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current; note the much steeper approach to I∗ than in Figure 4.6. 70

4.8 Phaseplane for the ML system near the homoclinic bifurcation
showing A) Iapp < IHc, B) Iapp ≈ IHc and C) Iapp > IHc. . . . . 71

4.9 From Tateno etal; Properties of RS and FS neurons in cortex. A.
Firing rate versus current for RS neurons. (Note that these cells
have spike-frequency adaptation so that the inter-spike interval
(ISI) is not constant. Thus, this shows the ISI after several spikes
as well as the steady-state.) (B) Same as A for FS neurons. (C)
Mixture of spikes and subthreshold oscillations near the critical
current for FS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.10 Bifurcation diagram for the HH model. A) V versus Iapp, the ap-
plied current; B) Expanded view of A); C) Frequency as a function
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4.11 Projection of limit cycles in HH equations in the (n, h)−plane. . . 77

4.12 Equivalent potentials for the Hodgkin-Huxley model. (A) the volt-
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5.1 Persistent sodium provides the pacemaker current for the model
Pre-Botzinger cell. (A) Potential with EL = −60 mV for the full
bursting model. (B) Bifurcation diagram with fast sodium blocked
showing onset of pacemaker oscillations at the Hopf bifurcation.
(C) Phaseplane with n = n∞(V ) showing relaxation oscillation.
(D) Potential of the simple relaxation model. . . . . . . . . . . . . 88

5.2 Properties of the T-type calcium current. . . . . . . . . . . . . . . 90
5.3 Connor-Stevens model. (A) Delay to spiking depends on the A-

current. Dashed curve shows gK = 27.7, gA = 40 and solid curve
shows gK = 17.7, gA = 50. (B) Steady-state I-V curve with two
different amounts of A-current. (C) Full bifurcation diagram for
the CS model with default parameters. (D) Frequency-current
curve for the CS model showing class I behavior. . . . . . . . . . . 91

5.4 Spike frequency adaptation from the M-type potassium current.
The model is from Destexhe and Pare (1999) and represents a
cortical pyramidal neuron. Applied current is 6 µA/cm2 and gM =
2mS/cm2. (A) Voltage and (B) instantaneous frequency versus
spike number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.5 Effects of M-current on equilibria. (A) Steady state as a function
of current at three values of gm. With no M-current, the neuron is
class I and oscillations are borne via a SNIC along the fold curve F.
With large enough M-current (gm = 2), oscillations are borne via a
Hopf (H) bifurcation and the fold points no longer exist since there
is a unique equilibrium point. For intermediate values, the folds
still exist, but the Hopf bifurcation occurs on the lower branch of
fixed points. (B) Two-parameter diagram. The two fold curves (F)
meet at a cusp point (C) at near I = 4.8 and gm = 1.8. There is a
curve of Hopf points (H) which terminates at a Takens-Bogdanov
(TB) point when the Hopf curve meets a fold curve. Dashed line
corresponds to gm = 1; as I increases, there is first a Hopf point
and then the fold. At gm = 0, no Hopf is encountered and when
gm = 2, there are no folds. . . . . . . . . . . . . . . . . . . . . . . 93

5.6 The sag (Ih) current causes a slow repolarization of the potential
to hyperpolarizing steps. (Parameters are those from McCormick
et al.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.7 Calcium-dependent potassium channel. (A) Spike frequency adap-
tation showing decrease in frequency over time. (B) Steady-state
firing rate with and without adaptation. . . . . . . . . . . . . . . . 98

5.8 The CAN current can explain long-lasting persistent activity. (A)
The voltage of a spiking model with three calcium stimuli. (B)
The gate for the CAN current. . . . . . . . . . . . . . . . . . . . . 101

6.1 Square-wave bursting. Note that the active phase of repetitive
firing is at membrane potentials more polarized than during the
silent phase. Moreover, the frequency of spiking slows down at the
end of the active phase. . . . . . . . . . . . . . . . . . . . . . . . . 111
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6.2 A bifurcation diagram of the Morris-Lecar equations, homoclinic
case. The set of fixed points form an S-shaped curve (not all of
which is shown). A branch of limit cycles originates at a Hopf
point and terminates at a homoclinic orbit. There is an interval of
applied currents for which the system displays bistability. . . . . . 112

6.3 (A) Bifurcation diagram of the fast-subsystem for square-wave
bursters. (B) The projection of the bursting trajectory onto the
bifurcation diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4 Dependence of bursting oscillations and continuous spiking with
respect to ǫ and λ. Bursting exists if λ < λ0 and spiking exists if
λ > λ0. However, how small ǫ must be depends on how close λ is
to λ0. There is an wedge-shaped region in which chaotic dynamics
exist. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.5 (A) Elliptic burster. Note the subthreshold oscillations. (B) Parabolic
bursting. The frequency of spiking first increases and then de-
creases during the active phase. . . . . . . . . . . . . . . . . . . . . 117

6.6 Bifurcation diagram associated with elliptic bursting. The projec-
tion of the elliptic bursting trajectory onto the bifurcation diagram
is shown in (B). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.7 Bifurcation diagram of the fast-subsystem for parabolic bursting.
(A) One of the slow variables is fixed. Note that the branch of
periodic orbits end at a SNIC. (B) With both slow variables as bi-
furcation parameters, the sets of fixed points and limit cycles form
surfaces. Also shown is the projection of the bursting trajectory
onto the bifurcation diagram. . . . . . . . . . . . . . . . . . . . . . 120

6.8 Projection of the parabolic bursting solution onto (V, y1, y2)-space.
There is a curve in the slow (y1, y2)-plane corresponding to SNIC’s.
This curve separates the regions where the fast subsystem exhibits
spiking and resting behavior. . . . . . . . . . . . . . . . . . . . . 121

6.9 Top hat bursting. . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.10 Chaotic dynamics may arise during the transition of adding spikes.
As we increase ǫ, the number of spikes per burst will increase. As
B) demonstrates, during this transition, there may exist solutions
in which the number of spikes per burst is not constant. . . . . . . 124

6.11 A chaotic burst arising during the transition between bursting and
continuous spiking. As we increase the parameter kCa, the model
may exhibit A) regular bursting; B) chaotic bursting; C) chaotic
spiking; and D) continuous spiking. . . . . . . . . . . . . . . . . . 125

6.12 Poincare map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.13 The Smale Horseshoe. The square S is stretched in the vertical
direction, contracted in the horizontal direction and then folded.
The intersection of π(S) with S forms two vertical strips. . . . . . 126

6.14 A generalized Smale horseshoe-type map that generates symbolic
dynamics. The two squares S1 and S2 are stretched, contracted
and then folded onto each other as shown. . . . . . . . . . . . . . . 128
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6.15 The transition from bursting to spiking in the square-wave bursting
model. If one fixed ǫ > 0 and increases λ, then there is a series of
increasingly more complex global bifurcations in which the system
exhibits symbolic dynamics. . . . . . . . . . . . . . . . . . . . . . . 129

6.16 A) Bistability of bursting and spiking. There are stable and un-
stable limit cycles of the full system that lie close to P , the branch
of periodic solutions of the fast-subsystem. The stable manifold
of the unstable limit cycle separates those orbits that approaching
the bursting solution from those that exhibit continuous spiking.
B) The periodic orbits lie to the right of the left knee. Bursting
no longer exhibits; however, there are orbits heteroclinic between
the two limit cycles. C) and D) A blue-sky catastrophe occurs if
the two limit cycles form a saddle-node bifurcation. . . . . . . . . 130

7.1 Action potential propagation for the HH equations. Discretization
of the nonlinear PDE for a 10 cm axon into 150 segments.Ri =
100Ωcm and d = 0.1cm. (A) Voltage at x = 6 cm and x = 7 cm,
showing velocity if about 1.25 meters/second (B) Spatial profile at
t = 20 msec; (C) Three-dimensional trajectory of the wave at grid
point 50; axes are voltage, potassium gate and the voltage derivative.135

7.2 Numerical shooting for the HH ODE. (A) Shooting from the one-
dimensional stable manifold (SM) by integrating backward in time.
For c too low, the stable manifold gos off the top and for c too high,
out the bottom. (B) Numerically computed dispersion relation.
This shows the speed c as a function of the spatial period, P . For
each period P > P ∗ there are two velocities; one fast and one slow. 136

7.3 Existence of fronts in equation (7.4). For c = 0, the system is
integrable. For c small, the unstable manifold of the right fixed
point (UM) falls below the stable manifold of the left-fixed point
(SM). For large c, the positions of the manifolds are reversed. For
a single intermediate value of c = c∗, the manifolds intersect for a
homoclinic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.4 Singular construction of the traveling wave. (A) Projection of the
wave onto the (V,w)−phase plane. Initiation of the action poten-
tial is a front from the rest state to the right-branch with w held
constant. Then along the right-branch of the nullcline w increases
until wj where a wave back goes to the left branch. w then decays
to rest along the left branch. (B) Pieces of the wave and the rele-
vant voltages. Solid lines are front dynamics governed by (??) and
dashed are branch dynamics governed by (??). (C) Details of the
left and right branches. . . . . . . . . . . . . . . . . . . . . . . . . 142

7.5 Velocity versus temporal period T = P/c for the HH equations.
(A) Full dispersion relation; (B) The function D(φ) = 1/c(φ)−1/c∞.144
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7.6 Dispersion relation for the ML model. (A) Class II dynamics show-
ing characteristic damped oscillatory form with fast and slow wave
branches connected (I = 80.) (B) Class I dynamics showing dis-
connected fast and slow waves (slow waves for I = 30 are on the
c = 0 axis.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.7 Ermentrout-Rinzel excitable model. (A) Dynamics lies on a circle;
the nonlinearit is periodic with period 2π and two fixed points.
(B) Phase-space of the travelling wave equations is a cylinder. For
c = c∞ > 0 there is a “big” homoclinic which wraps around the
cylinder; for c = 0, there is also a small homoclinic. These are
depicted on the unfolded cyclinder; the “big” homoclinic is now a
heteroclinic joining (2π+ r, 0) to (r, 0) where f(r) = 0 and f ′(r) <
0. (C) Dispersion relation for f(V ) = I − cos(V ) when I = 0.95.
(D) Velocity of a large period (100) wave as I varies. . . . . . . . . 147

7.8 Myelinated axon. Currents in myelinated region are confined to
the axial direction. Potentials at the nodes are governed by active
currents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.9 The jellyfish, A. digitale and the phaseplane for a tristable system 155

8.1 Model synaptic conductances. (A) AMPA (black) and GABA-B
conductance due to a single presynaptic spike. (B) NMDA con-
ductance to a single (red) and a burst of four (black) spikes. (C)
GABA-B conductance to a burst of 8 spikes. Single spike response
is negligible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

8.2 (A) Short-term synaptic plasticity in cortical neurons (From Beier-
lein et al 2003). Connections between cortical excitatory cells (RS)
and cortical fast spike units (inhibitory) show synaptic depression
to 20 Hz stimuli while RS to low threshold spike (LTS) inhibitory
cells show facilitation. (B-D) simulations of equations (8.12) and
(8.13) to periodic stimuli.Parameters for B are τd = 300, ad = 0.5,
d0 = 1, τ = 10 and there is no facilitation. Parameters for C
are τf = 500, af = 0.2, f0 = 0, τ = 10 with no depression.
Frequency is 20 Hz. D has both depression and facilitation with
f0 = 0, d0 = 1, τf = 50, τd = 400, af = 0.2, ad = 0.05 and τ = 5.
The frequency is 100 Hz. . . . . . . . . . . . . . . . . . . . . . . . 166

9.1 Phase for a limit cycle. (A) Time trace showing definition of the
phase zero as the peak of the potential. (B) Limit cycle in the
phase plane showing contours with the same asymptotic phase.
These are called isochrons. Initial condition x(0) is mapped to y0
on the limit cycle with phase φ. (C) Geometry of phase-resetting.
At point (i) a perturbation along the x−axis at phase φ tends to a
new asymptotic phase φ′ which is closer to spiking with respect to
the original phase. The same perturbation at (ii) delays the next
spike time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
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9.2 Morris-Lecar oscillator (Class I parameters, I = 42) showing the
asymptotic phase function Θ(x) and some representative isochrons.
Black dots show values on the limit cycle in increments of 2.5 msec.
Period of the limit cycle is 145 msec. . . . . . . . . . . . . . . . . . 174

9.3 Some experimentally measured PRCs from neurons. (A) Entorhi-
nal cortex cells (Netoff et al 2005) for excitatory (i) and inhibitory
(ii) synaptic perturbations; (B) rat barrel cortex pyramidal cells
(Stoop et al 2000) with inhibitory (i) and excitatory (ii) pertur-
bations; (C) cat motor cortex neurons. Note that in B, what is
plotted is T ′(φ)/T = g(φ) = 1 + ∆(φ)/T . . . . . . . . . . . . . . 176

