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Physics 120 Lab 2 (2019) - Capacitor Circuits 
 

We will analyze resistor (R), capacitor (C), and inductor (L) circuits in different 
configurations and in different frequency bands to gain intuition into how electronic 
components compute derivatives and integrals. 

Reminder on triggering: Use the function generator’s TRIGGER OUTPUT to drive the oscilloscope’s 
AUXILIARY TRIGGER. This will ensure that the trace is always in phase with the input signal and 
that triggering does not dependent on either the amplitude of the input or the output of the circuit 
under investigations. Critically, this trigger will enable phase shifts between the input and output to be 
readily discerned. 

2-1. RC circuits 
We begin with the time dependence of an RC circuit, configured as a low-pass filter (Figure 2.1): 

 
Figure 2.1: RC Circuit as a low-pass filter. 

Construct the circuit and verify that it behaves in the time domain as a low-pass filter. Recall that, for 
a step input, theoretical calculations for ideal components predict that the voltage should rise as 
𝑉!"" 1 − 𝑒𝑥𝑝 −𝑡/𝜏  at the onset of a long pulse and decay at the offset of a long pulse as 
𝑉!"" ∙ 𝑒𝑥𝑝 −𝑡/𝜏 , where 𝜏 ≡ 𝑅𝐶 ≅ 100 𝜇𝑠 in the above example . 

Measure the time constant 𝜏 by determining the time for the output to drop to 𝑒𝑥𝑝 −1 = 0.37 of 
the initial amplitude (1 pt). You can read the amplitudes on the screen. Better yet, the cursors are 
handy for this measurement. 

Does the measured time constant equal the product RC (1 pt)? Recall that Rs and Cs have 
tolerances, so measure the exact values for your components . 

Measure the time to climb from 0 % to 63 %. Is it the same as the time to fall to 37 %? (1 pt). If 
not, identify what is amiss in your way of taking these readings! 

Record the input wave and the output of the RC circuit as a SCREENSHOT from the 
oscilloscope (1 pt) and put enter it into your report along with the estimates of 𝜏. 

Try varying the frequency of the square wave. 

2-2.	Differentiator	

	
Figure 2.2: RC differentiator.	
 Construct the RC differentiator shown above. Use the function generator to drive it with a 
square wave with an initial amplitude of 0.I V and a frequency of 100 kHz. Does the output make 
sense? Show the results as a SCREENSHOT (1 pt) and explain what you see (1 pt). Try a 100 kHz 
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triangle wave and show a SCREENSHOT and explain what you see (1 pt). Lastly, try a sine wave 
and show a SCREENSHOT and explain what you see (1 pt). 

Input Impedance 

Here’s a chance to try getting used to quick worst-case impedance calculations. 

- What is the magnitude of the impedance presented to the signal generator, defined as the input 
impedance, by this circuit at f = 0 (1 pt)? Assume no load at the circuit’s output. 

- What is the magnitude of the input impedance at infinite frequency (1 pt)? 

2-3.	Integrator	

	
Figure 2.3: RC integrator.	
Construct the integrator circuit shown above (Figure 2.3) . Drive it with a 100 kHz square wave at the 
maximum output level of the function generator, about 10 V. Take a SCREENSHOT (1 pt) and 
report what you see (1 pt). 

What is the input impedance at DC (1 pt)? At infinite frequency (1 pt)? Drive the circuit 
(Figure 2.3) with a triangle wave and take a SCREENSHOT (1 pt); what is the shape of the 
waveform? Hint: it is not a sine wave. 

This circuit, of course, is only an approximation to an integrator. To see this, drop the input 
frequency. Step your way down to 1 kHz or so, take SCREENSHOTs along the way and report what 
happens (1 pt). Why does the circuit fail as an integrator at low frequencies (1 pt)? 

2-4.	Low-pass	filter		

 
Figure 2.4: RC low-pass filter.	
 Construct the low-pass filter shown in Figure 2.4. Yes, this is the same as the "integrator" 
above and close to the original circuit of Figure 2.1. We are just going to look at its features in a 
different way. 

The frequency for which the amplitude falls by a factor of 1/ 2, is denoted as the “the -3 dB 
point” where f-3dB = 1/(2πRC). Drive the circuit with a sine wave, sweeping over a large frequency 
range, to observe its low-pass property. What is f-3dB (1 pt)? Show a SCREENSHOT that includes 
the input and output sinusoids (1 pt). 

What is "dB"? One deciBell or dB is defined by dB ≡ 20 log (Vout/Vin). Thus a drop in signal by 
3 dB is equal to attenuation by a factor of 10-3/20 = 0.708, which is close to 1/ 2 = 0.707. Hence the 
colloquial notation. 

