIEW, run the LabVIEW 8.2 installer, and set the
installation directory to the same labview directory where you installed
the previous version of LabVIEW.

(Windows) You also can replace the existing version of LabVIEW with
LabVIEW 8.2 by using the Add/Remove Programs applet in the Control
Panel to uninstall the existing version of LabVIEW. The uninstaller does
not remove any files you created in the labview directory.

Note When you uninstall or reinstall LabVIEW, LabVIEW uninstalls the .llb files in the
vi.lib directory, including any VIs and controls you saved in the .llb files. Save your
VIs and controls in the user.lib directory to add them to the Controls and Functions
palettes.

Copying Environment Settings from a Previous
Version of LabVIEW
To use LabVIEW environment settings from a previous version of
LabVIEW, copy the LabVIEW preferences file from the labview
directory in which the previous version is installed.

http://www.ni.com/idnet
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=exd8yy

© National Instruments Corporation 5 LabVIEW Upgrade Notes

Caution f you replace the LabVIEW 8.2 preferences file with a preferences file from a
previous version, you might override preference settings added to LabVIEW since the
previous version.

After you install LabVIEW 8.2, copy the LabVIEW preferences file to the
LabVIEW 8.2 directory.

(Windows) LabVIEW stores preferences in the labview.ini file.

(Mac OS) LabVIEW stores preferences in the LabVIEW Preferences file
in the Library:Preferences folder in your home directory.

(Linux) LabVIEW stores preferences in the .labviewrc file in your home
directory.

Copying user.lib Files from a Previous Version of
LabVIEW
To use files from the user.lib directory of a previous version of
LabVIEW, copy the files from the labview directory in which the
previous version is installed. After you install LabVIEW 8.2, copy the files
to the user.lib directory in the LabVIEW 8.2 directory.

Upgrade and Compatibility Issues
Refer to the following sections for upgrade and compatibility issues
specific to different versions of LabVIEW.

Refer to the readme.html file in the labview directory for known issues,
additional compatibility issues, and information about late addition
features in LabVIEW 8.2.

Upgrading from LabVIEW 8.0
You might encounter the following compatibility issues when you upgrade
to LabVIEW 8.2 from LabVIEW 8.0.

Platforms Supported
LabVIEW 8.2 includes the following changes in platforms supported:

• LabVIEW 8.2 does not support Windows XP x64.

• LabVIEW 8.2 does not support Mac OS X 10.3.8 or earlier.

• LabVIEW 8.2 provides some support for Macintosh computers with
Intel processors. Refer to the National Instruments Web site at
ni.com/info and enter the info code macintel for more
information about Macintosh support.

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=macintel

LabVIEW Upgrade Notes 6 ni.com

System Requirements
(Mac OS) LabVIEW 8.2 requires at least 500 MB of disk space for the
minimum LabVIEW installation or 700 MB disk space for the complete
LabVIEW installation.

(Linux) LabVIEW 8.2 requires at least 430 MB of disk space for the
minimum LabVIEW installation or 620 MB disk space for the complete
LabVIEW installation.

Printed Documentation
The following documents did not change for LabVIEW 8.2. Therefore, the
content might not reflect changes made in LabVIEW 8.2.

• LabVIEW Quick Reference Card

• LabVIEW Fundamentals Manual—Because the LabVIEW
Fundamentals Manual is a subset of the Fundamentals book in the
LabVIEW Help, refer to the Fundamentals book on the Contents tab
of the LabVIEW Help for updated content.

VI and Function Behavior Changes
The behavior of the following VIs and functions changed in LabVIEW 8.2.

Communicating between Application Instances
In LabVIEW 8.2, you cannot use the Obtain Queue, Obtain Notifier, Create
User Event, Create Semaphore, and Create Rendezvous functions to
communicate between LabVIEW application instances. If you obtain or
create a queue, notifier, user event, semaphore, or rendezvous reference in
one application instance, you cannot use that reference in another
application instance.

Back Transform Eigenvectors VI
The job, index low, index high, and Scale inputs of the Back Transform
Eigenvectors VI are required inputs.

DataSocket Write Function
In LabVIEW 8.0.1, the default behavior for DataSocket Write function
changed to asynchronous. If you have LabVIEW 8.0 and LabVIEW 8.2
installed on your computer, the DataSocket API Client VI example in the
labview\examples\Shared Variable directory returns an error when
you stop the VI. You must update LabVIEW 8.0 to LabVIEW 8.0.1 to use
this example in LabVIEW 8.2.

© National Instruments Corporation 7 LabVIEW Upgrade Notes

File I/O VIs
The Write To Spreadsheet File VI and Read From Spreadsheet File VI are
polymorphic VIs. The Write to Spreadsheet File VI adapts to the value you
wire to the format input. The Read From Spreadsheet File VI includes the
following instances: DBL, I64, and string.

GPIB Status Function
In LabVIEW 8.0, the GPIB Status function did not execute if the error in
input received an error. In LabVIEW 8.2, the GPIB Status function always
executes, even if the error in input receives an error.

Histogram VI
The default for the intervals input of the Histogram VI changed to 10.

Open VI Reference Function
The default behavior for the options input of the Open VI Reference
function is to prompt users to find missing subVIs of the referenced VI.
A new value, 0x20, specifies not to display the Find dialog box or prompt
users to find missing subVIs of the referenced VI.

Polynomial Roots VI
If P(x) equals a nonzero constant, the Polynomial Roots VI does not return
an error. However, if P(x) equals 0, the Polynomial Roots VI returns error
-20111. The input polynomial coefficients for this VI cannot all be zeros.

Ramp Pattern VI
In the Ramp Pattern VI, if samples is 1 and exclude end? is TRUE, the VI
returns an array with one element of start, with no error. In LabVIEW 8.0,
the VI returned an error with these conditions.

Read Registry Value Simple VI
LabVIEW 8.0 incorrectly handled REG_MULTI_SZ string formatting,
which the VI used for a flattened array of strings. This issue required you
to write a parser to handle this type of data for the Read Registry Value
Simple VI. In LabVIEW 8.2, the Read Registry Value Simple VI returns
this type of data in the same format used in the Write Registry Value
Simple VI. You no longer need to add your own parser. Using your own
parser with these VIs in LabVIEW 8.2 causes the Read Registry Value
Simple VI to return bad data.

LabVIEW Upgrade Notes 8 ni.com

Resample Waveforms (single-shot) VI
The default value of the open interval? input of the Resample Waveforms
(single shot) VI changed from TRUE to FALSE, which selects a closed
interval. If you do not update existing code accordingly, the VI might not
return the expected result.

Sound VIs
In the Sound Input Read and the Sound File Read Simple VIs, the t0
component of the data output returns the time stamp for the first sample
read. LabVIEW approximates the initial time that it reads the first sample.

Calling The Sound Output Stop VI no longer is necessary to stop the sound
on a continuous sound task.

The Sound Output Wait VI works in Continuous Samples mode and in
Finite Samples mode.

Waveform VIs
LabVIEW 8.2 includes changes to the following Waveform VIs:

• Basic Level Trigger Detection VI—In both instances of this VI, the
slope input changed to trigger slope.

• Get Waveform Subset VI—Includes the following instances: WDT
Get Waveform Subset DBL, WDT Get Waveform Subset CDB, WDT
Get Waveform Subset EXT, WDT Get Waveform Subset I16, WDT
Get Waveform Subset I32, WDT Get Waveform Subset I8, and WDT
Get Waveform Subset SGL. The start/duration format input no
longer includes an Absolute Time option. The start input changed to
start samples/time, and the actual start output changed to actual
start samples/time.

• Get Waveform Time Array VI—The X array output changed from a
double-precision, floating-point numeric data type to a time stamp data
type.

• Get Y Value VI—This VI and the corresponding polymorphic
instances were renamed to Get XY Value. The Get XY Value VI now
includes an X value output, and the data value output changed to
Y value.

• Number of Waveform Samples VI—This VI is a polymorphic VI with
the following instances: WDT Number of Waveform Samples DBL,
WDT Number of Waveform Samples CDB, WDT Number of
Waveform Samples EXT, WDT Number of Waveform Samples I16,
WDT Number of Waveform Samples I32, WDT Number of Waveform
Samples I8, and WDT Number of Waveform Samples SGL.

© National Instruments Corporation 9 LabVIEW Upgrade Notes

• Read Waveform from File VI—Returns an error status of TRUE in the
error out output when the error is end-of-file.

• Replace Subset VI—The start input changed to start samples/time,
and the actual start value output changed to actual start
samples/time.

• Search for Digital Pattern VI—The start input changed to start
index/time.

• Search Waveform VI—The time of best fit and time of fits outputs
changed from a double-precision, floating-point numeric data type to
a time stamp data type.

• Waveform Min Max VI—The min time and max time outputs
changed from a double-precision, floating-point numeric data type to
a time stamp data type.

• Waveform to XY Pairs VI—The x element of the XY pairs output
changed from a double-precision, floating-point numeric data type to
a time stamp data type.

Property, Method, and Event Behavior Changes
The behavior of the following properties, methods, and events changed in
LabVIEW 8.2:

• The default behavior for the options input of the ActiveX
GetVIReference method is to prompt users to find missing subVIs of
the referenced VI. A new value, 0x20, specifies not to display the
Find dialog box or prompt users to find missing subVIs of the
referenced VI.

• The Add Item method of the ProjectItem class return an error when
you try to add a shared variable to a library that is not opened in a
project.

• If the Auto Dispose Ref input of the Run VI method is TRUE and the
method returns an error, LabVIEW does not dispose of the reference.

• Valid values for the Application:Language property include zh-cn to
indicate that Simplified Chinese is the language of the LabVIEW
environment.

• In LabVIEW 8.0, .NET methods that pass array data types by reference
pass all data as the refnum data type. .NET methods that pass array
data types by reference, passes the data as the actual data type.

• The Edit Position property of the DigitalTable, MulticolumnListbox,
Table, and TreeControl classes returns values of (–2, –2) to indicate
that the user is not making edits to the text of the control. The Edit Row
property of the ListBox class returns a value of –2 to indicate that the
user is not making edits to the text of the control.

LabVIEW Upgrade Notes 10 ni.com

• In LabVIEW 8.0, the Defer Panel Updates property did not defer the
update of front panels in a subpanel. In LabVIEW 8.2, the Defer Panel
Updates property works with subpanels.

• The Application Instance Close and Application Instance Close?
events replace the Application Exit and Application Exit? events.
When you use the Application Instance Close event in a VI running
outside a LabVIEW project, LabVIEW generates the event when you
quit LabVIEW through the user interface or programmatically.
LabVIEW generates the Application Instance Close? event when you
quit LabVIEW through the user interface. When you register the
Application Instance Close and Application Instance Close? events for
a VI running within a LabVIEW project, LabVIEW generates the
events when the application instance closes or when you quit
LabVIEW.

Deprecated Properties, Methods, and Events
LabVIEW 8.2 does not support the following properties, methods, and
events.

• LabVIEW 8.2 does not support the Connector Pane property.

• LabVIEW 8.x does not support the Data Type property in the Variable
class. Use the Data Type (Variant) property in the Variable class
instead.

Renamed Properties, Methods, and Events
The following properties, methods, and events are renamed in
LabVIEW 8.2:

Class LabVIEW 8.0 Name LabVIEW 8.2 Name Type

Application Disconnect From Slave LVRT:Disconnect From
Slave

Method

Application Application Exit Application Instance Close Event

Application Application Exit? Application Instance
Close?

Event

IntensityGraph,
MixedSignalGraph, and
WaveformGraph

Cursor Palette Visible Cursor Legend Visible Property

Library Delete Library Tag Library Tag:Delete Method

Library Get Icon Icon:Get Method

Library Get Library Tag Library Tag:Get Method

© National Instruments Corporation 11 LabVIEW Upgrade Notes

Upgrading from LabVIEW 7.x
You might encounter the following compatibility issues when you upgrade
to LabVIEW 8.2 from LabVIEW 7.x. Refer to the Upgrading from
LabVIEW 8.0 section of this document for information about other upgrade
issues you might encounter.

Refer to the LabVIEW Upgrade Notes for each version of LabVIEW
between versions 7.x and 8.0 at ni.com/manuals for more information
about the new features and changes in each version.

Library Get Library Tag Names Library Tag:Get Names Method

Library Get Lock State Lock State:Get Method

Library Get Source Scope Source Scope:Get Method

Library Save Save:Library Method

Library Save a Copy Save:Copy Method

Library Set Icon Icon:Set Method

Library Set Library Tag Library Tag:Set Method

Library Set Lock State Lock State:Set Method

Library Set Source Scope Source Scope:Set Method

Listbox,
MulticolumnListbox,
and TreeControl

Drag/Drop:
Allow Item Dragging

Drag/Drop:Allow Dragging Property

Path and String Allow Drop Allow Dropping Property

ProjectItems Delete Tag Tag:Delete Property

ProjectItems Get Tag Tag:Get Tag Property

ProjectItems Get Tag Names Tag:Get Names Property

ProjectItems Get XML Tag Tag:Get XML Tag Property

ProjectItems Set Tag Tag:Set Tag Property

ProjectItems Set XML Tag Tag:Set XML Tag Property

ProjectItems Library Item Type String Library Item Type:String Property

ProjectItems Library Item Type Library Item:Type Property

Class LabVIEW 8.0 Name LabVIEW 8.2 Name Type

http://www.ni.com/manuals

LabVIEW Upgrade Notes 12 ni.com

Note The LabVIEW Quick Reference Card and the LabVIEW Fundamentals Manual did
not change for LabVIEW 8.2. You can access the PDF versions of these documents in the
labview\manuals directory. Refer to the Upgrading from LabVIEW 8.0 section of this
document for more information about these documents.

Platforms Supported
LabVIEW 8.x includes the following changes in platforms supported:

• LabVIEW 7.1 and later do not support Windows Me/98/95.
LabVIEW 8.x does not support Windows NT.

• LabVIEW 8.x does not support Mac OS X 10.2 or earlier.

• LabVIEW 8.x does not support Sun Solaris.

System Requirements
LabVIEW 7.x requires a minimum of 128 MB of RAM, but National
Instruments recommends 256 MB of RAM. LabVIEW 8.x requires a
minimum of 256 MB of RAM, but National Instruments recommends
512 MB of RAM.

LabVIEW 7.x requires a screen resolution of 800 × 600 pixels, but National
Instruments recommends a screen resolution of 1,024 × 768 pixels.
LabVIEW 8.x requires a screen resolution of 1,024 × 768 pixels.

Windows
LabVIEW 7.x requires a minimum of a Pentium III or greater or Celeron
600 MHz or equivalent processor, but National Instruments recommends a
Pentium 4 or equivalent processor. LabVIEW 8.x requires a minimum of a
Pentium III or Celeron 866 MHz or equivalent processor, but National
Instruments recommends a Pentium 4/M or equivalent processor.

LabVIEW 7.x requires at least 130 MB of disk space for the minimum
LabVIEW installation or 550 MB disk space for the complete LabVIEW
installation. LabVIEW 8.x 1.2 GB disk space for the complete LabVIEW
installation.

Mac OS
LabVIEW 7.x requires at least 280 MB of disk space for the minimum
LabVIEW installation or 350 MB disk space for the complete LabVIEW
installation. LabVIEW 8.2 requires at least 500 MB of disk space for the
minimum LabVIEW installation or 700 MB disk space for the complete
LabVIEW installation.

© National Instruments Corporation 13 LabVIEW Upgrade Notes

Linux
LabVIEW 7.x requires a minimum of a Pentium III or greater or Celeron
600 MHz or equivalent processor, but National Instruments recommends a
Pentium 4 or equivalent processor. LabVIEW 8.x requires a minimum of a
Pentium III or Celeron 866 MHz or equivalent processor, but National
Instruments recommends a Pentium 4/M or equivalent processor.

