FET SWITCHES

The two examples of FET circuits that we gave at the beginning of the chapter were both *switches*: a logic-switching application and a linear signal-switching circuit. These are among the most important FET applications and take advantage of the FET's unique characteristics: high gate impedance and bipolarity resistive conduction clear down to zero volts. In practice
you usually use MOSFET integrated circuits (rather than discrete transistors) in all digital logic and linear switch applications, and it is only in power switching applications that you resort to discrete FETs. Even so, it is essential (and fun!) to understand the workings of these chips; otherwise you're almost guaranteed to fall prey to some mysterious circuit pathology.

3.11 FET analog switches

A common use of FETs, particularly MOSFETs, is as analog switches. Their combination of low ON resistance (all the way to zero volts), extremely high OFF resistance, low leakage currents, and low capacitance makes them ideal as voltage-controlled switch elements for analog signals. An ideal analog, or linear, switch behaves like
a perfect mechanical switch: In the ON state it passes a signal through to a load without attenuation or nonlinearity; in the OFF state it is an open circuit. It should have negligible capacitance to ground and negligible coupling to the signal of the switching level applied to the control input.

![Diagram of FET switch](image)

Figure 3.35

Let’s look at an example (Fig. 3.35). Q1 is an n-channel enhancement-mode MOS-FET, and it is nonconducting when the gate is grounded or negative. In that state the drain-source resistance (\(R_{\text{OFF}}\)) is typically more than 10,000M, and no signal gets through (though at high frequencies there will be some coupling via drain-source capacitance; more on this later). Bringing the gate to +15 volts puts the drain-source channel into conduction, typically 25 to 100 ohms (\(R_{\text{ON}}\)) in FETs intended for use as analog switches. The gate signal level is not at all critical, as long as it is sufficiently more positive than the largest signal (to maintain \(R_{\text{ON}}\) low), and it could be provided from digital logic circuitry (perhaps using a FET or BJT to generate a full-supply swing) or even from an op-amp (whose \(\pm 13\)V output swing would do nicely, since gate breakdown voltages in MOSFETs are typically 20V or more). Swinging the gate negative (as from an op-amp output) doesn’t hurt, and in fact has the added advantage of allowing the switching of analog signals of either polarity, as will be described later. Note that the FET switch is a bidirectional device; signals can go either way through it. Ordinary mechanical switches work that way, too, so it should be easy to understand.

The circuit as shown will work for positive signals up to about 10 volts; for larger signals the gate drive is insufficient to hold the FET in conduction (\(R_{\text{ON}}\) begins to rise), and negative signals would cause the FET to turn on with the gate grounded (it would also forward bias the channel-body junction; see Section 3.02). If you want to switch signals that are of both polarities (e.g., signals in the range \(-10V\) to \(+10V\)), you can use the same circuit, but with the gate driven from \(-15\) volts (OFF) to \(+15\) volts (ON); the body should then be tied to \(-15\) volts.

With any FET switch it is important to provide a load resistance in the range of 1k to 100k in order to reduce capacitive feedthrough of the input signal that would otherwise occur during the OFF state. The value of the load resistance is a compromise: Low values reduce feedthrough, but they begin to attenuate the input signal because of the voltage divider formed by \(R_{\text{ON}}\) and the load. Because \(R_{\text{ON}}\) varies over the input signal swing (from changing \(V_{GS}\)), this attenuation also produces some undesirable nonlinearity. Excessively low load resistance appears at the switch input, of course, loading the signal source as well. Several possible solutions to this problem (multiple-stage switches, \(R_{\text{ON}}\) cancellation) are shown in Sections 3.12 and 4.30. An attractive alternative is to use a second FET switch section to connect the output to ground when the series FET is off, thus effectively forming an SPDT switch (more on this in the next section).

