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12 Noise, balanced feedback networks,

synaptic scaling, and linear response.

Part 1

12.1 Variance versus mean driven spiking

Up to now we have considered driving neuronal by a change in the
mean level of the input. We showed that pulse of current will drive
a neuron to fire and we even showed back in Lesson One (Figure 8)
that a an inhibitory pulse followed by an excitatory pulse is most
effective in initiating a spike. We now expand our horizons and,
in anticipation of a discussion of neuronal variability, consider how
noise, or fluctuations in voltage, can drive a neuron to spike.

Recall that noise has a zero mean value and is specified in terms
of its range by the standard deviation or root-mean square value,
denoted σ. We are concerned with noise on the scale of synaptic
postsynaptic potentials, which sets the scale at 0.2 mV to 2 mV.
The later number is similar to what we found in Lesson Eleven for
the transition from an inactive Na+ current to a spike. In fact, intra-
cellular measurements reveal an interesting fact. The postsynaptic
potential is rapidly fluctuating with amplitudes of a few millivolts
(Figure 1). This is surprising at first glance as neurons are be-
lieve to average over many inputs and thus one might imagine that
the noise averages away; a Central Limit theorem arguments. But
noise prevails, and as expected for a noisy subthreshold potential,
the neuronal response to repeated presents of the same stimulus
leads to a variable response (Figure 2).

12.1.1 Can noise alone can drive spiking?

Before we consider a mechanism for this noise, it is worth asking
asking if noise alone can drive spiking? The answer is yes. When the
average input to the neuron is well above threshold, the spiking is
primarily driven by changes in the mean rate. But when the average
input is held close to threshold, or just below threshold, fluctuations
will drive the neuron to spike (Figure 3). In fact, the spike rate of
the neurons can be a monotonic function of the standard deviation
of the input (Figure 4).
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Figure 1: The excitatory and inhibitory postsynapic potentials for a neurons on primary
visual cortex of cat. From Ferster 1988

.

How do we interpret the mean and variance in terms of spike
probability? We use the approximation of neuronal output as a
Bernouli, i.e., V = 1 if the cell spikes and V = 0 if it does not. In the
absence of noise the transition for 0 to 1 is sharp at µ = θ. How does
the average probability of spiking smear when the variance is non-
zero? The simplest possibility is to assume a Gaussian amplitude
distribution, as we did in the study of the capacity of the Hopfield
model (Lesson Two), so that

m(t) =
1√
2πσ

∫ ∞
θ

dx e−
(x−µ)2

2σ2 (12.1)

=
1√
π

∫ µ−θ√
2σ

−∞
dx e−x

2

=
1 + erf

[
µ−θ√

2 σ

]
2

.

When σ is small compared to µ − θ, the transition from m(t) = 0
to m(t) = 1 is weakly smoothed (Figure ), with

m(t)
−−−−−−−→
σ � µ− θ 1− σ√

2π(µ− θ)
e−

(µ−θ)2

2σ2 . (12.2)

When σ is large compared to µ−θ, the transition from m(t) = 0
to m(t) = 1 is completely smoothed with

m(t)
−−−−−−−→
σ � µ− θ 1

2
. (12.3)

The interesting issue for us is to have a fixed input and vary the
noise. We see, numerically, that the spike rate increases monotoni-
cally with increasing values of σ to a saturation value of m = 0.5.
Most interestingly, there is a roughly linear region of increase for
mean rates between m = 0.05 and m = 0.25.
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Figure 2: Variability in spike rate with repeated presentation of the same visual random
dot pattern. Data from monkey. From Shadlen and Newsome 1998

.

Figure 3: Mean versus noise driven spiking in spinal cord slice. From Petersen and Berg,
eLIFE, 2016

.

12.2 Variability for a single cell

One might expect that the subthreshold potential would be noisy,
if there were relatively few synaptic inputs. This is consistent with
the notion of a few strong inputs that one sees in cortical slice ex-
periments. Another possibility is that the subthreshold potential
is so noisy because large excitatory inputs are offset by large in-
hibitory inputs, so that their mean value just about cancels but
the variances, of course, add (Figure 6). The notion of large off-
setting currents comes from the intracellular recording experiments
initially in anesthetized animals (Figure 1) and more recently in
awake animals (Figure 7). In general, excitatory and inhibitory in-
puts are found to be both large and have the same sensory receptive
fields or ”tuning curves”, so that their inputs act to balance each
other, although this balance is not necessarily exact (Figure 8).