LabVIEW 7.x requires at least 200 MB of disk space for the minimum
LabVIEW installation or 300 MB disk space for the complete LabVIEW
installation. LabVIEW 8.2 requires at least 430 MB of disk space for the
minimum LabVIEW installation or 620 MB disk space for the complete
LabVIEW installation.

LabVIEW 7.x requires GNU C Library (glibc) version 2.1.3 or later, but
National Instruments recommends GNU C Library version 2.2.4 or later.
LabVIEW 8.x requires GNU C Library version 2.2.4 or later.

LabVIEW 7.x runs on Red Hat Linux 7.0 or later, Mandrake Linux 8.0
or later, SuSE Linux 7.1 or later, or Debian Linux 3.0 or later.
LabVIEW 8.x runs on Red Hat Enterprise Linux WS 3 or later,
MandrakeLinux/Mandriva 10.0 or later, or SuSE Linux 9.1 or later.

Custom Palette Views
LabVIEW 8.x does not support custom palette views. You can edit a palette
set without using a custom palette view. Refer to the National Instruments
Web site at ni.com/info and enter the info code lv8palette for more
information about palette changes in LabVIEW 8.0.

VI and Function Behavior Changes
The behavior of the following VIs and functions changed in LabVIEW 7.1
or 8.0.

.NET VIs and Applications
You must have the .NET Framework 1.1 Service Pack 1 or later to use
.NET functions and applications in LabVIEW 8.x. You must remove
Microsoft .NET Framework 1.1 Hotfix KB886904 before installing the
.NET Framework 1.1 Service Pack 1.

If you load a .NET VI last saved in LabVIEW 7.x, LabVIEW 8.x might
prompt you to find the assemblies to which that VI refers even if the
assembly files are in the same directory as the VI or if you registered them
by selecting Tools»Advanced».NET Assembly References in
LabVIEW 7.x.

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=lv8palette

LabVIEW Upgrade Notes 14 ni.com

Analyze VI Algorithms
In LabVIEW 7.1 and later, the Analyze VIs use the BLAS/LAPACK
algorithms. These VIs now produce more accurate results. In
LabVIEW 8.x, these VIs are on the Mathematics and Signal Processing
palettes.

Append Signals Express VI
In LabVIEW 7.x, if Input Signal A of the Append Signals Express VI is
empty or not wired and you wire a single signal or a combined signal to
Input Signal B, the Appended Signals output is empty. In LabVIEW 8.x,
if Input Signal A is empty or not wired and you wire a single signal to
Input Signal B, the Express VI returns Input Signal B. If you wire only a
combined signal to Input Signal B, each signal in the combined signal
appends the following signal to create one signal as a result.

Comparison Functions
In LabVIEW 7.x and earlier, when you use the Comparison functions to
compare variant data, LabVIEW first compares the length of the two
variants and then compares the variants bit by bit. LabVIEW 8.x begins the
comparison of variant data with the type codes, which encode the actual
type information of the variants, and then compares other type-specific
attributes.

Dot Product VI
In LabVIEW 7.0, the Dot Product VI calculates the dot product of input
vectors X and Y using the following equation:

In LabVIEW 7.1 and later, the Dot Product VI calculates the dot product of
complex inputs using the following equation:

where yi
* is the complex conjugate of yi.

X∗Y xiyi
i 0=

n 1–

∑=

X *Y xiyi∗

i 0=

n 1–

∑=

© National Instruments Corporation 15 LabVIEW Upgrade Notes

Easy Text Report VI (Mac OS and Linux)
The connector pane of the Easy Text Report VI changed. In LabVIEW 8.x,
when you open a VI last saved in LabVIEW 7.x or earlier that uses the Easy
Text Report VI, you must right-click the subVI and select Relink To
SubVI from the shortcut menu.

Format Into String Function
In LabVIEW 7.x, using the %o or %x format specifier syntax elements with
the Format Into String function rounds a floating-point input to a 32-bit
integer before converting that input to a string.

In LabVIEW 8.x, these format specifier syntax elements cause this function
to round floating-point inputs to 64-bit integers before converting the inputs
to strings.

Join Numbers Function
In LabVIEW 7.x and earlier, the Join Numbers function coerces 32-bit
integer inputs to 16-bit integers to create one 32-bit integer. In
LabVIEW 8.x, the Join Numbers function joins 32-bit integer inputs
to create one 64-bit integer.

Note If you open a LabVIEW 7.x VI in LabVIEW 8.x, LabVIEW coerces 32-bit integer
inputs to 16-bit integers.

Mathematics VIs and Matrices
In LabVIEW 8.x, Mathematics VIs support the matrix data type. If you
load a VI from LabVIEW 7.x in LabVIEW 8.x and the VI contains a
Mathematics VI wired to a function that can use the matrix data type, a red
7.x glyph appears on the function to indicate that the function uses behavior
from LabVIEW 7.x.

Number to String Conversion Functions
In LabVIEW 7.x, the Number to Hexadecimal String, Number to Octal
String, and Number to Decimal String functions round a floating-point
input to a 32-bit integer before converting that input to a string.

In LabVIEW 8.x, these functions round floating-point inputs to 64-bit
integers before converting the inputs to strings. However, if you open a
LabVIEW 7.x VI in LabVIEW 8.x, LabVIEW maintains compatibility and
functionality by rounding floating-point inputs to 32-bit integers.

LabVIEW Upgrade Notes 16 ni.com

Open VI Reference Function
In LabVIEW 7.x, if the vi path input of the Open VI Reference function is
a path and a VI in memory exists with the same name, LabVIEW returns a
reference to the VI in memory, even if the path to the VI in memory does
not match the path you specified.

In LabVIEW 8.x, if the vi path input of the Open VI Reference function is
a string, LabVIEW opens the VI only if vi path matches the qualified
filename of a VI in memory on that target. If vi path is a path, LabVIEW
searches for a VI in memory with the same path on the same target. If
LabVIEW does not find a VI with a matching path, LabVIEW tries to load
the VI from disk at the specified path. An error occurs if LabVIEW cannot
find the file or if the file conflicts with another VI in memory and targets.

Quick Scale VI
In LabVIEW 7.1 and earlier, if the X input of the Quick Scale 1D VI or the
Quick Scale 2D VI is an array of zeros, this VI returns max|X| as 0 and
Y[i]=X[i]/Max|X| or Yij=Xij/Max|X| as an array of NaN. In LabVIEW 8.x,
if the X input of the Quick Scale VI is an array of zeros, this VI returns
max|X| as 0 and Y[i]=X[i]/Max|X| or Yij=Xij/Max|X| as an array of zeros.

Read Key VI
In LabVIEW 7.x and earlier, you can use the Read Key VI to read a
Japanese multibyte-character string encoded in Shift-JIS. You must wire 1
or <Shift-JIS> to the multibyte encoding input. In LabVIEW 8.x, the
Read Key VI reads multibyte-character, encoded strings by default if you
set the operating system locale to the appropriate encoding.

Scale VI
In LabVIEW 7.1 and earlier, if the X input of the Scale 1D VI or the Scale
2D VI is an array of zeros, this VI returns scale as 0, offset as 0, and
Y=(X–offset)/scale as an array of NaN. In LabVIEW 8.x, if the X input of
the Scale VI is an array of zeros, this VI returns scale as 1, offset as 0, and
Y=(X–offset)/scale as an array of zeros.

Semaphore VIs
In LabVIEW 7.x, the Release Semaphore VI and the Acquire Semaphore
VI do not attempt to run when the error in input receives an error. In
LabVIEW 8.x, these VIs attempt to run even if the error in input receives
an error. However, if you open a LabVIEW 7.x VI in LabVIEW 8.x,
LabVIEW maintains the LabVIEW 7.x functionality.

© National Instruments Corporation 17 LabVIEW Upgrade Notes

SMTP Email VIs
In LabVIEW 7.x and earlier, you can specify a character set by wiring a
value to the character set input of the SMTP Email VIs. In LabVIEW 8.x,
the SMTP Email VIs assume the message is in the system character set.
These VIs encode the message into UTF-8 format before sending the email.
The SMTP Email VIs no longer have the character set or translit
parameters.

Sort Complex Numbers VI
In LabVIEW 7.x and earlier, if you set the method input of the Sort
Complex Numbers VI to Magnitude, LabVIEW does not change the
sequence of elements with the same magnitude. In LabVIEW 8.x, if you set
method to Magnitude, LabVIEW sorts elements of the same magnitude
first with respect to their real parts and then with respect to their imaginary
parts.

Unit Vector VI
In LabVIEW 7.x and earlier, the Unit Vector VI calculates the norm of an
input vector using the following equation:

In LabVIEW 8.x, the Unit Vector VI calculates the norm of an input vector
using the following equation:

where X is the input vector, ||X|| is the norm, and y is the norm type.

User VIs
VIs that you place in the labview\help, labview\project, or
labview\wizard directories appear in the Help, Tools, and File menus,
respectively. VIs that you place in these directories in LabVIEW 7.x and
earlier might not work as expected in LabVIEW 8.x because LabVIEW 8.0
and later opens these VIs in a private application instance.

Use the VIMemory Get VIs in Memory VI in the labview\vi.lib\
Utility\allVIsInMemory.llb to generate a list of all user VIs in
memory in all application instances. Use the Get User Application
Reference VI in the labview\vi.lib\Utility\
allVIsInMemory.llb to create a reference to the current application

X x0
2 x1

2 … xn 1–
2+ + +=

X x0
y x1

y … xn 1–
y+ + +

1
y

=

LabVIEW Upgrade Notes 18 ni.com

instance. Refer to the LabVIEW Help for more information about
application instances.

Deprecated VIs and Functions
LabVIEW 8.x does not support the following VIs and functions:

• LabVIEW 7.1 and later do not install the Polynomial Real Zero
Counter VI. Use the Polynomial Real Zeros Counter VI instead.

• (Mac OS) LabVIEW 7.1 and later do not install the PPC VIs. Use the
TCP VIs instead.

• LabVIEW 8.x does not support the QR Factorization VI. Use the QR
Decomposition VI instead.

• LabVIEW 8.x does not support the Levenberg Marquardt or the
Nonlinear Lev-Mar Fit VIs. Use the Nonlinear Curve Fit VI instead.

• In LabVIEW 8.x, the VISA Status Description function is not on the
Functions palette. Use the Simple Error Handler or General Error
Handler VIs instead.

• LabVIEW 8.x does not support the Chi Square Distribution,
F Distribution, Normal Distribution, and T Distribution VIs. Use the
Chi-Squared, F, Normal, and Student t instances, respectively, of the
Continuous CDF VI instead.

• LabVIEW 8.x does not support the Inv Chi Square Distribution,
Inv F Distribution, Inv Normal Distribution, and Inv T Distribution
VIs. Use the Chi-Squared, F, Normal, and Student t instances,
respectively, of the Continuous Inverse CDF VI instead.

• In LabVIEW 8.x, the 1D Linear Evaluation VI and the 2D Linear
Evaluation VI are not on the Functions palette. Use the Linear
Evaluation VI instead.

• In LabVIEW 8.x, the 1D Polynomial Evaluation VI and the
2D Polynomial Evaluation VI are not on the Functions palette. Use
the Polynomial Evaluation VI instead.

• In LabVIEW 8.x, the 1D Rectangular to Polar VI and the 1D Polar to
Rectangular VI are not on the Functions palette. Use the Re/Im To
Polar function and the Polar To Re/Im function instead.

• In LabVIEW 8.x, the Harmonic Analyzer VI is not on the Functions
palette. Use the Harmonic Distortion Analyzer VI instead to measure
the THD or component levels outputs, or use the SINAD Analyzer VI
to measure the SINAD or THD Plus Noise outputs.

• In LabVIEW 8.x, the Network Functions (avg) VI is not on the
Functions palette. Use the Frequency Response Function
(Mag-Phase), Frequency Response Function (Real-Im), Cross
Spectrum (Mag-Phase), or Cross Spectrum (Real-Im) VIs instead.

© National Instruments Corporation 19 LabVIEW Upgrade Notes

• In LabVIEW 8.x, the Pulse Parameters VI is not on the Functions
palette. Use the Transition Measurements VI instead to measure the
slew rate, duration, overshoot, or preshoot outputs, the Pulse
Measurements VI to measure the period, pulse duration, or duty
cycle outputs, or the Amplitude and Levels VI to measure the
amplitude, high state level, or low state level outputs.

• In LabVIEW 8.x, the Transfer Function VI is not on the Functions
palette. Use the Frequency Response Function (Mag-Phase) or
Frequency Response Function (Real-Im) VIs instead.

• In LabVIEW 8.x, the NI DIAdem Report Wizard Express VI is not on
the Functions palette. Use the DIAdem Report Express VI instead.

• In LabVIEW 8.x, the VISA resource name constant and the IVI logical
name constant are not on the Functions palette. To specify a VISA
resource name, use the VISA resource name input of the VISA VIs.
To specify an IVI logical name, use the appropriate input of the
appropriate driver VI that initializes the instrument.

• In LabVIEW 8.x, the error ring constant is not on the Functions
palette. Use a 32-bit signed integer constant instead to enter the error
code that you want.

• (Windows and Linux) In LabVIEW 8.x, the Sound VIs available on the
Sound palette in LabVIEW 7.x are not on the Functions palette. Use
the Sound VIs in LabVIEW 8.x instead. The examples shipped with
LabVIEW 7.x do not ship with LabVIEW 8.x.

• (Mac OS) LabVIEW 8.x continues to ship with the Sound VIs shipped
with LabVIEW 7.1. The examples shipped with LabVIEW 7.x do not
ship with LabVIEW 8.x.

File I/O VIs and Functions
In LabVIEW 8.x, the Read Characters From File VI is not on the Functions
palette. Use the Read from Text File function instead.

In LabVIEW 8.x, the Open/Create/Replace File VI is not on the Functions
palette. Use the Open/Create/Replace File function instead. The following
functions include some of the functionality of the Open/Create/Replace
File VI in LabVIEW 7.x and earlier.

• Use the Get File Size function to determine the size of a file.

• Use the File Dialog Express VI to specify the start path, file pattern,
and default name of a file or directory for a file dialog box.

• Use the Refnum to Path function to convert a reference to a path.

• Use the Write to Binary File function to create platform-independent
text files or other types of binary files, and use the Read from Binary
File function to read the resulting binary files.

LabVIEW Upgrade Notes 20 ni.com

In LabVIEW 8.x, the Read File and Write File functions are not on the
Functions palette. Use the Read from Binary File and Write to Binary File
functions instead.

In LabVIEW 8.x, the Write Characters To File VI is not on the Functions
palette. Use the Write to Text File function instead.

In LabVIEW 8.x, the Access Rights function is not on the Functions
palette. Use the Get Permissions and Set Permissions functions instead.

In LabVIEW 8.x, the EOF function is not on the Functions palette. Use the
Get File Size and Set File Size functions instead.

In LabVIEW 8.x, the List Directory function is not on the Functions
palette. Use the List Folder function instead.

In LabVIEW 8.x, the Lock Range function is not on the Functions palette.
Use the Deny Access function instead.

If you open a VI built in LabVIEW 7.x that includes the New Directory
function on the block diagram, LabVIEW 8.x replaces that function with
the Create Folder function. If the folder you specified in the path input does
not exist, the Create Folder function creates the directory rather than
returning an error, as the New Directory function did.

In LabVIEW 8.x, the Seek function is not on the Functions palette. Use the
Get File Position and Set File Position functions instead.

In LabVIEW 8.x, the Type and Creator function is not on the Functions
palette. Use the Get Type and Creator and Set Type and Creator functions
instead.