CMOS linear switches

Frequently it is necessary to switch signals that may go nearly to the supply voltages. In that case the simple n-channel switch circuit just described won’t work, since the gate is not forward-biased at the
peak of the signal swing. The solution is to use paralleled complementary MOSFET ("CMOS") switches (Fig. 3.36). The triangular symbol is a digital inverter, which we'll discuss shortly; it inverts a HIGH input to a LOW output, and vice versa. When the control input is high, \(Q_1 \) is held ON for signals from ground to within a few volts of \(V_{DD} \) (where \(R_{ON} \) starts increasing dramatically). \(Q_2 \) is likewise held ON (by its grounded gate) for signals from \(V_{DD} \) to within a few volts of ground (where its \(R_{ON} \) increases dramatically). Thus, signals anywhere between \(V_{DD} \) and ground are passed through with low series resistance (Fig. 3.37). Bringing the control signal to ground turns off both FETs, providing an open circuit. The result is an analog switch for signals between ground and \(V_{DD} \). This is the basic construction of the 4066 CMOS "transmission gate." It is bidirectional, like the switches described earlier; either terminal can be the input.

![Figure 3.36. CMOS analog switch.](image)

There is a variety of integrated circuit CMOS analog switches available, with various switch configurations (e.g., several independent sections with several poles each). The 4066 is the classic 4000-series CMOS "analog transmission gate," just another name for an analog switch for signals between ground and a single positive supply. The IH5040 and IH5140 series from Intersil and Harris and the DG305 and DG400 series from Siliconix are very convenient to use; they accept logic-level (0V = LOW, > 2.4V = HIGH) control signals, they will handle analog signals to ±15 volts (compared with only ±7.5V for the 4000 series), they come in a variety of configurations, and they have relatively low ON resistance (25Ω for some members of these families). Analog Devices, Maxim, and PMI also manufacture nice analog switches.

![Figure 3.37](image)

Multiplexers

A nice application of FET analog switches is the "multiplexer" (or MUX), a circuit that allows you to select any of several inputs, as specified by a digital control signal. The analog signal present on the selected input will be passed through to the (single) output. Figure 3.38 shows the basic scheme. Each of the switches SW0 through SW3 is a CMOS analog switch. The "select logic" decodes the address and enables (jargon for "turns on") the addressed switch only, disabling the remaining switches. Such a multiplexer is usually used in conjunction with digital circuitry that generates the appropriate addresses. A typical situation might involve a data-acquisition instrument in which a number of analog input voltages must be sampled in turn, converted to digital quantities, and used as input to some computation.

Because analog switches are bidirectional, an analog multiplexer such as this is
integrators, sample-and-hold circuits, and peak detectors. For example, with op-amps we will be able to build a "true" integrator (unlike the approximation to an integrator we saw in Section 1.15): A constant input generates a linear ramp output (not an exponential), etc. With such an integrator you must have a method to reset the output; a FET switch across the integrating capacitor does the trick. We won’t try to describe these applications here; because op-amps form essential parts of the circuits, they fit naturally into the next chapter. Great things to look forward to!

3.12 Limitations of FET switches

Speed

FET switches have ON resistances R_{ON} of 25 to 200 ohms. In combination with substrate and stray capacitances, this resistance forms a low-pass filter that limits operating speeds to frequencies of the order of 10MHz or less (Fig. 3.39). FETs with lower R_{ON} tend to have larger capacitance (up to 50pF with some MUX switches), so no gain in speed results. Much of the rolloff is due to protection components – current-limiting series resistance, and capacitance of shunt diodes. There are a few “RF/video” analog switches that obtain higher speeds, probably by eliminating some protection. For example, the

```
input

$R_{ON} = 300\Omega$

output

$C_{in} = 5pF$

$C_{out} = 22pF$

$f_{3dB} = \frac{1}{2\pi R_{ON} C_{out}} = 24MHz$

Hi-508 analog multiplexer – ON values
```

Figure 3.39

Other analog switch applications

Voltage-controlled analog switches form essential building blocks for op-amp circuits we’ll see in the next chapter –

![Analog multiplexer diagram](image-url)

Figure 3.38. Analog multiplexer.

also a “demultiplexer”: A signal can be fed into the “output” and will appear on the selected “input.” When we discuss digital circuitry in Chapters 8 and 9, you will see that an analog multiplexer such as this can also be used as a “digital multiplexer/demultiplexer,” because logic levels are, after all, nothing but voltages that happen to be interpreted as binary 1’s and 0’s.

