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13 Noise, balanced feedback networks,

synaptic scaling, and linear response.

Part 2

13.1 Circuit model

So far we have only address noise and scaling at the level of noise
in individual cells. Now we analyze a network of neurons with
balanced inputs (Figure 1). We consider the consequences of the
choice of connections in a network on the ability to maintain the
balanced state.

Figure 1: Feedback circuit model with two populations of neurons

.

Consider a network of a population of interconnected excitatory
(E) and inhibitory (I) cells.The full equations are

τE
dV E

i (t)

dt
+ V E

i (t) =
[
β(µEi (t)− θEi )

]
+

(13.1)

and

τI
dV I

i (t)

dt
+ V I

i (t) =
[
β(µIi (t)− θIi )

]
+
, (13.2)

where [· · ·]+ is the Heavyside function, τE and τI are the cellular
time constant, β is the conversion gain, and the θEi and θIi are
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thresholds. The inputs are

µEi (t) = µEext(t) +
K∑
j=1

WEE
i,j V

E
j (t) +

K∑
j=1

WEI
i,j V

I
j (t) (13.3)

and

µIi (t) = µIext(t) +
K∑
j=1

W II
i,j V

I
j (t) +

K∑
j=1

W IE
i,j V

E
j (t). (13.4)

As in the case of the model cell, we will scale the synaptic inputs
by 1/

√
K, as opposed to 1/K, i.e.,

WEE
ij →

WEE

√
K

; W II
ij → −

W II

√
K

; WEI
ij → −

WEI

√
K

; W IE
ij →

W IE

√
K

(13.5)
where we explicitly put in the negative signs of inhibition. As will
soon be clear, we need to scale the external inputs by

µEext(t)→
√
K E mext(t) and µIext(t)→

√
K I mext(t) (13.6)

where E and I are inputs of strength of O(1). The dependence
on a common term is a statement that excitatory and inhibitory
neurons share the same tuning curve. All together, we have

µEi (t) =
√
KEmext(t) +

WEE

√
K

K∑
j=1

V E
j (t)− WEI

√
K

K∑
j=1

V I
j (t) (13.7)

and

µIi (t) =
√
KImext(t) +

W IE

√
K

K∑
j=1

V E
j (t)− W II

√
K

K∑
j=1

V I
j (t). (13.8)

In terms of the order parameters,

µE(t) =
√
KEmext(t) +

√
KWEE 1

K

K∑
j=1

V E
j (t)−

√
KWEI 1

K

K∑
j=1

V I
j (t)

=
√
KEmext(t) +

√
KWEEmE(t)−

√
KWEImI(t) (13.9)

=
√
K
[
Emext(t) +WEEmE(t)−WEImI(t)

]
and

µI(t) =
√
KImext(t) +

√
KW IE 1

K

K∑
j=1

V E
j (t)−

√
KW II 1

K

K∑
j=1

V I
j (t)

=
√
K
[
Imext(t) +W IEmE(t)−W IImI(t)

]
. (13.10)
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As
√
K → ∞ the left hand side goes to zero and the equilibrium

state will satisfy

0

(
1√
K

)
= Emext(t) +WEEmE(t)−WEImI(t) (13.11)

and

0

(
1√
K

)
= Imext(t) +W IEmE(t)−W IImI(t). (13.12)

The implication of this equilibrium condition is that the average
input remains finite as the fluctuations remain large (Figures 2 and
3). This is the balanced state.

Figure 2: Balanced networks have emergent variability. From Shadlen and Newsome,
1994.

Figure 3: Statistics of have emergent variability. From Shadlen and Newsome, 1994.

13.2 The balanced state

Solving the above equations for mo
E and mo

I gives relations for the
equilibrium activity of the excitatory and inhibitory cells in terms
of the external drive:

m0
E =

W IIE −WEII

WEEW II −WEIW IE
mext. (13.13)
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and

m0
I =

W IEE −WEEI

WEEW II −WEIW IE
mext. (13.14)

Recall that the equilibrium values of activity mo
E and mo

I must be
both positive and bounded by 1. This constrains the values of the
synaptic weights.