In LabVIEW 8.x, the Volume Info function is not on the Functions palette.
Use the Get Volume Info function instead.

In LabVIEW 8.x, the Open File and New File functions are not on the
Functions palette. The Read Lines From File VI is not on the Functions
palette but ships with LabVIEW for compatibility.

In LabVIEW 8.x, the Read From I16 File, Read From SGL File, Write To
I16 File, and Write To SGL File VIs are not on the Functions palette. Use
the Read from Binary File and Write to Binary File VIs instead.

© National Instruments Corporation 21 LabVIEW Upgrade Notes

Property, Method, and Event Behavior Changes
The behavior of the following properties, methods, and events changed in
LabVIEW 7.1 or 8.0.

Application Properties and Methods
In LabVIEW 8.x, the behavior of some Application properties and methods
depends on the application instance to which they belong. For example, the
behavior of the Application:All VIs in Memory property depends on the
application instance in which you use it. This property returns a list of all
VIs in memory in the same application instance as the property. However,
the behavior of the Application:Directory Path property does not depend on
the application instance in which you use it. This property returns the
absolute path to the directory in which the application is located. This
information does not change with each application instance.

Refer to the LabVIEW Help for more information about application
instances.

Front Panel:Open Method
The LabVIEW 7.0 Open FP method was renamed to Old Open FP in
LabVIEW 7.1. LabVIEW 7.1 includes a different Open FP method that
does not return an error if the front panel is already open. The
LabVIEW 7.1 Open FP method was renamed to Front Panel:Open in
LabVIEW 8.x. If you have VIs that use the Old Open FP method from
LabVIEW 7.0, replace the method with the Front Panel:Open method.

Run VI Method
In LabVIEW 7.1, if you set the Auto Dispose Ref input of the Run VI
method to TRUE, LabVIEW automatically disposes the reference after the
VI stops running. In LabVIEW 8.x and later, LabVIEW also immediately
disposes the reference if the method returns an error. This behavior might
break a VI at run time if part of the block diagram depends on the reference.

Key Down and Key Repeat Events
The VKey data field of the Key Down, Key Down?, Key Repeat, and Key
Repeat? events for VIs and controls now has separate values for the
<Return> key on the alphanumeric section of the keyboard and the <Enter>
key on the numeric keypad. In LabVIEW 7.x and earlier, when the <Enter>
key or the <Return> key generates one of these events, LabVIEW returns
<Enter> in the VKey data field. In LabVIEW 8.x, when the <Enter> key
or the <Return> key generates one of these events, LabVIEW returns
<Enter> or <Return>, respectively, in the VKey data field.

LabVIEW Upgrade Notes 22 ni.com

(Mac OS) LabVIEW 8.x accepts only <Control>-click for shortcut menus
and does not receive the <Command>-click key combination. If you are
emulating this behavior with an Event structure, modify your VIs to
emulate the new behavior.

ListBox Properties
In LabVIEW 7.x and earlier, if you set the Top Row property of a listbox
to a row that is below the bottom item of the listbox, LabVIEW pins the row
to the last visible item. In LabVIEW 8.x, the number of visible items in the
listbox does not limit the row number you can wire to this property.

LabVIEW 8.x does not support the Double-Click property for
single-column listboxes. Use the Get Double-Clicked Row method instead.

Owning VI Property
In LabVIEW 7.x and earlier, the Owning VI property returns a reference to
the VI to which the object belongs. This reference keeps the VI in memory.
In LabVIEW 8.x, the reference the Owning VI property returns does not
keep the VI in memory. If the owning VI is removed from memory, this
reference becomes invalid. Use the Open VI Reference function to obtain
a reference to a VI that stays in memory until you explicitly close the
reference.

Text Property
In LabVIEW 7.x and earlier, the Text property returns a string in normal
display. In LabVIEW 8.x, the Text property returns a string in the same text
display as the front panel object. For example, if you display a string
control in password display, the Text property returns the string in
password display.

TreeControl Properties
In LabVIEW 7.x and earlier, the Active Cell Properties:Cell Size:Height
and Active Cell Properties:Cell Size:Width properties return 17 pixels for
each line in the tree control. In LabVIEW 8.x, the Active Cell:Cell Size:
Height and Active Cell:Cell Size:Width properties return 16 pixels for each
line in the tree control.

VI Strings Methods
Strings that you export from previous versions of LabVIEW using the
Export VI Strings method might not import properly in LabVIEW 8.x when
you use the VI Strings:Import method.

© National Instruments Corporation 23 LabVIEW Upgrade Notes

Deprecated Properties, Methods, and Events
LabVIEW 8.x does not support the following properties, methods, and
events.

Cursor Properties
LabVIEW 8.x does not support the Cursor Lock Style property. Use the
Cursor Mode property instead.

ListBox, Table, DigitalTable, and TreeControl Properties and
Events
LabVIEW 8.x does not support the Cell Foreground Color property for
multicolumn listboxes. Use the Active Cell:Cell Font:Color property
instead.

LabVIEW 8.x does not support the Cell FG Color property for tables or
digital tables. Use the Active Cell:Cell Font:Color property for tables and
digital tables instead.

LabVIEW 8.x does not support the Active Cell Properties:Foreground
Color property for tree controls. Use the Active Cell:Cell Font:Color
property instead.

LabVIEW 8.x does not support the Drag, Drag?, Drop, and Drop? events in
the TreeControl class. Use the Drag Ended, Drag Enter, Drag Leave, Drag
Over, Drag Source Update, Drag Starting, Drag Starting?, and Drop events
in the Control class instead.

NamedNumeric Properties
LabVIEW 8.x does not support the Named Numeric Colors, Named
Numeric Colors:BG Color, or Named Numeric Colors:Text Color
properties for named numeric objects. Use the Text Colors, Text
Colors:BG Color, and Text Colors:Text Color properties, respectively,
instead.

Panel Properties
LabVIEW 8.x does not support the Color property in the Panel class. If you
use this property in LabVIEW 8.x, the property applies only to the
upper-leftmost pane. Use the Pane Color property in the Pane class instead.

Subpanel Properties
In LabVIEW 8.x, use the pane of a subVI in a subpanel to configure the
visibility of scroll bars for subpanel controls and to scale the front panel in
subpanel controls.

LabVIEW Upgrade Notes 24 ni.com

LabVIEW 8.x does not support the X Scrollbar Visible property for
subpanel controls. Use the Horizontal Scrollbar Visibility property for
panes instead.

LabVIEW 8.x does not support the Y Scrollbar Visible property for
subpanel controls. Use the Vertical Scrollbar Visibility property for panes
instead.

LabVIEW 8.x does not support the Scale Panel property for subpanel
controls. Use the Set Scaling Mode method for panes instead.

VI Properties, Methods, and Events
LabVIEW 8.x does not support the Front Panel Window:Auto Center
property. Use the Front Panel:Center method instead.

LabVIEW 8.x does not support the Front Panel Window:Size to Screen
property. Use the Front Panel Window:State property instead.

LabVIEW 8.x does not support the Front Panel Window:Origin property in
the VI class. If you use this property in LabVIEW 8.x, the property applies
only to the upper-leftmost pane. Use the Origin property in the Pane class
instead.

LabVIEW 8.x does not support the Front Panel Window:Show Scroll Bars
property in the VI class. If you use this property in LabVIEW 8.x, the
property applies only to the upper-leftmost pane. Use the Horizontal
Scrollbar Visibility and Vertical Scrollbar Visibility properties in the Pane
class instead.

LabVIEW 8.x does not support the Get Front Panel Scaling Mode or Set
Front Panel Scaling Mode methods in the VI class. If you use these
methods in LabVIEW 8.x, the methods apply only to the upper-leftmost
pane. Use the Get Scaling Mode and Set Scaling Mode methods in the Pane
class instead.

LabVIEW 8.x does not support the Mouse Down, Mouse Down?, Mouse
Enter, Mouse Leave, Mouse Move, or Mouse Up events in the VI class. Use
the Mouse Down, Mouse Down?, Mouse Enter, Mouse Leave, Mouse
Move, and Mouse Up events in the Pane class, respectively, instead.

Application Item Tags
The following application item tags do not exist in LabVIEW 8.x:

• APP_BUILD_STANDALONE_APP

• APP_DN_ASSEMBLY_REFS

• APP_EDIT_VI_LIBRARY

© National Instruments Corporation 25 LabVIEW Upgrade Notes

• APP_SAVE_WITH_OPTIONS

• APP_SHOW_CLIPBOARD

• APP_SRC_CODE_CTRL

• APP_SWITCH_EXEC_TARGET

• APP_UPDATE_VXI

• APP_VIEW_PRINTED_MANUALS

When you use a run-time menu (.rtm) file that was saved in a previous
version of LabVIEW and the file contains a deleted tag, LabVIEW 8.x
automatically removes the tag from the .rtm file when you save the file in
the Menu Editor dialog box. The deleted application item tags are reserved
by LabVIEW and you cannot use them as user tags.

HiQ Support
National Instruments does not support HiQ functionality in LabVIEW 8.x.
If an application uses HiQ VIs, consider replacing them with the
Mathematics and Signal Processing VIs.

Error List Window
In LabVIEW 7.x and earlier, the VI List section of the Error list window
shows errors for all VIs in memory. In LabVIEW 8.x, the Items with
errors section of the Error list window shows errors for all items in
memory, such as VIs and libraries. If two or more items have the same
name, this section shows the specific application instance for each
ambiguous item. Refer to the LabVIEW Help for more information about
application instances.

VI String File Syntax
LabVIEW 8.x searches for a new set of tags, <GROUPER></GROUPER>,
when you import VI string files by selecting Tools»Advanced»Import
Strings or by using the VI Strings:Import method. This set of tags denotes
front panel objects that are grouped together. Therefore, in LabVIEW 8.x,
you cannot import VI string files saved in previous versions of LabVIEW.

LabVIEW 7.1 and earlier lists listbox strings in the <ITEMS> section of its
private data. LabVIEW 8.x lists listbox strings in the <STRINGS> section
of its private data. Also, in LabVIEW 7.1 and earlier, a listbox can have
only one font, which LabVIEW lists in the <LBLABEL> section of its
private data. In LabVIEW 8.x, the listbox can have multiple fonts, which
LabVIEW lists in the <CELL_FONTS> section of its private data.

LabVIEW Upgrade Notes 26 ni.com

LabVIEW 7.1 and earlier lists multicolumn listbox strings in its default
data. However, the default data for a multicolumn listbox is an integer or
array of integers. LabVIEW 8.x lists multicolumn listbox strings in its
private data.

LabVIEW 7.1 and earlier exports neither strings nor fonts for tree controls.
LabVIEW 8.x can export both tree control strings and fonts, and it exports
them in the same format as the listbox and multicolumn listbox.

In LabVIEW 8.x, each line of an export file contains no more than two tags
for private or default data. LabVIEW 8.x also indents items once for each
nesting level.

Complete the following steps to convert VI string files to the LabVIEW 8.x
format.

1. Import the VI string file in the previous version of LabVIEW.

2. Save the VI.

3. Load the VI in LabVIEW 8.x.

4. Select Tools»Advanced»Export Strings to save the VI string file in
the LabVIEW 8.x format.

Converting Type Descriptor Data to and from
LabVIEW 7.x
The format in which LabVIEW stores type descriptors changed in
LabVIEW 8.x. LabVIEW 7.x stores type descriptors in 16-bit flat
representation. LabVIEW 8.x stores type descriptors in 32-bit flat
representation. This change eliminates the 64 KB size limitation of type
descriptors.

LabVIEW 8.x provides a mechanism for reading type descriptors written in
LabVIEW 7.x and writing type descriptors that LabVIEW 7.x can read. The
Flatten To String function has a Convert 7.x Data shortcut menu item. If
you right-click the function and select this menu item, the function treats
input data as if it were written for LabVIEW 7.x. When you select the
Convert 7.x Data shortcut menu item and the data string output is wired,
LabVIEW 8.x places a red 7.x glyph on the function to indicate that it is
converting data to or from LabVIEW 7.x format. To avoid the conversion
of data, select the Convert 7.x Data shortcut menu item again to remove
the checkmark.

In LabVIEW 8.x, when you load a VI last saved in LabVIEW 7.x or earlier,
LabVIEW 8.x automatically sets the Convert 7.x Data attribute on the
Flatten To String function. The function continues to operate as in
LabVIEW 7.x and earlier. If you want a VI to use the LabVIEW 8.x type
descriptor format, right-click the Flatten To String function and select

© National Instruments Corporation 27 LabVIEW Upgrade Notes

Convert 7.x Data from the shortcut menu to remove the checkmark. Use
the LabVIEW 8.x type descriptor format if VIs do not need to manipulate
files that contain data written in LabVIEW 7.x or earlier and do not send or
receive data to or from VIs running in LabVIEW 7.x or earlier. Support for
the previous type descriptor format might be discontinued in future
versions of LabVIEW.

Migrating from the LabVIEW Built-In Source Control
Provider
The built-in source control provider from LabVIEW 7.x and earlier is not
available in LabVIEW 8.x. If you want to use source control in LabVIEW,
you must select a third-party source control provider. If you used the
built-in provider in previous versions, you must migrate the files to another
provider to use source control in LabVIEW. Refer to the National
Instruments Web site at ni.com/info and enter the info code exgucn for
the most current list of third-party source control providers supported in
LabVIEW.

When you migrate files to a new source control provider, you lose the
revision history stored in the built-in provider. You cannot transfer the
previous versions of the files to the new provider.

Complete the following steps to migrate files from the built-in source
control provider to a third-party source control provider.

1. In the previous version of LabVIEW, make sure that the files included
in the LabVIEW built-in source control provider are checked in by all
users.

2. On the computer where you want to add the files to the new source
control provider, use the built-in provider to get the latest versions of
all the files.

3. Use the built-in provider to check out the files from source control.

4. In the third-party source control provider, configure the settings you
want for the new source control project.

5. Configure LabVIEW to work with the third-party source control
provider. Refer to the Fundamentals»Organizing and Managing a
Project»How-to»Using Source Control in LabVIEW book on the
Contents tab of the LabVIEW Help for information about configuring
LabVIEW to work with a third-party source control provider.

6. Create a LabVIEW project. Add the files included in the built-in
provider to the project. When LabVIEW prompts you, add the files to
source control. You also can add the files directly in the third-party
provider. Refer to the Fundamentals»Organizing and Managing a
Project»How-to»Creating a LabVIEW Project book on the

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=exgucn

LabVIEW Upgrade Notes 28 ni.com

Contents tab of the LabVIEW Help for information about creating a
LabVIEW project.

Converting NaN Strings to Integer Types (Windows)
In LabVIEW 7.x, when you explicitly or implicitly convert NaN to an
integer, the value becomes the smallest value for that integer data type. For
example, converting NaN to a 16-bit signed integer produces the value
–32,768, the smallest possible value for a 16-bit signed integer.

In LabVIEW 8.x, when you explicitly or implicitly convert NaN to an
integer, the value becomes the largest value for that integer data type. For
example, converting NaN to a 16-bit signed integer produces the value
32,767, the largest possible value for a 16-bit signed integer.

Constants Wired to Case Structures
In LabVIEW 7.x and earlier, you can keep subVIs in memory by wiring a
constant to a Case structure and placing the subVI in a case that does not
execute. For example, if you wire a TRUE constant to a Case structure and
place a subVI in the FALSE case of the Case structure, LabVIEW loads the
subVI along with the calling VI. LabVIEW 8.x removes any code that does
not execute. Therefore, if you load a VI in LabVIEW 8.x that was saved in
an earlier version of LabVIEW with a constant wired to a Case structure,
LabVIEW changes the constant to a hidden control to maintain the
behavior from the earlier version of LabVIEW.

