6.3 FOURIER SERIES

The exponential Fourier series for a periodic signal was developed in
Section 5.4 as a linear combination of orthonormal functions having the
property of being a least-square-error approximation. Also shown was the
fact that when the signal in question has well-defined average power, its
Fourier series may be deemed a valid signal representation for most
engineering purposes. That premise is adopted here, where we put the
theory to work. Specifically, we shall use the Fourier series to express
periodic signals as sums of phasors, from which their line spectra drop out
immediately. Then, in Section 6.5, the phasor sum is employed to carry
out periodic steady-state analysis.

Exponential Fourier series

Let v(r) be a periodic power signal with fundamental period T,. It can be
expanded as a linear combination of phasors via the exponential Fourier
series

0

u(t) = 3 ¢,V (N

n=-—u

where () is the fundamental angular frequency

21r
== )
1t also happens in this case that the corner frequency numerically equals the half-powér

bandwidth and, at that point, |H (B)|a = —20 log;e (1/V2) = 3.01 = —3 db, which explains
‘\f/hy B comnmonly is referred to as the 3-db bandwidth.
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and the coefficients ¢, are given by

= [ wleea 3)
T, Jy,

As in Chapter 5, the symbol [, stands for integration over any period

L =1 =1+T, with ¢, being arbitrary.

Perhaps the most striking feature of the series is that only the ¢,’s
depend on the explicit details of the signal’s behavior, all else being
predetermined once it is known that v(¢) is periodic. Putting this another
way, the Fourier-series expansions for all power signals having the same
period differ only in the coefficients. For this reason we concentrate our
discussion on the properties of ¢, implied by (3), especially the following
four points.

First, the c¢,’s are generally complex quantities, whether or not the
signal is complex. To illustrate, if v(z) is in fact real (noncomplex), then
the real and imaginary parts of ¢, are given by

Cp = [“LJ. v(t) cos thdt] +j[—'lf v(t) sin "Qtdf] “)
TO To TO To

\, ”l — )
v v

Re [c,] Im [c,]

which comes about from applying Euler’s law to e="0¢,

Second, because (3) is a definite integral with ¢ the variable of inte- .
gration, ¢, is independent of time. Underscoring this fact, we introduce
the change ¢f variable ¢ = (3¢ so that (3) becomes -

1 [ (d’) —~inds
cn=5=1| vlg)e™d 5
=3 J 0 (5)
which, with its compact form, is sometimes handy when calculating ¢, or

demonstrating other relationships.
Third, setting n = 0 in (3), the zeroth-order coefficient ¢, is

)
Co = v(t)dr 6
=Ty I, (1) (6)
which, upon examination, should be recognized as the time-average value
of v(z). Thus, the constant term in the Fourier series is just the average
value of the signal.
Fourth, if the signal in question is a real function of time, then the
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negative and positive coefficients are related simply by complex conjuga-
tion, namely

Con =i (7)

as follows from (4) by replacing n with —n.

Waveform symmetry )
Besides these basic properties, there are certain simplifications when v (z)
has symmetry of one type or another. In particular, if v(¢) is an even
function then the integrand in the first term of (4) has even symmetry
while the second has odd symmetry. Therefore, taking the range of
integration to be —T/2 = ¢ = T,/2 and invoking Eq. (20), Sect. 5.1,

2 Tol2

C, = —
n T()O

v(r) cos ndt d;_ (8a)
By the same procedure, if v(t) is an odd function,
2 Tol2 ‘
Cph = —j—]-.— f v(t) sin nQe dt (8b)
0 Jo )

and it follows that ¢, = 0. ,
Another type of symmetry, called Lalf wave or rotation symmetry, is
defined by the property

u<t¢%>= (1) 9)

which can hold only for a periodic signal. As iilustrated in Figure 6.7,
such signals retain odd symmetry even when the time origin is shifted an
integer number of half periods in either direction. Under this condition it

Figure 6.7. An example of half-wave symmetry.
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turns out that
¢, =0 n=0,12,44,. .. (10)

so the Fourier series consists entirely of odd-order terms.

