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1 Derivation of Network Rate Equations from Single-

Cell Conductance Equations

Our goal is to derive the form of the abstract quantities in rate equations, such as the
synaptic weights, Wij, and thresholds, θi, from realistic conductance-based equations. We
consider a network of many neurons, each of which obeys a set of conductance-based,
Hodgkin-Huxley-like equations for the membrane voltage and channel activation. We
derive an expression for the firing rate of each neuron in terms of the synaptic and external
inputs to the cell. The equations are self-consistent in the sense that the output of each
neuron contributes to the synaptic input of every other neuron.

We are motivated to perform this derivation as a means to connect single-cell equa-
tions, which are complicated, to simplified network equations, in which the output of each
cell is specified solely by its firing rate. We follow the path laid down by Sompolinsky
and colleagues, which holds for averaging across many inputs, and is similar to one by
Ermentrout and colleagues, which holds for averaging over time. Two critical assumptions
are that the rate varies slowly on the time-scale of the time-constant of the neuron, i.e.

dr(t)

dt
<<

r̄

T
(1.1)

where r = firing rate, r̄ is the average rate of the experiment, T is a behaviorally- or
physiologically-relevant time scale, and spiking is asynchronous.

1.1 Kirchhoff’s law for the postsynaptic neuron

We start with a conductance-based model for a single cell, for convenience written in
terms of currents, i.e.,

Cm
dV (t)

dt
+ goL

[
V (t) − V Nernst

leak

]
= Iactive(V, t) + Iapplied(t) (1.2)

where Cm is the membrane capacitance, goL is the leak conductance of the membrane, i.e.,
the resting conductance,V Nernst

L is the reversal potential of the leak current, Iactive (V, t)
encompasses all voltage- and time-dependent active currents, and Iapplied (t) encompasses
all time-dependent applied currents. At rest with no input, V (t) = V Nernst

leak . Let

r(t) = f [Iapp(t) − Iθ] (1.3)

where f [· · ·] is the nonlinear gain function and Iθ is a threshold current. Typical choices
are

f [x] =
1

1 + e−βx
. (1.4)
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and
f [x] = [βx]+ (1.5)

where β is the conversion gain.
A critical insight is that a change in the conductance of a cell, such as through the

opening of any postsynaptic channel, will increase the leak conductance. Thus we incor-
porate the leak conductance into the rate through

Iθ = Ioθ + vθ gtotalL (1.6)

where the constant vθ scales the dependence of the firing threshold on the total leak
conductance, gtotalL . We will derive an expression for gtotalL , which includes the membrane
conductances goL plus contributions from the opening of synaptic conductances. This, in
fact, will allow us to incorporate network interactions into the firing rate of a single cell.
All told,

r(t) = f [Iapp(t)− Ioθ − vθ gtotalL }. (1.7)

Our formalism assumes that changes in conductance shift the threshold level of the
f − I curve, but does not effect the slope of the curve. This is approximately true
(Figure 1), although it fails if adaptation (which we ignore here) is too strong (Figure 2).
Nonetheless, we can deal with adaptation by introducing another averaged variable.

Figure 1: Effect of shunting on response gain. Dark squares are normal and open squares with 32 nS of additional
conductance. From Chance, Abbott and Reyes, 2002.

We now consider a network of neurons in which the applied currents Iapp(t) have two
contributions. One contribution is from external stimuli and is formalized as Iext(t) and
the other contribution is from other cells in the network and is formalized through Inet(t),
so that

Cm
dVi(t)

dt
= goL

[
V Nernst
leak − Vi(t)

]
+ Iacti (V, t) + Iexti (t) + Ineti (t). (1.8)

We proceed by averaging the internal inputs over presynaptic spikes, which depend on
the rate of spiking of the presynaptic neurons.
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Figure 2: Effect of shunting on response gain. Note initial versus steady-state differences compared with Chance et al.
From Prescott, Ratte, De Koninck and Sejnowski, 2006