Typical of analog multiplexers are the DG506–509 series and the IH6108 and 6116 types, 8- or 16-input MUX circuits that accept logic-level address inputs and operate with analog voltages up to ±15 volts. The 4051-4053 devices in the CMOS digital family are analog multiplexers/demultiplexers with up to 8 inputs, but with 15 volt pp maximum signal levels; they have a V_{BE} pin (and internal level shifting) so that you can use them with bipolarity analog signals and unipolarity (logic-level) control signals.
IH5341 and IH5352 switches handle analog signals over the usual ±15 volt range and have a bandwidth of 100MHz; the 74HC4051-53 series of "high-speed" CMOS multiplexers also provide a 3dB analog bandwidth of 100MHz, but handle signals only to ±5 volts. The MAX453–5 from Maxim combine a video multiplexer with an output video amplifier, so you can drive low-impedance cables or loads (usually 75Ω) directly; they have 50MHz typical bandwidth and are intended for ±1 volt low-impedance video signals.

ON resistance

CMOS switches operated from a relatively high supply voltage (15V, say) will have low \(R_{ON} \) over the entire signal swing, because one or the other of the transmission FETs will have a forward gate bias at least half the supply voltage. However, when operated with lower supply voltages, the switch's \(R_{ON} \) value will rise, the maximum occurring when the signal is about halfway between the supply and ground (or halfway between the supplies, for dual-supply voltages). Figure 3.40 shows why. As \(V_{DD} \) is reduced, the FETs begin to have significantly higher ON resistance (especially near \(V_{GS} = V_{DD}/2 \)), since for enhancement-mode FETs \(V_{T} \) is at least a few volts, and a gate-source voltage of as much as 5 to 10 volts is required to achieve low \(R_{ON} \). Not only will the parallel resistances of the two FETs rise for signal voltages between the supply voltage and ground, but also the peak resistance (at half \(V_{DD} \)) will rise as \(V_{DD} \) is reduced, and for sufficiently low \(V_{DD} \) the switch will become an open circuit for signals near \(V_{DD}/2 \).

![Figure 3.40](image)

There are various tricks used by the designers of analog switch ICs to keep \(R_{ON} \) low, and approximately constant (for low distortion), over the signal swing. For example, the original 4016 analog switch used the simple circuit of Figure 3.36, producing \(R_{ON} \) curves that look like those in Figure 3.41. In the improved 4066 switch the designers added a few extra FETs so that the n-channel body voltage follows the signal voltage, producing the \(R_{ON} \) curves of Figure 3.42. The "volcano" shape, with
its depressed central R_{ON}, replaces the “Everest” shape of the 4016. Sophisti-
cated switches like the IH5140 series (or AD7510 series), intended for serious anal-
log applications, succeed even better, with gentle R_{ON} curves like those shown in Figure 3.43. The recent DG400 series from Siliconix achieves an ex-
cellent R_{ON} of 20 ohms, at the expense of increased “charge transfer” (see the later section on *glitches*); this switch family (like the IH5140 series) has the additional advantage of zero quiescent current.

Capacitance

FET switches exhibit capacitance from input to output (C_{DS}), from channel to ground (C_D, C_S), from gate to channel, and from one FET to another within one IC package (C_{DD}, C_{SS}); see Figure 3.44. Let’s look at the effects:

C_{DS}: Capacitance from input to output. Capacitance from input to output causes signal coupling in an OFF switch, rising at high frequencies. Figure 3.45 shows the effect for the IH5140 series. Note the use
of a stiff 50 ohm load, common in radiofrequency circuits, but much lower than normal for low-frequency signals, where a typical load impedance is 10k or more. Even with a 50 ohm load, the feedthrough becomes significant at high frequencies (at 30MHz 1pF has a reactance of 5k, giving -40dB of feedthrough). And, of course, there is significant attenuation (and nonlinearity) driving a 50 ohm load, since \(R_{ON} \) is typically 30 ohms (75Ω worst-case). With a 10k load the feedthrough situation is much worse, of course.