Occasionally one encounters signals with hidden symmetry, i.e., actual
symmetry that is obscured by the presence of an additive constant term,
or potential symmetry that can be realized by shifting the location of the
time origin. In the former case the constant can be subtracted out and then
added to the zeroth coefficient ¢, after performing the Fourier-series
expansion of the symmetric signal. In the latter case, since the time origin
is not physically unique we are usually free to redefine it so as to gain
simplifications of symmetry. A theorem that covers the effects of time
shifting will be presented in Section 6.4

Further understanding of waveform symmetry is gained by examining
the trigonometric Fourier series.

Trigonometric Fourier series

When v(t) is a real signal — and hence c_, = ¢;f — its exponential Fourier
series can be converted to a trigonometric form by the following manipu-
lation. Regrouping pairwise all but the zeroth term in (1), so the summa-
tion index is always positive, we have

U(f) = ¢ + E ((.”ej'nﬂt_’_ C,né’"j"ﬂt)
n=1
But ¢, e and c_,e " now form a complex-conjugate pair so, with ¢, in
polar form,

v(t) = co+ 2 |2¢a| cos (nQt+arg [¢,]) (11)
n=1 )
which expresses v(¢) as a sum of sinusoidal waves with various ampli-
tudes and phase angles, and all terms in (11) are real. Another trigono-
metric form, involving both sines and cosines, can be derived, but (11) is
generally more useful in systems analysis than the sine-cosine series.
Now if a real signal has even symmetry then, according to (8a), the
series coefficients ¢, are strictly real. Therefore, the trigonometric series
involves only terms of the form +|2c¢,| cos n{}¢t, where the minus sign is
needed when c, is negative. Since the signal is even, it is only natural that
the series should reduce to a sum of even functions, cos n)t. Similarly

i

.

180 | PERIQDIC STEADY-STATE ANALYSIS




when v(1) has odd symmetry the series terms become *|2¢,| sin nQt, so
we have a sum of odd functions, sin n{lt,

These comments, along with our previous observations, are best
illustrated by a few examples of calculating the Fourier series of a given

signal.

Example 6.2 A rectangular puise train

The rectangular pulse train of Figure 6.8 is a very important idealized
signal. Formally, it is written by specifying its value over one period and
citing the periodicity requirement, as below:

A lt] = 1/2
v(t) =
0 TI2 < |t]| = T2
v(t) =v(t=mTy) m=0,%1,%2,...

The parameter ’7 is the pulse duration and A the amplitude.

Figure 6.8. Rectangular pulse train,

Since the integration for ¢, is straightforward, we shall ignore the fact
that v(r) has even symmetry and use the basic expression (3) to find the
series coefficients. Taking the integration limits as — T,/2 and T,/2 gives

1 Tol2 . ] /2 )
Cp = f v(t)e "Mt = = Ae~ im0y

TO —Toi2 TO —7/2

e .____"i__ (e—jnﬂrlﬂ _ einﬂflz)
—inQT,

v

A g

amn TO

where we have used ¢® — ¢ = 2j sin ¢ and substituted Q = 27/T.
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This expression can be further tidied up by introducing a new function,
called the sinc function,t defined as

sincz =

A sinwz
Tz

(12)

and plotted in Figure 6.9. Being the product of two odd functions, sinc 2
is an even function and, with sin 7z in the numerator, it has zero crossings
at all nonzero integer values of its argument, i.e.,

sincz =0

z=*]1,%2,...

while the indeterminate case of z = 0 yields

sinc 0 = lim

z=0

sin mz _

1

7-3 —2\/-—1 0
~024

Figure 6.9. The sinc function sinc z = S“:T%

Tahle 6.1
z sinc z 2 sinc z z sinc z
0.0 1.000 1.0 0.000 2.5 0.127
0.2 0.935 1.2 —0.156 3.5 —0.091
0.4 0.757 1.4 —0.216 4.5 0.071
0.6 0.505 1.6 —(0.189 5.5 —0.058
0.8  0.234 1.8 —0.104 6.5 0.049

(13a)

(13b)

. 1tSome authors define instead Sa(z) = (sin z)/z, called the sampling function because of
another context in which it oceurs. The two functions differ only by a factor of  in the
argument, i.e., sinc z = Sa(mz).