1.1.1 Averaging over synaptic inputs

The current Ineti (t) for cell i that results from synaptic inputs is

Ineti (t) ≡
n∑

j=1

gsyn;ij(t)
[
V Nernst
syn;i,j − Vi(t)

]
(1.9)

where gsyn;ij(t) is the post-synaptic conductance triggered by a pre-synaptic spike

τsyn;ij
dgsyn;ij(t)

dt
+ gsyn;ij(t) = τsyn;ij Gsyn;ij

all events∑
tj

δ (t− tj) (1.10)

and where the summation is over the spikes in pre-synaptic neuron ”j”. We now re-
place the spatial summation in synaptic input by the ensemble average. Noting that the
inhomogeneous solution for gsyn;ij(t) is

gsyn;ij(t) = Gsyn;ij

∫ t

−∞
dt′e−(t−t′)/τsyn ij

all events∑
tj

δ (t′ − tj) (1.11)

the average over a large number of inputs is

⟨gsyn;ij(t)⟩ = Gsyn;ij

∫ t

−∞
dt′e−(t−t′)/τsyn;ij

〈
all events∑

tj

δ (t− tj)

〉
(1.12)

as illustrated for ferret (Figure 3) and monkey (Figure 4)
We assume that the input is Poisson distributed and that we average over many

separate presynaptic inputs or many post-synaptic potential from one input by a very
slow synapse. That is, the presynaptic rates evolve on a time slow compared to τsyn;ij.
Then

rj(t) =
1

T

∫ T/2

−T/2
dt′

all events∑
tj

δ (t′ − tj) ≡
〈

all events∑
tj

δ (t′ − tj)

〉
. (1.13)
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Figure 3: Averaging of synaptic input in in ferret prefrontal cortex. From Hasenstaub, Shu, Haider, Kraushaar, Duque
and McCormick, 2005.

where rj(t) is the slowly varying rate of spiking of neuron ”j” and

⟨gsyn;ij(t)⟩ = Gsyn;ij rj(t)
∫ t

−∞
dt′e−(t−t′) τsyn;ij (1.14)

= Gsyn;ij rj(t) τsyn;ij.

the product τsyn;ijrj(t) corresponds to the mean number of spikes in a time period of
τsyn;ij; we do not include synaptic depression and other time-dependent synaptic effects.
The network contribution to the presynaptic current to cell ”i” becomes

Ineti (t)←
N∑
j=1

Gsyn;ij τsyn;ij rj(t)
[
V Nernst
syn;ij − Vi(t)

]
. (1.15)

1.1.2 Averaging over external inputs

We next consider the form of Iexti (t), the external input to the i-th neuron, i.e.,

Iexti (t) = gexti (t)
[
V Nernst
ext − Vi(t)

]
(1.16)

where Vin in the reversal potential for the synaptic input from external stimuli. The
conductance weights the external input and is described by a first order equation for
t ≥ 0, i.e.,

τin
dgexti (t)

dt
+ gexti (t) = Gext τext

all inputs∑
text

δ (t− text) (1.17)

where the maximum conductance Gext and the time-constant τext is assumed to be the
same for each synaptic input, a simplification that permits the summation to be taken as
over all spikes from all external inputs to the i-th postsynaptic neuron.
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Figure 4: Averaging of synaptic input in monkey motor cortex. From Chen and Fetz, 2005.

