1. Write an expression for the complex impedance \(Z(w) \) of the given circuit.

2. Plot \(|Z(w)| \) vs \(w \) on a log-log plot (Bode plot). Identify the break frequencies.
 - Identify \(|Z(w)| \) as \(w \to \infty \).
 - Identify \(|Z(w)| \) as \(w \to 0 \).

3. Write an expression for the complex impedance of the given circuit.

 Plot \(\log |Z(w)| \) vs \(\log w \) (Bode plot).
 Plot \(\arg Z(w) = \arg \left[\frac{\text{Im}(Z(w))}{\text{Re}(Z(w))} \right] \) vs \(\log w \).
 This is a plot of the phase shift.

4. Find the steady state value of \(V_{out}(t) \) in the given circuit.

 Use either the convolution or the Fourier Transform method - your choice! Let \(Z = \frac{1}{1/R} \) for algebraic simplicity.

5. Find the steady state value of \(V_{out}(w) \) in the given circuit.

 Let \(a = \frac{R}{L} \) and \(b = \frac{1}{rc} \) for algebraic simplicity.

6. Plot \(\log |V_{out}(w)|/|V_{o}(w)| \) vs \(\log w \) for the case of \(a = b \).