192 | PERIODIC STEADY-STATE ANALYSIS




as found by simple limiting. Selected values of sinc z are listed in Table

6.1.
Using the sinc-function notation, the series coefficients become

o =4 in (wnr/T,)
" TO (77717'/ To)

_dAr . onr

=, sinc (14)
which we note is strictly real — because v(¢) is real and even — and
independent of time. Setting n = 0 yields

L
0 TO

which clearly is the average value of the signal. Finally, inserting (14) into
(1) gives

v(t) = Az i sinc 2% ginnit (15a)

T, =, T,

for the exponential Fourier series representation of the rectangular pulse
train. Or, since v(z) is real and even, its trigonometric Fourier series can

he written as

(1) :%(1 +3 2 sinc% cos nﬂt) (15b)

n=1

Example 6.5 A haif-rectified sine wave
Passing a sine wave of angular frequency () through a half-wave rectifier
produces the signal shown in Figure 6.10. There is no symmetry here,

A sin Q¢

=Ty T 0 i To

Figure 6.10. Half-rectified sine wave,
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but ¢, can be found using (5) and a table of integrals; i.e., T, = 27/},
v(Y/Q)) = Asinyfor0 = Qr = 7, and
I (7 . .
=5 f Asin g e ™ dy

0

A

— —jnm 2
27r(1—n3)(1+e ) n*# 1

But (1+ ¢~"") equals +2 when nis even and 0 when 7 is odd, so
4 n=0,%2,24,...

7T(1_n2) (16a)
0 n==3,%5...

Cll =

and all odd-order terms are zero save for the indeterminate case of n = =1,
By separate integration or limiting one finds for that case '

Cag = 1.14 (16b)
4

Example 6.4 Sinusoidal waves

Both previous examples have resulted in series representations with an

infinite number of terms. This is. usually the case, but not always, an

important counter example being the sinusoidal signal
v(t) =4 cos ({14 0)

Without bothering with integration, the series coefficients can be found
directly from the phasor representation

U([) — <% ej6> ejﬂt+ <‘% e-i@) e iU
Ny’

[E————
C1 Cq
Hence
%le” n=-+l1
& C, = _Aj_' —j6 —_ (17)
n ) e n 1
LO n = £l
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Perhaps because the results are so simple, students often do not realize
that the phasor representation of a sinusoid is also its exponential Fourier
series.

Line spectra for periodic signals
Bringing together Fourier analysis and frequency-domain representation,
we point out that the exponential Fourier-series expansion of a periodic
signal is a sum of phasors. Therefore, the line spectrum can be found
directly from the series coefficients c¢,. For this purpose it is advantageous
to think of ¢, as a complex function of the continuous variable f but defin-
ed only for the discrete values f = nf,, where f, = 1/T, = }/27.

More formally, we introduce the notation c(nfy) = ¢, and rewrite (3)
with Q = 27rfy, i.e.,

c(nfy) 2+ f v(r) ety (18)

To

Then the exponential Fourier series becomes

vit) = 3 |c(nfy)|eiansten gizmnat (19)
in which c¢(nf;) has been written in polar form. We interpret (19) as saying
that a periodic power signal consists of a sum (usually infinite) of phasors
at the frequencies = 0, =f,, £2f;, . . . , the amplitude and phase of the nth
component being |c(nfy)| and arg [c(nfy)], respectively. Therefore,
lc(nfy)]| is the amplitude spectrum of v{¢) while arg [¢(naf;)] is the phase
spectrum. From the previcusly derived properties of the Fourier series
coefficients we can make several additional statements about the line
spectra of periodic signals, summarized below.