EXERCISE 3.8
Calculate the feedthrough into 10k at 1MHz, assuming \(C_{DS} = 1pF \).

In most low-frequency applications capacitive feedthrough is not a problem. If it is, the best solution is to use a pair of cascaded switches (Fig. 3.46) or, better still, a combination of series and shunt switches, enabled alternately (Fig. 3.47). The series cascade doubles the attenuation (in decibels), at the expense of additional \(R_{ON} \), whereas the series-shunt circuit (effectively an SPDT configuration) reduces feedthrough by dropping the effective load resistance to \(R_{ON} \) when the series switch is off.

EXERCISE 3.9
Recalculate switch feedthrough into 10k at 1MHz, assuming \(C_{DS} = 1pF \) and \(R_{ON} = 50 \) ohms, for the configuration of Fig. 3.47.

CMOS SPDT switches with controlled break-before-make are available commercially in single packages; in fact, you can
get a pair of SPDT switches in a single package. Examples are the DG188 and IH5142, as well as the DG191, IH5143, and AD7512 (dual SPDT units). Because of the availability of such convenient CMOS switches, it is easy to use this SPDT configuration to achieve excellent performance. The RF/video switches mentioned earlier use a series-shunt circuit internally.

\[C_D, C_S: \text{ Capacitance to ground.} \] Shunt capacitance to ground leads to the high frequency rolloff mentioned earlier. The situation is worst with a high-impedance signal source, but even with a stiff source the switch's \(R_{ON} \) combines with the shunt capacitance at the output to make a low-pass filter. The following problem shows how it goes.

EXERCISE 3.10
An AD7510 (here chosen for its complete capacitance specifications, shown in Fig. 3.44) is driven by a signal source of 10k, with a load impedance of 100k at the switch's output. Where is the high-frequency -3dB point? Now repeat the calculation, assuming a perfectly stiff signal source, and a switch \(R_{ON} \) of 75 ohms.

Capacitance from gate to channel. Capacitance from the controlling gate to the channel causes a different effect, namely the coupling of nasty little transients into your signal when the switch is turned on or off. This subject is worth some serious discussion, so we'll defer it to the next section on glitches.

\[C_{DD}, C_{SS}: \text{ Capacitance between switches.} \] If you package several switches on a single piece of silicon the size of a kernel of corn, it shouldn't surprise you if there is some coupling between channels ("cross-talk"). The culprit, of course, is cross-channel capacitance. The effect increases with frequency and with signal impedance in the channel to which the signal is coupled. Here's a chance to work it out for yourself:

EXERCISE 3.11
Calculate the coupling, in decibels, between a pair of channels with \(C_{DD} = C_{SS} = 0.5 \text{pF} \) (Fig. 3.44) for the source and load impedances of the last exercise. Assume that the interfering signal is 1MHz. In each case calculate the coupling for (a) OFF switch to OFF switch, (b) OFF switch to ON switch, (c) ON switch to OFF switch, and (d) ON switch to ON switch.

It should be obvious from this example why most broadband radiofrequency circuits use low signal impedances, usually 50 ohms. If cross-talk is a serious problem, don't put more than one signal on one chip.

Glitches
During turn-on and turn-off transients, FET analog switches can do nasty things. The control signal being applied to the gate(s) can couple capacitively to the channel(s), putting ugly transients on your signal. The situation is most serious if the signal is at high impedance levels. Multiplexers can show similar behavior during transitions of the input address, as well as momentary connection between inputs if turn-off delay exceeds turn-on delay. A related bad habit is the propensity of some switches (e.g., the 4066) to short the input to ground momentarily during changes of state.