Delaying Operating System Messages
In LabVIEW 7.x, LabVIEW processes operating system messages while
running callback VIs for handling .NET and ActiveX events. In
LabVIEW 8.x, LabVIEW delays the processing of operating system
messages until the callback VI stops execution or until you load a modal
dialog box. This delay allows callback VIs to execute without interruption
and prevents LabVIEW from firing an event within another event, which
can result in a deadlock state.

You cannot make synchronous calls to non-modal dialog boxes from a
callback VI. You must asynchronously call a non-modal dialog box from a
callback VI by invoking a Run VI method on the dialog and wiring a
FALSE Boolean constant to the Wait Until Done input of the method.

In LabVIEW 7.x, LabVIEW processes operating system messages while
running DLL or shared library functions. In LabVIEW 8.x, LabVIEW
delays the processing of operating system messages until the end of calls to
DLL functions or until you load a modal dialog box from the DLL. This
delay allows DLL functions to execute without interruption and prevents

© National Instruments Corporation 29 LabVIEW Upgrade Notes

LabVIEW from calling the same DLL while a DLL function is running,
which can result in a deadlock state.

If you use this default behavior, you cannot make synchronous calls to
non-modal dialog boxes while a DLL runs. You must call a non-modal
dialog box asynchronously from a DLL by invoking a Run VI method on
the dialog and wiring a FALSE Boolean constant to the Wait Until Done
input of the method.

You can choose whether to delay operating system messages in DLLs that
you build. Right-click the DLL in the Project Explorer window, select
Properties from the shortcut menu, select Advanced from the Category
list, and remove the checkmark from the Delay operating system
messages in shared library checkbox to process operating system
messages while DLL functions run.

Resource Manager (Mac OS)
LabVIEW 7.x and earlier provide undocumented capabilities with which
you can read and write Macintosh resource files. In LabVIEW 8.x, these
methods do not exist. Utilities that make use of these undocumented
capabilities do not work, and you therefore cannot read or write Macintosh
resource files from VIs.

One- and Two-Button Dialog Boxes
In LabVIEW 7.x and earlier, you cannot abort programmatically a VI
displaying a one-button dialog box or two-button dialog box. In
LabVIEW 8.x, you can abort programmatically a VI displaying these
dialog boxes by using the Abort VI method.

Property and Invoke Nodes
If you create an implicitly linked Property Node or Invoke Node from a
cursor legend in LabVIEW 7.x, LabVIEW deletes the node when you open
the VI in LabVIEW 8.x.

Updating Shared Libraries
If you build a shared library (DLL) in LabVIEW 7.x or earlier that links to
labview.lib, link the shared library to labviewv.lib instead in
LabVIEW 8.x. Refer to the LabVIEW Help for more information about
linking shared libraries to labviewv.lib.

LabVIEW Upgrade Notes 30 ni.com

Margin Values for Printing
In LabVIEW 7.x and earlier, the Margins option on the Printing page of
the Options dialog box uses centimeters for margin values. In
LabVIEW 8.x, the Margins option uses millimeters for margin values.

Upgrading from LabVIEW 6.x
You might encounter the following compatibility issues when you upgrade
to LabVIEW 8.2 from LabVIEW 6.x. Refer to the Upgrading from
LabVIEW 7.x and Upgrading from LabVIEW 8.0 sections of this document
for information about other upgrade issues you might encounter.

Refer to the LabVIEW Upgrade Notes for each version of LabVIEW
between versions 6.x and 8.0 at ni.com/manuals for more information
about the new features and changes in each version.

Changes to the Waveform Data Type
In LabVIEW 7.0, the waveform data type uses the time stamp data type for
the t0 component rather than a double-precision, floating-point number.
If you save data in the waveform data type to a file without including
information about the data type in LabVIEW 6.x, you might encounter an
error if you try to retrieve that data in LabVIEW 7.x and later.

In the LabVIEW 7.x and later, the Read Waveform from File VI converts
the old waveform data type format in a file to the new waveform data type
format. This VI displays a dialog box that prompts you to accept the
conversion. In the LabVIEW Run-Time Engine, the Read Waveform from
File VI cannot perform this conversion and returns an error instead. Refer
to the National Instruments Web site at ni.com/info and enter the info
code exd9zq for more information about migrating waveform data from
LabVIEW 6.x to LabVIEW 7.x and later.

Serial Compatibility VIs
In LabVIEW 7.x and later, the Serial Compatibility VIs do not appear on
the Functions palette. Use the VISA VIs and functions to build VIs that
communicate with VXI devices.

In LabVIEW 7.x and later, LabVIEW does not use the serpdrv driver to
communicate with the serial driver of the operating system. LabVIEW
includes compatible VIs based on VISA. For new applications, use the
VISA and Serial VIs and functions to control serial devices. Any VIs built
in previous versions of LabVIEW that include Serial VIs continue to work
in LabVIEW 7.1 and later.

http://www.ni.com/manuals
http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=exd9zq

© National Instruments Corporation 31 LabVIEW Upgrade Notes

If you reconfigured the mapping of port numbers to ports, you must specify
a mapping to those ports. Use the set serial alias ports VI in the labview\
vi.lib\Instr_sersup.llb to specify the serial port mappings. Wire
a string array to the VISA Aliases input of the VI and enter the port names
you use in the input array. Each element in the array should correspond to
a port. For example, if you configured port 0 to map to the VISA alias
MySerialPort, enter MySerialPort as the first element of the VISA
Aliases input array. You must call the set serial alias ports VI before you
call the VISA Configure Serial Port VI.

Refer to the labview\examples\instr\smplserl.llb for examples
of using the VISA VIs and functions to control serial instruments.

Default Data in Loops
In LabVIEW 6.0 and earlier, For Loops produce undefined data if the loop
does not execute. In LabVIEW 6.1 and later, For Loops produce default
data if you wire 0 to the count terminal of the For Loop or if you wire an
empty array to the For Loop as an input with auto-indexing enabled. The
loop does not execute, and any output tunnel with auto-indexing disabled
contains the default value for the tunnel data type.

Remote Front Panel License
The LabVIEW Full Development System and the Application Builder
include a remote front panel license that allows one client to view and
control a front panel remotely. The LabVIEW Professional Development
System includes a remote front panel license that allows five clients to view
and control a front panel remotely.

You can upgrade the remote front panel license to support more clients.

Multiple Thread Allocation
LabVIEW 7.1 and later allocate more threads for executing VIs than in
versions earlier than LabVIEW 7.1. Because of this change, you might
encounter errors with multiple threads if you incorrectly mark Call Library
Function Nodes as reentrant when the DLL you call is not actually
reentrant. Refer to the LabVIEW Help for more information about the Call
Library Function Node and reentrancy.

To change how LabVIEW allocates threads, use the threadconfig VI in the
labview\vi.lib\Utility\sysinfo.llb. You also can disable
reentrancy for VIs by selecting File»VI Properties, selecting Execution
from the Category pull-down menu, and removing the checkmark from the
Reentrant execution checkbox.

Refer to the LabVIEW Help for more information about thread allocation.

LabVIEW Upgrade Notes 32 ni.com

Instrument Drivers
The LabVIEW package in LabVIEW 7.x and later does not include the
LabVIEW Instrument Driver Library CD, which contains instrument
drivers. Download instrument drivers from the National Instruments
Instrument Driver Network at ni.com/idnet. The National Instruments
Device Drivers CD includes NI-DAQ, NI-VISA, and other National
Instruments drivers.

Units and Conversion Factors
In LabVIEW 7.x and later, you do not need to use the Convert Unit function
to remove the extra unit after using the Compound Arithmetic function.

The unit conversion factors in LabVIEW 7.1 and later more closely match
the guidelines published by the National Institute for Standards and
Technology (NIST) in the Guide for the Use of the International System of
Units (SI). Also, the calorie unit now is calorie (thermal), and
horse power now is horsepower (electric). The abbreviations for
these units did not change. The following table details the changes in unit
conversion factors between LabVIEW 6.1 and 7.x and later.

Unit 6.1 Definition 7.x and Later Definition

astronomical unit (AU) 149,498,845,000 m 149,597,900,000 m

British Thermal Unit (mean) 1055.79 J 1055.87 J

electron volt (eV) 1.602e–19 J 1.60217642e–19 J

foot-candle 10.764 lx 10.7639 lx

horse power versus
horse power (electric)

745.7 W 746 W. The new conversion is exact.

imperial gallon 4.54596 l 4.54609 l

light year 9.4605 Pm 9.46073 Pm

pound force 4.448 N 4.448222 N

rod 16.5 ft 5.029210 m

slug 32.174 lb 14.59390 kg

unified atomic mass (u) 1.66057e–27 kg 1.66053873e–27 kg

http://www.ni.com/idnet

© National Instruments Corporation 33 LabVIEW Upgrade Notes

Defer Panel Updates Property
In LabVIEW 6.1 and earlier, LabVIEW waits until the Defer Panel Updates
property is FALSE to redraw any front panel objects with pending changes.
In LabVIEW 7.0 and later, when you set this property to TRUE, LabVIEW
redraws any front panel objects with pending changes and then defers all
new requests for front panel updates. In some cases, this change can cause
LabVIEW to redraw the changed elements of the front panel an extra time.

Data Ranges for Numeric Controls
In LabVIEW 6.1 and earlier, some numeric controls have a default
minimum value of 0.00, maximum value of 0.00, increment value of
0.00, and out of range action of Ignore. In LabVIEW 7.x and later, these
numeric controls use the default data range values for the data type.

Coercion Dots and Type Definitions
In LabVIEW 6.1 and later, wires include information about type
definitions, so you might notice more coercion dots on block diagrams. If
you wire a type definition to a VI or function terminal that is not a type
definition terminal, a coercion dot appears. A coercion dot also appears if
you wire an output terminal that is a type definition to an indicator that is
not a type definition. These coercion dots indicate where you are not using
type definitions consistently in the VIs. In this case, coercion dots do not
affect run-time performance.

Refer to the LabVIEW Help for information about using the Flatten To
String function to flatten type definitions.

File Dialog Box Button Label
In LabVIEW 6.1 and earlier, the file dialog box that the File Dialog
function displays has a button label of Save if the user can enter a new
filename. Otherwise, the button label is Open. In LabVIEW 8.x, the button
label on the file dialog box that the File Dialog Express VI displays is OK
in all cases unless you change it. Use the button label input of the File
Dialog Express VI to change the label of the button. If you use the File
Dialog Express VI in an existing VI, consider reviewing the behavior of the
VI to make sure the default label of OK is appropriate to the functionality
of the VI.

Control Online Help Function
The Path to the help file input of the Control Online Help function now is
required. You can wire a compiled help filename (.chm or .hlp) or the full
path to a compiled help file to the input. If you wire only a compiled help
filename, LabVIEW searches the labview\help directory for that file.

LabVIEW Upgrade Notes 34 ni.com

Displaying the Front Panel When Loaded
In LabVIEW 7.x and later, if you configure a VI to display the front panel
when LabVIEW loads the VI and you load the VI using the VI Server,
LabVIEW does not display the front panel. You must use the Front Panel:
Open method to display the front panel programmatically.

Open VI Reference Function
In LabVIEW 6.1 and earlier, if you do not wire a value to the options
parameter of the Open VI Reference function, LabVIEW instantiates a VI
from a template if the template is not already in memory. If the template is
in memory, LabVIEW opens a reference to the template. In LabVIEW 7.0
and 7.1, if you use the Open VI Reference function to create a reference to
a template that is already in memory, the function returns an error unless
you specify 0x02 in the options parameter. In LabVIEW 8.0 and later, if
you use the Open VI Reference function to create a reference to a template,
LabVIEW instantiates a VI from the template even if that template is
already in memory.

Exponential Representation
In LabVIEW 6.0 and earlier, the ̂ operator represents exponentiation in the
Formula Node. In LabVIEW 6.1 and later, the operator for exponentiation
is **—for example, x**y. The ^ operator represents the bitwise exclusive
or (XOR) operation.

IVI Configuration Store File
The IVI Configuration Store file format now requires that all names be
case-sensitive. If you use logical names, driver session names, or virtual
names in your application, make sure that the name you use matches the
name defined in the IVI Configuration Store file exactly, without any
variations in the case of the characters in the name.

Technical Support Form
In LabVIEW 7.x and later, the LabVIEW installation program does not
install techsup.llb. Refer to the National Instruments Web site at
ni.com/support to solve installation, configuration, and application
problems and questions.

Upgrading from LabVIEW 5.x or Earlier Versions
Refer to the National Instruments Web site at ni.com/info and enter the
info code ext8h9 for information about upgrading to LabVIEW 8.2 from
LabVIEW 5.x or earlier.

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=ext8h9
http://www.ni.com/support

© National Instruments Corporation 35 LabVIEW Upgrade Notes

LabVIEW 8.2 Features and Changes
Refer to the LabVIEW Help for more information about LabVIEW 8.2
features, including programming concepts, step-by-step instructions, and
reference information. Access the LabVIEW Help by selecting Help»
Search the LabVIEW Help.

Refer to the readme.html in the labview directory for known issues,
additional compatibility issues, and information about late addition
features in LabVIEW 8.2.

LabVIEW Documentation
LabVIEW 8.2 includes the following documentation enhancements:

• A Submit feedback on this topic link appears at the bottom of all
LabVIEW Help topics. To provide feedback on a help topic, click and
complete the Documentation Suggestion Details form. This link only
appears in English versions of the LabVIEW Help.

• Concept topics include a navigation table in the upper, right-hand
corner of the help topic. Click a link in the table to jump to the related
subtopic.

New Example VIs
Refer to the New Examples for LabVIEW 8.x folder on the Browse tab
of the NI Example Finder to view descriptions for and launch example VIs
added to LabVIEW 8.x.

Launch Time Improvement
LabVIEW 8.2 launches faster than LabVIEW 8.0 due to performance
optimizations.

Block Diagram Enhancements
LabVIEW 8.2 includes the following enhancements to the block diagram
and related functionality.

Default Color Changes
The default colors of the following block diagram components changed to
improve visibility:

• Error cluster wires and terminals appear dark yellow instead of pink on
the block diagram.

• Coercion dots appear red instead of gray by default. To change the
color of coercion dots, select Tools»Options and select Colors from

LabVIEW Upgrade Notes 36 ni.com

the Category list. Remove the checkmark from the Use default colors
checkbox and click the Coercion Dots color box to select a different
color.

Removing Breakpoints from a VI Hierarchy
From a VI, select Edit»Remove Breakpoints from Hierarchy option to
remove all breakpoints from the VI hierarchy. You must manually remove
breakpoints in dynamically called VIs or VIs referenced by the Static VI
Reference function.

Performance Optimized with Constants
LabVIEW uses constant folding to optimize the performance of VIs. With
constant folding, LabVIEW stores constant values when it compiles VIs
instead of calculating them at run time. For constants wired to structures,
LabVIEW calculates the output values of the structures when it compiles
VIs and stores the values so they are available at run time.

You can display constant folding hash marks on the block diagram by
selecting Tools»Options, selecting Block Diagram from the Category
list, and placing checkmarks in the Show constant folding of wires and
Show constant folding of structures checkboxes. When you place a
checkmark in the Show constant folding of wires checkbox, gray hash
marks appear on the wires attached to constants that are constant folded.
When you place a checkmark in the Show constant folding of structures
checkbox, gray hash marks appear inside structures that are wired to
constants. The hash marks might not appear in a VI until after you run or
save the VI.

LabVIEW 8.2 also folds computed constants you wire to Case structure
selector terminals and While Loop conditional terminals.