1. All lines in the spectrum are located only at integer multiples of the
fundamental frequency f, = 1/T,. Hence, a periodic signal consists entire-
“ly of frequencies which are harmonically related to f,.

2. The zero-frequency or DC component equals the average value of
+ the signal, since

c(0) = ¢, = Tio v(t)dt
To
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3. If v(¢) is a real function of time then ¢ (nf;) has hermitian symmetry,
ie.,

le(=nfy)| = |c(nfi)] arg [c(—nfy) ] = —arg [c(nfy)]

which means that the amplitude and phase spectra have even and odd
symmetry respectively, as observed in conjunction with Figure 6.3.

4. If the signal has half-wave symmetry, then
c(nfo) =0 n=0,+2,+4, ...

so all the even harmonics will be absent from the line spectrum.

5. If a real signal has even symmetry in time, then ¢ (nf,) is strictly real
and hence

arg [c(nfy)] =0 or +180°

the latter being required when ¢ (nf;) is negative. On the other hand, fora
real signal with odd symmetry, ¢ (nf,) is strictly imaginary and

arg [c(nfy) ] = =90°
since +j = o¥7/2 = =90,
These points, plus the mechanics of constructing line spectra, are
illustrated in the following examples.

Example 6.5 Spectrum of a half-rectified sine wave

Using the results of Example 6.3, |c(nf,)| and arg [c(nf;)] have been
listed in Table 6.2 for the iirst few values of n. Negative amplitudes hav..
been converted to phase angles of +180° or -—180°, the choice being dic-
tated by symmetry considerations since there is no physical différence.
Figure 6.11 is the resulting spectrum.

Example 6.6 Spectrum of a rectangular pulse train
To continue Example 6.2, the line spectrum of a rectangular pulse train is
given by (14) when rewritten as

c(nfy) =Lsinc fyr (20)

0

The amplitude spectrum is then |c(nfy)| = (A7/T,)|sinc nfyr|, shown in
Figure 6.12a for the case of v/T, =% so f, = 1/5r. This plot has been
facilitated by regarding the continuous function (A7/T,)|sinc fr| as the

e
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Table 6.2

n Cn 'C(ﬂﬁ))l arg [C(ﬂf;))]

A
o 4 4 0
T ar
A A —ane
+] j4 2 *90
A A o
+2 3 3’7—1_ *180
+3 0 0 0
A A o,
—+ -1-3; ET— +180
[e(nfo) | a
w
A
T
A
3 A
| R L
~4fy  =3f =2t -fo 0 fo 2fo 3o 4
arg [e(nfo)i
| S —
-90° I l
-180° ~180°

Figure 6.11. Spectrum of a half-rectified sine wave.

envelope of the amplitude lines — the dashed curve in the figure. Features
to be noted here are: the uniform line spacing, save where lines are
“missing” because they have zero amplitude; the even symmetry, re-
flecting the fact that the signal is real; and the DC component,
c(0) = A7/T,. '

The phase spectrum, Figure 6.12b, has been constructed by noting
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IC(nfo)I
/ '6’— |smc fr|
_./TTT\I\ /1/I_I\I\\A//l \/1 f]'}\ /FIT‘I\‘ f
-f00f02f0 5f 1 2 3
(a) 0T
arg{c(nfo)]
I | I I 180‘“\'
) ‘ T f
-180°t+
(b)

Figure 6.12. Spectrum of a rectangular pulse train, 7 = T/5.

that c(nfy) is always real but sometimes negative. Therefore, absorbing
negative amplitudes in the phase, arg [¢(nf;)] == 0 when sincnfyr = 0
while arg [¢(nfy) ] = £180° when sinc nfyr < 0.

As a further aid to frequency-domain interpretation, the amplitude
spectra and waveforms are sketched in Figure 6.13 for three values of the
pulse duration 7, the pulse amplitude 4 and period T, being held fixed.
When = T, (Figure 6.13a), the signal degenerates into a constant for all
time; correspondingly, sinc nfyr = sinc n = 0 except for n = 0, and so the
spectrum contains only one line, that line representing a DC component.
This is quite logical, of course, since a constant for all time has no time
variation and thus contains no frequescies other than f= 0.