Let's look at this problem in a bit more detail. Figure 3.48 shows a typical waveform you might see at the output of an n-channel MOSFET analog switch circuit similar to Figure 3.35, with an input
signal level of zero volts and an output load consisting of 10k in parallel with 20pF, realistic values for an analog switch circuit. The handsome transients are caused by charge transferred to the channel, through the gate-channel capacitance, at the transitions of the gate. The gate makes a sudden step from one supply voltage to the other, in this case between ±15 volt supplies, transferring a slug of charge

\[Q = C_{GC}[V_G(\text{finish}) - V_G(\text{start})] \]

\(C_{GC} \) is the gate-channel capacitance, typically around 5pF. Note that the amount of charge transferred to the channel depends only on the total voltage change at the gate, not on its rise time. Slowing down the gate signal gives rise to a smaller-amplitude glitch of longer duration, with the same total area under its graph. Low-pass filtering of the switch’s output signal has the same effect. Such measures may help if the peak amplitude of the glitch must be kept small, but in general they are ineffective in eliminating gate feedthrough. In some cases the gate-channel capacitance may be predictable enough for you to cancel the spikes by coupling an inverted version of the gate signal through a small adjustable capacitor.

The gate-channel capacitance is distributed over the length of the channel, which means that some of the charge is coupled back to the switch’s input. As a result, the size of the output glitch depends on the signal source impedance and is smallest when the switch is driven by a voltage source. Of course, reducing the size of the load impedance will reduce the size of the glitch, but this also loads the source and introduces error and nonlinearity due to finite \(R_{ON} \). Finally, all other things being equal, a switch with smaller gate-channel capacitance will introduce smaller switching transients, although you pay a price in the form of increased \(R_{ON} \).

Figure 3.49 shows an interesting comparison of gate-induced charge transfers for three kinds of analog switches, including JFETs. In all cases the gate signal is making a full swing, i.e., either 30 volts or the indicated supply voltage for MOSFETs, and a swing from −15 volts to the signal level for the n-channel JFET switch. The JFET switch shows a strong

![Figure 3.49. Charge transfer for various FET linear switches as a function of signal voltage.](image)
dependence of glitch size on signal, because the gate swing is proportional to the level of the signal above −15 volts. Well-balanced CMOS switches have relatively low feedthrough because the charge contributions of the complementary MOSFETs tend to cancel out (one gate is rising while the other is falling). Just to give scale to these figures, it should be pointed out that 30pC corresponds to a 3mV step across a 0.01μF capacitor. That’s a rather large filter capacitor, and you can see that this is a real problem, since a 3mV glitch is pretty large when dealing with low-level analog signals.

Latchup and input current

All CMOS integrated circuits have some form of input protection circuit, because otherwise the gate insulation is easily destroyed (see the later section on handling precautions). The usual protection network is shown in Figure 3.50: Although it may use distributed diodes, the network is equivalent to clamping diodes to VSS and to VDD, combined with resistive current limiting. If you drive the inputs (or outputs) more than a diode drop beyond the supply voltages, the diode clamps go into conduction, making the inputs (or outputs) look like a low impedance to the respective supplies. Worse still, the chip can be driven into “SCR latchup,” a terrifying (and destructive) condition we’ll describe in more detail in Section 14.16. For now, all you need to know about it is that you don’t want it! SCR latchup is triggered by input currents (through the protection network) of roughly 20mA or more. Thus, you must be careful not to drive the analog inputs beyond the rails. This means, for instance, that you must be sure the power supply voltages are applied before any signals that have significant drive current capability. Incidentally, this prohibition goes for digital CMOS ICs as well as the analog switches we have been discussing.

The trouble with diode-resistor protection networks is that they compromise switch performance, by increasing RON, shunt capacitance, and leakage. With clever chip design (making use of “dielectric isolation”) it is possible to eliminate SCR latchup without the serious performance compromises inherent in traditional protection networks. Many of the newer analog switch designs are “fault protected”: for example, Intersil’s IH5108 and IH5116 analog multiplexers claim you can drive the analog inputs to ±25 volts, even with the supply at zero (you pay for this robustness with an RON that is four times higher than that of the conventional IH6108/16). Watch out, though, because there are plenty of analog switch ICs around that are not forgiving!

You can get analog switches and multiplexers built with n-channel JFETs rather than complementary MOSFETs. They perform quite well, improving on CMOS switches in several characteristics. In particular, the series of JFET switches from PMI has superior constancy of RON versus analog voltage, complete absence of
latchup, and low susceptibility to electrostatic damage.