9.4 Singular trajectory and the fast variable as a function of time. . . 181

9.5 The numerically computed adjoint for the ML model near the
saddle-node bifurcation and its comparison to the asymptotic so-
lution. Left panel, I = 40 and T = 943; right panel, I = 50 and
T = 75.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

9.6 The numerically computed adjoint for the Golomb-Amitai model
near the supercritical Hopf bifurcation. Bottom figure shows the
bifurcation diagram as a function of the current. Top two curves
show the adjoint (black) and the approximation (red) a sin θ +
b cos θ. Choices of a, b come from the Fourier expansion of the nu-
merically computed adjoints. . . . . . . . . . . . . . . . . . . . . . 182

9.7 The adjoint for the ML model near the turning point bifurcation.
Black curve is closest to the limit point and the adjoint has been
scaled by a factor of 10 to fit on the same figure. Phase is nor-
malized from 0 to 1 for easier comparison since the periods are
different. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

9.8 The effects of outward currents on the PRC. (A) Adding an M-type
potassium current to the Destexhe-Pare model adds a negative
component to the adjoint. (B) PRCs for the quadratic integrate
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amplitude 1 for 0.2 time steps. . . . . . . . . . . . . . . . . . . . 185
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9.10 The rotation number for the map M(φ) = φ + ∆(φ) + Tf for
∆(φ) = 0.8(1 − cosφ) (black) and ∆(φ) = 0.000013φ6(2π − φ)
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rational rotation numbers are shown. The right panel shows the
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9.16 Interaction functions for an excitatory-inhibitory pair. Inset shows
pure excitatory network. . . . . . . . . . . . . . . . . . . . . . . . 209

9.17 V ′(t) and two different adjoints. . . . . . . . . . . . . . . . . . . . 210

9.18 50 Wang-Buszaki neurons coupled to nearest neighbors with in-
hibitory synapses (Reversal potential -80 mV, decay 6 msec). Each
oscillator is driven by a constant current of 0.5 plus a small random
value(between −0.0035 and 0.0035) to produce heterogeneity. Cou-
pling strength is 0.02. Right-hand side is the phase-locked solution
to the corresponding phase model. Below shows the space-time
plot from Bao & Wu for a carbachol-treated slice. . . . . . . . . . 214

9.19 Steady state phases for a chain of 50 oscillators, H(φ) = sinφ +
0.5 cosφ with cut ends. Black line is equation (9.53). Right panel
shows an array of 50 × 50 oscillators with the same H. . . . . . . 215

9.20 Rotating and spiral wave patterns seen in neural tissue. (A) From
Huang et al in a tangential dis-inhibited cortical slice; (B) From
Fuchs et al reconstructed from EEG electrodes in a human during
alpha activity; (C) from Ermentrout and Kleinfeld optical activity
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of nearest neighbor phase oscillators (H(φ) = sinφ); (E)as in (D)
but H(φ) = sinφ+ 0.5(cosφ− 1). . . . . . . . . . . . . . . . . . . 217

9.21 Propagating wave of activity in a brain slice preparation in which
the inhibition has been blocked (Pinto et al 2006) (a) shows where
the slice comes from (b) the exracellular potential recorded from
a 16 electrode array (c) plot of (b) in pseudocolor (d) simulation
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9.22 (A) Calculation of the wave speed for single-spike traveling waves
as a function of the threshold and drive (B) Experimental velocity
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10.1 Solutions of a network of two mutually coupled Morris-Lecar neu-
rons with excitatory coupling. A) Synchronous solution. The
membrane potentials are equal so only one is shown. B) Anti-
phase behavior. The solutions shown in A) and B) are for the
same parameter values but different initial conditions. Hence, the
system is bistable. . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

10.2 Solutions of a network of two mutually coupled Morris-Lecar neu-
rons with inhibitory coupling. A) Each cell fires due to post-
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10.3 Firing patterns in inhibitory network. A) and B) show examples
of clustering. Wave-like is shown in C) and dynamic clustering in
D). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

10.4 Periodic solution of the Morris-Lecar equations corresponding to
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10.5 Response of a model neuron to applied current. Current is applied
at time t = 50 and turned off at t = 100. In the top figure,
the current is depolarizing (I0 = .1), while in the bottom figure
the current is hyperpolarizing (I0 = −.1) and the neuron exhibits
post-inhibitory rebound. . . . . . . . . . . . . . . . . . . . . . . . 254

10.6 Phase space representation of the response of a model neuron to
applied current. Current is applied at time t = Ton and turned off
at t = Toff . (Left) Depolarizing current. The cell jumps up as soon
as the current is turned on. (Right) Hyperplorizing current. The
cell jumps to the left branch of C0 when the current is turned on
and jumps up to the active phase due to post-inhibitory rebound
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10.17 Thalamic network model. (A) Phaseplane showing the h-nullcline
(dashed) and V -nullcline at rest (s = 0). Several important values
of h are shown. The approximate singular trajectory of a lurch-
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11.1 Noisy neurons. (A) Integrate-and-fire model dV = (I − V )dt +
σdW (t) with I = 0.75 and σ = 0.1. This numerical solution was
computed using (11.2) with h = 0.01. Vertical lines represent times
at which the model crosses V = 1 and is reset to 0. (B) Noise allows
a subthreshold stimulus to be encoded. (C) Noisy ML model with
class II parameters, I = 85 and unit variance noise in the voltage
component. (D) Distribution of crossings of w = 0.3. . . . . . . . . 284

11.2 Simulated Wiener process, h = 0.01. (A). Sample path and mean
and variance of 1000 sample paths (B).Probability histogram for
100000 sample paths starting at W (0) = 0. . . . . . . . . . . . . . 286

11.3 F-I curves for the leaky (spike is at 1 and reset at 0) and quadratic
(spike is at 10 and reset at -1) integrate and fire models. Solutions
to the BVP are shown in black and Monte-Carlo simulations are
shown in red. (A,B) LIF with σ = 0.25 (A) and σ = 1.0 (B). QIF
with σ = 0.25 (C) and σ = 1 (D). . . . . . . . . . . . . . . . . . . 301

11.4 Interspike interval distributions for noisy scalar models. Monte
Carlo simulations are dashed and solid lines are solutions to (11.15).
Monte Carlo simulations are 50000 ISIs from an Euler simulation
of (11.18). the PDE is solved by the method of lines on a finite
interval divided into 200 bins. (A,B) Leaky integrate and fire,
f(V ) = I − V . PDE is solved on the interval (-4,1) with V = 1
absorbing and V = 0 as the reset value. (C,D) Quadratic integrate
and fire, f(V ) = I + V 2. PDE is solved on the interval (-5,5) with
V = 5 absorbing and V = −1 as the reset value. Currents and
noise are indicated in the figure. . . . . . . . . . . . . . . . . . . . 304

11.5 Response of a noisy LIF model to non-constant stimuli. LIF model
has I = 0.75, Vspike = 1, Vreset = 0, σ = 0.4. (A) A non-periodic
stimulus. Blue curve shows the stimulus. Lower curves show the
response of the FP equation (red) and the instantaneous firing rate
(green) predicted by the steady-state FI curve. (B-D) Periodic
stimuli at different periods (denoted by P in the figures). Blue
curve shows the stimulus and red the solution to the FP equation.
The instant response is shown in green and the solution to the
simple dynamic model (see text) is shown in black (τ = 0.2.) . . . 306

11.6 Bifurcation diagram for Morris-Lecar moment expansion for (A)
Class II and (B) class I excitability as the current varies at zero
noise and with large noise (σ2 = 2). In each case, the addition of
noise shifts the loss of the stable fixed point to a lower value of I. 309

11.7 Stochastic simulation of the Morris-Lecar model with 100 potas-
sium and 100 calcium channels. I = 80µA/cm2 injected is sub-
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Preface

One can say that the field of computational neuroscience started with the 1952
paper of Hodgkin and Huxley in which they describe, through nonlinear partial dif-
ferential equations, the genesis of the action potential in the axon of the giant squid.
These equations and the methods that arose from this combination of modeling and
experiments have since formed the basis for every subsequent model for active cells.
The Hodgkin-Huxley model and a host of simplified equations that are derived from
them have inspired the development of new and beautiful mathematics. Dynamical
systems and computational methods are now being used to study activity patterns
in a variety of neuronal systems. It is becoming increasingly recognized, by both
experimentalists and theoreticians, that issues raised in neuroscience and the math-
ematical analysis of neuronal models provides unique interdisciplinary collaborative
research and educational opportunities.

This book is motivated by a perceived need for an overview of how dynamical
systems and computational analysis have been used in understanding the types of
models that come out of neuroscience. Our hope is that this will help to stimulate
an increasing number of collaborations between mathematicians, looking for classes
of interesting and relevant problems in applied mathematics and dynamical systems,
and neuroscientists, looking for new ways to think about the biological mechanisms
underlying experimentally observed firing patterns.

The book arose out of several courses that the authors have taught. One of
these is a graduate course in computational neuroscience that has students from
psychology, mathematics, computer science, physics and neuroscience. Of course,
teaching a course to students with such diverse backgrounds presents many chal-
lenges. However, the course provides many opportunities to encourage students,
who may not normally interact with each other, to collaborate on exercises and
projects. Throughout the book are many exercises that involve both computation
and analysis. All of the exercises are motivated by issues that arise from the biology.

We have attempted to provide a comprehensive introduction to the vocabulary
of neuroscience for mathematicians who are just getting interested in the field but
who have struggled with the biological details. Anyone who wants to work in
computational neuroscience should learn these details as this is the only way one
can be sure that the analysis and modeling is actually saying something useful to
the biologists. We have also tried to provide background material on dynamical
systems theory, including phase plane methods, oscillations, singular perturbations
and bifurcation analysis. An excellent way to learn this material is by using it,

xxv
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xxvi Preface

together with computer simulations, to analyze interesting, concrete examples. The
only prerequisite is a basic calculus course; however, it is very useful if students are
comfortable with the basic theory of ordinary differential equations as well as linear
algebra. Much of the mathematics is at the level of the book by Strogatz.

The book is organized from the bottom up. That is, we start with the bio-
physics of the cell membrane and from this introduce compartmental models, con-
tinuum limits and cable theory. We then add active ion channels. Prior to the
work on active channels, all equations are linear and in theory completely solv-
able in closed form. Here we introduce a number of interesting approaches toward
quantifying the responses of passive membranes to inputs. ...

There are several recent books that cover some of the same material in the
present volume. Theoretical Neuroscience by Dayan and Abbott has a broader range
of topics than our book. However, it does not go very deeply into the mathematical
analysis of neurons and networks, nor does it emphasize the dynamical systems
approach. A much closer book is Dynamical Systems in Neuroscience by Eugene
Izhikevich. This book emphasizes the same approach as we take here. However,
the main emphasis of DSN is in single neuron behavior. We cover a good deal of
single neuron biophysics, but include a much larger proportion of theory on systems
neuroscience and applications to networks.
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Chapter 1

Some basic biology

Neuroscience is the study of the brain. Brain function underlies all behavior includ-
ing simple motor activity such as walking and smiling and higher order cognitive
behavior such as thinking, learning and memory. The brain consists of neurons and
glial cells. Neurons are the basic signaling units of the nervous system. The ma-
jority of this book is devoted to the mathematical analysis of models that describe
the behavior of these cells. Glial cells are important in maintaining the health of
neurons and how they behave and interact. Neurons communicate with each other
at synapses. It has been estimated that there are approximately 1011 neurons and
1015 synapses in the human brain. Hence, neurons typically receive inputs from a
very large number of other cells.

In the remainder of this chapter, we describe some basic properties of the brain,
neurons and synapses. We will only touch on material that is absolutely essential
for anyone interested in computational neuroscience. We highly recommend that
the reader study this material in more detail by consulting one of the many excel-
lent books devoted to neuroscience. Such books include Kandel/Schwartz/Jessell,
Johnston/Wu, ... In fact, much of the following discussion is based on material from
those books.

1.1 The brain

The brain is highly organized both anatomically and functionally. The central
nervous system (CNS) consists of two main parts: the spinal cord and the brain.
The brain itself is partitioned in several areas. These are: the medulla oblongata,
the pons, the cerebellum, the midbrain, the diencephalon, and cerebral hemispheres.
Each of these consists of many parts or nuclei. For example, the diencephalon
contains the thalamus and the hypothalamus. The cerebral hemispheres consist of
the cerebral cortex and deep-lying structures that include the basal ganglia, the
hippocampus and the amygdaloid nucleus. The cortex consists of four lobes; these
are the frontal, parietal, occipital and temporal lobes.

