
Physics 120 - David Kleinfeld - Spring 2017

1 Notes on spectral domain circuit analysis

1.1 Background

We learned that we can replace time derivatives by iω when we transform from the
time domain to the frequency domain, and thus solve algebraically for the transfer
function between the input and output of a circuit. Let’s complete the picture to
go back to the time domain.

Let’s recall some definitions.The transform from the time domain to the fre-
quency domain is given by:

Ṽ (ω) =

∞∫
−∞

dt V (t) e−iωt. (1.1)

and the reverse transform is given by

V (t) =
1

2π

∞∫
−∞

dω Ṽ (ω) eiωt. (1.2)

Self-consistency leads to the definition of the delta function - a pulse of area one
whose width goes to zero as its height goes to infinity. We have

Ṽ (ω) =

∞∫
−∞

dt
1

2π

∞∫
−∞

dω′ Ṽ (ω′) eiω
′t e−iωt (1.3)

=

∞∫
−∞

dω′ Ṽ (ω′)
1

2π

∞∫
−∞

dt e−i(ω−ω
′)t

which leads to the definition of the delta function, denoted δ(ω − ω′), as

δ(ω − ω′) ≡ 1

2π

∞∫
−∞

dt e−i(ω−ω
′)t. (1.4)

Physically, the complex exponent oscillates between plus one and minus one so that
the integral goes to zero, except, when ω = ω′, for which the integral goes to infinity.
Now, on to circuits!

We previously examined the response for an RC circuit, for which the homoge-
neous response, defined as Φ(t), is just

Φ(t) = e−t/τ for t ≥ 0 and Φ(t) = 0 otherwise (1.5)
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with τ = RC. For the case of the RC circuit, the complete response to an arbitrary
input Vin(t) is given by the convolution

Vout(t) =

t∫
0

dx e−(t−x)/τ Vin(x) (1.6)

This may be generalized, in the sense of a complicated homogeneous response, to

Vout(t) =

t∫
0

dx Φ(t− x) Vin(x) (1.7)

which defines the output to an arbitrary input.
How does this look in the frequency domain? That is, how do we make use of our

ability to write down the transfer function between Ṽin(ω) and Ṽout(ω). We confine
out analysis to the steady state, which is to say that Ṽin(ω) has been present forever
(so that the lower limit may be replaced with -∞ and that we consider times that
go to infinity (so that the upper limit may be replaced by +∞. Then

Ṽout(ω) =

∞∫
−∞

dt

∞∫
−∞

dx Φ(t− x) Vin(x) e−iωt (1.8)

=

∞∫
−∞

dy

∞∫
−∞

dx Φ(y) Vin(x) e−iω(x+y)

=

∞∫
−∞

dy e−iωy Φ(y)

∞∫
−∞

dx e−iωx Vin(x)

= Φ̃(ω) Ṽin(ω)

and we see that the process of convolution in time is transformed into multiplication
in the spectral representation. Φ̃(ω) is referred to as the transfer function that for
a circuit of resistors, inductors and capacitors is just a polynomial in ω divided by
another polynomial in ω.

As a simple example, the transfer function for a high-pass RC filter is

Φ̃(ω) =
iωτ

1 + iωτ
. (1.9)

We learned that any periodic function - an important class of waveforms - can be
written as a sum over sine waves and cosine waves, so let’s take Vin(t) = A sin(ω0t).
Then

Ṽin(ω) = A

∞∫
−∞

dt e−iωt sin(ω0t) (1.10)

= A

∞∫
−∞

dt
eiω0t − e−iω0t

2i
e−iωt
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= A
π

i

[ 1

2π

∞∫
−∞

dt e−i(ω−ω0)t − 1

2π

∞∫
−∞

dt e−i(ω+ω0)t
]

= A
π

i

[
δ(ω − ω0) − δ(ω + ω0)

]
.

When this signal is passed through an RC high-pass filter, we have

Ṽout(ω) = Φ̃(ω) Ṽin(ω) (1.11)

= A
π

i

[ iωτ

1 + iωτ
δ(ω − ω0) −

iωτ

1 + iωτ
δ(ω + ω0)

]
. .

The last step is to transform back to the time domain. We have

Vout(t) =
1

2π
A
π

i

∞∫
−∞

dω
[ iωτ

1 + iωτ
δ(ω − ω0) −

iωτ

1 + iωτ
δ(ω + ω0)

]
eiωt (1.12)

=
1

2π
A
π

i

[ ∞∫
−∞

dω
iωτ eiωt

1 + iωτ
δ(ω − ω0) −

∞∫
−∞

dω
iωτ eiωt

1 + iωτ
δ(ω + ω0)

]

=
1

2π
A
π

i

[iω0τ e
iω0t

1 + iω0τ
− −iω0τ e

−iω0t

1− iω0τ

]
= A

ω0τ

1 + (ω0τ)2
1

2

[
(1− iω0τ)eiω0t + (1 + iω0τ)e−iω0t

]
= A

ω0τ

1 + (ω0τ)2

[
(−iωoτ)

eiω0t − e−iω0t

2
+
eiω0t + e−iω0t

2

]
= A

ω0τ

1 + (ω0τ)2

[
(ω0τ)sin(ω0t) + cos(ω0t)

]
= A

ω0τ√
1 + (ω0τ)2

[ ω0τ√
1 + (ω0τ)2

sin(ω0t) +
1√

1 + (ω0τ)2
cos(ω0t)

]

Recall that sin(ω0t + φ) = sin(ω0t)cos(φ) + cos(ω0t)sin(φ). Then

Vout(t) =
ω0τ√

1 + (ω0τ)2
sin

[
ω0t + atan(1/ω0τ)

]
(1.13)
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