Other switch limitations
Some additional characteristics of analog switches that may or may not be important in any given application are switching time, settling time, break-before-make delay, channel leakage current (both ON and OFF; see Section 4.15), R_{ON} matching, temperature coefficient of R_{ON}, and signal and power supply ranges. We'll show unusual restraint by ending the discussion at this point, leaving the reader to look into these details if the circuit application demands it.

3.13 Some FET analog switch examples
As we indicated earlier, many of the natural applications of FET analog switches are in op-amp circuits, which we will treat in the next chapter. In this section we will show a few switch applications that do not require op-amps, to give a feeling for the sorts of circuits you can use them in.

Switchable RC low-pass filter
Figure 3.51 shows how you could make a simple RC low-pass filter with selectable 3dB points. We've used a multiplexer to select one of four preset resistors, via a 2-bit (digital) address. We chose to put the switch at the input, rather than after the resistors, because there is less charge injection at a point of lower signal impedance. Another possibility, of course, is to use FET switches to select the capacitor. To generate a very wide range of time constants you might have to do that, but the switch's finite R_{ON} would limit attenuation at high frequencies, to a maximum of R_{ON}/R_{series}. We've also indicated a unity-gain buffer, following the filter, since the output impedance is high. You'll see how to make "perfect" followers (precise gain, high Z_{in}, low Z_{out}, and no V_{BE} offsets, etc.) in the next chapter. Of course, if the amplifier that follows the filter has high input impedance, you don't need the buffer.

Figure 3.51

Figure 3.52 shows a simple variation in which we've used four independent switches, rather than a 4-input multiplexer. With the resistors scaled as shown, you can generate 16 equally spaced 3dB frequencies by turning on binary combinations of the switches.

Figure 3.52. RC low-pass filter with choice of 15 equally spaced time constants.

EXERCISE 3.12
What are the 3dB points for this circuit?
Switchable gain amplifier

Figure 3.53 shows how you can apply the same idea of switching resistors to produce an amplifier of selectable gain. Although this idea is a natural for op-amps, we can use it with the emitter-degenerated amplifier. We used a constant-current sink as emitter load, as in an earlier example, to permit gains much less than unity. We then used the multiplexer to select one of four emitter resistors. Note the blocking capacitor, needed to keep the quiescent current independent of gain.

Sample-and-hold

Figure 3.54 shows how to make a "sample-and-hold" circuit, which comes in handy when you want to convert an analog signal to a stream of digital quantities ("analog-to-digital conversion") — you’ve got to hold each analog level steady while you figure out how big it is. The circuit is simple: A unity-gain input buffer generates a low-impedance copy of the input signal, forcing it across a small capacitor. To hold the analog level at any moment, you simply open the switch. The high input impedance of the second buffer (which
should have FET input transistors, to keep input current near zero) prevents loading of the capacitor, so it holds its voltage until the FET switch is again closed.

EXERCISE 3.13
The input buffer must supply current to keep the capacitor following a varying signal. Calculate the buffer’s peak output current when the circuit is driven by an input sine wave of 1 volt amplitude at 10kHz.

Flying-capacitor voltage converter
Here’s a nice way (Fig. 3.55) to generate a needed negative power-supply voltage in a circuit that is powered by a single positive supply. The pair of FET switches on the left connects C_1 across the positive supply, charging it to V_{in}, while the switches on the right are kept open. Then the input switches are opened, and the switches on the right are closed, connecting charged C_1 across the output, transferring some of its charge onto C_2. The switches are diabolically arranged so that C_1 gets turned upside down, generating a negative output! This particular circuit is available as the 7662 voltage converter chip, which we’ll talk about in Sections 6.22 and 14.07. The device labeled “inverter” turns a HIGH voltage into a LOW voltage, and vice versa. We’ll show you how to make one in the next section (and we’ll really get you up to speed on them in Chapters 8–11!).