Different brain structures are responsible for different functions. For example,

1
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2 Chapter 1. Some basic biology

the brainstem is responsible for maintaining many of the functions necessary for life
such as breathing and heart rate. The basal ganglia participate in regulating motor
performance and the thalamus processes most of the information reaching the cere-
bral cortex from the rest of the CNS. The cerebral cortex is the large region (large
in mammals, notably humans, but nonexistent in many other vertebrates) that is
directly beneath the skull. The cortex is responsible for our sensory, cognitive,
and voluntary motor behaviors. The different lobes of the cortex have specialized
functions: the frontal lobe is largely concerned with the planning and organization
of future actions; the occipital lobe is concerned with vision; the pariental lobe
receives sensory information; and the temporal lobe is involved with hearing and
other aspects of language and memory.

Figure 1.1.

We note that each hemisphere is concerned primarily with sensory and motor
processes on the contralateral side of the body. That is, sensory information that
enters the spinal cord from the left side of the body crosses over to the right side
of the nervous system, while motor areas in one hemisphere exert control over the
movements of the opposite half of the body.

Cognitive and motor activities may be highly localized within the cerebral
cortex. There are, in fact, sensory maps in which sensory information such as touch
is organized topographically in the brain. Each part of the body is represented
separately in a specific location in the somatosensory cortex. Sensitive regions,
such as the fingers and mouth, take up the most space. This is shown in Figure 1.2.

As one further example of how cognitive activities are localized within the
brain, consider language. Different aspects of language are processed in different
areas of the cortex. One area, called Wernicke’s area, is important to the under-
standing of spoken language, while another area, called Broca’s area, is concerned
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1.2. The neuron 3

Figure 1.2.

with issuing specific commands that cause the mouth and tongue to form words.
Hence, damage to Wernicke’s area makes it impossible for a person to understand
speech, while damage to Broca’s area makes it impossible for a person to speak.

While cognitive and motor activities are localized within the brain, it is impor-
tant to realize that complex mental activities, such as learning or memory, typically
involve interconnections between many brain regions. We have seen, for example,
that language involves both Wernicke’s and Broca’s area, which lie in different parts
of the left cerebral hemisphere. Interrelated mental activities are processed by many
neural pathways that are distributed in parallel. For this reason, damage to one
single area often does not necessarily lead to the loss of a specific function.

1.2 The neuron

Neurons are specialized cells that like all other cells contain the usual organelles
necessary for staying alive. These include the mitochondria, responsible for fueling
the cells, and the nucleus, which holds the genetic material that gets passed on
when the cell divides.

The structure of a neuron can be divided into three parts: (i) the dendrites;
(ii) the soma; and (iii) the axon. The soma or cell body is the site of the nucleus
and all the normal cellular machinery. Functionally the soma plays the role of
integrating all of the inputs of the cell to produce some output. The dendrites
and axon are processes that emanate from the soma. Neurons usually have several
dendrites; these form the “input lines” of the cell. The dendrites often branch out
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in a tree-like fashion that can be very large. In many cases, the majority of the
surface area of the cell is taken up by the dendrites. Neurons usually have some sort
of general orientation. Dendrites that lie at the top of the neuron are called apical
dendrites and those that lie at the base are called basal dendrites. Figure 1.2 shows
the variety of possible shapes that neurons can take; the main differences are in the
shapes of the dendritic trees. Although neurons share many common features, it
has been estimated that there are as many as 10,000 different types.

Figure 1.3.

The axon typically leaves the soma as a single thin process but then branches
out in order to connect to other cells. The diameter of an axon may range from .2 to
20 µm and may extend for up to one meter. The axon is the major conducting unit
of the neuron; it can convey information great distances by propagating a transient
electrical signal called the action potential. The action potential is initiated at a
specialized region of the soma called the axon hillock. Large axons are surrounded by
a fatty insulating sheath called myelin. This is essential for high-speed conduction
of action potentials. The sheath is interrupted at regular intervals by nodes of
Ranvier.

The action potential represents a change in the neuron’s membrane potential.
Neurons, like all other cells, maintain a potential difference of about 65 mV across
their external membrane. What distinguishes neurons and other excitable cells from
most cells in the body is that this resting membrane potential can be altered and
can, therefore, serve as a signaling mechanism. The action potential corresponds to
a change in resting potential that propagates along the axon. The action potential is
initiated when the membrane potential at the axon hillock reaches some threshold
potential; once this threshold is reached, the signal propagates in a all-or-none
fashion. That is, the amplitude and duration of the signal is always the same no
matter how it is generated. Action potentials may last as short as 1 ms and
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may travel at rates that vary between about 1 and 100 meters per second. After
each action potential, there is a period during which a second impulse cannot be
initiated. The is referred to as the refractory period.

Stronger stimuli often produce higher frequencies of impulse firing. Since the
shape and speed of each action potential does not depend on the stimulus, informa-
tion about the stimulus is often carried in the frequency of firing. The frequency is
limited by the refractory period. Some neurons are capable of continuously gener-
ating action potentials, even without inputs. The temporal pattern of firing may be
quite complicated. A neuron may generate a single spike in a periodic fashion, or
may generates bursting activity in which there are episodes of high frequency firing
separated by periods of quiescent behavior. More complicated firing patterns are
possible and these will be described later in the text.

In the following sections, we shall give much more details of the mechanisms
underlying the generation of action potentials. This, in turn, will lead to the famous
Hodgkin-Huxley model for the propagation of action potentials along the nerve
axon.
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Figure 1.4.

1.3 The synapse

Neurons communicate with each other at synapses. The cell that is sending the
signal is called the presynaptic neuron and the cell that is receiving the signal is
called the postsynaptic neuron. Synapses can be either electrical or chemical. In
electrical synapses, there is a direct connection from one neuron to another by way
of a channel or gap junction. This type of synapse is rare among the principal cell
types in the mammalian brain; for this reason, we will concentrate primarily on
chemical synapses.
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In chemical synaptic signaling, there is a space, called the synaptic cleft, sep-
arating the presynaptic from the postsynaptic cell. Most presynaptic neurons ter-
minate near the dendrites of the postsynaptic cell; however, communication may
occur with the cell body or, less often, with portions of the axon.

Signals from the presynaptic neurons result in the release of chemicals, called
neurotransmitters. Neurotransmitters diffuse across the synaptic cleft and bind to
receptors on the postsynaptic cell causing changes in the membrane potential. The
membrane potential of the postsynaptic cell may either increase or decrease relative
to its resting potential. This depends on the nature of the neurotransmitter and the
type of receptor it binds to. A reduction of membrane potential (that is, the inside
of the cell becomes less negative with respect to the outside) is called depolarization
and the synapse is said to be excitatory. An increase of membrane potential (the
inside becomes more negative) is called hyperpolarization. In this case, the synapse
is said to be inhibitory.

Figure 1.5.

We have seen that chemical synapses can be either excitatory or inhibitory.
They can also be classified as direct or indirect. In a direct synapse, the postsynap-
tic receptor contains both the transmitter binding site and the ion channel opened
by the transmitter as part of the same receptor. In an indirect synapse, the trans-
mitter binds to receptors that are not themselves ion channels. Direct synapses
are typically much faster than indirect synapses. In fact, direct synapses are often
referred to as fast synapses, while indirect synapses are referred to as slow synapses.

Electrical synapses have the advantage that they are fast; there is not the time
delay associated with chemical synapses. However, chemical synapses, which are
much more abundant in the human brain, have many advantages. They are able to
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amplify signals; a single action potential from the postsynaptic cell may result in
a much more powerful, longer lasting response in the postsynaptic cell. Moreover,
indirect synapses can be modified, through a process called neuromodulation, so that
the efficacy of the synaptic response may change (through learning, for example).

The architecture of synaptic connections may be quite complicated. Each
neuron in the human brain receives, on average, inputs from about 10000 other
neurons. Neurons may communicate with other cells close by, while neurons with
long axons may make synapses up to a meter away. Synaptic communication need
not be in one direction; that is, neurons may make reciprocal synapses onto their
presynaptic cells. Since most neurons have similar electrical properties, different
functions carried out by different parts of the brain may be due to differences in the
synaptic connections.
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Chapter 2

The Hodgkin-Huxley
equations

2.1 The resting potential

All living cells have an electrical voltage, or potential difference, between their inside
and outside. Since the cell’s membrane is what separates the inside from the outside,
this potential difference is referred to as the membrane potential. In mathematical
terms, the membrane potential VM is defined as

VM = Vin − Vout

where Vin is the potential on the inside of the cell and Vout is the potential on the
outside. This will change during an action potential, for example.

The resting potential refers to the potential across the membrane when the cell
is at rest. A typical neuron has a resting potential of about -70 millivolts. An inward
current corresponds to a positively charged ion, such as Na+, entering the cell. This
raises the membrane potential; that is, it brings the membrane potential closer to
zero. In this case, the cell is said to be depolarized. An outward current corresponds
to a positively charged ion, such as K+, leaving the cell or a negatively charged ion,
such as Cl−, entering the cell. In this case, the cell becomes hyperpolarized.

The potential difference arises from differences in the concentrations of various
ions within and outside the cell. The maintenance of the potential difference also
involves the transport of ions across the cell membrane and the selective permeabil-
ity of the membrane to these ions. The principal ions found on either side of the
cell membrane are Na+, K+, and Cl−. The concentration of K+ ions inside a cell
is about 10 times that in the extracellular fluid, whereas the concentrations of Na+

and Cl− are much higher outside the cell than inside.
The lipid bilayer of the cell membrane is a poor conductor of ionic current

because it is not permeable to ions. However, the membrane does contain channel
proteins that allow for the ions to move through it. There are two types of ion
channels in the membrane: gated and nongated. Nongated channels are always
open, while gated channels can open and close and the probability of opening often
depends on the membrane potential; these are referred to as voltage-gated chan-

9
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10 Chapter 2. The Hodgkin-Huxley equations

nels. Gated channels are typically selective to a single ion. The permeability of the
membrane to a particular ion depends on the number of open channels selective to
that ion. Most gated channels are closed at rest. Hence, the nongated ion channels
are primarily responsible for establishing the resting potential. An action potential
is generated when gated channels open allowing for the flux of ions across the cell
membrane.

Because of concentration differences, when the appropriate channels are open,
sodium and chloride ions tend to diffuse into the cell, while potassium ions tend to
diffuse outwards. Note that ions do not simply diffuse in or out of an open channel
until the concentrations of that ion on either side of the cell is zero. This is because
of the electric field created by separation of positive and negative charges across the
cell membrane.

Suppose, for example, that the cell is permeable only to K+. The concentra-
tion gradient of K+ moves K+ ions out of the cell. However, the continued efflux of
K+ builds up an excess of positive charge on the outside of the cell and leaves behind
an excess of negative charge on the inside. The negative charge consists mostly of
impermeable organic anions A−. This buildup of charge acts to impede the further
efflux of K+, so that eventually an equilibrium is reached. At this equilibrium,
the electrical and chemical driving forces are equal and opposite. The membrane
potential at which K+ ions are in equilibrium across the membrane is called the K+

Nernst, equilibrium or reversal potential.
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Figure 2.1. The K+ flux is determined by both the K+ concentration
gradient and the electrical potential across the membrane. A) For a cell that is
permeable only to K+, the concentration gradient of K+ moves K+ ions out of the
cell. B) The continued efflux of K+ builds up an excess of positive charge on the
outside and negative charge on the inside. At equilibrium, the electrical and chemical
driving forces are equal and opposite.

In the next section, we shall derive the following expression for the K+ Nernst
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potential:

EK =
RT

zF
ln

[K+]out

[K+]in
. (2.1)

Here, EK is the K+ Nernst potential, R is the gas constant, T is the temperature
in degrees Kelvin, z is the valence of K+, F is Faraday constant and [K+]out and
[K+]in are the concentrations of K+ ions outside and inside of the cell. A similar
formula holds for the Na+ and Cl− Nernst potentials.

Neurons at rest are permeable to Na+ and Cl− in addition to K+. Because of
their concentration differences, Na+ and Cl− ions move into the cell and K+ ions
move outwards. The influx of Na+ ions tends to depolarize the cell, while the efflux
of K+ and the influx of Cl− have the opposite effect. The resting potential of the
cell is the potential at which there is a balance between these fluxes. It depends
on the concentrations of the ions both inside and outside of the cell, as well as the
permeability of the cell membrane to each of the ions. We note that at rest, there are
many more K+ and Cl− channels than Na+ that are open. Hence, the cell’s resting
potential is determined primarily by the K+ and Cl− Nernst potentials. In the
following sections, we shall derive the Goldman-Hodgkin-Katz equation, which gives
an explicit expression for how the resting potential depends on the concentrations,
both inside and outside, of ions and the permeabilities of the membrane to the ions.