When 7 = T,/2 (Figure 6.13b), we have a square-wave with a DC com-
ponent or average value of 4/2 and, except for the latter, the signal has
half-wave symmetry. The spectrum shows this fact since the lines at
f= £2f,, +4f,, . . ., fall at the zero-crossing of sinc fr and thus have zero
amplitude,

Going to smaller values of pulse duration (Flgure 6.13¢), the DC
component decreases — after all, the area of v(z) is reduced — and the
components at higher frequencies become increasingly important.
Physically, these higher frequencies are required to represent the more
rapid time variation of the short pulses. Thus, as the pulses are contracted
in the time domain, the spectrum spreads out in the frequency domain,

ignin s
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Waveform Amplitude Spectrum
u(t) le(nfo)l
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7 7 )
}T‘,’/w (c) f
=

Figure 6.13. Waveform and amplitude spectrum of a rectangular pulse train, (a) 7= T,
B)yr=Ty2. ()7=T/5.

and vice versa. This phenomenon is known as the reciprocal spreading
effect; it holds generally for all signals, not just for rectangular pulse
trains.

6.4 FOURIER SERIES THEQREMS

There are numerous relations covering the frequency-domain effect of
time-domain operations on periodic signals. Some of the more important
onedare given here in the form of Fourier series theorems. These theorems
are of interest for two reasons: /. they aid in interpreting frequency-
domain properties from time-domain information, and vice versa; and

PR RN L SRR A 87 e D R, S G e 5 L L By R RS R i e
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2. they are often of value as shortcuts in calculating series coefficients and
line spectra.

In stating the theorems below we assume that v(z), w(¢), and z(¢) are
periodic signals having the same period, and whose spectra are c,(nfy),
co(nfy), and c,(nfy), respectively.

Superposition
If « and 3 are constants and
z(1) = av(t) +Bw(1) (1la)

then
e (nfy) = ac,(nfy) + By (nfo) (1b)

Hence, a linear combination in the time domain becomes a linear com-
bination in the frequency domain. This simple and significant theorem is
easily proved from the definition of c(nf;). However, because the
coefficients are generally complex, care must be taken when converting
(1b) to amplitude and phase spectra.

Time shift
If z(z) has the same shape as v(¢) but delayed or shifted in time by 14
seconds so that

2(t) = v(t—tq) (2a)
where ¢, may be negative as well as positive, then
c:(nfi) = cy(nfy) e 0 = 2xf, (2b)

This means that translating the time origin affects only the phase spec-
trum, as brought out by writing (2b) in polar form

ez (nfo) | = |y (nfo) ] arg [c.(nfo)] = arg [c,(nfo) ] =y

We prove the theorem very simply by replacing ¢ with 71—, on both
sides of Eq. (1), Sect. 6.3, giving

- v(t—ty) = X cu(nfy) ™M

n=—w

®»
= z Cv(ﬂﬁ)) e—jnﬂtd ejn.().t
R S

cz(nfo)
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Hence,if 2(t) = v(t—1t4) then ¢, (nfy) = c,(nfy) e ¥, thereby completing
the proof.

Example 6.7 Spectrum of a full-rectified sine wave

Since we know the spectrum of a half-rectified sine wave, the spectrum of
a full-rectified sine wave can be found directly using the superposition
and time-shift theorems. Specifically, if v(r) is the half-rectified wave
shown in Figure 6.10, then the full-rectified wave in Figure 6.14a is

- _T A ,
z(t)—v(t)+v(t —20) ;= Sty ey -

and therefore
j P
c.(nfy) = c,(afy) + ¢, (nfy) e~ n0Te2 o -7 2
A 2¢,(nfo) neven
= ¢, (nfy) (1+e7m) =
nodd
Inserting Eq. (16), Sect. 6.3, for ¢, (nf;) we finally obtain
12f 2 n:07i27i4’-..
c.(nfy) = w(1—n*) 3)
0 n=x=1,:3,...

and the amplitude spectrum is plotted in Figure 6.145.