Like the above case for network connections, the formal solution for the steady state
of the inhomogeneous response is given by

gexti (t) = Gext

∫ t

−∞
dt′e−(t−t′)/τext

all inputs∑
text

δ (t′ − text). (1.18)

The external input is assumed to be an inhomogeneous Poisson process with a rate rexti (t)
that evolves on a time scale that is much longer than τext, i.e.,

rexti (t) =
1

T

∫ T/2

−T/2
dt′

all inputs∑
text

δ (t′ − text) ≡
〈all inputs∑

text

δ (t′ − text)

〉
. (1.19)

Thus

〈
gexti (t)

〉
= Gext

∫ t

−∞
dt′e−(t−t′)/τext

〈all inputs∑
text

δ (t′ − text)

〉

= Gext r
ext
i (t)

∫ t

−∞
dt′e−(t−t′)/τext (1.20)

= Gext r
ext
i (t) τext

where the product rexti (t)τext is just the number of post-synaptic inputs, or equivalently
pre-synaptic spikes from all external inputs, that occur in the period of one time-constant
of the post-synaptic cell. We now have an expression for the slowly evolving external
input, i.e.,

Iexti (t)← Gext τext r
ext
i (t)

[
V Nernst
ext − Vi(t)

]
. (1.21)

1.1.3 Recapitulation of network equations

The sum of the network and external currents is

Iexti (t) + Ineti (t) = Gext τ ext rini (t)
[
V Nernst
ext − Vi(t)

]
(1.22)
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+
N∑
j=1

Gsyn;i,j τsyn;i,j rj(t)
[
V Nernst
syn;i,j − Vi(t)

]

where N is the number of neurons in the network. This expression has constant terms
and voltage dependent terms. Let’s expand this expression by adding and subtracting
the terms

Gextτextr
ext
i (t) V Nernst

leak +
N∑
j=1

Gsyn;i,j τsyn;ij rj(t) V
Nernst
leak

so that all of the voltage terms are with respect to V Nernst
leak . Thus the input gains a term

that appears similar in form to that of gL, i.e.,

Iexti (t) + Ineti (t) = Gextτextr
ext
i (t)

[
V Nernst
ext − V Nernst

leak

]
(1.23)

+
N∑
j=1

Gsyn;i,j τsyn;i,j rj(t)
[
V Nernst
syn;i,j − V Nernst

leak

]

+

Gext τextr
ext
i (t) +

N∑
j=1

Gsyn;i,jτsyn;i,j rj(t)

[
V Nernst
leak − Vi(t)

]
.

The first two terms to the right of the equality are independent of V (t). We consider
these as an effective applied current, i.e.,

Iappi (t) ≡ Ginτextr
ext
i (t) (V Nernst

ext − V Nernst
leak ) (1.24)

+
N∑
j=1

Gsyn;i,j τsyn;i,j rj(t) (V
Nernst
syn;i,j − V Nernst

leak ).

The important thing is that the external and network contributions have a voltage de-
pendence that is proportional to the difference between the synaptic reversal potential
and the leakage reversal potential. The third term in Iexti (t) + Ineti (t) appears as a
leakage current; the synaptic input adds to this leakage consistent with the increase in
conductance from both excitatory and inhibitory conductances.

We define an effective synaptic conductance, gsyni (t), that encompasses the leakage
conductance gL, i.e.,

gsyni (t) ≡ Gext τext r
ext
i (t) +

N∑
j=1

Gsyn;i,j τsyn;i,j rj(t). (1.25)

and write Kirchhoff’s law for a single neuron with effective parameters that depend on the
network interactions, as opposed to N separate equations for all neurons in the network.
The equation for the single cell is

Cm
dVi(t)

dt
= [goL + gsyni (t)]

[
V Nernst
leak − Vi(t)

]
+ Iacti (V, t) + Iappi (t). (1.26)
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We identify gtotalL = goL + gsyni (t) as the total leakage conductance. The modified firing
rate is now

ri(t) = f
[
Iappi (t)− Ioθ − vθ gtotalL (t)

]
(1.27)

= f [Iappi (t)− Ioθ − vθ goL − vθ gsyni (t)]

= f [Gextτextr
ext
i (t)(V Nernst

ext − V Nernst
leak )

+
N∑
j=1

Gsyn;ijτsyn;ijrj(t)(V
Nernst
syn;i,j − V Nernst

leak )

−Ioθ − vθg
o
L −Gextτextr

ext
i (t)vθ −

N∑
j=1

Gsyn;ijτsyn;ij rj(t)vθ]

= f [
N∑
j=1

Gsyn;ij τsyn;ij(V
Nernst
syn;i,j − vθ − V Nernst

leak ) rj(t)

+ Gextτext(V
Nernst
ext − vθ − V Nernst

leak )rini (t)− (Ioθ + vθg
o
L)].