In order for a cell to maintain a constant resting potential, the efflux of K+

ions must balance the influx of Na+ ions. (Here we are ignoring Cl− ions.) That
is, the charge separation across the membrane must be constant. If these steady
ion leaks continue unopposed, then potassium ions within the cell would become
depleted, while the concentration of sodium ions inside the cell would increase. This
would eventually result in a loss of the ionic gradients, necessary for maintaining the
resting potential. The dissipation of ionic gradients is prevented by active pumps
the extrudes Na+ ions from the cell while taking in K+. The Na+-K+ pump is an
integral membrane protein that exchanges three Na+ ions for two K+ ions. This
is probably the most important ion transporter in biological membranes; however,
there are many other proteins in the membrane that are capable of pumping ions
from one side of the membrane to the other.

2.2 The Nernst equation

Here we derive the Nernst equation and in the next section, we derive the Goldman-
Hodgkin-Katz (GHK) equation. Recall that if the membrane is permeable to only
one ion, then that ion’s Nernst potential is the resting potential at which the elec-
trical and chemical driving forces balance. The GHK equation is, in some sense,
a generalization of the Nernst equation in which we assume that the membrane is
permeable to more than just one ion. The GHK equation determines the resting
potential at which the electrical and chemical forces, generated by each of these
ions, balance with each other. The first step in deriving these equations is to derive
the Nernst-Plank equation.

In what follows, let [C](x) be the concentration of some ion and V (x) be the
potential at the point x across the membrane. Then Fick’s law of diffusion says
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that the diffusive flux, Jdiff , is given by:

Jdiff = −D∂[C]

∂x
.

The diffusion constant, D has units of cm2/sec and the concentration is in molecules
per cubic centimeter so that the diffusive flux has units of molecules/sec-cm2.
(Think of the flux as movement across the two-dimensional cell surface.) The direc-
tion of movement is from high concentrations to low concentrations. The diffusion
constant (empirically measured) depends on the size of the molecule and the medium
in which it is diffusing. A typical value for ions like potassium, chloride, and sodium
is 2.5×10−6cm2/sec. Calcium has a diffusion constant about an order of magnitude
less.

The other physical force that is responsible for the passive movement of ions
is the electrical drift described by the microscopic version of Ohm’s law:

Jdrift = −µz[C]
∂V

∂x
.

The electric field, E ≡ −∂V
∂x , is the gradient of the potential V (measured in volts)

and thus has units of volt/cm. z is the valence of the ion (±1,±2, etc). The param-
eter µ is mobility and has dimensions of cm2/V-sec and [C] is the concentration.
The higher the concentration, the greater the drift. Note that drift has the same
dimensions as the diffusive flux.

The total flux across the membrane is given by the sum of these two:

Jtotal = −D∂[C]

∂x
− µz[C]

∂V

∂x
.

Einstein’s relation connects the mobility with the diffusion coefficient:

D =
kT

q
µ

where k is Boltzmann’s constant (joule/◦K), T is the absolute temperature, and q
is the charge (measured in coulombs). Thus, we can write the total flux as:

Jtotal = −µkT
q

∂[C]

∂x
− µz[C]

∂V

∂x
.

It is convenient to convert this equation, which is in terms of the number of indi-
vidual molecules into its molar equivalent, by dividing by Avogadro’s number. It
is also convenient to replace kT/q with RT/F where R is the ideal gas constant
and F is the Faraday constant. (A list of these constants is given at the end of this
section.) This will yield the flux per mole. Multiplying this flux by the valence and
Faraday’s constant yields a current flux:

I = −
(

uzRT
∂[C]

∂x
+ uz2F [C]

∂V

∂x

)
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measured in amperes/cm2. The quantity u is the molar mobility, µ/NA. This equa-
tion is the Nernst-Planck Equation.

The Nernst equation is obtained by setting the current to zero. That is, for a
given ion species, at equilibrium, the diffusion and electric effects balance:

I = −
(

uzRT
∂[C]

∂x
+ uz2F [C]

∂V

∂x

)

= 0.

As an exercise, it is left to the reader to prove that this implies the Nernst equation:

Veq ≡ Vin − Vout = −RT
zF

ln
[C]in
[C]out

. (2.2)

That is, the equilibrium, or Nernst, potential, occurring when all the fluxes balance,
depends on the logarithm of the ratio of the concentrations of the ions inside and
outside of the cell.

To illustrate how to use the Nernst equation to compute an equilibrium po-
tential, note that in a typical mammalian cell, there is 140 mM of potassium inside
the cell and 5 mM outside. At room temperature 37◦C, RT/F = 62 mV. This
means the equilibrium potential of potassium is

−62 log
140

5
= −89.7mV.

As above, we will leave the details of this calculation the reader.

2.3 The Goldman-Hodgkin-Katz equation

The Nernst-Planck equation describes the movement of charged ions in aqueous
media. However, the cell membrane has thickness and there may be energy barriers
or blocking sites within the channel. In this case, the ions flowing through the open
channel may not obey the Nernst-Planck equation and we must model the complex
behavior within this membrane to get a true picture of the flux across the cell.
This type of biophysics is beyond the details that are needed for this book, but the
resulting equation does play a role in later parts. Thus, we will present a shortened
derivation of a simplification of what happens within the membrane. Goldman,
Hodgkin, and Katz came up with this simplified model called the constant field
equation (CFE). They assume that (i) the electric field across the lipid membrane
is constant, (ii) the Nernst-Planck equation holds within the membrane, and (iii)
the ions all move independently.

Let VM be the total potential across a membrane of width l and let V (x) be the
potential at the point x across the membrane. Since the electric field is constant,
E = −VM/l. This implies that dV/dx = VM/l. The mobility of ions within the
membrane will be different than in the aqueous solution; denote this mobility by
u∗. Finally, let β be the ratio of the ion solubility within the membrane to the
solubility in the aqueous solution. Thus, if [C] is the aqueous concentration, then
β[C] is the membrane concentration. With these assumptions the Nernst-Planck
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equation for current across the membrane is:

I = −u∗z2Fβ[C]
VM

l
− u∗zRTβ

d[C]

dx
, 0 < x < l.

This is just a first order linear ordinary differential equation for [C] subject
to the two boundary conditions

[C](0) = [C]in, [C](l) = [C]out.

One cannot, in general, solve a first order equation with two boundary conditions.
However, the current I is unknown, so that choosing this correctly will allow us to
find a solution that satisfies both boundary conditions. We leave this elementary
exercise to the reader. The result is:

I =
u∗z2FVMβ

l

[

[C]oute
−ξ − [C]in

e−ξ − 1

]

where

ξ =
zVMF

RT
.

This expression is often written in terms of the permeability,

P ≡ βu∗RT

lF
;

that is,

I = PzFξ

(

[C]oute
−ξ − [C]in

e−ξ − 1

)

. (2.3)

The permeability has dimensions of cm/sec. Thus, the dimensions are in terms of
current per unit area.

This is the current due to a single ionic species. The current vanishes at the
equilibrium or Nernst potential of the ionic species. A common quantity to plot
is the current-voltage (I − V ) plot. If the inside and outside concentrations are
identical, then the I − V plot is linear. For [C]out > [C]in (resp. [C]out < [C]in )
the I − V plot is concave down (resp. concave up). The reader is encouraged to
plot the current as a function of the voltage for different concentration ratios. If the
concentrations are quite different on the inside and outside, then the I −V curve is
strongly rectifying. That means that the magnitude of the current depends strongly
on whether or not the potential is above or below the equilibrium.

Given several ionic species, the total current is just a sum of the individual
currents. This is a consequence of assumption (iii) which says that the ions do
not interact. Suppose that there are three permeant ions: K+, Na+ and Cl−

with corresponding currents, IK , INa and ICl. At equilibrium the total current,
I = IK + INa + ICl vanishes; that is, I = 0. The potential at which this occurs is:

VM =
RT

F
ln
PK [K+]out + PNa[Na+]out + PCl[Cl

−]in
PK [K+]in + PNa[Na+]in + PCl[Cl−]out

(2.4)
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Table 2.1. Typical ion concentrations in cells. (From Johnstonand Wu).

Ion Inside Outside Equilibrium Potential

(mM) (mM) Ei = RT
zF ln [C]out

[C]in

Frog Muscle T = 20◦C

K+ 124 2.25 58 log 2.25
1.24 = −101mV

Na+ 10.4 109 58 log 109
10.4 = +59mV

Cl− 1.5 77.5 −58 log 77.5
1.5 = −99mV

Ca2+ 10−4 2.1 29 log 2.1
10−4 = +125mV

Squid Axon T = 20◦C

K+ 400 20 58 log 20
400 = −75mV

Na+ 50 440 58 log 440
50 = +55mV

Cl− 40-150 560 −58 log 560
40−150 = −66 to − 33mV

Ca2+ 10−4 10 29 log 10
10−4 = +145mV

Mammalian
cell

T = 37◦C

K+ 140 5 62 log 5
140 = −89.4mV

Na+ 5-15 145 62 log 145
5−15 = +90 − (+61)mV

Cl− 4 110 −62 log 110
4 = −89mV

Ca2+ 10−4 2.5-5 31 log 2.5−5
10−4 = +136 − (+145)mV

where the Pj ’s are the permeabilities of each of the three ionic species. This is a
generalization of the Nernst equilibrium discussed above and is called the Goldman-
Hodgkin-Katz equation (GHK). With one species, the equation reduces to the
Nernst potential. For example, in the squid axon, the ratios of the permeabili-
ties, at rest, are PK : PNa : PCl = 1 : 0.03 : 0.1. The ion concentrations inside the
cell are, respectively, for K,Na and Cl, 400 mM, 50 mM, and 40 mM; while outside
the cell they are 10 mM, 460 mM, and 540 mM. Thus, at room temperature, the
equilibrium or resting potential is -70 mV.
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Table 2.2. Elementary constants

NA = 6.022 · 1023 /mol Avogadros number

k = 1.380658 · 10−23j/K Boltzmanns constant

R = 8.31451 j/(mol−K) Ideal gas constant

e = 1.602177 · 10−19 C electron charge

F = 96485.3 C/mol Faraday’s constant

ǫ0 = 8.85 · 10−12 F/m permittivity constant

Kelvin = Centigrade + 273.16

1 j = .238845 cal

L = liter

nt = newton

j = joule (nt-sec)

V = volt = 1joule/coulomb

C = coulomb

A = ampere (C/sec)

Ω = Ohm (V/A)

S = 1/Ω = siemens (A/V)

F = farad (sec-A/V) = (C/V)

2.4 Exercises

1. Suppose the external potassium in a mammalian cell is increased by a factor
of 10. What is the new value of EK?

2. At 10◦C a cell contains 80 mM sodium inside and has only 100 mM sodium
outside. What is the equilibrium potential for sodium?

3. Using the same permeabilities for the mammalian cell as were used for the
squid axon, compute Vrest, Vm using the table of ion concentrations.

4. Derive the Nernst equation from the Nernst-Planck equation by setting the
current to 0 and integrating with respect to x across the membrane.

5. Using the elementary constants defined in Table 2.3, obtain the two simplified
versions of the Nernst equation. Compute the calcium equilibrium potential
for a mammalian cell assuming that the extracellular concentration is 5 mM
and the intracellular is 10−4mM.
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6. Derive the constant field equation from the linear Nernst-Planck equation.

7. Derive the GHK equation from the constant field equation.

8. Consider the GHK equation and plot the I − V relation for different values
of the inside and outside concentrations. Show that for [C]out > [C]in (resp.
[C]out < [C]in ) the I − V plot is concave down (resp. up)

2.5 Equivalent circuits: the electrical analogue

We have seen in the previous section that the electrical properties of cells are de-
termined by the ionic species that move through the membrane. Currents flow
according to the permeabilities of ion channels and concentration gradients across
the cell membrane. However, all of our discussion so far has been in a steady-state
environment. The Goldman-Hodgkin-Katz equation does not determine how the
membrane potential changes in response to changes in the permeabilities. For this
reason, it cannot be used to understand how these changes in permeabilities may
generate an action potential. A very useful way to describe the behavior of the
membrane potential is in terms of electrical circuits; this is commonly called the
equivalent circuit model. The circuit consists of three components: (1) conductors
or resistors, representing the ion channels; (2) batteries, representing the concen-
tration gradients of the ions; and (3) capacitors, representing the ability of the
membrane to store charge. The equivalent circuit model leads to both an intuitive
and quantitative understanding of how the movement of ions generate electrical
signals in the nerve cell.