 Lets now quantify the filter. Measure the attenuation starting at 𝑓 = 0.1𝑓!!!" and extend 
to 𝑓 = 10𝑓!!!" in about 20 logarithmically-spaced steps (10 per decade). Plot these the magnitude of 
these data on a log-log scale, either by hand or with a program (2 pts); this is called a Bode plot. Why 
is a log-log plot useful (1 pt)? Plot the phase shift on a linear-log plot (2 pts). What is the limiting 
value of the phase, both at very low and at very high frequencies (1 pt)? 
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2-5. High-pass filter  

 
Figure 2.5: RC high-pass filter. 

Construct a high-pass filter (Figure 2.5) with the components that you used for the low-pass 
filter but clearly in different positions. Choose a reasonable voltage for a sine output and determine 
this circuit’s -3 dB point (1 pt). Check to see if the output amplitude at low frequencies, i.e., well 
below the -3 dB point, is proportional to frequency. Construct the bode plot (2 pts). What is the 
limiting phase shift, both at very low frequencies (1 pt) and at very high frequencies (1 pts); include 
one or more SCREENSHOTS. 

2-6. Filter	application	I:	High-pass filter to isolate "noise" 

 
Figure 2.6: High-pass filter applied to the 60Hz AC power measured through a 12.6 V RMS transformer (CT = 
center tap for a dual 6.3 VAC supply). 

The circuit in Figure 2.6 will let you see the “electronic noise” on the 110-Volt power line. The 
transformer reduces the 110 VAC (or more properly 110 V RMS) to a more reasonable 12.6 V RMS 
and it “isolates” the circuit we’re working on from the potentially lethal power line voltage. First look 
at the output of the transformer, at point A. It should appear more or less like a classical sine wave. 

To see glitches and wiggles on top of the 60 Hz sine wave, look at point B, the output of the 
high-pass filter. All kinds of interesting stuff should appear, some of it curiously time-dependent. 
What is the filter’s attenuation at 60 Hz? (No complex arithmetic is necessary; use the fact, which you 
confirmed above, that amplitude grows linearly with frequency well below f-3dB) (1 pt). Document 
your finding(s) with a SCREENSHOT (1 pt). 

2-7.	Filter	application	II:	Selecting	signal	from	signal	plus	noise	

 
Figure 2.7: Composite signal, consisting of two sine waves. The output of the transformer is now is series and 
"floats"; the 1 kΩ resistor protects the function generator in case the composite output is accidentally shorted to 
ground 
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Now we will try using a high-pass filter to attenuate a large amplitude 60 Hz sine wave that adds 
to the output of the function generator (Figure 2.7). Pick reasonable parameters for the function 
generator output, say a 10 V sine wave at 10 kHz. 

 
Figure 2.8: High-pass filter. 

The 60 Hz is considered “noise” in this example. Thus run the composite signal through the 
high-pass filter shown in Figure 2.8. Look at the resulting signal. Calculate the filter’s -3 dB point 
(1 pt); show a SCREENSHOT that illustrates the filtering (1 pt). Is the attenuation of the 60 Hz 
waveform about what you would expect? Why (1 pt)? 

2-8. LCR filter  
It is possible to construct filters (high pass, low pass, band pass, and band reject) with a 

frequency response that is far more abrupt than that of the simple RC filters you have been building. 
To get a taste of what can be done, build the filter shown above. It should have a 3 dB point of about 
16 kHz and 𝑽𝒐𝒖𝒕 should drop like a rock at higher frequencies. 

 
Figure 2.10: A very sharp low-pass filter. 

Measure its -3dB frequency (1 pt), then measure its response starting at 𝑓 = 0.1𝑓!!!"  and 
extend to 𝑓 = 10𝑓!!!"  in about 20 logarithmically-spaced steps, like in section 2.4. Plot the 
magnitude of these data on a log-log scale (Bode plot) (1 pt) and the phase on a semi-log scale (1 pt). 
Compare these measurements against the response of the RC low-pass filter that you measured back 
in section 2.4. 

Note that you must consider a redefinition to “f-3dB” of this LCR filter, because the filter 
attenuates to ½ amplitude even at DC. One must define the LCR’s -3 dB point as the frequency at 
which the output amplitude is down 3 dB relative to its amplitude at DC. 

The best way to enjoy the performance of this filter is to sweep the frequency output of the 
function generator. Try it and take a SCREENSHOT of the effect (1 pt). You may, incidentally, find 
that the frequency range where the filter passes nearly all the signal is actually not quite flat. Small 
dips and bump can result from using standard values of L, C, and R, with tolerances, rather than using 
the exact calculated values. 

 

 

39 points total 