Miscellaneous Block Diagram Enhancements
LabVIEW 8.2 includes the following miscellaneous enhancements to the
block diagram.

• When you right-click the reference out output of a Property or Invoke
Node and select Create from the shortcut menu, the Create menu
displays the properties or methods in the same class as the Property or
Invoke Node.

• The Visible Items:Hierarchy Lines Visible property accepts the
following values: If Visible, LabVIEW always displays lines to outline
the hierarchy of the items as vertical and horizontal lines to the left of
the items in the tree control. If Invisible, the hierarchy lines are always
invisible. If OS Default, LabVIEW displays the hierarchy lines if trees
in the operating system show hierarchy lines.

© National Instruments Corporation 37 LabVIEW Upgrade Notes

Front Panel Enhancements
LabVIEW 8.2 includes the following enhancements to the front panel and
related functionality.

Setting Background Images for Panes
You can set and import background images for panes. Right-click the scroll
bar of a pane and select Properties from the shortcut menu. In the Pane
Properties dialog box, select an image from the Background list.

To select an image that does not appear in the Background list, click the
Browse button. LabVIEW supports BMP, JPEG, and PNG graphic formats
for background images. You also can use the Background Image property
to set a pane background image programmatically.

Note If you select an image that does not appear in the Background list, LabVIEW does
not add that image to the Background list permanently. To add an image to the list
permanently, you must save the image in the labview\resource\backgrounds
directory.

When you save a VI that contains a pane with a background image,
LabVIEW saves the pane background image with the VI.

Locking Knobs and Dials at Minimum and Maximum
By default, knobs and dials cannot rotate past their minimum or maximum
values.

To disable this locking behavior, right-click the knob or dial, select
Properties from the shortcut menu, and remove the checkmark from the
Lock at minimum and maximum checkbox. Locking prevents a knob or
dial from jumping from minimum to maximum or maximum to minimum
values. Disabling this behavior might cause unintended jumps between
values.

In LabVIEW 8.2, when you open a VI last saved in LabVIEW 8.0 or earlier,
locking is disabled. To enable locking, place a checkmark in the Lock at
minimum and maximum checkbox.

LabVIEW Upgrade Notes 38 ni.com

Multiple-Item Dragging within Tree Controls and
Listboxes
You can drag and drop multiple items from and to tree controls and
listboxes. Right-click the tree control or listbox and select Selection
Mode»0 or More Items or Selection Mode»1 or More Items from the
shortcut menu to enable multiple-item dragging and dropping. Initiating a
drag with multiple items selected moves all the selected items.

Digital Waveform Graph Enhancements
Refer to the Fundamentals»Graphs and Charts book on the Contents
tab in the LabVIEW Help for more information about digital waveform
graphs.

LabVIEW 8.2 includes the following enhancements to digital waveform
graphs.

Setting Line Thickness
Line Style replaces Thick Line Location in the shortcut menu of the
digital waveform graph plot legend. Right-click the plot in the plot legend
and select Line Style from the shortcut menu to set the line thickness.
LabVIEW 8.2 includes a new Line Style option to thicken the entire line.

Darkening Compare Data
If a digital waveform graph includes digital data in both drive and compare
logic states, by default the compare data appears darker on the plot than the
drive data. If you do not want to darken compare data, right-click the plot
and select Advanced»Darken Compare Data from the shortcut menu to
remove the checkmark. You also can use the Darken Compare Data
property to darken compare data programmatically.

Note This feature primarily applies to users generating digital I/O signals. Refer to the
Fundamentals»Graphs and Charts»Concepts»Customizing Graphs and Charts book
on the Contents tab of the LabVIEW Help for more information about compare data.

Miscellaneous Front Panel Enhancements
LabVIEW 8.2 includes the following miscellaneous enhancements to the
front panel.

• In LabVIEW 8.0, the first time you display a caption for a front panel
object, LabVIEW moves the label to the side. In LabVIEW 8.2,
LabVIEW hides the label and displays only the caption.

© National Instruments Corporation 39 LabVIEW Upgrade Notes

• In the XY Graph Properties dialog box, the Show optional plane
pull-down menu and the options to configure the plane you select
moved from the Scales page to the Appearance page.

• You can use the Coloring tool to change the background color of a
system table.

• You can change the color of the headers and cells of a system
multicolumn listbox, listbox, table, or tree control.

• The Reinitialize to Default Value, Cut Data, and Paste Data options
are not available in the shortcut menu of an indicator when the VI is in
run mode. These shortcut menu options are available only for controls
in run mode.

• To size a tab control to fit its contents, right-click the tab control and
select Advanced»Size To Fit from the shortcut menu.

• When you right-click an enumerated type control, ring control, or
combo box control and select Edit Items from the shortcut menu, you
must double-click in a cell to edit an item in the Items or Values
column. This change also applies when you right-click the text labels
for a slide control or knob and select Edit Items from the shortcut
menu.

• In LabVIEW 8.0, when you select File»Apply Changes from the
Control Editor window, LabVIEW preserves the label, caption, and
value of the original control. In LabVIEW 8.2, LabVIEW applies all
the changes you make in the Control Editor window and does not
preserve any information from the original control. This behavior
applies only to custom controls and not to type definitions.

• LabVIEW does not include hidden plots when you autoscale the axes
of a graph or chart. If you want to include the hidden plots when you
autoscale, make the hidden plots transparent instead. Right-click the
plot legend and select Color from the shortcut menu to change the
color of the plots.

• (Windows) Radio buttons and checkboxes in LabVIEW are consistent
with the behavior of radio buttons and checkboxes in Windows. You
can toggle radio buttons and checkboxes only using the spacebar. You
can toggle dialog box buttons with the <Enter> key on the
alphanumeric keyboard, the <Enter> key on the numeric keypad, or the
spacebar. The LabVIEW keyboard shortcuts <T> and <F> do not
toggle dialog box buttons.

• LabVIEW 8.2 includes new tokens for advanced editing of the time
stamp control. Right-click the control and select Properties from the
shortcut menu to display the Time Stamp Properties dialog box. On
the Format and Precision page, select the Advanced editing mode

LabVIEW Upgrade Notes 40 ni.com

option to display the Absolute time format codes list. LabVIEW 8.2
includes following new format codes.

Environment Enhancements
LabVIEW 8.2 introduces the following enhancements to the LabVIEW
environment.

Automatic Saving for Recovery
In the event of an irregular shutdown or system failure, LabVIEW backs up
any modified VI (.vi), VI template (.vit), control (.ctl), or control
template (.ctt) files open at the time of the shutdown or failure to a
temporary location. LabVIEW does not back up projects (.lvproj),
project libraries (.lvlib), XControls (.xctl), or LabVIEW classes
(.lvclass).

If LabVIEW automatically saves files before an irregular shutdown or
system failure, the Select Files to Recover window appears the next time
you launch LabVIEW. Select the files you want to recover and click the
Recover button. If you do not want to recover any files, deselect all files
and click the Discard button. Click the Cancel button to move all selected
files to the LVAutoSave\archives subdirectory of the default data
directory.

Select Tools»Options and select Environment from the Category list to
enable or disable saving for recovery and to specify how often LabVIEW
should back up files.

Dialog Box Enhancements
LabVIEW 8.2 includes the following dialog box enhancements.

Options Dialog Box Enhancements and Changes
LabVIEW 8.2 includes the following Options dialog box enhancements.
Refer to the National Instruments Web site at ni.com/info and enter the
info code ex6rkc for information about workarounds for these deprecated
options.

• The Performance and Disk page no longer exists, including the
Check available disk space during launch and Run with multiple
threads options.

Format Code Value

<%^<>T> Universal time container

<%z> Difference between locale time and universal time

http://www.ni.com/cgi-bin/redirect.cgi?dest=infcoprod&src=lvhelp&openagent&code=ex6rkc

© National Instruments Corporation 41 LabVIEW Upgrade Notes

• On the Front Panel page, the Override system default function key
settings and the Use smooth updates during drawing options no
longer exists.

• On the Block Diagram page, the Show wiring guides option no
longer exists.

• On the Paths page, the Library Directory option in the pull-down
menu no longer exists.

• On the Environment Options page, the Use abridged menus option
no longer exists.

• On the Environment page, the Enable Just-In-Time Advice
checkbox no longer contains a checkmark by default.

• On the Block Diagram Options page, the Show subVI names when
dropped checkbox also applies to global variables. Make sure this
checkbox contains a checkmark if you want to display the label of the
global variable when you place it on the block diagram.

• On the Web Server: Visible VIs page, the Currently selected VI
option changed to the Visible VI option.

LLB Manager Enhancements
LabVIEW 8.2 includes the following enhancements to the LLB Manager
window.

• A Browse button appears to the right of the Directory field. Click this
button to navigate to the LLB you want to modify.

• A Delete button appears in the toolbar. Select a file in the Files list and
click this button to remove the selected file from the LLB.

• You can sort by column in the Files list by right-clicking the columns.

Data Binding Page
LabVIEW 8.2 includes the following enhancements to the Data Binding
page of the Properties dialog box of all front panel controls:

• The Current Network Item Selected and Current Project Item
Selected text boxes changed to the Path text box.

• The Mode section changed to the Access Type pull-down menu.

• The Blink while Alarm On checkbox no longer appears.

• The Browse button that appears when you select Shared Variable
Engine (NI-PSP) from the Data Binding Selection pull-down menu
launches the Select Source Item dialog box instead of the Select
Network Item dialog box. The Select Network Item dialog box no
longer exists.

• The Network-Published Source pull-down menu appears in the
Select Source Item dialog box instead of on the Data Binding page.

LabVIEW Upgrade Notes 42 ni.com

Miscellaneous Dialog Box Enhancements
LabVIEW 8.2 includes the following miscellaneous dialog box changes:

• The VI Metrics window includes a row in the Metrics Statistics table
to display the average of all the values in a column. You also can
exclude files located in a specific folder by placing a checkmark in the
Exclude files in this folder from statistics checkbox.

• In the VI Properties dialog box, the Security page changed to the
Protection page.

• The Polymorphic VI window includes a Show License Warning
button that appears if the polymorphic VI belongs to a licensed project
library where the license is either in evaluation mode or invalid. Click
this button to display a warning message. Click the Help button in the
warning message for more information about the license status.

• In the Edit Format String dialog box and Edit Scan String dialog
box, you can select SI notation from the Selected operation pull-down
menu as the conversion type.

• In the Export Simplified Image dialog box, the Save to clipboard
option changed to Export to clipboard.

• In the Create Instrument Driver VI dialog box, None is no longer an
option in the Output data type pull-down menu on the Control setup
page.

• In the Error Code File Editor window, the Current Error Code and
Description option changed to the Error code and Error text options.

Displaying Hidden Controls and Indicators
You can display all hidden controls and indicators on the front panel of
custom controls and global variables by selecting Edit»Show Hidden
Controls and Indicators. This option is available only in the Edit menu of
a custom control or global variable.

You also can display controls and indicators for VIs that are not custom
controls or global variables by running the ShowHidden Core VI in the
labview\project_ShowHidden directory.

Error List Window Enhancements
In the Items with errors list in the Error list window, broken items appear
with a red X glyph beside the item name. LabVIEW sorts these items to the
top of the Items with errors list. Items that cause errors in other items
because you are editing them appear with a pencil icon beside the item
name. Items that appear with no icons beside the item name have errors
because an item on which they depend is has errors.

© National Instruments Corporation 43 LabVIEW Upgrade Notes

Find and Replace Enhancements
LabVIEW 8.2 includes the following enhancements to the find and replace
operations and related functionality.

• In the Text Search Options, the Ignore clones checkbox ignores any
front panel clones, or reentrant front panels, when you search for text
in a VI.

• In the Find dialog box, the Select Object button appears with the title
of the object you select instead of the filename of the object.

• The Search Results Window appears only if LabVIEW finds more
than one object during a search. If LabVIEW finds only one object,
LabVIEW highlights the object on the front panel window or block
diagram window.

• The Find dialog box also finds and replaces Express VIs and nodes
such as the Match Regular Expression function and variables.

Managing Open Windows
The Window menu displays a maximum of 10 open windows. You can
manage all open windows by selecting Window»All Windows or by
pressing <Ctrl-Shift-W> to display the All Windows dialog box. You can
show or close a window or save the item that corresponds to the window by
clicking the corresponding button on the right side of the dialog box.

Window items modified since you last saved them have an asterisk at the
end of the corresponding window name in the Title column.

Palette Enhancements
LabVIEW 8.2 includes the following palette enhancements:

• You can use the Organize Favorites dialog box to change the order of
the items in the Favorites palette category.

• The Menu Documentation dialog box changed to the Palette
Documentation dialog box. The Menu Description field changed to
Palette Description.

• If a palette belongs to a project library, you can view the path to the
project library. Select Tools»Advanced»Edit Palette Set, right-click
a palette and select Display Path To Palette File from the shortcut
menu. LabVIEW displays the actual path of the palette and the path to
the owning library, if the palette belongs to a library.

• The Edit Controls and Functions Palette Set dialog box includes the
Preview changes before saving checkbox. Place a checkmark in the
Preview changes before saving checkbox and click the Save
Changes button to display the Preview Palette Changes dialog box.

LabVIEW Upgrade Notes 44 ni.com

• The Drop VI shortcut menu item changed to Place VI. This shortcut
item appears if you right-click a VI on the Functions palette.

• LabVIEW 8.2 includes palettes that remain empty until you install an
add-on. For example, the Control Design & Simulation subpalette on
the Controls palette is empty until you install one of the LabVIEW
Control Design & Simulation products.

Saving a Duplicate Hierarchy
You can save a VI and its subVIs as a duplicate hierarchy without having
to create a source distribution. Select File»Save As and select the
Duplicate hierarchy to new location option to save the VI and its
hierarchy to a new location.

Miscellaneous Environment Enhancements
LabVIEW 8.2 includes the following miscellaneous enhancements to the
front panel.

• LabVIEW no longer displays a watermark on the subVIs in a subpanel
of a VI in the Evaluation or student versions of LabVIEW. LabVIEW
also no longer displays a watermark on the debug deployment version
of LabVIEW.

• If you do not have a valid license specific to the version of LabVIEW
that you purchased, you might not be able to edit polymorphic VIs.

• You can create a reference to a control in a strict type definition by
right-clicking the control in the type definition and selecting
Create»Reference from the shortcut menu.

• The View menu includes the This VI's Library, This VI's XControl,
or This VI's Class item which highlights the project library, XControl,
or LabVIEW class to which the current VI belongs in the Project
Explorer window. The menu item changes according to the type of
library that owns the VI. If the library, XControl, or class is not in a
LabVIEW project, LabVIEW opens a new window that contains only
the library, XControl, or class to which the current VI belongs.

• In LabVIEW 8.0, the Help»Explain Errors menu item is not available
in the Getting Started window. In LabVIEW 8.2 this menu item is
available in the Getting Started window.

• (Mac OS) To display or hide the Context Help window, select Help»
Show Context Help or press the <Command-Shift-H> keys. The
<Command-H> keyboard shortcut hides the open LabVIEW
application. Refer to the LabVIEW Help for more information about
customizing keyboard shortcuts.

© National Instruments Corporation 45 LabVIEW Upgrade Notes

• Select Tools»Instrumentation»Advanced Development to access
options for advanced development in LabVIEW using instrument
drivers, including:

– Show Driver Guidelines displays the Instrument Driver
Guidelines from the National Instruments Instrument Driver
Network at ni.com/idnet in a Web browser.

– Show Icon Art Glossary displays the Icon Art Glossary from
the National Instruments Instrument Driver Network at
ni.com/idnet in a Web browser.

– Other Resources displays Development Tools and Resources
from the National Instruments Instrument Driver Network at
ni.com/idnet in a Web browser.