13.2.1 Linear respopnse

A seemingly paradoxical effect is that increasing the external in-
hibitory input, i.e., increasing I, will lead to a net decreased spik-
ing of inhibitory cells and lwill concurrently decrease both mE and
mI (Figure 4). This is a feedback effect. Excitatory and inhibitory
activity track each other until the excitatory cells are completely
turned off; this behavior is seen across cortical regions (Figure 5).

Figure 4: Experimental set-up to study linear response of network as we drive inhibition.
From Sanzeni, Akitake, Goldbach, Leedy, Brunel and Histed 2020.

Figure 5: Linear response, until stauration, of network as we drive inhibition. From
Sanzeni, Akitake, Goldbach, Leedy, Brunel and Histed 2020.
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A second issue is that rapid feedback prevents the occurence of
significant correlations. This depends of having faster inhibitory
than excitatory synapses, as occurs for Gaba-A, but not Gaba-B
(Figure ??).

13.2.2 Stability and response speed

We return to the full network equations and look at the variation
around the equilibrium value of mE and mI . Taking the time con-
stants, τ , conversion gains, β, and thresholds to be the same for
the E and I populations, and denoting

δmE(t) = mE(t)−mo
E (13.15)

and
δmI(t) = mI(t)−mo

I (13.16)

leads to

τ
d δmE(t)

dt
+ δmE(t) =

[
β
√
K
(
WEEδmE(t)−WEIδmI(t)

)]
+

(13.17)
and

τ
d δmI(t)

dt
+ δmI(t) =

[
β
√
K
(
W IEδmE(t)−W IIδmI(t)

)]
+
.

(13.18)
When the neurons are active, this reduces to the linear equations

τ
d δmE(t)

dt
+ δmE(t) = β

√
K
(
WEEδmE(t)−WEIδmI(t)

)
(13.19)

and

τ
d δmI(t)

dt
+δmI(t) = β

√
K
(
W IEδmE(t)−W IIδmI(t)

)
. (13.20)

These linear equations are solved by taking δmE(t) ∝ eλt, so that

(λτ + 1) δmE(t) = β
√
K
(
WEEδmE(t)−WEIδmI(t)

)
(13.21)

and

(λτ + 1) δmI(t) = β
√
K
(
W IEδmE(t)−W IIδmI(t)

)
, (13.22)

which requires that∣∣∣∣∣ β
√
KWEE − 1− λτ −β

√
KWEI

β
√
KW IE −β

√
KW II − 1− λτ

∣∣∣∣∣ = 0 (13.23)
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and leads to

λ1,2 =
β
√
K
(
WEE −W II

)
− 2

2τ
(13.24)

± 1

τ

√√√√(β√K (WEE −W II)− 2

2

)2

− β2K W IEWEI

−−−−−→
K →∞ β

√
K

τ

WEE −W II

2
±

√√√√(WEE −W II

2

)2

− W IEWEI


=

β
√
K

τ

[
WEE −W II

2

] 1±

√√√√(1− 4
W IEWEI

(WEE −W II)2

) .
The system is stable only if the real part of λ1,2 < 0. This implies

W II > WEE, (13.25)

which is a prediction for connectomic analysis. We note that, by
construction, W IEWEI > 0. The response time of the system is
shortened by a factor of

√
K, i.e.,

τ

β
→ τ

β
√
K
O(1). (13.26)

The change in recovery speed of the network has not been prop-
erly measured. But a sudden jump in the excitation of cortical
input leads to an observed time-constant of about 10 ms (Figure
6). Unfortunately this is not very different from estimates for iso-
lated neurons and thus the dynamics of the balanced still is a topic
under analysis.

Figure 6: Relaxation of the signal in V1 cortical neurons after shut-down of thalamus.
From Reinhold, Lien and Scanziani 2015
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