We can now identify terms in the above conductance equations that correspond to terms
in our network equations. In particular,

Rate equations:

ri(t) = f

 N∑
j=1

Wijrj(t) +W extrexti (t)− θ

 . (1.28)

is in the form of rates and abstract weights.

Synaptic inputs:

Wij ≡ Gsyn;ijτsyn;ij
[
V Nernst
syn i,j − vθ − V Nernst

leak

]
(1.29)

is the synaptic efficiency, or connection strength, between neurons in the network.
It is not surprising that the synaptic coupling Wij proportional to Gsyn;ij and has
units of charge, i.e., conductance × time × voltage. Further, the form of the voltage
dependence suggests

⟨Vj(t) − V Nernst
leak ⟩time ≃

[
V Nernst
syn i,j − vθ − V Nernst

leak

]
.

Lastly, the issue of the scaling of weights by the size of the network has been sup-
pressed; we simply took Wij ∝ O( 1

N
).

External input:
W ext ≡ Gextτext

[
V Nernst
ext − V Nernst

leak − vθ
]

(1.30)

is the synaptic efficiency, or strength, for an external input to the neuron.

Threshold:
θ ≡ Ioθ + goLvθ (1.31)

is the fixed threshold denoted θ.

We have derived the rate equations, under the assumption that the threshold of the f − I
curve is shifted by the changes in synaptic conductance and that the cell receives multiple
inputs (PSPs) during each integration period (nominally τsyn;ij).
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1.2 Self-consistency

A final point is that we need a differential equation for the rates ri, so that they may
evolve over time. This is equivalent to letting the input to the neuron evolve with the
time-constant of the neuron. Using our previous notation µi(t) as the input to the cell,
we have

τi
dµi(t)

dt
+ µi(t) =

N∑
j=1

Wijrj(t) +W extri(t)
ext − θ (1.32)

and
ri(t) = f [µi(t)] . (1.33)

Uniform feedback Let’s look at the special case of the steady-state of the rates,
i.e., ri(t + ∆t) = ri(t), and do so in an ”easy” limit. Without loss of generality, we
take take rexti (t) = 0. We further take Wij = Wo and f [µ] = [µ]+, so that

ri = β

Wo

N∑
j=1

rj − θ


+

. (1.34)

With the mean activity defined as ro, i.e.,

ro ≡
1

N

N∑
i=1

ri , (1.35)

we have

ro = [βNWoro − βθ]+ (1.36)

This has the solution

ro =

{
0 if NβWo < 1

θ
NWo−1/β

if NβWo > 1
(1.37)

which states that networks of only excitatory neurons will be active for sufficiently
strong synapses or large network size.

1.2.1 Binary neurons

For the special case of binary neurons, i.e., Si = ±1, we have

Si(t+ 1) ← sgn

 N∑
j=1

Wij
Sj(t) + 1

2
+W ext Sext

i (t) + 1

2
− θ


← sgn

 N∑
j=1

Wij Sj(t) + W extSext
i (t) − θ′i

 (1.38)
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where

θ′i = 2θ −
N∑
j=1

Wij −W ext. (1.39)

This last form illustrates why cells with predominantly inhibitory input, so that θ′ < 0,
will have a large positive bias, and vice versa. Simply, cells with predominantly inhibitory
input must be biased positive if they are to fire at all. Many neurons in the brainstem
follow this rule. Conversely, cells with predominantly excitatory input must be biased
negative if they are to substantially increase their rate with synaptic input. For balanced
networks, θ′i ≈ 0.
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