The fact that all odd harmonics are missing — including f, — agrees with
the fact that the fundamental period of the full-rectified wave is actually
T,/2 instead of T,. But perhaps more interesting is the observation that,
except for the scale factor of 2, this spectrum differs from Figure 6.11
only by the absence of the first harmonic.

v

o) letnll (.
" K3
24 24
0 5 To 0 fo 2fo 3fo 4fo
2
(a) (b)

Figure 6.14. Full-rectified sine wave. (a) Waveform. (b) Amplitude spectrum.
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Multiplication and modulation

Suppose that z(t) is the product of two signals, v(r) and w(z). Its Fourier
series coefficients, in terms of ¢,.(nf;) and ¢, (nf;), are found in the
following manner. Given

z(t) = v(t)w(t) (4a)

we have

c.(nfy) = 1 f v(w(t)e " dy
TO To
or, inserting the series representation for v(t),

c.(nfy) :Tio T.)[ i cv(mﬁ,)e""‘“‘]w(t)e‘f'"ﬂtdt

ma=—20

=

= 3 alm)|7- [ winesn-mota]

To

\ )

cw[(n:m)fo]

where we use the different summation index m for clarity. Because the
bracketed integral is just the series coefficient for w(z) at frequency
(n— m)f,, the nth coefficient of z(t) is an infinite summation

m=-—m

-3}

c:(nfo) = X co(mfp)epl (n—m)fyl (1b)

m=—aw

which may be recognized as a discrete convolution. Thus, multiplication
in the time domain becomes convolution in the frequency domain.
Although (4) has conceptual value, it is not particularly useful for hand
calculations unless v(z) or w(z) has only a few spectral lines. One such
case — and an important one at that — is when w(¢) = cos N{1¢ so that

z(t) = v(r) cos Nt ‘ (5a)
where N is a fixed integer. From Example 6.4 it follows that
3 k==+N
culkfo) =
{0 k# N
and hence there are only two nonzero terms in (4b), those being for

R
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" =.n = N. Therefore, we get
c.(nfy) =4c,[(n—N)fi]l +4c.[(n+N)f] (5b)

which says that the spectrum of z(¢) consists of the spectrum of v(r)
translated up and down in frequency by Nf, and multiplied by 4. Because
of the frequency-translation aspect and its relevance to amplitude .
modulation, (5) is known as the modulation theorem.

Average power: Parseval’s theorem
The average power of a periodic signal was previously defined as

S SN § ) |
P= T, fn ]v(t)] dt T fn v(t)v*(r)dt 6)
Parseval’s theorem relates P to the Fourier series coefficients ¢, in a very
simple manner, namely

P=3 cc¥= 3 |alf (7)
n=—0 n=—w
whose spectral interpretation is brought out by remembering that
leq| = le(nfy)| is the amplitude spectrum. Thus, the signal power is just
the sum obtained by squaring and adding the heights of the amplitude
lines. The fact that (7) does not involve the phase spectrum, arg [c (nfy) ],
reinforces our earlier remark about the dominant role of the amplitude
spectrum in determining a signal’s frequency content.
Further interpretation of the theorem is afforded by assuming v(z) to be
real so cyisreal, |c.,| = |¢,], and (7) becomes

P=cy?+ n§=‘,] 3|2¢,)? t))

Now, recalling the trigonometric Fourier series of Eq. (11), Sect. 6.3, we
see that each sinusoidal wave of amplitude |2¢,| contributes |2c,|*/2 to P.
But the average power of a sinusoid having amplitude A is 4%/2; therefore
(8) implies superposition of average power in that the total average power
LOf v(z) is the sum of the average powers of its sinusoidal components,
Proving Parseval’s theorem is relatively routine, and will be left to the
reader (Problem 6.24).

o,
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