What is gained from this organization of offsetting currents? A
transient increase in excitatory input, as may occur with a large
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Figure 4: Mean versus noise driven spiking in brain slice. From Lundstrom, Higgs, Spain
and Fairhall, Nature Neuroscience 2008

.

burst of excitatory input, will rapidly depolarize the cell. So net-
works with balanced excitatory and inhibitory inputs, which mean
large conductances, are believed to trade noise from the balance for
the speed gained from a large total leak conductance. We shall see

12.2.1 Weak synaptic inputs

Let’s start with a warm up on the scale of noise in the input. We
use a rate model. First, some definitions, The input to cell i from
cell j is Wij with j = 1, 2, ... , N , while the output of the neuron
is take as taken as Vi with i = 1, 2, ... , N where V = 1

2
(S+ 1) is a

Bernouli variable with V = 1 if the cell spikes and V = 0 if it does
not.

A Bernouli probability distribution of the random variable V
can be thought of as a model for the set of possible outcomes of
any single measurement whose outcomes is Boolean-valued. The
Bernoulli distribution is a special case of the binomial distribution
where a single trial is conducted, i.e., N = 1 for such a binomial
distribution. Let’s define the probability that a cell is spiking as
m, so that V = 1 with probability m and V = 0 with probability
1−m.

The input to the i− th neuron, denoted as in the past by µi(t),
is:

µi(t) ≡
N∑
j=1

WijVj(t). (12.4)

The standard thermodynamic scaling, so that total synaptic cur-
rents are bounded as the size of the system increases, is that each
input has a strength of order 1/N . For simplicity, let’s take all of
the inputs to be equal, so

Wij →
Wo

N
. (12.5)
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Figure 5: Gaussian noise threshold model to estimate effect of noise in driving neuronal
responses

.
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The Wo are of order 1 in magnitude, so the sum over all N inputs
is of order 1, with

µi(t) = Wo
1

N

N∑
j=1

Vj(t) (12.6)

= Wo m(t)

where m(t) is the average across the network, i.e.,

m(t) ≡ 1

N

N∑
j=1

Vj(t) (12.7)

and is of order 1. Clearly, for constant connection strengths, the
input to all neurons is equal so the population average is

µi(t) ≡
1

N

N∑
j=1

µj(t) (12.8)

≡ 1

N

N∑
j=1

Wom(t)

= Wo m(t) ∀ i
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Figure 6: Balanced excitatory and inhibitory currents can lead to noisy input currents;
calculated consequences of tight versus loose balance of excitatory and inhibitory currents.
From Denuve and Machens 2016.

Figure 7: Balanced currents are observed in vivo in terms of balance of the gamma
rhythm. From Atallah and Scanziani 2009.

and the time average is

〈µ〉 ≡ 1

T

∫ T/2

−T/2
dt µi(t) (12.9)

≡ Wo
1

T

∫ T/2

−T/2
dt m(t)

= Wo m

The variance across time is

σ2
i =

〈
(µi(t)− 〈µ〉)2

〉
(12.10)

=
[〈
µ2
i

〉
− 〈µ〉2

]
=

〈
µ2
i

〉
− W 2

o m
2.

We evaluate the first term under the assumption that the correla-
tions in the neuronal outputs are zero, i.e.,〈
µ2
i

〉
= 〈µiµi〉 (12.11)
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Figure 8: Balanced currents are proportional but do not necessarily exactly balance
each other. Data from anesthetized mouse cortex. From Haider, Duque, Hasenstaub and
McCormick 2006.