We first consider a membrane that is only permeable to potassium. The
equivalent circuit is shown in Figure 2.2. The lipid bilayer that comprises the cell
membrane has dielectric properties and as such behaves in much the same manner
as a capacitor. Recall that capacitors store charge and then release it in the form
of currents. The relationship between the charge stored and the potential is given
by:

q = CMVM ; (2.5)

that is, the total charge q is proportional to the potential VM with a proportional-
ity constant CM called the membrane capacitance. Note that the total capacitance
depends on the total area of the dielectric; thus larger neurons have a larger to-
tal capacitance than smaller ones. The capacitance per square centimeter is called
the specific membrane capacitance and will be denoted as cM . Hence, the total
membrane capacitance CM is the membrane specific capacitance cM times the to-
tal surface area of the cell. In general, the specific membrane capacitance may
depend on the potential; however, for most cell membranes, the specific membrane
capacitance is very close to 1 µ F/cm2.

Since current is the time derivative of charge, we can differentiate (2.5) and
obtain an expression for the specific capacitance current:

icap = cM
dVM

dt
. (2.6)
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CM VM

RK

EK

Lipid
bilayer

Channel

Figure 2.2. Cartoon of the cell membrane showing the insulating lipid
bilayer and a K+ channel which allows current to flow. The equivalent electrical
circuit is shown on the right

This gives the capacitance current per unit area. We will denote the total capaci-
tance current as Icap.

In the equivalent circuit, K+ channels are represented as a conductor in series
with a battery. If ĝK is the conductance of a single K+ channel, then, using Ohm’s
law, the ionic current through this channel is

ÎK = ĝK(VM − EK). (2.7)

Here EK is the potential generated by the battery; this is given by the K+ Nernst
potential. The driving force is VM − EK . Now suppose there are NK potassium
channels in a unit area of membrane. These can all be combined into the single
equivalent circuit shown in Figure 2.2. The conductance per unit area, or specific
membrane conductance (S/cm2) is given by gK = NK × ĝK and the specific mem-
brane resistance (Ω-cm2) is rK ≡ 1/gK . Since the Nernst potential depends only
on the concentration gradient of K+, and not on the number of K+ channels, it
follows that the K+ current, per unit area, is given by

IK = gK(VM − EK) =
VM − EK

rK
. (2.8)

Kirchhoff’s current law states that the total current into the cell must sum to
zero. Together with the equivalent circuit representation, this leads to a differential
equation for the membrane potential:

0 = icap + IK = cM
dVM

dt
+

VM − EK

rK
(2.9)

or

cM
dVM

dt
= − VM − EK

rK
= − gK(VM − EK). (2.10)
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Figure 2.3 shows an equivalent circuit with three parallel conductances and a
current source, I(t). Here the capacitance current must be equal to the sum of the
ionic currents and the current source. As before, the capacitance current, per unit
area, is given by (2.6) and the ionic current, per unit area, is given by

iion = gCl(VM − ECl) − gK(VM − EK) − gNa(VM − ENa). (2.11)

The current source is not typically expressed as current per unit area, so we must
divide I(t) by the total surface area of the neuron, A. It then follows that

cM
dVM

dt
= −gCl(VM − ECl) − gK(VM − EK) − gNa(VM − ENa) + I(t)/A. (2.12)

Note that we can rewrite this equation as

cM
dVM

dt
= − (VM − ER)

rM
+ I(t)/A (2.13)

where

ER = gClECl + gKEK + gNaENa

is the cell’s resting potential and

rM =
1

gCl + gK + gNa

is the specific membrane resistance.
For a passive membrane in which the conductances and currents are all con-

stant, then VM will reach a steady state:

Vss =
gClECl + gKEK + gNaENa + I/A

gCl + gk + gNa
.

In absence of the applied current, the steady state potential is a weighted sum of
the equilibrium potentials of the three currents. This is similar to the Goldman-
Hodgkin-Katz equation (2.4) in which the contribution to the resting potential by
each ion is weighted in proportion to the permeability of the membrane for that
particular ion. Note, however, that in the equivalent circuit model, the equilibrium
is a linear weighted sum of the equilibrium potentials, while in the GHK equation,
the sum is nonlinear.

We remark that membrane conductance and permeability are related concepts;
however, they are not the same. The permeability depends on the state of the
membrane, while conductance depends on both the state of the membrane and the
concentration of the ions. The permeability to K+, for example, may be high if
there are a large number of open K+ channels. However, if the concentration of
K+ ions is low on both sides of the membrane, then the K+ conductance would be
low.
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KE NaE

gCl

ClE

CM

gK gNa

I(t)

Figure 2.3. Equivalent circuit for a membrane with three channels.

2.6 The membrane time constant

In this section, we consider how a passive, isopotential cell responds to an applied
current. This will help explain how each component of the electrical circuit con-
tributes to changes in the membrane potential. The cell is said to be passive if its
electrical properties do not change during signaling. Such a cell cannot generate
an action potential; however, it is important to understand how a cell’s passive, or
constant, properties influence changes in the membrane potential before consider-
ing active signaling. Moreover, many dendrites do not have gated channels so their
behavior is influenced primarily by their passive properties. The cell is said to be
isopotential if the membrane potential is uniform at all points of the cell; that is,
the membrane potential depends only on time. To simplify the analysis, we will
consider a spherical cell with radius ρ.

Suppose that this cell is injected with an applied current, I(t), that is turned
on at t = 0 to some constant value, I0, and turned off at t = T . Here, we assume
that I0 > 0; however, this is really not necessary. Note that for an isopotential cell,
the injected current distributes uniformly across the surface. It follows that for a
spherical cell, the current flowing across a unit area of the membrane is

IM (t) =
I(t)

4πρ2
=







I0
4πρ2 if 0 < t < T

0 otherwise

(2.14)

As before, suppose that cM is the specific membrane capacitance, rM is the
specific membrane resistance and ER is the cell’s resting potential. To simplify
things, we take ER = 0 so that VM measures deviation of the membrane potential
from rest. From 2.13, the membrane potential satisfies the ordinary differential
equation

cM
dVM

dt
= − VM

rM
+ IM (t). (2.15)
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If the cell starts at rest, then the solution of this linear equation satisfies

VM (t) =
rMI0
4πρ2

(

1 − e
− t

τM

)

for 0 < t < T (2.16)

where τM ≡ 1
cMrM

is the membrane time constant and

VM (t) = VM (T )e
− t

τM for t > T. (2.17)

The solution is shown in Figure 2.4. Once the current is turned on, the mem-
brane potential asymptotically approaches the steady state value rMI0/(4πρ

2). The
approach is exponential with the time constant τM . The membrane time constant
also determines the rate at which the membrane potential decays back to rest after
the current is turned off. The steady state membrane potential satisfies

I0
rM

4πρ2
≡ I0RINP (2.18)

where RINP is the input resistance of the cell. Note that if the input current changes
by ∆I, then the steady state membrane potential changes by RINP × ∆I; that is,
the input resistance is the slope of the I − V curve obtained by plotting the steady
state voltage against the injected current.

The initial rise in membrane potential is determined primarily by the mem-
brane capacitance. Initially the voltage across the resistor and capacitor are both
equal to 0. From Ohm’s law, it follows that initially no current flows through the re-
sistor and all the current is due to the capacitor. Because of the capacitive current,
the potential across the capacitor and hence the membrane potential, will become
more positive. As VM increases, the membrane potential difference begins to drive
current across the membrane resistance resulting in less current across the capac-
itor. Eventually, the membrane potential reaches a value where all the membrane
current flows through the resistor. This value is given by VM = I0RINP .

Figure 2.4 also shows responses in which there are purely resistive or purely
capacitive elements. If there is no membrane capacitance, then VM satisfies

VM (t) = rMIM (t). (2.19)

That is, VM jumps to the steady state potential, RINP I0, as soon as the injected
current is turned on and it jumps back to rest as soon as the current is turned off.
If there is only a capacitive element, then the membrane potential changes linearly
as long as there is an applied current.

2.7 The cable equation

We have, so far, considered the passive properties of an isopotential cell. This
analysis may be used to describe signaling within the cell body, which can be ap-
proximated by a sphere. However, it is clearly not appropriate for studying electrical
properties of the axon or dendrites. These are better approximated by cylinders
that are not isopotential. A subthreshold voltage signal that is initiated at one
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VM purely

capacitivepurely

resistive

ImRM

time

IM

Im

VM

Iion

Iion

Icap
Icap

IM

Figure 2.4. The change of membrane potential in response to a step of
current. The membrane potential is shown with a solid line. The dashed lines show
the time courses of the purely capacitive and resistive elements. The bottom panel
shows the time course of the total membrane current, the ionic current and the
capacitive current.

point along the axon or dendrite will decrease in amplitude with distance from the
point of initiation. It is important to understand how the geometry of the cell af-
fects the spread of the signal. The signal may, for example, correspond to synaptic
input from another neuron. Understanding how geometry affects the spread of the
signal will help determine whether the synaptic input will cause the cell to fire an
action potential. Here we assume that the membrane is passive, so the analysis is
more applicable to dendrites than to axons. However, as we shall describe later, the
passive spread of current flow helps determine the velocity of propagating action
potentials in the axon.

We consider a cell that is shaped as a long cylinder, or cable, of radius a. We
assume that the current flow is along a single spatial dimension, x, the distance
along the cable. In particular, membrane potential depends only on the x-variable,
not on the radial or angular components. The cable equation is a partial differential
equation that describes how the membrane potential VM (x, t) depends on currents
entering, leaving and flowing within the neuron. The equivalent circuit is shown in
Figure 2.5 where Ilong is the current along the inside of the cable, IM is the current
across the membrane, RL is the resistance of the cytoplasm, Re is the resistance of
the extracellular space, RM is the membrane resistance and CM is the membrane
capacitance. In what follows, we will assume that Re = 0, so that the extracellular
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space is isopotential. This assumption is justified if the cable is in a bath with large
cross-sectional area.

x

RL

Re

CMRM

Ilong

a
IM

Figure 2.5. Equivalent circuit for a uniform passive cable.

We first consider the axial current flowing along the neuron due to voltage
gradients. Note that the total resistance of the cytoplasm grows in proportion to
the length of the cable and is inversely proportional to the cross-sectional area of the
cable. The specific intracellular resistivity, which we denote as rL, is the constant
of proportionality. Hence, a cable of radius a and length ∆x has a total resistance
of RL = rL∆x/(πa2) It follows from Ohm’s law that at any point x, the decrease
in VM with distance is equal to the current times the resistance. That is,

VM (x+ ∆x, t) − VM (x, t) = −Ilong(x, t)RL = −Ilong(x, t)
∆x

πa2
rL. (2.20)

There is a minus sign because of the convention that positive current is a flow of
positive charges from left to right. If voltage decreases with increasing x, then the
current is positive. In the limit ∆x→ 0,

Ilong(x, t) = −πa
2

rL

∂VM

∂x
(x, t). (2.21)

Let iion be the current per unit area due to ions flowing into and out of the
cell. Then the total ionic current that flows across a membrane of radius a and
length ∆x is given by Iion = (2πa∆x)iion.

Recall that the rate of change of the membrane potential is determined by
the capacitance. The total capacitance of a membrane is equal to the specific
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membrance capacitance cM multiplied by the total surface area of the membrane.
Hence, for a cable of radius a and length ∆x, the total capacitance is given by
CM = (2πa∆x)cM and the amount of current needed to change the membrane
potential at a rate ∂VM/∂t is

Icap = (2πa∆x)cM
∂VM

∂t
. (2.22)

From Kirchhoff’s law, the change in intracellular axial current is equal to the
amount of current that flows across the membrane. Hence,

Icap(x, t) + Iion(x, t) = Ilong(x+ ∆x, t) − Ilong(x, t) (2.23)

from it which it follows that

(2πa∆x)cM
∂VM

∂t
+ (2πa∆x)iion =

πa2

rL

∂VM

∂x
(x+ ∆x, t) − πa2

rL

∂VM

∂x
(x, t)

We divide both sides of this equation by 2πa∆x and let ∆x→ 0 to obtain the cable
equation:

cM
∂VM

∂t
=

a

2rL

∂2VM

∂x2
− iion (2.24)

For a passive cable, in which the resting potential is assumed to be zero,

iion = VM (x, t)/rM (2.25)

where rM is the specific membrane resistance. Then (2.24) becomes

cM
∂VM

∂t
=

a

2rL

∂2VM

∂x2
− VM

rM
. (2.26)

We can rewrite this equation as

τM
∂VM

∂t
= λ2 ∂

2VM

∂x2
− VM (2.27)

where

λ =

√

arM
2rL

and τM = cMrM (2.28)

are the space or length constant and the membrane time constant, respectively. Note
that the space constant depends on the geometry of the cable, that is the cable’s
diameter; however, the time constant does not.

