
Spring 2019 PHYS 120 HW4 Solutions

Problem 1 (KG).

Figure 1: Current flow through the inverting node (V−) to Vout. You can define the current directions
differently and get the same result below, but you must keep track of your signs!

Ohm’s Law:

V− − Vin = I1R (1)

VA − V− = I2R (2)

VA − 0V = I3(R/10) (3)

Vout − VA = I4R (4)

KCL:

I4 = I2 + I3 (5)

I1 = I2 (6)

Op-Amp:
A(V+ − V−) = Vout (7)

This is great because we have 7 equations with 7 unknowns, so we can solve Vout in terms of Vin. We simplify
the equations below starting with (4):

Vout − VA = (I2 + I3)R (substitute (5) into (4))

=

(
VA − V−

R
+

10VA
R

)
R (substitute (2) and (3))

Vout = 12VA − V− (simplify)

Observe that I1 = I2 =⇒ VA = 2V− − Vin. We substitute this in our equation below:

Vout = 12(2V− − Vin)− V−

= 12

(
−2

Vout
A
− Vin

)
+
Vout
A

(substitute (7) where V+ = 0V )

= −23
Vout
A
− 12Vin (simplify)

= −12Vin

(
A

A+ 23

)
(full expression)

Hence, our answer is lim
A→∞

Vout = −12Vin
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Problem 2 (BW).

This circuit is very similar to the load line example that is in your Load Line analysis handout on the PHYS
120 website. However, instead of an ideal voltage source, we have a photodiode. A photodiode acts like a
current source in our problem, like what you observed in one of your previous labs. Also, instead of resistors
to adjust voltage gain, we have an Op Amp.

The photodiode operates in Quadrant III of the Diode I-V curve, which means it generates a negative cur-
rent in the direction of the diode (opposite of conventional current) while maintaining a negative voltage
potential. If the diode is pointing up, that really means conventional current (flow of positive charge) is
flowing down into ground.

Recall from the KCL analysis of current flowing into V− from Section 4.6 of the previous lab. Since the Op
Amp terminals have infinite input impedance (A = ∞), absolutely no current can flow into the Op Amp.
To guarantee this, current is actually flowing right past the V− node towards Vout. The photocurrent is
the same current that flows through the upper-most diode. This physically occurs because Vout maintains a
negative potential.

ILight + (−ID) = 0

ILight = ID

Recall from Lab 4 that the voltage drop across a diode is not linearly proportional to the current running
through it, nor is it generally 0.65V . The relation between diode voltage and current is given in the problem
as follows:

ID = I0

(
e

qVD
kBT − 1

)
≈ I0

(
e

qVD
kBT

)
As you will probably put more than 0.025V over this diode during operation

Where I0 is the reverse saturation current, a very small constant of magnitude ≈ 10−10 to 10−12 in silicon diodes.

This approximation also implies that there is no minimum reverse saturation current

Rearranging to solve for VD at large values of VD, we arrive at the following relation for voltage over the
diode:

VD = ln

[
ID
I0

]
kBT

q

Now, what we arrived at is actually the final solution, in the opposite direction. How do we know that?
Let’s look at how the Op Amp factors into this circuit

The Differential Op Amp relation: Vout = A (V+ − V−) changes to Vout = A (−V−) since V+ is grounded at
0V .

Since A =∞ in this problem, V− = −Vout

A ≈ 0.

Since the diode is the only thing between Vout and V−, this implies Vout = −VD.

Vout = −ln

[
ID
I0

]
kBT

q
= −ln

[
ILight
I0

]
kBT

q
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Problem 3 (SH).

In general, Op-Amp problems are easily solved by considering the Op-Amp voltage output relation:

Vout = A(V + − V −)

This motivates us to find V + and V −, both of which are simple voltage dividers in frequency domain. Using
complex impedances:

V̂ + =
ZR

ZR + ZC
V̂in =

RCjω

1 +RCjω
V̂in V̂ − =

ZC
ZR + ZC

V̂out =
1

1 +RCjω
V̂out

Thus, our expression for Vout:

V̂out = A

(
RCjω

1 +RCjω
V̂in −

1

1 +RCjω
V̂out

)
Rearranging, we quickly arrive at:

V̂out =
ARCjω

A+ 1 +RCjω
V̂in

In the limit of A→∞:

V̂out ≈
ARCjω

A
V̂in = RCjωV̂in

We can check that, because we have negative feedback here, we can also solve this problem using the ap-
proximation V − ≈ V +, which gives the same final answer.

The magnitude of the transfer function is the absolute value while the phase is the arctangent of the imaginary
component over the real component. As there is no real component in this instance, the argument of arctan
approaches ∞, which yields π/2. Thus, we may also represent our answer as:

V̂out = RCωejπ/2V̂in

Figure 2: Bode plot. Values chosen: R = 100 kΩ and C = 10 µF.
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