3.14 MOSFET logic and power switches
The other kinds of FET switch applications are logic and power switching circuits. The distinction is simple: In analog signal switching you use a FET as a series switch, passing or blocking a signal that has some range of analog voltage. The analog signal is usually a low-level signal, at insignificant power levels. In logic switching, on the other hand, MOSFET switches open and close to generate full swings between the power supply voltages. The “signals” here are really digital, rather than analog—they swing between the power supply voltages, representing the two states HIGH and LOW. In-between voltages are not useful or desirable; in fact, they’re not even legal! Finally, “power switching” refers to turning on or off the power to a load such as a lamp, relay coil, or motor winding; in these applications, both voltages and currents tend to be large. We’ll take logic switching first.

Logic switching
Figure 3.56 shows the simplest kind of logic switching with MOSFETs: Both circuits use a resistor as load and perform the logical function of inversion—a HIGH
MOSFET gate, for example), you are inviting capacitive noise pickup problems, and you will suffer reduced switching speeds for the ON-to-OFF ("trailing") edge (because of stray loading capacitance). In this case, for example, the NMOS inverter with a compromise value of drain resistor, say 10k, would produce the waveform shown in Figure 3.57.

The situation is reminiscent of the single-ended emitter follower in Section 2.15, in which quiescent power dissipation and power delivered to the load were involved in a similar compromise. The solution there — the push-pull configuration — is particularly well suited to MOSFET switching. Look at Figure 3.58, which you might think of as a push-pull switch: Input grounded cuts off the bottom transistor and turns on the top transistor, pulling the output HIGH. A HIGH input (+VDD) does the reverse, pulling the output to ground. It’s an inverter with low output
impedance in both states, and no quiescent current whatsoever. It's called a CMOS (complementary MOS) inverter, and it is the basic structure of all digital CMOS logic, the logic family that has become dominant in large-scale integrated circuits (LSI), and seems destined to replace earlier logic families (with names like “TTL”) based on bipolar transistors. Note that the CMOS inverter is two complementary MOSFET switches in series, alternately enabled, while the CMOS analog switch (treated earlier in the chapter) is two complementary MOSFET switches in parallel, enabled simultaneously.

EXERCISE 3.14
The complementary MOS transistors in the CMOS inverter are both operating as common-source inverters, whereas the complementary bipolar transistors in the push-pull circuits of Section 2.15 are (non-inverting) emitter followers. Try drawing a “complementary BJT inverter,” analogous to the CMOS inverter. Why won't it work?

We'll be seeing much more of digital CMOS in the chapters on digital logic and microprocessors (Chapters 8-11). For now, it should be evident that CMOS is a low power logic family (with zero quiescent power) with high-impedance inputs, and with stiff outputs that swing the full supply range. Before leaving the subject, however, we can't resist the temptation to show you one additional CMOS circuit (Fig. 3.59). This is a logic NAND gate, whose output goes LOW only if input A AND input B are both HIGH. The operation is surprisingly easy to understand: If A and B are both HIGH, series NMOS switches Q1 and Q2 are both ON, pulling the output stiffly to ground; PMOS switches Q3 and Q4 cooperate by being OFF; thus, no current flows. However, if either A or B (or both) is LOW, the corresponding PMOS transistor is ON, pulling the output HIGH; since one (or both) of the series chain Q1Q2 is OFF, no current flows.

This is called a “NAND” gate because it performs the logical AND function, but
FIELD-EFFECT TRANSISTORS

with inverted ("NOT") output – it’s a NOT-AND, abbreviated NAND. Although gates and their variants are properly a subject for Chapter 8, you will enjoy trying your hand at the following problems.

EXERCISE 3.15
Draw a CMOS AND gate. Hint: AND = NOT-NAND.

EXERCISE 3.16
Now draw a NOR gate: The output is LOW if either A OR B (or both) is HIGH.

EXERCISE 3.17
You guessed it – draw a CMOS OR gate.

EXERCISE 3.18
Draw a 3-input CMOS NAND gate.

