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1 Cables

We consider the behavior of the transmembrane potential across a long process as a
first step toward considering the electrical dynamics of neurons. The cytoplasm acts
as one conductor and the extracellular space acts as the second. Let’s assume, as is
often but not always the case, that the conductance of the extracellular space may
be taken as infinite. Then a signal that flows down the center will be attenuated over
a length of axon such that the cytoplasmic and membrane impedances (don’t forget
the capacitance of the membranr) are about equal, i.e., over the length required to
form a voltage divider.

FIGURE - Dendrites.eps

1.1 Basic Scales

For an axon of radius a with membrane thickness L, we can estimate this length by
equating the cytoplasmic and membrane resistances, i.e.,

ρc
λ

πa2
≈ ρm

L

2πaλ
(1.1)

or

λ =

√
ρm
ρc

aL

2
(1.2)

Usually the product

rm = ρmL (1.3)

is denoted as the specific membrane resistance It has typical values of rm =1 to
100 kΩcm2, while the cytoplasm has resistances of order ρc = 30 to 300 Ωcm. The
spatial attenuation length λ is seen to vary as λ ∝ a1/2.

The signals in neurons are confined to a small frequency band, about 10 kHz.
Further, the relevant cables are lossy and have a only thin dielectric. Thus it pays
to evaluate all of the physical parameters of the system to see which dominate
and which may be neglected. Let’s consider general expressions for the membrane
(transverse) conductance, the membrane capacitance and the axial (what else!) in-
ductance. We consider a model with a membrane, or dielectric layer, that has
conductivity g, permittivity ε, and permeability µ. This arbitrariness of this cable
will emphasize that all the bumps in real axons and dendrites can safely be ignored.

FIGURE - Coaxial-fields.eps
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1.1.1 Parallel Capacitance

Our goal is to derive an expression for the time constant of an axon. First, we need
to calculate the conductance between the inner and outer conductors, denoted Gab,
in terms of the voltage drop, denoted Vab, and the current flow, Iab, where Gab =
Iab/Vab. Then we need to calculate the capacitance between the inner and outer
conductors, denoted Cab, in terms of the voltage drop and the charge difference,
Qab, where Cab = Qab/Vab. The time constant is just the ratio τ = Cab/Gab. If we
are lucky, geometrical factors will cancel and the result will be simple.

We start with an expression for membrane conductance. From ~E(~r) = −~∇V (~r)
the voltage from the inside, a, to the outside, b, is

Vab =
∫ b

a

~E(~r) · d~l (1.4)

where d~l defines a path from the inside to outside conductor (it need not follow

a radius). From ~∇ · ~J(~r) + ∂ρ(~r)
∂t

= 0, ~J(~r) = g ~E(~r), and the divergence theorem,

i.e.,
∫
S
~J(~r) · d ~A =

∫
V
~∇ · ~J(~r)d3~r = ∂

∂t

∫
V ρ(~r)d3~r = ∂Qab

∂t
= Iab where ρ is the charge

density (sorry for the confusion with resistivity) and d ~A defines a cylindrical shell
that the current passes through, the current that flows between the two conductors
is

Iab =
∫
S

~J(~r) · d ~A = g
∫
S

~E(~r) · d ~A = g
∮
C

~E(~r) · d~n ∆z (1.5)

where d~n is a unit vector that is normal to a closed path ”around” the perimeter
of the conductor that defines the shell. The conductance is just

G =
Iab
Vab

= ∆z
g
∮
C
~E(~r) · d~n∫ b

a
~E(~r) · d~l

(1.6)

The final ratio is dimensionless and depends only the geometry. When the cable
is a cylinder, the two integrals are equal so the ratio is just 1.

We now consider the expression for membrane capacitance. In the limit of linear
response, the electric field leads to a polarization of membrane dipoles, so ~P (~r) =

εoχ~E(~r). We define an auxiliary, or displacement field, by ~D(~r) = εo ~E(~r) + ~P (~r) =

εo(1 + χ) ~E(~r) ≡ ε ~E(~r). The displacement field obeys ~∇ · ~D(~r) = ρ

Qab =
∫
V
ρ(~r)d3~r = g

∫
S

~D(~r) · d ~A = ε
∮
C

~E(~r) · d~n ∆z (1.7)

The capacitance is just

C =
Qab

Vab
= ∆z

ε
∮
C
~E(~r) · d~n∫ b

a
~E(~r) · d~l

(1.8)

We thus see immediately that the ratio of capacitance to conductance is inde-
pendent of the geometry, i.e.,
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C

G
=
ε

g
(1.9)

Thus the time constant of the membrane is independent of geometry, i.e.,

τ =
εm
gm

= εmρm =
εm
L
ρmL = cmrm (1.10)

where cm ≡ εm
L
≈ 1 µF

cm2 (L is the thickness of the membrane here). Note that we
immediately see that the ratio of the resistive to the capacitive impedance is:∣∣∣∣∣ZCmZRm

∣∣∣∣∣ =

∣∣∣∣∣ G

i2πfC

∣∣∣∣∣ =
1

2πfτ
(1.11)

so that the time-constant of the membrane sets the scale between resistive versus
capacitive current flow.