Later, we shall give a detailed analysis of solutions to the cable equation
and properties of passive dendrites. For now, it is instructive to consider steady
state solutions. Suppose, for example, we consider a semi-infinite cable (defined
for x > 0) and we inject a step of current, I0, at x = 0. As t → ∞, the solution
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VM (x, t) approaches a steady-state solution Vss(x) that does not depend on time.
Setting ∂VM

∂t = 0 in (2.27), we find that Vss satisfies

λ2 d
2Vss

dx2
− Vss = 0. (2.29)

In order to solve this equation, we need boundary conditions. Recall from (2.21)
that

IL = −πa
2

rL

∂VM

∂x
.

It follows that Vss must satisfy the boundary condition

dVss

dx
(0) = − rL

πa2
I0. (2.30)

The solution of (2.29), (2.30) is

Vss(x) =
λrL
πa2

I0e
−x/λ. (2.31)

Note that the membrane potential decays exponentially. The distance at which
the potential has decayed to 1/e is the space constant λ. Since the space constant
is proportional to the square root of the cable’s radius, we conclude that thicker
axons or dendrites have longer space constants than narrower processes. That is,
thicker processes transmit signals for greater distances. As we discuss later, this
is important because it influences the ability of the neuron to spatially summate
incoming synaptic potentials. Moreover, the electrotonic, or passive, conduction
plays an important role in the propagation of the action potential. Thicker cells
with a longer space constant are more easily excited and are able to generate faster
action potentials.

The input resistance is defined to be the steady-state membrane potential,
evaluated at x = 0, divided by the injected current. That is,

Rinp = Vss(0)/I0 = rLλ =
1

πa3/2

√

rMrL/2. (2.32)

Note that the input resistance of the cable varies with the -3/2 power of the cable
radius. Therefore, the input conductance is directly proportional to the 3/2 power
of the cable radius. The input resistance is important because it is something that
can be measured experimentally. Since it is also possible to measure the space
constant λ, one can compute rM and rL from experimental data.

2.8 The squid action potential

We have so far viewed the membrane as a passive cable. However, linear cables
cannot transmit information over long distances unless the cable has an enormous
diameter. For example, the squid axon is more than 5 centimeters long, has a
diameter of about a half a millimeter, a resting membrane resistance of rM=700
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Ω cm2 and a transmembrane resistance of rL=30 Ω cm. Thus, the space constant
for the squid axon is λ = 5.4 mm. This is an order of magnitude smaller than the
length. If the potential at one end of the axon is held at 120 mV above rest, then
the potential at the other end is about 10 µV above rest, a 10000-fold decrement. In
order for neural signals to reach any distance, there must be another way to carry
them so that they do not degrade.

Nature has solved this problem by inserting voltage-gated channels into the
membranes of many cell types. These channels are proteins which selectively let
different ion species into the cell. Furthermore, the permeability of the channels
depends on the local environment near the channel. In particular, for voltage gated
channels, whether the channel is open or closed depends on the local potential
near the channel. It is the opening and closing of voltage-gated channels that is
responsible for the generation of the action potential that propagates along the
axon.

Hodgkin and Huxley (1952) were the first to provide a comprehensive, quanti-
tative description of the regenerative currents generating the action potential. The
choice of the squid axon was fortuitous since the electrical properties rely primarily
on sodium and potassium ions. Consider the equivalent circuit shown in Figure 2.6
and assume that the cell is isopotential. Then the membrane potential satisfies

cM
dV

dt
= −gNa(V − ENa) − gK(V − EK) − gL(V − EL).

Here, we write V instead of VM . IL ≡ gL(V − EL) is called the leak current. It
corresponds to passive flow of ions through nongated channels. The leak conduc-
tance, gL, is constant. Since most nongated channels are permeable to K+ ions, EL

is close to EK . The conductances gNa and gK may change with time since these
correspond to the opening and closing of Na+ and K+ channels, respectively. At
rest, gK is about 30-fold bigger than gNa so that the resting state is near EK at
about -65 mV. Suppose that we could increase the conductance of gNa 100-fold.
Then the resting potential would be much closer to the Nernst potential of sodium,
which is about +55 mV. Thus the amplification of the potential, such as during an
action potential, involves changes in the relative conductances of the dominant ionic
species. Hodgkin and Huxley’s insight was that voltage-gated channels provide the
substrate for this dynamic regulation of the conductances.

The basic mechanisms underlying action potentials are the following. At rest,
most of the sodium channels are closed so the membrane potential is determined pri-
marily by the K+ Nernst potential. If the cell is depolarized above some threshold,
then sodium channels open and this further depolarizes the cell. This allows even
more sodium channels to open, allowing for more sodium ions to enter the cell and
forcing the cell towards the sodium Nernst potential. This is the up-stroke of the
action potential. The sodium channel is transient so that even when depolarized,
the Na+ channels eventually shut down. In the meantime, the depolarization opens
potassium channels and potassium ions exit the cell. This hyperpolarizes the cell as
the membrane potential moves toward the potassium equilibrium potential. Until
the voltage-gated potassium channels close up again, the membrane is refractory.
During this time, pumps exchange excess sodium ions inside the cell with excess
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Figure 2.6. Equivalent circuit underlying the Hodgkin-Huxley equations.
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Figure 2.7. The action potential. During the upstroke, sodium channels
open and the membrane potential approaches the sodium Nernst potential. During
the downstroke, sodium channels are closed, potassium channels are open and the
membrane potential approaches the potassium Nernst potential.

potassium ions outside of the cell.
Only a very small change in the percentage of the concentration of Na+ ions

is needed to generate an action potential. From the exercises, we find that ap-
proximately 53 million Na+ ions must diffuse across the membrane to depolarize
it from -60 to +50 mV. This influx in Na+ ions represents only a .012% change in
the internal Na+ concentration which is typically around 12 mM. Hence, changes in
local charge separation, not in concentration, are required for an action potential.
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2.9 Voltage-gated channels

In the Hodgkin-Huxley model, each channel is viewed as a transmembrane protein
that forms a pore through which ions can diffuse down their concentration gradients.
The pores have gates that can be either open or closed; the probability that a gate
is open or closed depends on the membrane potential. The gate model can be
summarized by the diagram:

C ⇀↽
β(V )
α(V ) O (2.33)

where C and O correspond to the closed and open states, respectively, and α(V )
and β(V ) are the voltage-dependent rate constants at which a gate goes from the
open to closed and closed to open states, respectively. If we let m be the fraction
of open gates, then 1 −m is the fraction of closed gates, and, from the law of mass
action,

dm

dt
= α(V )(1 −m) − β(V )m = (m∞(V ) −m)/τ(V ) (2.34)

where

m∞(V ) =
α(V )

α(V ) + β(V )
and τ(V ) =

1

α(V ) + β(V )
. (2.35)

It is easy to solve this equation if V is constant. The solution starting at m(0) is

m(t) = m∞(V ) + (m(0) −m∞(V ))e−t/τ(V ).

Note that the solution approaches the steady-state m∞(V ) at a rate determined by
the time-constant τ(V ).

One must obtain expressions for the voltage-dependent rate constants α and
β. In the Hodgkin-Huxley model, these functions were derived by fitting the data.
Borg-Graham and others have suggested a simple formulation based on thermody-
namics. The idea is that the probability of opening or closing a channel depends
exponentially on the potential. Thus,

α(V ) = Aα exp(−BαV ) and β(V ) = Aβ exp(−BβV ). (2.36)

From this, we find that

m∞(V ) =
1

1 + exp(−(V − Vh)/Vs)

where Vh, Vs are constants. We leave as an exercise the calculation of these constants
in terms of the constants A and B. The time constant, τ(V ) will generally be a
skewed bell-shaped function of V. If Bβ = −Bα, then τ(V ) is a hyperbolic secant.

2.10 Hodgkin-Huxley model

We are now ready to derive the Hodgkin-Huxley model for the propagation of an
action potential along the squid’s giant axon. As in Section 2.7, we view the axon
as a cylinder of fixed radius, a, so the membrane potential depends on the spatial
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variable x and time t. Here we assume that there are voltage-gated K+ and Na+

channels and a leak current. Then balancing currents, as in (2.23), we have

IL = Icap + Iion (2.37)

or, using (2.6) and (2.24),

a

2rL

∂2VM

∂x2
= cM

∂VM

∂t
+ IK + INa + IL. (2.38)

If each ionic current is Ohmic, then this can be written as

cM
∂VM

∂t
=

a

2rL

∂2VM

∂x2
− gK(VM − EK) − gNa(VM − ENa) − gL(VM − EL). (2.39)

To complete the model, we need to describe how one computes the membrane
conductances gK , gNa and gL. Note that the voltage-gated conductances gK and
gNa change with time during an action potential.

Hodgkin and Huxley used two experimental methods in order to separate
the ionic currents and compute how the K+ and Na+ conductances depend on
voltage. The first was a simple feedback circuit called the voltage-clamp that allows
the experimenter to hold the membrane potential at a constant or holding level
VC . The voltage clamp does so by injecting a current into the axon that is equal
and opposite to the current flowing through the voltage-gated channels. Electrical
details can be found in Johnston and Wu. Note that the voltage-clamp separates the
total membrane current into its ionic and capacitive components. Recall that the
capacitive current satisfies Icap = CMdVM/dt. If the membrane potential is fixed
at some constant, then the capacitive current must be zero. Moreover, the total
current can be made spatially uniform by inserting a highly conductive axial wire

inside the fiber; the axon is then said to be space-clamped. In this case, ∂2VM

∂x2 = 0.
It then follows that any changes in current must be due either to the leak or to the
opening and closing of voltage-gated membrane channels.

We first consider how the voltage-clamp can be used to determine the leak-
conductance, gL. Note that most of the voltage-gated channels are closed at rest.
Moreover, if we hyperpolarize the cell, then we may assume that all of the voltage-
gated channels are closed. It follows that if the membrane potential is clamped at
some sufficiently strong hyperpolarized level, then the total current is given by the
leak; that is,

IM ≈ gL(VC − EL).

From this equation, we can easily solve for gL.
Figure 2.8 shows the results of a voltage-clamp experiment when the mem-

brane potential is clamped at 0 mV. Note that there is an inward current followed
by an outward current. This result suggests that the depolarizing voltage step turns
on two voltage-gated channels. The inward current is due to the influx of Na+ ions,
while the outward current is due to the outward flow of K+ ions. It is not clear,
however, how these two separate ions contribute to the total membrane current.
For this it is necessary to isolate the two voltage-gated currents.
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Figure 2.8. Numerically computed voltage-clamp experiment. The mem-
brane potential is stepped from rest to 0 mV. This results in an inward current
followed by an outward current. The separate potassium and sodium currents are
also shown.

Hodgkin and Huxley were able to isolate the K+ current by replacing Na+ ions
in the external bathing solution with a larger, impermeant cation. This eliminated
the inward Na+ current. Now there are dozens of compounds that selectively block
different currents, many derived from natural toxins. (For example, the compound
tetrodotoxin, which blocks sodium channels, comes from the Pacific pufferfish, a
tasty, if slightly dangerous, Japanese delicacy called fugu.) Once Na+ is removed,
the voltage-clamp can be used to determine how IK depends on the membrane po-
tential. That is, one holds the membrane potential at various levels and determines
the time-course of the total membrane current IM . If Na+ is removed, then the
potassium current is computed by subtracting the leak current from IM .

It is also now possible to block K+ channels using the drug tetraethylammo-
nium. However, this was not available to Hodgkin and Huxley. However, if IK and
IL are known, then one computes INa simply by subtracting IK and IL from IM .
Once these currents are determined, we can calculate the IK and INa conductances
using Ohm’s law. That is,

gK(t) =
IK(t)

(VM − EK)
and gNa(t) =

INa(t)

(VM − ENa)
. (2.40)

Figure 2.9 shows the IK and INa conductances for different levels of the holding
potential. Note than gNa turns on more rapidly that gK . Moreover, the Na+

channels begin to close before the depolarization is turned off, while the K+ channels
remain open as long as the membrane is depolarized. This suggests that the Na+

channel can exist in three states: resting, activated and inactivated. When the cell
is depolarized, the Na+ channels switch from the resting (closed) to the activated
(open) state. If the depolarization is maintained, then the channel switches to the
inactivated (closed) state.
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Figure 2.9. Numerically computed voltage-clamp experiment. The mem-
brane potential is stepped to different values and the resulting potassium and sodium
conductances are computed.

A physical interpretation of the Na+ channel is shown in Figure 2.10. There
are two gates in the sodium channel: a fast one (the activation gate) represented by
the line and a slow one (the inactivation gate) represented by the ball. Both gates
must be open for the channel to conduct Na+ ions. At rest, the activation gate is
closed and the inactivation gate is open. When the membrane is depolarized, the
activation gate opens which allows sodium into the cell. The inactivation gate (ball)
closes at the higher potential so that the flow of sodium is transient. Hodgkin and
Huxley used a more complicated voltage clamp protocol, first stepping to a fixed
voltage and then apply brief voltage steps to probe the fast activation and slow
inactivation gates. Details can be found in Kandel/Schwartz/Jessell.