New and Changed VI, Function, and Node Enhancements
LabVIEW 8.2 includes the following new and changed VIs and functions.
Refer to the VI and Function Reference book on the Contents tab of the
LabVIEW Help for more information about VIs, functions, and nodes.

New VIs and Functions
LabVIEW 8.2 includes the following new VIs and functions.

Advanced File VIs
The Advanced File Functions palette includes the following new VIs:

• Check if File or Folder Exists VI

• Compare Two Paths VI

• Generate Temporary File Path VI

• Get File Extension VI

• MD5Checksum File VI

• Recursive File List VI

Digital Waveform Functions
The Digital Waveform palette includes the following new functions:

• Build Waveform function

• Build Digital Data function

• Get Waveform Components function

• Get Digital Data Components function

http://www.ni.com/idnet
http://www.ni.com/idnet
http://www.ni.com/idnet

LabVIEW Upgrade Notes 46 ni.com

Mathematics VIs
The Mathematics palette includes the following new VIs in the LabVIEW
Full and Professional Development Systems:

• Kronecker Product VI

• Lyapunov Equations VI

.NET VIs
The .NET palette includes the following new VIs:

• To .NET Object VI

• .NET Object To Variant VI

Scaling VIs
The Scaling palette includes the following new VIs:

• Convert RTD Reading VI

• Convert Strain Gauge Reading VI

• Convert Thermistor Reading VI

• Convert Thermocouple Reading VI

Signal Processing VIs
The Signal Processing palette includes the following new VIs in the
LabVIEW Full and Professional Development Systems:

• Bohman Window VI

• Decimate (continuous) VI

• Decimate (single shot) VI

• FIR Filter VI

• FIR Filter with I.C. VI

• Gaussian Modulated Sine Pattern VI

• Gaussian Monopulse VI

• Inverse Chirp Z Transform VI

• Modified Bartlett-Hanning Window VI

• Parzen Window VI

• Periodic Sinc Pattern VI

• Pulse Train VI

• Rational Resample VI

• Savitzky-Golay Filter VI

• Savitzky-Golay Filter Coefficients VI

© National Instruments Corporation 47 LabVIEW Upgrade Notes

• Triangle Pattern VI

• Upsample VI

• Welch Window VI

TDM Streaming VIs and Functions
The TDM Streaming palette includes the following new VI and functions:

• TDM Streaming File Viewer VI

• TDMS Close function

• TDMS Defragment function

• TDMS Flush function

• TDMS Get Propertiesfunction

• TDMS List Contents function

• TDMS Open function

• TDMS Read function

• TDMS Set Properties function

• TDMS Write function

The Storage palette includes the following new VIs:

• Convert TDM to TDMS VI

• Convert TDMS to TDM VI

Refer to the TDM Streaming File Format section of this document for
information about the TDM streaming file format.

Changed VIs, Functions, and Nodes
The following VIs, functions, and nodes changed in LabVIEW 8.2.

DataSocket functions
The DataSocket palette includes the following changed VIs:

• You can enable synchronous notifications for NI-PSP data items when
you use the DataSocket Write function. By appending ?sync="true"
to the end of the psp URL, when you enable synchronous
notifications, you can specify a nonzero ms timeout value. The
function waits until the operation completes or the timeout expires.
Enabling synchronous notifications can cause slower performance,
particularly on RT targets.

• The DataSocket Read function has a status output, which reports
warnings or errors from a PSP server or FieldPoint controller.

LabVIEW Upgrade Notes 48 ni.com

Mathematics VIs
In the LabVIEW Base Package, the A x B VI includes the new instances
Vector x A and Complex Vector x A.

The Mathematics palette includes the following changed VIs in the
LabVIEW Full and Professional Development Systems:

• The Exponential Fit VI includes a new Weight input that specifies the
array of weights for the observations (X, Y). The negative values that
often result from signal noise no longer cause the exponential fit to fail.

• The GCD of p(x) and q(x) VI includes a new algorithm input that
specifies the algorithm the VI uses to compute the polynomial greatest
common divisor.

• The General Polynomial Fit VI includes a new Weight input that
specifies the array of weights for the observations (X, Y).

• The Histogram, Histogram PtByPt, General Histogram, and General
Histogram PtByPt VIs include a Histogram Graph output that
displays the bar graph of the histogram of the input sequence X. The
y-axis is the histogram count, and the x-axis is the histogram center
values of the intervals (bins) of the histogram.

• The LCM of p(x) and q(x) VI includes a new algorithm input that
specifies the algorithm the VI uses to compute the polynomial least
common multiple.

• The Partial Fraction Expansion VI includes a new option input that
specifies how the VI handles the co-factors of Numerator and
Denominator.

• The Sylvester Equations VI includes a new matrix type input that
specifies the types of inputs A and B, which speeds up the computation
of X.

• The Direction Cosines input of the Array instance of the 3D Cartesian
Coordinate Rotation (Direction) VI changed to Rotation Matrix.

Numeric Functions
The Numeric palette includes the following changed functions:

• The Quotient & Remainder function produces accurate answers when
you use large negative 64-bit divisors.

• The anything input of the Swap Bytes and Swap Words functions
changed to data. You can wire string, tag, path, Boolean, non-integer
numeric, enumerated type, error cluster, picture, matrix, and array and
cluster data of such types and you can pass the data unchanged. For any
16-, 32-, and 64-bit integers wired to the input the function swaps every
byte pair in each word or every word pair in each longword. You
cannot wire occurrences, all refnum types, or variants to the input.

© National Instruments Corporation 49 LabVIEW Upgrade Notes

• On x86-based platforms, the Scale By Power Of 2 function produces
the correct answer when both the x and n inputs are floating-point
numeric.

Protocols VIs and Functions
The Protocols palette includes the following changed VIs and functions:

• The UDP Open function and UDP Multicast Open VI have a new port
output that returns the port number the function used.

• The UDP Open function and UDP Multicast Open VI have a new net
address input, on which network address to listen.

• The address input of the TCP Open Connection function changed
from optional to recommended.

• The TCP Listen VI includes a resolve remote address input that
indicates whether to call the IP to String function on the remote
address. The default is TRUE.

Quadratic Programming VI
The Quadratic Programming VI includes the following changes:

• The Quadratic Programming VI is a polymorphic VI with the
following instances: Quadratic Programming IP and Quadratic
Programming AS. The Quadratic Programming IP instance has the
same functionality as the Quadratic Programming VI in LabVIEW 8.0.
The Quadratic Programming AS instance finds the minimum using an
active set algorithm.

• Both instances of the Quadratic Programming VI include a start input
that specifies the point in n dimension at which the optimization
process starts.

• Both instances of the Quadratic Programming VI include a max time
(sec) input that specifies the maximum amount of time LabVIEW
allows between the start and the end of the optimization process.

• The Quadratic Programming AS instance of the Quadratic
Programming VI includes a warm start? input that indicates whether
to allow a warm start of the optimization.

Signal Processing VIs
The Signal Processing palette includes the following changed VIs in the
LabVIEW Full and Professional Development Systems:

• The Median Filter VI includes new left rank and right rank inputs
that replace the rank input in LabVIEW 8.0. This VI applies a median
filter of rank to the input sequence X, where rank is right rank if right
rank is greater than zero, or left rank if right rank is less than zero.

LabVIEW Upgrade Notes 50 ni.com

Note If you open a LabVIEW 8.0 or earlier VI that includes the Median Filter VI with a
value wired to the rank input, LabVIEW uses that value for left rank in LabVIEW 8.2.

• The f input of the Sine Wave, Sine Wave PtByPt, Triangle Wave,
Triangle Wave PtByPt, Sawtooth Wave, Sawtooth Wave PtByPt,
Square Wave, Square Wave PtByPt, and Arbitrary Wave VIs changed
to frequency.

• The # side points input of the Savitzky Golay Filter PtByPt VI
changed to side points.

• The Point By Point VIs have updated icons.

• The window input of the Symmetric Window and the Scaled Time
Domain Window VIs includes the following new values: Modified
Bartlett-Hanning, Bohman, Parzen, and Welch.

Sound VIs (Linux)
You must have the Open Sound System (OSS) driver to use the Sound VIs.
Refer to the Important Information»Copyright book on the Contents
tab of the LabVIEW Help for applicable OSS copyright information.

Note LabVIEW probes for devices by looking for files named /dev/dsp or /dev/dspX,
where X is an integer between 0 and 16. LabVIEW attempts to open each device for input
and output. If LabVIEW cannot detect the sound card, check that a device file named
/dev/dsp or /dev/dspX exists on the local system and that you have permission to read
from and write to the device. If you moved this device to a location other than the default,
LabVIEW can work with a symbolic link.

The Sound VIs on Linux include the following changes:

• The VIs support monophonic and stereophonic sound.

• A waveform represents sound data. You can use elements of 8-bit
unsigned, 16-bit signed, or 32-bit integers signed, or single and
double-precision data types to represent the Y array data. Each
waveform defines one channel.

• The format of the sound data is Pulse Code Modulated (PCM).

• The VIs can produce continuous sound output.

• The VIs allow for a streaming view of wave files.

• The VIs have improvements to error checking.

String Functions
The String palette includes the following changed functions:

• The format string input of the Scan From String function accepts
System International (SI) notation values.

© National Instruments Corporation 51 LabVIEW Upgrade Notes

• The Spreadsheet String to Array function works correctly when the
array type input is complex numeric.

VISA Functions
When you right-click terminals of certain VISA functions and select
Create»Constant, Create»Control, or Create»Indicator from the
shortcut menu, a ring object appears. The object appears as a pull-down
menu that you can cycle through to make selections. All values that
LabVIEW supports appear in the pull-down menus.

This change affects the following functions and terminals.

Call Library Function Node
The Call Library Function Node includes error terminals. The Call
Library Function dialog box also includes the following changes:

• The dialog box includes multiple pages, which you can use to
configure parameters more easily.

• On the Function page, you can configure the node to allow you to
specify the library path programmatically by placing a checkmark in
the Specify path on diagram checkbox.

Function Terminal(s)

VISA Assert Interrupt Signal mode

VISA Assert Trigger protocol

VISA Assert Utility Signal bus signal

VISA Disable Event event type

VISA Discard Events event type

VISA Enable Event event type

VISA Find Resource search mode

VISA GPIB Control ATN mode

VISA GPIB Control REN mode

VISA Map Trigger trigger source, trigger destination

VISA Open access mode

VISA Unmap Trigger trigger source, trigger destination

VISA VXI Cmd or Query mode

VISA Wait on Event event type in, event type out

LabVIEW Upgrade Notes 52 ni.com

• On the Parameters page, when you configure string or array
parameters, you can use the Minimum size text box to allocate
memory correctly.

• On the Callbacks page, you can specify user-defined callbacks.

Miscellaneous VI, Function, and Node Changes
LabVIEW 8.2 includes the following miscellaneous VI, function, and node
changes:

• The Mathematical Operation options in the configuration dialog box
of the Time Domain Math Express VI changed from Differential to
Derivative (dX/dt), from Difference to Difference (dX), from
Integral to Integral (Sum[Xdt]), and from Summation to
Summation (Sum[X]).

• (Windows) The refnum in input of the Sound File Info (refnum)
instance of the Sound File Info VI changed to sound file refnum.

• (Mac OS, Linux) The Set Report Footer Text VI generates footers in a
slightly different size than in previous versions of LabVIEW. The Set
Report Footer Text VI also includes a new HTML footer size input.

• The Synchronize Timed Structure Starts VI includes a clear input that
removes all timed structures and deletes the entire group before adding
the timed structures you specify to the group. Use this input to remove
any timed structures that do not correspond to a Timed Loop. This VI
also includes a timed structures names out output that returns the
names of all timed structures in the group after LabVIEW adds the
names to the synchronization group.

• (Windows) In LabVIEW 8.0, the List Folder function appends .* to the
pattern input if pattern does not already include an extension. In
LabVIEW 8.2, the function does not alter the pattern input, but it
appends . to the filename if the filename does not have an extension
but pattern does have an extension.

• After you place the Static VI Reference function on a block diagram,
double-click the function to display a file dialog box where you can
select a VI. In LabVIEW 8.0, double-clicking the function displayed a
missing file error dialog box.

• The format string input of the Format Into File, Format Into String,
Scan From File, and Scan From String functions is no longer a required
input.

• Opening a VI containing a Shared Variable node in a project where the
Shared Variable node cannot find its associated shared variable in the
Project Explorer window causes the Shared Variable node to break.
Any front panel controls associated with the missing shared variable
also break. This behavior is specific to Windows, and only occurs
when you open the VI node in a project. If you open the VI in the main

© National Instruments Corporation 53 LabVIEW Upgrade Notes

application instance, you do not receive notification of missing shared
variables. Previous versions of LabVIEW did not indicate that the
Shared Variable node could not find its associate variables in the
Project Explorer window.

• In LabVIEW 8.0.1, the Wakeup Reason output of the Timed Loop is
a ring. In LabVIEW 8.2, the output is an enumerated type, which is
consistent with LabVIEW 8.0 behavior.

• The names of the duplicate outputs of the following VIs and functions
changed from dup [output] to [output] out. This change does not
impact the functionality of these VIs and functions:

– Call By Reference Node

– Execute Query Expression

– File/Directory Info

– Get Object Info

– Get Property

– Invoke Node

– List Folder

– Property Node

– Scan String For Tokens

– Refnum to ID

– Set Property

New Properties, Methods, and Events
LabVIEW 8.2 includes new VI server classes, properties, methods, and
events. Refer to the LabVIEW 8.2 Features and Changes»New VI
Server Classes, Properties, Methods, and Events book on the Contents
tab of the LabVIEW Help for a list of new class, properties, methods, and
events.

LabVIEW 8.2 also includes the following new VISA properties: PXI/PCI
Settings:Is PCI Express, PXI/PCI Settings:Maximum Link Width, PXI/PCI
Settings:Actual Link Width, PXI/PCI Settings:Slot Link Width, PXI/PCI
Settings:D-Star Bus Number, and PXI/PCI Settings:D-Star Set.

LabVIEW MathScript Enhancements
Refer to the Fundamentals»Formulas and Equations book on the
Contents tab in the LabVIEW Help for more information about LabVIEW
MathScript.

LabVIEW 8.2 introduces the following enhancements and changes to
MathScript.

LabVIEW Upgrade Notes 54 ni.com

New MathScript Functions
LabVIEW 8.2 includes the following new MathScript functions. You can
use these functions in the LabVIEW MathScript Window or the
MathScript Node.

• plots class: area, bar, bar3, bar3h, barh, contour, contour3,
contourf, errorbar, ezcontour, ezcontourf, ezmesh,
ezmeshc, ezplot, ezplot3, ezpolar, ezsurf, ezsurfc,
feather, fill, fplot, gplot, meshc, pie, plotmatrix, plotyy,
polar, quiver, scatter, scatter3, shg, stem3, strips, surfc,
treeplot, and waterfall.