1.1.2 Series Inductance

We have one bit of business left to calculate, the series inductance. From ~J(~r) =
~∇⊗ ~H(~r) and Strokes theorem, i.e.,

∫
S

(
~∇⊗ ~H(~r)

)
· d ~A =

∮
C
~H(~r) · d~l, the current

that flows along ẑ in either conductor is

Iz =
∫
S

~J(~r) · d ~A =
∮
C

~H(~r) · d~l (1.12)

We also know that the magnetic flux, ψ, that is contained within the cable is
found by intergating over a cylindrical shell

ψ =
∫
S

~B(~r) · d ~A = µ
∫
S

~H(~r) · d ~A = µ
∫ b

a

~H(~r) · d~n ∆z (1.13)

Thus the inductance, L, is give by

L =
ψ

Iz
= ∆z

µ
∫ b
a
~H(~r) · d~n∫

C
~H(~r) · d~l

(1.14)

We can recast this in terms of the electric field by noting that ~E(~r) and ~H(~r)

are orthogonal to each other, so that ~H(~r) ∝ ~E(~r) ⊗ ẑ. Then

L = ∆z
µ
∫ b
a
~E(~r)⊗ ẑ · d~n∮

C
~E(~r)⊗ ẑ · d~l

(1.15)

= ∆z
µ
∫ b
a
~E(~r) · ẑ ⊗ d~n∮

C
~E(~r) · ẑ ⊗ d~l

= ∆z
µ
∫ b
a
~E(~r) · d~l∮

C
~E(~r) · d~n
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where we used ~A · ~B⊗ ~C = ~B · ~C ⊗ ~A = ~C · ~A⊗ ~B. We now see, quite generally,
that the product of the capacitance per unit length, C/∆z and the inductance per
unit length, L/∆z, is

C

∆z

L

∆z
= µε (1.16)

Let’s compare the impedance of the series inductance with that the series resis-
tance (we now assume a loss in the inner conductor) over a distance of one space
constant, λ, i.e.,

∣∣∣∣∣ZLsZRs

∣∣∣∣∣ =

∣∣∣∣∣i2πfLRs

∣∣∣∣∣ =
2πfµελ2

CRs

=
2πfτ

c2
λ2

CRmτ

Rm

Rc

(1.17)

=
2πfτ

c2

(
λ

τ

)2
Rm

Rc

≈ 2πfτ
(
v

c

)2

where we used
√
µε = 1/c where c is the speed of light, Rm ≈ Rc when ∆z = λ,

and v ≡ λ
τ

as a measure of passive speed. The ratio of impedances is extraordinarily
small, we we may safely ignore series inductance in a model of the cell.

1.2 Cable Equation

We can now just consider a model with resistances and capacitances and write down
a lumped parameter model for a lossy cable. The exact equation for a cable can be
considered by writing the circuit equations for a segment of length ∆x and letting
∆x→ 0. We get

τ
∂V (x, t)

∂t
+ V (x, t)− λ2∂

2V (x, t)

∂x2
=

rm
2πa

Im(x, t) (1.18)

We have included the possibility of additional membrane currents, denoted Im in
units of Amperes per unit length; these will become evident when we study action
potential propagation.

FIGURE - Linear-cable.eps

1.2.1 Steady State Response

A particularly simple case to consider is the steady state response to the continuous
injection of current at a point. The cable equation turns into Helmholtz’s equation
(λ plays the role of ’k’), i.e.,

V (x)− λ2∂
2V (x)

∂x2
=

rm
2πa

Im(x) (1.19)

and we know that the solutions are of the form
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V (x) = Ae
x
λ +Be−

x
λ + C (1.20)

where here the A,B,Cs are constants. For the case of current injected at a spot
into an infinitely long uniform cable, , i.e, Im(x) = Ioδ(x), the change in voltage is

V (x) =
Io
2λ

rm
2πa

e−
|x|
λ + V (∞) (1.21)

FIGURE - Steady-state-dc.eps

Thus, as we claimed above, we see directly that λ scales the length of the electrical
disturbance. We also see that the input resistance scales as

R =
V (0)

Io
=

√
2

4π

√
ρcrm a−3/2 (1.22)

Thus the resistance goes up faster than linear as the radius of the process de-
creases. To the extent that large resistances are a good thing, as least as far as not
loading down the soma, one cannot be too thin ... .