Using the voltage-clamp data, Hodgkin and Huxley derived expressions for
the K+ and Na+ conductances. They proposed that

gK = ḡKn
4 and gNa = ḡNam

3h (2.41)

where ḡK and ḡNa are maximum conductances and n,m and h are gating variables
that take values between 0 and 1. Hence, n4 represents the probability that a
potassium channel is open: the potassium channel has 4 independent components
each of which are identical. The probability that the sodium activation gate is open
is m3 and the probability that the sodium inactivation gate is open is 1 − h. Each
of the gating variables satisfies a first order differential equation of the form (2.34).
That is, they satisfy equations of the form:

dn

dt
= αn(V )(1 − n) − βn(V )n = (n∞(V ) − n)/τn(V )

dm

dt
= αm(V )(1 −m) − βm(V )m = (m∞(V ) −m)/τm(V )

dh

dt
= αh(V )(1 − h) − βh(V )h = (h∞(V ) − h)/τh(V ).
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Figure 2.10. The Hodgkin-Huxley sodium channel. (A-C) Voltage clamp
dynamics. (D) Physical model of the channel. If the voltage step is small (A), then
the Na-channel’s activation gate (line) is closed but the inactivation gate (ball) is
open. At intermediate steps (B), both gates are partially open. For large steps (C),
the activation gate is open and the inactivation gate is closed.

If X = n,m or h, then

X∞(V ) =
αX(V )

αX(V ) + βX(V )
and τX(V ) =

1

αX(V ) + βX(V )
. (2.42)

To match the data, Hodgkin and Huxley chose the following parameters and gating
functions: ḡNa = 120 mS/cm3, ḡK = 36 mS/cm3, ḡL = 0.3 mS/cm3, ENa = 50
mV, EK = -77 mV, EL = -54.4 mV,

αn(V ) = 0.01(V + 55)/(1 − exp(−(V + 55)/10))

βn(V ) = 0.125 exp(−(V + 65)/80)

αm(V ) = 0.1(V + 40)/(1 − exp(−(V + 40)/10))

βm(V ) = 4 exp(−(V + 65)/18)

αh(V ) = 0.07 exp(−(V + 65)/20)

βh(V ) = 1/(1 + exp(−(V + 35)/10)).

In Figure 2.11, we plot the activation curves n∞(V ),m∞(V ) and h∞(V ) along
with τn(V ), τm(V ) and τh(V ). Note that n∞ and m∞ are increasing functions that
approach 0 for hyperpolarizing currents and approach 1 for depolarizing currents.
Hence, n and m become activated when the membrane is depolarized. On the other
hand, h∞(V ) is a decreasing function so the sodium channels inactivate when the
membrane is depolarized. It is also important to note that τm(V ) is considerably
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Figure 2.11. HH functions. Left shows the steady state opening of the
gates and right shows the time constants.
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Figure 2.12. Response of the activation and inactivation variables
m,h, and n to a step in voltage.

smaller than τn or τh. Hence, sodium channels activate much faster than they
inactivate or potassium channels open. In Figure 2.12, we show the response of
m,h, and n to a step in voltage.

2.11 The action potential revisited

In summary, the Hodgkin-Huxley model is a system of four differential equations;
there is one equation for the membrane potential and three equations for chan-
nel gating variables. In the case of a spaced-clamped squid axon, we write these



i i

i

i

i

i

34 Chapter 2. The Hodgkin-Huxley equations

equations as:

cM
dV

dt
= −ḡNam

3h(V − ENa) − ḡKn
4(V − EK) − ḡL(V − EL)

dn

dt
= φ[αn(V )(1 − n) − βn(V )n] (2.43)

dm

dt
= φ[αm(V )(1 −m) − βm(V )m]

dh

dt
= φ[αh(V )(1 − h) − βh(V )h]

Here we added a parameter φ; this is the temperature factor. It is important to
realize that the temperature at which an experiment is done can be very important.
Since channels are stochastic in nature, they are sensitive to the temperature so
that the rates of switching states depend exponentially on the temperature. Higher
temperatures cause faster switching. Thus, there is a factor:

φ = Q
(T−Tbase)/10
10 . (2.44)

Q10 is the ratio of the rates for an increase in temperature by 10◦ C. For the squid,
Tbase = 6.3◦ C and Q10 = 3.

Figure 2.13 shows solutions of these equations in response to different levels
of steps in currents. Note that there is “all-or-none” behavior: When the applied
current is below some threshold, the membrane potential returns quickly to rest;
when the current is above some threshold, there is an action potential. If the
applied current is sufficiently large and held for a sufficiently long time, then the
model generates a periodic response.
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Figure 2.13. Responses of the HH model to applied currents. Left: tran-
sient responses showing “all-or-none” behavior; Right: Sustained periodic response.

Figure 2.14 shows of an action potential along with plots of the Na+ and K+

conductances, gNa and gK . Here, we start with the cell at rest and then depolarize
the cell by 10 mV at t = 0. The cell then generates a single action potential. In
Section 2.8, we described the events underlying the action potential in terms of
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Figure 2.14. Solution of the Hodgkin-Huxley equations showing an action
potential. Also shown are the sodium and potassium conductances.

the inward and outward flow of sodium and potassium ions. Here we give a more
“mathematical” explanation in terms of the behavior of the dependent variables in
the differential equations.

When we depolarize the cell, we change the values of the activation curves:
n∞(V ) and m∞(V ) increase, while h∞(V ) decreases. Since n,m and h tend to-
wards their activation curves, it follows that n and m initially increase, while h
decreases. That is, potassium channels open, while sodium channels both activate
and inactivate. However, τm is much smaller than both τh and τn. It follows that
the Na+ channels activate much faster than they inactivate or K+ channels open.
Therefore, the Na+ conductance, gNa = ḡNam

3h, increases faster than gK = ḡn4.
The increase in the Na+ conductance leads to a large increase in the Na+

current, INa = gNa(V − ENa). As long as the cell is near rest, the driving force
V − ENa is large (recall that ENa ≈ +55mV ). Hence, the sodium current will
dominate the equation for the membrane potential and V will increase towards the
Na+ Nernst potential. As V increases, m∞(V ) increases further, leading to further
increase in Na+ activation.

As V increases towards ENa, sodium channels inactivate. This is because
h→ h∞(V ) ≈ 0. Moreover, the sodium driving force V −ENa decreases. For both
reasons, the Na+ current turns off. Meanwhile, the potassium channel activates
because n → n∞(V ) ≈ 1. Moreover, the K+ driving force V − EK becomes very
large. It follows that eventually, the potassium current dominates and the mem-
brane potential must fall back towards the K+ Nernst potential. This corresponds
to the down-stroke of the action potential.

After the action potential, the cell is hyperpolarized with m∞ ≈ 0, n∞ ≈ 0
and h∞ ≈ 1. After some time, m,n and h approach their steady state values and
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Figure 2.15. Mechanisms underlying the action potential.

the cell returns to rest.

2.12 Bibliography

There are many standard neuroscience textbooks that present the biological aspects
covered in this chapter in much more detail. These textbooks include Kandel,
Schwartz and Jessell [28], Hille [22] and Martin [36]. The reader is also highly
recommended to look at Hodgkin and Huxley’s original papers [1]. A review of
these papers, along with a short history leading up to them, is given in Rinzel [42].
Excellent textbooks, which emphasize modeling and quantitative approaches, are
Johnston and Wu [?], Koch [30], Jack et. al.[25], Izhikevich izhikevichbook, and
Dayan and Abbott [10]. Keener and Sneyd [29] and Fall et. al. [14] give detailed
introductions to mathematical aspects of cellular biophysics.

2.13 Exercises

1. Consider a passive, spherical cell with radius .003cm2, a resting membrane
potential of −65mV , a membrane capacitance of 1µF/cm2 and a membrane
resistance of Rm = 700Ωcm2. Suppose that the cell is injected with an ap-
plied current of 5nA/µm2 for two seconds and then turned off. What is the
membrane potential at t = 1, t = 2 and t = 3?

2. Suppose that a passive axon has a diameter of half a millimeter, a resting
membrane resistance of Rm = 700Ωcm2, and a transmembrane resistance of
Ri = 30Ωcm. Compute the space constant. If the axon is 5 centimeters
long and one end of the axon is held at 120 mV above rest, then what is the
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potential at the other end?

3. (Johnston and Wu, page 12) The membrane capacitance of a typical cell is 1
µF/cm2 and the concentration of ions inside and outside of the cell is about .5
M. Calculate the fraction of uncompensated ions on each side of the membrane
required to produce 100 mV in a spherical cell with a radius of 25 µm.

4. Numerically solve the Hodgkin-Huxley equations. Start the system at rest
and, at some later time, inject an applied current to generate an action po-
tential. Plot the time courses of the sodium and potassium conductances.

5. Numerically perform space-clamp experiments. That is, start the Hodgkin-
Huxley model at rest and, at some later time, change the membrane potential
and keep it as some “clamped” level. Plot the sodium and potassium conduc-
tances for when the membrane potential is stepped to different values.
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Chapter 3

Dendrites

In this chapter, we will derive mathematical theories for describing dendrites. Den-
drites are very important for many reasons. Indeed, the majority of the total mem-
brane area of many neurons is occupied by the dendritic tree. Dendrites enable
neurons to connect to thousands of other cells, far more than would be possible
with just a soma, as there is a huge membrane area to make connections. Den-
drites may direct many subthreshold postsynaptic potentials (PSPs) towards the
soma, which summates these inputs and determines if the neuron will fire an action
potential. In addition to the tree-like structure of dendrites, many dendrites have
additional fine structures at the ends of the branches called spines. During devel-
opment, animals that are raised in rich sensory environments have more extensive
dendritic tress and more spines.

3.1 Multiple compartments

A very useful way to treat complicated dendritic structures is the compartimental
approach. Here one divides the dendritic tree into small segments or compartments
that are all linked together. Examples are shown in Figure ??. Each compartment
is assumed to be isopotential and spatially uniform in its properties. Differences
in voltage and nonuniformity in membrane properties, including diameter, occur
between compartments rather than within them.

As a simple example, consider the two-compartment model shown in Figure
??. An equivalent circuit for this model is shown in Figure ??. Each compartment
is viewed as an isopotential cylinder with radius ai and length Li. Let Vi be the
membrane potential of the ith compartment and let ci and rMi be the corresponding
specific membrane capacitance and specific membrane resistivity, respectively. We
assume that each compartment has an electrode current and the total electrode cur-
rent is given by Ii

electrode. Finally, we assume that the intracellular, or longitudinal,
resistivity is given by rL.

Now the capacitive and ionic currents for each compartment must be balanced

39
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by the longitudinal and electrode currents. That is,

iicap + iiion = iilong + iielectrode (3.1)

where iicap and iiion are the capacitve and ionic currents per unit area of membrane
for compartment i. As before,

iicap = ci
dVi

dt
and iiion =

Vi

rMi
(3.2)

if we assume that the resting potential is 0. In order to compute iilong, we need to
determine total axial resistance. Note that the total resistance between the centers
of the two comparments is simply the sum of the two resistances of the half-cylinders
that separate the compartment centers. That is the total resistance is given by:

Rlong =
rLL1

2πa2
1

+
rLL2

2πa2
2

(3.3)

Using Ohm’s law, we can write the expressions for the current from comparments i
to compartment j as

i1long = g1,2(V2 − V1) and i2long = g2,1(V1 − V2). (3.4)

The coupling terms g1,2 and g2,1 are obtained by inverting (3.3) and dividing by
the surface area of the compartment of interest. That is,

g1,2 =
a1a

2
2

rLL1(a2
2L1 + a2

1L2

and

g2,1 =
a2a

2
1

rLL1(a2
2L1 + a2

1L2
.

Finally, to compute iielectrode, we divide the total electrode currents by the surface
areas of the compartments. That is,

iielectrode =
Ii
electrode

Ai

where Ai = 2πaiLi is the surface area of compartment i.
Putting this all together, we find that the equations for two connected cylinders

are:

c1
dV1

dt
+

V1

rm1
= g1,2(V2 − V1) +

I1
electrode

A1

c2
dV2

dt
+

V2

rm2
= g2,1(V1 − V2) +

I2
electrode

A2
(3.5)

If instead of using conductances, gi,j , we use r1 = 1/g1,2 and r2 = 1/g2,1 then we
can express this system as:

c1
dV1

dt
+

V1

rm1
=
V2 − V1

r1
+ i1

c2
dV2

dt
+

V2

rm2
=
V1 − V2

r2
+ i2 (3.6)
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where ii = Ii
electrode/Ai.