• dsp class: ac2poly, ac2rc, arburg, arcov, armcov, aryule,
barthannwin, bartlett, besselap, besself, bilinear,
bitrevorder, blackman, blackmanharris, bohmanwin, buttap,
cceps, cheb1ap, cheb2ap, chebwin, chirp, conv2, convmtx,
corrmtx, czt, dct, dftmtx, digitrevorder, diric,
downsample, dst, ellipap, eqtflength, filternorm, filtic,
firgauss, firrcos, flattopwin, freqspace, gauspuls,
gausswin, gmonopuls, goertzel, hann, icceps, iczt, idct,
idst, impinvar, intfilt, invfreqs, invfreqz, is2rc,
kaiserord, lar2rc, latc2tf, levinson, lp2bp, lp2bs, lp2hp,
lp2lp, lpc, lsf2poly, maxflat, medfilt1, nuttallwin,
parzenwin, phasedelay, phasez, poly2ac, poly2lsf, poly2rc,
polyscale, polystab, prony, pulstran, rc2ac, rc2is, rc2lar,
rc2poly, rceps, rectpuls, rectwin, resample, residuez,
rlevinson, schurrc, seqperiod, sgolay, sgolayfilt, sinc,
sos2ss, sos2tf, sos2zp, sosfilt, spline, ss2sos, ss2tf,
ss2zp, stepz, stmcb, tf2latc, tf2sos, tf2ss, tf2zp, tf2zpk,
triang, tripuls, tukeywin, udecode, uencode, upfirdn,
upsample, vco, xcorr, xcorr2, xcov, zerophase, zp2sos,
zp2ss, and zp2tf.

• support class: csvread, csvwrite, dlmread, dlmwrite,
labviewroot, type, uiload, and what.

• string class: eval.

• libraries class: loadlibrary, calllib, unloadlibrary,
libisloaded, and libfunctionsview. You can use these functions
to call shared libraries from the LabVIEW MathScript Window or
the MathScript Node. Refer to the MathScript Shared
Libraries.lvproj in the labview\examples\MathScript\
MathScript Shared Libraries directory for examples of calling
shared libraries from MathScript.

© National Instruments Corporation 55 LabVIEW Upgrade Notes

Miscellaneous MathScript Enhancements and
Changes
LabVIEW 8.2 includes the following miscellaneous changes to
MathScript:

• Overall performance improved in the LabVIEW MathScript
Window. Compile time improved in the MathScript Node.

• The LabVIEW Run-Time Engine supports MathScript. You can
include MathScript Nodes in stand-alone applications and shared
libraries that you build with the Application Builder. The LabVIEW
Run-Time Engine currently does not support some MathScript
functions. If a script includes these unsupported functions, you might
need to modify the script before you build an application or shared
library. Refer to the MathScript Functions Not Supported in the
LabVIEW Run-Time Engine topic in the LabVIEW Help for a complete
list of unsupported MathScript functions.

• When you call the MathScript help command, LabVIEW displays
help in an HTML Help window. To display help in the Output
Window of the LabVIEW MathScript Window, select File»
MathScript Preferences and remove the checkmark from the Display
HTML Help? checkbox. If you define a function, LabVIEW always
displays the help for the function you defined in the Output Window.

• The MathScript Node behaves differently than other script nodes when
you wire an unsupported data type to an input terminal. On a
MathScript Node, LabVIEW either converts the data type to a
supported type or displays a broken wire. If LabVIEW converts the
data type, a coercion dot appears on the terminal where the conversion
takes place. After you wire an input to a MathScript Node, right-click
the input terminal and select Show Data Type from the shortcut menu
to see the data type of the input.

• MathScript supports all non-Unicode characters in text strings but not
in variable names. You can use only ASCII characters in variable
names. For example, you can use á in a text string, but you cannot call
the following script from the LabVIEW MathScript Window or the
MathScript Node:

á=rand(50, 1)

plot(á)

You can save data to paths that contain non-Unicode characters. Also,
if you install LabVIEW in a directory whose path contains any
non-Unicode characters, MathScript functions correctly.

• LabVIEW uses short-circuit evaluation to evaluate compound logical
expressions in MathScript. For example, if you execute the command
if 0 == 0 || foo(a) == 2, LabVIEW does not execute foo(a)
because the first part of the expression already is TRUE. Similarly, if

LabVIEW Upgrade Notes 56 ni.com

you execute the command if 0 ~= 0 && foo(a) == 2, LabVIEW
does not execute foo(a) because the first part of the expression
already is FALSE.

Because LabVIEW 8.0 evaluates all parts of compound logical
expressions in MathScript regardless of whether the expressions are
TRUE or FALSE, LabVIEW 8.0 scripts that contain compound logical
expressions might not run as expected in LabVIEW 8.2. For example,
because LabVIEW 8.0 executes foo(a) in the command
if 0 == 0 || foo(a) == 2, you can use the result of foo(a) to
define a variable in the/a script. This same script executes differently
in LabVIEW 8.2. Because LabVIEW 8.2 does not execute foo(a) in
the command if 0 == 0 || foo(a) == 2, you cannot use the result
of foo(a) in the/a script. If you do not want LabVIEW to use
short-circuit evaluation, remove compound logical expressions from
existing code.

• MathScript supports the nargin and nargout functions within
user-defined functions.

• MathScript supports the return keyword. MathScript also supports
the end keyword in matrix indexing.

• The prod and sum functions include a b input that you can use to
specify the dimension along which to compute the product or sum.

3D Picture Control
Refer to the Fundamentals»Graphics and Sound VIs book on the
Contents tab in the LabVIEW Help for more information about the
3D picture control.

The 3D Picture Control VIs, properties, and methods convert a collection
of 3D objects into a 3D scene that you can view and manipulate. You can
generate multiple 3D objects and specify their size, shape, movement,
appearance, and relationship to other objects within the scene.

Use the following VIs, properties, and methods to specify the appearance
of a 3D object:

• Use the Object VIs to create or find 3D objects. You also can use the
SceneObject properties and SceneObject methods to place 3D objects
in the scene and assign the objects characteristics programmatically.

• Use the File Loading VIs to add existing model or scene files to the
3D scene.

• Use the Geometries VIs with the SceneGeometry properties and
SceneGeometry methods to specify the geometric form a 3D object
takes.

• Use the Transformations VIs to position objects in a 3D scene.

© National Instruments Corporation 57 LabVIEW Upgrade Notes

Use the Helpers VIs to perform common 3D scene operations. You can
configure a separate window for the scene, create new clip planes within the
scene, add light sources, apply textures to 3D objects, and convert
LabVIEW color values to appear in the 3D picture control.

You also can use the following properties and methods to configure a
3D scene programmatically:

• Use the SceneWindow properties to render the scene in a separate
window, configure the window, and set the interaction of the camera
controller with the scene.

• Use the SceneClipPlane properties to specify planes in the scene in
which an object appears or is cut off.

• Use the SceneLight properties to configure a light source for the scene.

• Use the SceneTexture properties and SceneTexture methods to apply
textures to a 3D object.

Refer to the solarsystem VI in the labview\examples\picture\3D
Picture Control directory for an example of creating a 3D scene with
the 3D picture control.

LabVIEW Object-Oriented Programming
Refer to the Fundamentals»LabVIEW Object-Oriented Programming
book on the Contents tab in the LabVIEW Help for more information about
object-oriented programming in LabVIEW.

LabVIEW object-oriented programming uses concepts from other
object-oriented programming languages such as C++ and Java, including
class structure, encapsulation, and inheritance. You can use these concepts
to create code that is easier to maintain and modify without affecting other
sections of code within the application. You can use object-oriented
programming in LabVIEW to create user-defined data types.

Creating LabVIEW Classes
You create user-defined data types in LabVIEW by creating LabVIEW
classes. LabVIEW classes define data associated with an object, as well as
the methods that define the actions you can perform on the data.

In LabVIEW, the data of a class is private, which means only VIs that are
members of the class can access the data. You define the data of the class
in the private data control. When you create and save a LabVIEW class,
LabVIEW creates a class library file (.lvclass) that defines a new data
type. The class library file records the private data control and information
about any member VIs you create, such as a list of the VIs and various

LabVIEW Upgrade Notes 58 ni.com

properties of the VIs. The class library is similar to the project library
(.lvlib). However, the class library defines a new data type.

You can create a class in one of the following ways:

• Right-click My Computer in the Project Explorer window and select
New»Class from the shortcut menu.

• Select File»New to display the New dialog box and select Other
Files»Class from the Create New list.

Defining Private Data Controls
LabVIEW creates a private data control of the class automatically when
you create a LabVIEW class.

You use the Control Editor window to customize the private data control of
a class. LabVIEW displays the Control Editor window when you
double-click the private data control of the class in the Project Explorer
window. You can place controls and indicators in the Cluster of class
private data to define the private data type of a LabVIEW class. The
default values you set for the controls in the Cluster of class private data
are the default values for the class.

Creating Member VIs
Member VIs implement the methods you create for the LabVIEW class.
You create member VIs to perform operations on the private data of the
class. Member VIs are members of the LabVIEW class in which you create
them and appear in the Project Explorer window under the private data
control of the class. You can define most methods using a single member
VI in one class, but some methods you might define by creating multiple
member VIs throughout the class hierarchy.

You can create a member VI from a VI template that includes error handling
and class objects, from a blank VI, or from an ancestor member VI.
Right-click the class and select among the following shortcut menu items:

• New»VI—Opens a blank member VI.

• New»Dynamic VI—LabVIEW populates the new member VI with
error in and error out clusters, a Case structure for error handling, the
input LabVIEW class, and the output LabVIEW class.

• New»Override VI—Creates a member VI that overrides an ancestor
member VI.

© National Instruments Corporation 59 LabVIEW Upgrade Notes

Distributing a LabVIEW Class to Other Developers
and Users
You can distribute the LabVIEW class you develop to other LabVIEW
class developers and LabVIEW class users. You can distribute the class in
several ways so choose the manner that most suits your needs. You can use
the Application Builder to create a zip file to distribute the class or classes.
You also can lock the LabVIEW class before you distribute it to limit the
access the LabVIEW class user has to the private data and member VIs.
Locking the class can help prevent users from introducing errors in the
application.

LabVIEW Project Enhancements
LabVIEW 8.2 includes the following enhancements to the LabVIEW
project and related functionality:

Application Builder Enhancements
LabVIEW 8.2 includes the following enhancements to the Application
Builder in the LabVIEW Professional Development System:

• Automatically incrementing product version—If you build an
installer multiple times, LabVIEW can increment the product version
number automatically for each new version of the installer. The Auto
increment product version checkbox appears on the Product
Information page of the Installer Properties dialog box.

• Specifying media size for storing the installer—You can customize
media size when saving installer components. The Enable media
spanning checkbox appears on the Advanced page of the Installer
Properties dialog box. The pull-down menu of media includes a
Custom option. Use this option to enter an arbitrary media size value
in the Media size (MB) text box.

• Requiring Windows 2000 or later—You can require that users have
Microsoft Windows 2000 Service Pack 3 or a later version to run the
installer. The Windows 2000 or later option appears in the System
Requirements section of the Advanced page of the Installer
Properties dialog box.

• Caching installer components—If you build an installer more than
once and the installer contains additional installers or components,
caching eliminates the need to specify a location for the additional
components each time you build the installer. The first time you build
the installer, the Locate Distribution dialog box prompts you to locate
the distribution that contains the additional components. Place a
checkmark in the Cache component from this distribution checkbox
to copy files from the distribution into a permanent location on the
local system. The next time you build an installer that includes these

LabVIEW Upgrade Notes 60 ni.com

components, the Application Builder automatically copies the
components from the local system instead of prompting you for a
distribution CD.

• Dynamic VIs and dependencies—If a VI specified as a dynamic VI
on the Source File Settings (Application) page is going to a
destination other than the built application, Application Builder moves
all dependencies of the dynamic VI to the new destination with the
dynamic VI, rather than keep the dependencies in the built application.
If two or more dynamic or top-level VIs call a VI and try to move it to
two different locations, Application Builder moves the VI and all
subVIs to the built application. To make a VI that is specified as
Include only if referenced on the Source File Settings page move to
a new location, you must specify the VI as a dynamic VI.

• Using project alias files with shared libraries—The Advanced page
of the Shared Library Properties dialog box includes the Use the
default project alias file checkbox, which associates the project alias
file with the shared library. If you remove the checkmark from the
checkbox, specify an alias file to use in the Alias file in project
textbox.

• Including additional LabVIEW header files with shared
libraries—The Advanced page of the Shared Library Properties
dialog box includes the Include additional LabVIEW header files
checkbox, which copies any additional LabVIEW header files that the
header file, generated during the builder process, references. You can
include additional header files to use a LabVIEW built shared library
in C or another language that requires those header files.

• The New Destination button on the Distribution Settings page of the
Source Distribution dialog box changed to the Add button. Also, all
options related to excluding files from a source distribution moved to
the Additional Exclusions page.

• The New Destination button on the Destinations page of the
Application Properties dialog box and Shared Library Properties
dialog box changed to the Add button.

• You can build an application or source distribution without saving VIs
first.

• If you do not add the .zip extension to zip files you create in the
Application Builder, LabVIEW adds the extension automatically.

New Dialog Box Pages
LabVIEW 8.2 includes the following new Application Builder dialog box
pages have been added:

• Installer Properties dialog box

© National Instruments Corporation 61 LabVIEW Upgrade Notes

– Dialog Information—Use the this page to design the user
interface for the installer. You can set the language for the text,
display a custom readme and license agreement, and set a
welcome title and message. This page replaces the Dialog
information section on the Product Information page in
LabVIEW 8.0.

Note The Include custom license agreement option of the Dialog Information page
replaces the License file option which appeared on the Product Information page.

– Hardware Configuration—Use the this page to specify the
source of hardware configuration information to include in the
installer. The new Import Mode section includes more
options for importing hardware configuration files from
Measurement & Automation Explorer. This page replaces the
Hardware configuration section of the Advanced page in
LabVIEW 8.0.

• Application Properties, Shared Library Properties, and Source
Distribution Properties dialog boxes

– Additional Exclusions—Use this page to configure settings for
removing or disconnecting type definitions, unused polymorphic
VI instances, and unreferenced members of project libraries. Use
these settings to reduce the size of the build.

Duplicating and Rearranging Build Specifications
You can duplicate build specifications in the Project Explorer window.
Right-click the build specification to duplicate and select Duplicate from
the shortcut menu to create a copy of the build specifications under the
Build Specifications.

You also can drag and drop build specification items to rearrange the build
order within the same Build Specification.

Activating the Application Builder (Windows)
If you have an activated version of the LabVIEW Base Package or Full
Development System, you can select Help»Activate Application Builder
to activate the Application Builder. The license takes effect when you
restart LabVIEW.

LabVIEW Upgrade Notes 62 ni.com

Creating Project Libraries and Adding Shared
Variables Programmatically
Use the CreateOrAddLibrary VI in the labview\vi.lib\Utility\
Variable directory to add a library to a project or a parent item such as a
target, folder, or another library programmatically.

You also can use the AddSharedVariableToLibrary VI in the labview\
vi.lib\Utility\Variable directory to add shared variables to a
library programmatically.

Saving LabVIEW Projects and Project Libraries for a
Previous Version
You can save LabVIEW projects and project libraries that are readable by
LabVIEW 8.0. To save a LabVIEW project for a previous version, select
File»Save for Previous Version in the Project Explorer window. To save
a project library for a previous version, right-click the library file in the
Project Explorer window and select Save For Previous Version from the
shortcut menu, or open the project library and select File»Save for
Previous Version.

Selecting an Application Instance
LabVIEW creates an application instance for each target in a LabVIEW
project. When you open a VI from the Project Explorer window, the VI
opens in the application instance for the target. LabVIEW also creates a
main application instance, which contains open VIs that are not part of a
project and VIs that you did not open from a project. You can open VIs in
a specific application instance by using the application instance shortcut
menu. Right-click the current instance name in the bottom left corner of the
front panel window or block diagram window to display the shortcut menu
and select among all application instances. Selecting a new application
instance reopens the VI in the selected application instance. The VI also
remains open in the original application instance.

Shared Variable Enhancements
LabVIEW 8.2 includes the following shared variable enhancements:

• LabVIEW uses the Network:BuffSize, Network:ElemSize, and
Network:PointsPerWaveform properties as appropriate to calculate the
network buffer size for a network-published shared variable.