The CMOS digital logic we’ll be seeing later is constructed from combinations of these basic gates. The combination of very low power dissipation and stiff rail-to-rail output swing makes CMOS logic the family of choice for most digital circuits, accounting for its popularity. Furthermore, for micropower circuits (such as wristwatches and small battery-powered instruments) it’s the only game in town.

Lest we leave the wrong impression, however, it’s worth noting that CMOS logic is not zero-power. There are two mechanisms of current drain: During transitions, a CMOS output must supply a transient current $I = CdV/dt$ to charge any capacitance it sees (Fig. 3.60). You get load capacitance both from wiring ("stray" capacitance) and from the input capacitance of additional logic that you are driving. In fact, because a complicated CMOS chip contains many internal gates, each driving some on-chip internal capacitance, there is some current drain in any CMOS circuit that is making transitions, even if the chip is not driving any external load. Not surprisingly, this “dynamic” current drain is proportional to the rate at which transitions take place. The second mechanism of CMOS current drain is shown in Figure 3.61: As the input jumps between the supply voltage and ground, there is a region where both MOSFETs are conducting, resulting in large current spikes from V_{DD} to ground. This is sometimes called "class-A current" or "power supply crowbarring." You will see some consequences of this in Chapters 8, 9, and 14. As long as we’re dumping on CMOS, we should mention that an additional disadvantage of CMOS (and, in fact, of all MOSFETs) is its vulnerability to damage from static electricity. We’ll have more to say about this in Section 3.15.

![Figure 3.60. Capacitive charging current.](image)

![Figure 3.61. Class-A CMOS conduction.](image)

☐ **CMOS linear amplifier**

CMOS inverters – and indeed all CMOS digital logic circuits – are intended to be
used with digital signal levels. Except during transitions between states, therefore, the inputs and outputs are close to ground or V_{DD} (usually $+5V$). And except during those transitions (with typical durations of a few nanoseconds), there is no quiescent current drain.

The CMOS inverter turns out to have some interesting properties when used with analog signals. Look again at Figure 3.61. You can think of Q_1 as an active (current-source) load for inverting amplifier Q_2, and vice versa. When the input is near V_{DD} or ground, the currents are grossly mismatched, and the amplifier is in saturation (or "clipping") at ground or V_{DD}, respectively. This is, of course, the normal situation with digital signals. However, when the input is near half the supply voltage, there is a small region where the drain currents of Q_1 and Q_2 are nearly equal; in this region the circuit is an inverting linear amplifier with high gain. Its transfer characteristic is shown in Figure 3.62. The variation of R_{load} and g_m with drain current is such that the highest voltage gain occurs for relatively low drain currents, i.e., at low supply voltages (say $5V$).

This circuit is not a good amplifier; it has the disadvantage of very high output impedance (particularly when operated at low voltage), poor linearity, and unpredictable gain. However, it is simple and inexpensive (CMOS inverters are available 6 to a package for under half a dollar), and it is sometimes used to amplify small input signals whose waveforms aren't important. Some examples are proximity switches (which amplify 60Hz capacitive pickup), crystal oscillators, and frequenciesensing input devices whose output is a frequency that goes to a frequency counter (see Chapter 15).

To use a CMOS inverter as a linear amplifier, it's necessary to bias the input so that the amplifier is in its active region. The usual method is with a large-value resistor from output to input (which we'll recognize as "dc feedback" in the next chapter), as shown in Figure 3.63. That puts us at the point $V_{out} = V_{in}$ in Figure 3.62. As we'll learn later, such a connection (circuit A) also acts to lower the input impedance, through "shunt feedback," making circuit B desirable if a high input impedance at signal frequencies is important. The third circuit is the classic CMOS crystal oscillator, discussed in Section 5.13. Figure 3.64 shows a variant of circuit A, used to generate a clean 10MHz full-swing square wave (to drive digital logic) from an input sine wave. The circuit works well for input amplitudes from 50mV rms to 5 volts rms. This is a good example of an "I don't know the gain, and I don't care" application. Note the input-protection network, consisting of a current-limiting series resistor and clamping diodes.
Figure 3.63. CMOS linear amplifier circuits.

Figure 3.64