=

〈
W 2
o

N2

N∑
j=1

N∑
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〉

= W 2
o

〈
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1
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〉
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o

N

〈
1

N
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Vj(t)

〉
+W 2

o

(
N2 −N
N2

)〈 1

N

N∑
j=1

Vj(t)

2〉

=
W 2
o

N
〈m(t)〉+W 2

o

(
1− 1

N

)〈
m2(t)

〉
=

W 2
o

N
(m−m2) + W 2

om
2 (12.12)

and thus

σ2
i =

W 2
o

N
m(1−m). (12.13)

The variance for the population is the same, i.e.,

σ2 =
W 2
o

N
m(1−m). (12.14)

We see that for large networks the mean level drives the spiking and
the variability goes to zero as 1/N , or equivalently the standard
deviation goes to zero as 1/

√
N (Figure 9). As expected for a

binomial variable, the variance is also zero when all neurons are
active, i.e., m = 1, or quiescent, i.e., m = 0. Lastly, for a Poisson
process, we get the slightly different answer of σ2 = (W 2

o /N)m
where m = rate × time interval.

12.2.2 Strong synaptic inputs

How can we have a network with high noise? Let’s recall the issue of
networks with a small fraction of strong connections. The challenge
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Figure 9: Averaging over synapses decreases the RMS noise

.

is to recast the input so that the variance does not diminish to zero
as a function of the number of input neurons. This is where the
idea of balanced inhibition and excitation comes into play.

1. We need the input to be the sums of two terms, one excitatory
and one inhibitory.

2. We need the total current from these two term to cancel,
i.e., be equal and opposite in sign, to first order. The time
dependent variation in the firing rate of a neuron will reflect
variations in the balance of the inputs.

3. We need a small fraction of active inputs, defined as K, where
1� K � N .

4. With a small number of inputs, the total variance, which is
the sum of variances of the excitatory and inhibitory terms,
can be high.

The input to the i-th neuron is now the sum of outputs from
excitatory cells, i.e., the V E

i (t), and inhibitory cells, i.e., the V I
i (t).

Thus

µi(t) = µE(t) + µI(t) (12.15)

=
K∑
j=1

WE
ij V

E
j (t) +

K∑
j=1

W I
ijV

I
j

Let WE
ij be an excitatory input and W I

ij be an inhibitory input,
simplified as above but now scaled to be large, where large is defined
as order 1√

K
rather than order 1

K
. Thus

WE
ij →

WE
o√
K

and W I
ij → −

W I
o√
K

(12.16)
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where we implicitly fix the sign of the inhibition. The mean input
under the assumed scaling is

µi(t) = WE
o

1√
K

K∑
j=1

V E
j (t) − W I

o

1√
K

K∑
j=1

V I
j (t) (12.17)

=
√
K

WE
o

1

K

K∑
j=1

V E
j (t) − W I

o

1

K

K∑
j=1

V I
j (t)


=
√
K
[
WE
o m

E(t) − W I
om

I(t)
]

where the order parameters for excitation and inhibition are defined
by are defined by

mE(t) ≡ 1

K

K∑
j=1

V E
j (t) and mI(t) ≡ 1

K

K∑
j=1

V I
j (t) (12.18)

and we have assumed without loss of generality that the same num-
ber of excitatory and inhibitory inputs.The input is large if the
excitatory and inhibitory terms do not cancel balance to within
a factor of 1/

√
K. The variance, following the derivation for the

single input case, is

σ2 =
1

K

K∑
i=1

〈(
µEi (t)− < µE >

)2
〉

+
1

K

K∑
i=1

〈(
µIi (t)− < µI >

)2
〉

(12.19)

=
(
√
KWE

o )2

K
mE(1−mE) +

(
√
KW I

o )2

K
mI(1−mI)

= (WE
o )2 mE(1−mE) + (W I

o )2 mI(1−mI).

The important point is that there is no decrement in the variance
as K → ∞. Further, the variance remains nonzero for the special
case of WE

o m
E = W I

om
I , where the network is in ”perfect” balance.

12.2.3 Experimental evidence for
√
k scaling

It is fair to ask if there is evidence to support this scaling, which
would depend on a homeostatic mechanism for maintenance. The
data comes from networks in cell culture of different size. The
data supports scaling of the synaptic inputs, i.e., the post synaptic
potentials, as 1/K0.6 (Figure 10). This is close to the predicted
value of 1/

√
K for strong inputs, as opposed to 1/K for weak input.

Not bad!
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Figure 10: In vitro synaptic scaling preserves excitatory-inhibitory balance. From Barres
and Reyes, Nature Neuroscience, 2016

.
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