– For scalar network-published shared variables, LabVIEW uses the
Network:BuffSize property, which indicates the number of values
to buffer.

© National Instruments Corporation 63 LabVIEW Upgrade Notes

– For array and string network-published shared variables,
LabVIEW uses the Network:BuffSize and Network:ElemSize
properties.

– For waveform network-published shared variables, LabVIEW
uses the Network:BuffSize and Network:PointsPerWaveform
properties.

– For array of waveform network-published shared variables,
LabVIEW uses the Network:BuffSize, Network:ElemSize, and
Network:PointsPerWaveform properties.

• The variable input of the Shared Variable node is required when the
node is configured to write data.

• The Variable page of the Shared Variable Properties included the
following changes:

– The Custom item in the Data Type pull-down menu changed to
From Custom Control.

– The Data Type pull-down menu includes a new Variant item.

– No longer displays the element size for the network buffer.

– If you set Access Type to read only or write only, you can create
shared variables that are configured only to read data or write data,
respectively. When you right-click the shared variable that is bound
to a source that is read or write only, LabVIEW disables the Change
to Write and Change to Read options in the shortcut menu.

– In LabVIEW 8.0, you right-click the Shared Variable node and
select Show timestamp from the shortcut menu to obtain time
stamp information about the single-process shared variable. In
LabVIEW 8.2, you must first right-click the shared variable in a
project, select Properties from the shortcut menu, and place a
checkmark in the Enable timestamp checkbox on the Variable
page to obtain time stamp information about the single-process
shared variable. To view the time stamp information and add a
timestamp output to the Shared Variable node, right-click the
Shared Variable node and select Show Timestamp from the
shortcut menu. If you load a single-process shared variable in
LabVIEW 8.2 that you created in LabVIEW 8.0, the time stamp is
enabled by default.

• In LabVIEW 8.0, LabVIEW dims items you cannot select in the list of
the Select Variable dialog box. In LabVIEW 8.2, LabVIEW dims the
OK button if you select an invalid item from the list.

LabVIEW Upgrade Notes 64 ni.com

Miscellaneous Project Enhancements
LabVIEW 8.2 includes the following miscellaneous project enhancements:

• In LabVIEW 8.0, if you create a type definition in a project library and
set the access scope of the type definition as private, you still can
reference the private type definition in a VI outside the project library.
In LabVIEW 8.2, you cannot reference private type definitions outside
of the library.

• Right-click an XControl and select New»VI from the shortcut menu to
create a VI inside an XControl.

• In LabVIEW 8.0, you have to save an XControl ability, property, or
method VI after you set a breakpoint when debugging. In
LabVIEW 8.2, you no longer have to save abilities, properties, or
method VIs after you set breakpoints.

• When you enter a password for a library in a LabVIEW project that
does not have a valid license specific to the version of LabVIEW you
purchased, you cannot drag and drop items into or out of the library.

• If a project library is password protected and the password is not in the
LabVIEW password cache, you can right-click the project library and
select Enter Password from the shortcut menu to unlock the project
library.

Controlling VIs Remotely from Multiple Clients
Multiple clients can control an application or VI remotely at the same time.
To allow simultaneous control of a VI, the VI must be reentrant. To make
a VI reentrant, select File»VI Properties, select Execution from the
Category list, and place a checkmark in the Reentrant execution
checkbox. LabVIEW opens a clone of the reentrant VI for each client
request for a remote front panel. You can use the Web Server:VI Access
List property to programmatically limit access to clones already in memory
for remote front panel connections.

Importing Functions from a Shared Library File
You can generate and update VIs for exported functions in a Windows
.dll file, a Mac OS .framework file, or a Linux .so file. Select Tools»
Import»Shared Library then follow the prompts to create wrapper VIs
for shared library files. You must provide the name of a shared library file
and a header .h file.

Refer to the Fundamentals»Calling Code Written in Text-Based
Programming Languages»Concepts»Importing Functions from
Shared Library Files on the Contents tab of the LabVIEW Help for more
information about creating wrappers for shared library files.

© National Instruments Corporation 65 LabVIEW Upgrade Notes

Instrument Driver Templates
LabVIEW 8.2 includes the following new templates for the Create New
Instrument Driver wizard:

• General Purpose (register-based)—Use for register-based
instruments for which there is no class-specific template. Common
register-based instruments include: VXI and PXI.

• Spectrum Analyzer—Controls basic operations such as setting the
frequency range and sweep coupling. The template also includes
advanced features such as configuring and querying the marker.

.NET and ActiveX Enhancements (Windows)
User interface thread dependency no longer exists for .NET controls. You
do not have to set a VI or subVI to run in the user interface thread for .NET
control operations. By default, LabVIEW sets any .NET controls to run in
the correct thread, which in most cases is the user interface thread.

LabVIEW does not support debugging in ActiveX and .NET callback VIs.
If you use breakpoints in ActiveX and .NET callback VIs, LabVIEW does
not pause at the breakpoint.

In LabVIEW 8.0 and earlier, the .NET Refnum Probe displayed only the
hex value of the reference. In LabVIEW 8.2, the .NET Refnum Probe
displays the result of calling the ToString() method on the object
represented by the .NET refnum, the type of the object, the hash code of the
object, and the hex value of the reference. You can use this probe to set a
breakpoint if the value is an invalid refnum.

LabVIEW 8.2 includes the following changes in the .NET and ActiveX
menus:

• The Tools».NET & ActiveX menu items, Add .NET Controls to
Palette and Add ActiveX Controls to Palette, changed toTools»
Import».NET Controls to Palette and Tools»Import»ActiveX
Controls to Palette, respectively.

• The Tools».NET & ActiveX»Browse ActiveX Properties menu item
changed to View»ActiveX Property Browser.

NI Example Finder Enhancements
The Most Recent examples folder appears on the Browse tab of the
NI Example Finder by default. You can set the maximum number of
examples to display in the Most Recent examples folder by clicking the
Setup button in the NI Example Finder and clicking the General tab.

LabVIEW Upgrade Notes 66 ni.com

Refer to the NI Example Finder Help for more information about
enhancements to the NI Example Finder. Click the Help button in the
NI Example Finder to display the NI Example Finder Help.

Source Control Enhancements
Refer to the Fundamentals»Organizing and Managing a Project book
on the Contents tab in the LabVIEW Help for more information about
source control in LabVIEW.

The following third-party source control providers have been tested for
integration and basic functionality with the LabVIEW 8.2 Professional
Development System:

• Seapine Surround SCM

• Borland StarTeam

• Telelogic Synergy

• PushOK (CVS and SVN plugins)

• ionForge Evolution

Note Currently, ionForge Evolution 2.8 and later works with LabVIEW.

Also, additional third-party source control providers are compatible with
the procedure LabVIEW uses to complete a graphical differencing of VIs
than were compatible with LabVIEW 8.0.

Source Control Operations on LabVIEW Project
Folders
You can perform source control operations on a folder of items in a
LabVIEW project. LabVIEW performs the operation on all appropriate
items within the hierarchy. For example, if you add files to source control,
LabVIEW adds only files within the folder that you have not yet added to
source control. When you perform source control operations on a folder of
items, all source control configuration options that apply to any of the
folder items appear.

Note If you have a project library within a folder, the source control operations you
perform do not extend to items within the project library. To perform source control
operations on items within a project library, you must select the items manually. You can
perform source control operations on a folder within a project library.

© National Instruments Corporation 67 LabVIEW Upgrade Notes

Unsaved Files in Source Control Operations
If you attempt check-in operations on files that contain unsaved changes,
the Unsaved Files dialog box prompts you to save or ignore the changes.
This dialog box appears if you click the OK button in the Source Control
Operations dialog box and a LabVIEW file type included in the source
control operation has unsaved changes. This dialog box also appears if you
select Tools»Source Control»Show Differences in a library or project file
that has unsaved changes.

Miscellaneous Source Control Enhancements
LabVIEW 8.2 includes the following miscellaneous source control
enhancements:

• In LabVIEW 8.0, the Add to Source Control menu item is
available for unsaved files in the Tools»Source Control menu. In
LabVIEW 8.2, the Add to Source Control menu item is not available
until you save the file.

• Select Tools»Source Control»Configure Source Control and use
the Exclude vi.lib and Exclude instr.lib checkboxes to exclude files
in the vi.lib and instr.lib directories when adding files to source
control. If you configure LabVIEW to include dependencies when
adding files to source control, these options exclude unnecessary files
from the operation.

• The Perforce Revision History dialog box includes the options Sync
to this revision and Describe changelist. To access these options,
right-click a revision in the History list.

• In the Perforce Revision History dialog box, the Actions in
changelist field displays actions taken in the current changelist.
Possible operations include add, edit, delete, branch, and integrate.
This field also displays the type of file on which the action occurs.

• (Windows) If you install the Perforce core installer, Perforce SCM
appears in the Source Control Provider Name pull-down menu of the
Source Control page of the Options dialog box.

TDM Enhancements
LabVIEW 8.2 includes the following TDM enhancements.

TDM Streaming File Format
LabVIEW 8.2 includes the TDM Streaming (.tdms) file format for storing
binary data. The .tdms file format provides faster writing performance
than the .tdm file format available in LabVIEW 8.0 and earlier. The .tdms
file format also provides a simpler interface for defining properties.

National Instruments, NI, ni.com, and LabVIEW are trademarks of National Instruments Corporation.
Refer to the Terms of Use section on ni.com/legal for more information about National
Instruments trademarks. MATLAB® is a registered trademark of The MathWorks, Inc. Other product
and company names mentioned herein are trademarks or trade names of their respective companies.
For patents covering National Instruments products, refer to the appropriate location: Help»Patents in
your software, the patents.txt file on your CD, or ni.com/patents. For a listing of the
copyrights, conditions, and disclaimers regarding components used in USI (Xerces C++, ICU, and
HDF5), refer to the USICopyrights.chm.

©1998–2006 National Instruments Corporation. All rights reserved. 371780B-01 Aug06

Refer to the TDM Streaming VIs and Functions section of this document
for information about TDMS VIs and functions.

User-Defined TDM and TDMS Properties
You can create and customize user-defined properties and specify DAQmx
properties for binary measurement files. Use the Write To Measurement
File, Write Data, Set Properties, and Get Properties Express VIs to
configure user-defined properties for .tdm or .tdms files.

Click the Advanced button in the Write To Measurement File Express VI
configuration page to configure properties. Display the configuration page
of the Write Data, Set Properties, and the Get Properties Express VIs to
configure properties.

Importing Web Services (Windows)
You can use Web services in LabVIEW 8.2 without managing all the
complexities behind Web services. You can transform any Web service
into a project library of VIs that you then can use to program the Web
service as if it were independently available on the local computer. You
must provide a valid URL to a Web Service Description Language
(WSDL). WSDL is an XML-formatted language used to describe a Web
service and its functionality. Select Tools»Import»Web Service to launch
a wizard that guides you through the process of importing the methods in a
Web service and creating a library of VIs.

Note You must have the .NET Framework, version 1.1 or later, installed to use the Import
Web Service wizard.

Refer to the Fundamentals»Windows Connectivity»Concepts»Web
Services book on the Contents tab in the LabVIEW Help for more
information about importing Web services.

External Code Functions Changes
The data type size_t replaces type int32 in certain places in the Memory
Manager interface for use by external source code. This change is
compatible with existing DLLs.

Refer to the Memory Manager Functions topic in the LabVIEW Help for
more information about the Memory Manager functions.

	LabVIEW Upgrade Notes
	Contents
	Upgrading to LabVIEW 8.2
	Converting VIs
	Upgrading Toolkits, Instrument Drivers, and Add-Ons
	Upgrading Additional National Instruments Software
	Upgrading from Previous Versions of LabVIEW
	Replacing an Existing Version of LabVIEW
	Copying Environment Settings from a Previous Version of LabVIEW
	Copying user.lib Files from a Previous Version of LabVIEW

	Upgrade and Compatibility Issues
	Upgrading from LabVIEW 8.0
	Platforms Supported
	System Requirements
	Printed Documentation
	VI and Function Behavior Changes
	Property, Method, and Event Behavior Changes
	Deprecated Properties, Methods, and Events
	Renamed Properties, Methods, and Events

	Upgrading from LabVIEW 7.x
	Platforms Supported
	System Requirements
	Custom Palette Views
	VI and Function Behavior Changes
	Deprecated VIs and Functions
	Property, Method, and Event Behavior Changes
	Deprecated Properties, Methods, and Events
	Application Item Tags
	HiQ Support
	Error List Window
	VI String File Syntax
	Converting Type Descriptor Data to and from LabVIEW 7.x
	Migrating from the LabVIEW Built-In Source Control Provider
	Converting NaN Strings to Integer Types (Windows)
	Constants Wired to Case Structures
	Delaying Operating System Messages
	Resource Manager (Mac OS)
	One- and Two-Button Dialog Boxes
	Property and Invoke Nodes
	Updating Shared Libraries
	Margin Values for Printing

	Upgrading from LabVIEW 6.x
	Changes to the Waveform Data Type
	Serial Compatibility VIs
	Default Data in Loops
	Remote Front Panel License
	Multiple Thread Allocation
	Instrument Drivers
	Units and Conversion Factors
	Defer Panel Updates Property
	Data Ranges for Numeric Controls
	Coercion Dots and Type Definitions
	File Dialog Box Button Label
	Control Online Help Function
	Displaying the Front Panel When Loaded
	Open VI Reference Function
	Exponential Representation
	IVI Configuration Store File
	Technical Support Form

	Upgrading from LabVIEW 5.x or Earlier Versions

	LabVIEW 8.2 Features and Changes
	LabVIEW Documentation
	New Example VIs
	Launch Time Improvement
	Block Diagram Enhancements
	Default Color Changes
	Removing Breakpoints from a VI Hierarchy
	Performance Optimized with Constants
	Miscellaneous Block Diagram Enhancements

	Front Panel Enhancements
	Setting Background Images for Panes
	Locking Knobs and Dials at Minimum and Maximum
	Multiple-Item Dragging within Tree Controls and Listboxes
	Digital Waveform Graph Enhancements
	Miscellaneous Front Panel Enhancements

	Environment Enhancements
	Automatic Saving for Recovery
	Dialog Box Enhancements
	Displaying Hidden Controls and Indicators
	Error List Window Enhancements
	Find and Replace Enhancements
	Managing Open Windows
	Palette Enhancements
	Saving a Duplicate Hierarchy
	Miscellaneous Environment Enhancements

	New and Changed VI, Function, and Node Enhancements
	New VIs and Functions
	Changed VIs, Functions, and Nodes

	New Properties, Methods, and Events
	LabVIEW MathScript Enhancements
	New MathScript Functions
	Miscellaneous MathScript Enhancements and Changes

	3D Picture Control
	LabVIEW Object-Oriented Programming
	Creating LabVIEW Classes
	Distributing a LabVIEW Class to Other Developers and Users

	LabVIEW Project Enhancements
	Application Builder Enhancements
	Creating Project Libraries and Adding Shared Variables Programmatically
	Saving LabVIEW Projects and Project Libraries for a Previous Version
	Selecting an Application Instance
	Shared Variable Enhancements
	Miscellaneous Project Enhancements

	Controlling VIs Remotely from Multiple Clients
	Importing Functions from a Shared Library File
	Instrument Driver Templates
	.NET and ActiveX Enhancements (Windows)
	NI Example Finder Enhancements
	Source Control Enhancements
	Source Control Operations on LabVIEW Project Folders
	Unsaved Files in Source Control Operations
	Miscellaneous Source Control Enhancements

	TDM Enhancements
	TDM Streaming File Format
	User-Defined TDM and TDMS Properties

	Importing Web Services (Windows)
	External Code Functions Changes