We can push this result into the frequency domain to see what the low pass
filtering characteristics of the cable look like. The simplest way to do this is to take
the Fourier transform, with respect to time, of the original cable equation. We get

iτωṼ (x, ω) + Ṽ (x, ω)− λ2∂
2Ṽ (x, ω)

∂x2
=

rm
2πa

Ĩm(x, ω) (1.23)

or

(1 + iωτ)Ṽ (x, ω)− λ2∂
2Ṽ (x, ω)

∂x2
=

rm
2πa

Ĩm(x, ω) (1.24)

This looks exactly like the Helmholtz equation if we make the substitutions

rm ←
rm

1 + iωτ
(1.25)

λ← rm√
1 + iωτ

(1.26)

The resistance is generalized to a steady-state impedance with

Z(ω) = R
1√

1 + iωτ
= R

e−
i
2
tan−1(ωτ)

(1 + (ωτ)2)
1
4

(1.27)

It is interesting that the impedance varies as Z ∼ R/
√
ωτ , in contrast to the Z ∼

R/(ωτ) dependence for a lumped RC circuit. This was recently seen in motoneurons.
Thus long cables provide a very soft filtering effect.

FIGURE - Facial-motoneurons.eps
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1.2.2 General Response

The full cable equation is simple to evaluate once you realize that this is really the
diffusion equation in terms of the function U(x, t), with

V (x, t) = e−
t
τ U(x, t) (1.28)

where λ2

τ
= a

ρccm
plays the role of the diffusion constant. The homogeneous part

of the cable equation becomes

λ2
∂2U(x, t)

∂x2
− τ ∂U(x, t)

∂t
= 0 (1.29)

We can write down the delta function response directly. That is, for an impulse
of charge so that Im(x, t) = Qoδ(x)δ(t), the voltage evolves as

V (x, t) =
Qo

τ

rm
2πa

√
τ

4πλ2t
e−

t
τ
− x2τ

4λ2t (1.30)

There are two essential aspects of the response to consider. The first is that the
voltage at the injection site initially decay faster than τm as current flows into the
cable and and charge it. At later times all locations of the cable essentially discharge
together and the decay is exponential. This behavior can be seen from plots of the
calculated response at various distances from the origin, and in the data of Rall,
who spent much effort on the issue of cables.

FIGURE - Cable-solutions.eps

FIGURE - Cable-decay.eps

The second point is that the pulse is decaying as it spreads, and thus has the
appearance of a front. We can ask where the front of the pulse is by calculating
∂V (x,t)
∂t

= 0. We rewrite our solution of the cable equation with all of the time and
space dependent terms in the exponent, so that

V (x, t) = V (0)e−
1
2
ln t
τ
− t
τ
− x2τ

4λ2t (1.31)

Thus ∂V (x,t)
∂t

= ∂Voef(x,t)

∂t
= Voe

f(x,t) ∂f(x,t)
∂t

= 0 implies

d
(
1
2
ln t

τ
+ t

τ
+ x2τ

4λ2t

)
dt

= 0 (1.32)

t
τ

2
+ t2 − x2τ 2

4λ2
= 0 (1.33)

which gives

tmax =
τ

2

√1

4
+
x2

λ2
− 1

2

 ≈ τ

2

|x|
λ

(1.34)

The ratio |x|
tmax

= 2λ
τ

is the speed of the peak of the voltage pulse.
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1.3 Space-Time Measurements of Passive Decay

Passive spread is seen very nicely in the data of Fromhertz, who performed the first
direct measure of passive decay in an invertebrate axon. The technique they used
was voltage sensitive dyes. We will take a brief interlude to discuss the preparation,
the axon of large leech neurons, and the technique, optical measurements of axons
stained with voltage sensitive dyes.

TWO FIGURES - Imaging with voltage sensitive dyes - from CSHL
summer school

They used this data to infer the membrane and cytoplasmic resistances since
they could fit the entire space-time waveform of the passive spread. There are two
unknown parameters, λ and τ , and these are well constrained by the fit (qualita-
tively, the spread of the response determines λ2

τ
and the speed of the front of the

hyperpolarization determines λ
τ
). From λ and τ , they get

rm = ρmL =
(

1

cm

)
τ ≈ 2 · 104Ω · cm2 (1.35)

and

ρc =
(

1

cm

)
a

2

τ

λ2
≈ 2.5 · 102Ω · cm (1.36)

They also had data for the active (regenerative) spread in the same axon, which
as we will soon see, imposes constraints that over determine their model. Fromherz
found that the values were much larger than those in the squid axon, 7-times for ρc
and 12-times for the rm at rest! Proof that a leech is not a squid!

FIGURE - Leech ganglion - from CSHL summer school

FIGURE - Fromhertz experiment - from CSHL summer school
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