We can now explore the effects of two compartments on the input resistance of
the “cell.” Suppose that we inject current into cell 1 only. Moreover, each cylinder
is identical with the same length and radius. Then r1 = r2 ≡ r. What is the input
resistance due to the coupling? To solve this, we must compute the steady state
potential due to the coupling. Without loss in generality, define rM = rM1 = rM2.
A simple bit of algebra shows that

V1/i1 =
rM (r + rM )

r + 2rM

and thus the ratio of the coupled to the uncoupled input resistance is:

Rinput,coupled

Rinput,uncoupled
= 1 − rM

r + 2rm
;

that is, the input resistance decreases. To get the same increment in potential the
current required for the coupled system is more than the uncoupled system because
some current is drained away by the second compartment.

In a similar way, we can derive a compartmental model for a general tree-like
structure. A general algorithm for computing the correct equations is:

• For each cylinder, j, with radius and length aj and Lj in microns, compute

surface area, Aj = 2πajLj and the axial resistance factor: Qj =
Lj

πa2
j

.

• The membrane capacitance is Cj = cjAj ×10−8 and the membrane resistance
is Rj = (rmj/Aj) × 108.

• The coupling resistance between compartment j and k is Rjk = rL

2 (Qj +Qk)×
104.

• The equations are then

Cj
dVj

dt
= − Vj

Rj
+

∑

k connected j

Vk − Vj

Rjk
+ Ij .

The factors of 10±8 and 104 are the conversion from microns to centimeters. For
example, consider a two compartment model with (i) compartment 1 having a
length of 200µ and radius of 30µ and (ii) compartment 2 having a length of 20µ
and radius of 20µ. Then, R1 = 2.65× 107Ω, C1 = 3.77× 10−10F ,R2 = 3.98× 108Ω,
C2 = 2.52 × 10−11F , and Rlong = 4.34 × 104Ω, thus

10
dV1

dt
= −V1 + 611(V2 − V1), 10

dV2

dt
= −V2 + 9181(V2 − V1)

where the time is in milliseconds and the coupling coefficients are dimensionless.
Note how the ratio of the coupling strengths is the same as the reciprocal of the
area ratios. The bigger compartment has a much greater effect on the smaller
compartment than vice versa.
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A

B 

2

3

1

Figure 3.1. A. Branched dendrite converted to a series of cylinders for
modeling. B. Simple 3 compartment model.

We also would like to remark that the standard units used in most com-
partmental models are µF/cm2, mS/cm2, and µA/cm2 for the capacitance, con-
ductance, and applied current. Experimentalists don’t generally know the current
density but only the total current injected. Typical currents injected into a cell are
of the order of less than a nanoampere.

To generate arbitrary compartmental models, one needs only to compute the
length, diameter, and the connectivity of the cylinders that make up the dendritic
tree. The software NEURON enables an experimentalist to input a digitized picture
of a neuron and the program will automatically produce a compartmental model of
the neuron by linking together many cylinders.

3.1.1 Homework

1. Derive the differential equations for the three compartment model shown in
figure 3.1 B, where you can take Rm,s = 10000Ω − cm2, Cm,s = 1µF/cm2,
and Rlong,s = 100Ω − cm. The compartments have dimensions, (ℓj , ρj) =
(50, 25), (100, 15), (80, 10) respectively. Compute the input resistance for a
current applied to compartments 1 and 3 (the “soma” and the “distal den-
drite.”)
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2. Consider 3 identical compartments coupled in a chain by the same coupling
resistance:

C
dV1

dt
= −V1

R
+ (V2 − V1)/Rcouple + I

C
dV2

dt
= −V2

R
+ (V3 − 2V2 + V1)/Rcouple

C
dV3

dt
= −V3

R
+ (V2 − V3)/Rcouple.

Compute the input resistance. What do you think happens with more and
more compartments?

3. Consider an semi-infinite array of compartments with only the first one re-
ceiving injected current. Can you prove that

V1/I1 =
R

1 + R
Rcouple

(1 − µ)

where

µ = 1 + z −
√

z2 + 2z, z =
R

2Rcouple
.

(Here is a hint. Show that the steady state voltages satisfy:

Vj+1 − 2(1 + z)Vj + Vj−1 = 0

except for j = 1. The general solution to this difference equation is just
Vj = Aµj

1 +Bµj
2 where µ1,2 are roots to µ2 − 2(1 + z)µ+ 1 = 0. One of these

roots, say, µ2, is greater than 1 so that as j → ∞ you better choose B = 0.
Choose A so that the correct equation for V1 holds:

0 = −V1

R
+
V2 − V1

Rcouple
+ I.

)

4. Consider a general N -compartment model for a passive neuron with current
injected into some or all of the compartments. This will obey the following
differential equations:

Cj
dVj

dt
= Ij +

∑

k

gjk(Vk − Vj) − gL,j(Vj − Vleak)

Suppose that gjk ≥ 0, Cj > 0, gL,j > 0. Prove that there is a unique
equilibrium point to this and that it is asymptotically stable. (Hint: This is
a diagonally dominant system.)
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5. Consider the infinite linear array of cells:

τ
dV1

dt
= V0 − V1 + β(V2 − V1)

τ
dVj

dt
= −Vj + β(Vj+1 − 2Vj + Vj−1)

Find the steady state solution to this. (Hint: The second group of equations
has the form Vj+1 = Vj(2 + 1/β)− Vj−1 which is a finite difference equation.

The general solution to such equations is Vj = C1r
j
1 + C2r

j
2. )

6. Consider a single compartment model with a sinusoidal current:

C
dV

dt
= −gL(V − Vleak) + I0 sinωt.

Find the steady state solution to this equation.

7. Consider the single compartment model:

C
dV

dt
= I − gL(V − Vleak) − g(t)(V − Vsyn)

where g(t) = 0 except when t ∈ [t1, t2] where it is ḡ. Solve this equation
assuming the cell starts from rest. For what values of Vsyn does V (t) increase
above rest?

3.2 The cable equation.

Mathematically, dendrites and axons are regarded as continuous media rather than
a series of compartments. Previously, we derived the cable equation for a simple
cable in which the radius along the cable was assumed to be constant. Here we
derive the cable equation for more general geometries. This is done by considering
the limit as the number of compartments in an approximation of it tends to infinity.

Suppose the cable is defined on the interval (0, ℓ) with a circular cross-section
and diameter d(x). We break the cable into n pieces and define xj = jh where
h = ℓ/n. Each piece has a surface area Aj = πdjh where dj = d(xj), and crossec-
tional area, πd2

j/4. Let cM and rM denote the specific membrane capacitance and
resistance, and let rL be the longitudinal resistance. Then, neglecting the end
points, the voltage satisfies:

cMAj
dVj

dt
= − Vj

rM/Aj
+

Vj+1 − Vj

4rLh/(πd2
j+1)

+
Vj−1 − Vj

4rLh/(πd2
j)

Note that we use the larger diameter for the transmembrane resistance; in simula-
tions, the average of the two would be preferred. Dividing by πh the coupling term
simplifies to:

1

h

(

d2
j+1(Vj+1 − Vj)

4rLh
−
d2

j (Vj − Vj−1)

4rLh

)

.
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As h→ 0, this goes to the diffusion operator:

1

4rL

∂

∂x

(

d2(x)
∂V

∂x

)

.

Thus, the cable equation has the form:

cm
∂V

∂t
= − V

rM
+

1

4rL

∂

∂x

(

d2(x)
∂V

∂x

)

. (3.7)

We remark that the term
d2

j(Vj−1 − Vj)

4rLh

has dimensions of current and in the limit as h→ 0 is called the longitudinal current:

IL = −πd
2(x)

4rL

∂V

∂x
. (3.8)

If one is interested only in the passive cable and d(x) = d is constant, then
it is convenient to multiply both sides by rM and divide by d obtaining the linear
cable equation:

τ
∂V

∂t
= −V + λ2 ∂

2V

∂x2
(3.9)

where

λ =

√

drM
4rL

(3.10)

is the space constant. Since λ depends on the diameter of the cable, this parameter
depends on the geometry of the cable. The quantity, τ = rMcM is the time constant
and is independent of geometry. For example, if cM = 1µF/cm2, rM = 20000Ωcm2,
rL = 100Ωcm and the diameter of the cable is 2 microns, then τ = 20 msec and
λ = 1 mm.

3.3 Linear cables with constant diameter.

3.3.1 The infinite cable

We first consider the infinite cable, so that −∞ < x < ∞, with some applied
current:

τ
∂V

∂t
+ V (x, t) − λ2 ∂

2V

∂x2
= rM I(x, t). (3.11)

The current, I(x, t) has units of µA/cm2. Additionally, we also must provide an
initial voltage distribution, V (x, 0) = V0(x). We will solve this using Fourier trans-
forms and then write the solution in terms of something called a Green’s function.
Let

V̂ (k, t) =

∫ ∞

−∞

e−ikxV (x, t) dx
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V̂0(k) =

∫ ∞

−∞

e−ikxV0(x) dx

Î(k, t) =

∫ ∞

−∞

e−ikxI(x, t) dx

denote the Fourier transforms of V, V0, and I. Then V̂ satisfies the differential
equation

dV̂

dt
+ (1 + λ2k2)V̂ /τ = rM Î/τ

V̂ (0) = V̂0

where we have dropped the k dependence for simplicity. This is a linear first order
ODE so we can write the solution:

V̂ (k, t) = e−(1+λ2k2)t/τ V̂0(k) + (rM/τ)

∫ t

0

e−(1+λ2k2)(t−s)Î(k, s) ds.

Recalling that the inverse Fourier transform is

V (x, t) =
1

2π

∫ ∞

−∞

eikxV̂ (k, t) dk

we find that V (x, t) is given by

V (x, t) =

∫ ∞

−∞

G(x − y, t)V0(y) dy +
rM
τ

∫ t

0

∫ ∞

−∞

G(x− y, t− s)I(y, s) dy ds

where

G(x, t) =
1

√

4πλ2t/τ
e−t/τe−x2/(λ2t/τ). (3.12)

Note that G(x, t) has dimensions of λ−1.
Suppose that V0(x) = 0 (that is, the membrane is at rest) and at t = 0, the

membrane is perturbed by a delta function in space and time. That is, I(x, t) =
I0δ(x)δ(t). Then

V (x, t) =
rMI0

τλ
√

4πt/τ
exp

(

− τx2

4λ2t

)

exp

(

− t

τ

)

. (3.13)

In the exercises below, you are asked to analyze this. One interesting point is that
at each spatial location x, the function V (x, t) reaches its maximum at a value
t∗(x). You can obtain this expression using calculus and show that for x large,
t∗(x) ≈ τx/2λ, that is, the voltage is a rapidly decaying “wave”.

For another example, consider an infinite cable with a step of constant applied
current at a single point: I(x, t) = I0δ(x). Plugging this into (3.12), we find that

V (x, t) =
rMI0λ

4

[

e−(x/λ)erfc

(

x
√
τ

2λ
√
t
−
√

t/τ

)

− e(x/λ)erfc

(

x
√
τ

2λ
√
t

+
√

t/τ

)]
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where

erfc(x) =
2√
π

∫ ∞

x

e−y2

dy. (3.14)

Note that erfc(0) = 1, erfc(∞) = 0 and erfc(−∞) = 2. If we let t → ∞ in (3.14)
then V (x, t) approaches the steady state solution

Vss(x) =
rM I0
2λ

e−|x|/λ.

Often a cable is described in terms of its electrotonic length which is L = ℓ/λ, where
ℓ is the physical length and λ is the space constant.

3.4 Finite and semi-infinite cables.

For the infinite cable, the only physically reasonable boundary condition is that
V (x) → 0 as |x| → ∞. However, for the finite and semi-infinite cables there are
several interesting boundary conditions that are often used:

• sealed end where no current can pass and so the longitudinal current IL = 0.
It then follows from (3.8) that ∂V

∂x (0) = 0.

• current injected at one end where a current of magnitude I(t) is injected at,
say, the end x = 0. In this case, ∂V

∂x (0) = 4rL

πd2 I(t).

• voltage clamp in which the voltage is clamped to some fixed level, so that
V (0) = Vc, a constant.

• short circuit or open end where the voltage is clamped to 0.

• lumped soma where we regard the soma as a single compartment attached to
the nerve cable. Suppose that the soma has total resistance Rs and capaci-
tance Cs. Then the boundary condition at x = 0 is

V (0, t)

Rs
+ CsVt(0, t) −

πd2

4rL
Vx(0, t) = 0

Note that the general steady-state equation, 0 = −V + λ2Vxx has solutions of the
equivalent forms:

V (x) = A1e
−x/λ +A2e

x/λ

V (x) = B1 cosh((l − x)/λ) +B2 sinh((l − x)/λ)

V (x) = C1 cosh(x/λ) + C2 sinh(x/λ)

The constants are determined from the boundary conditions. First consider the
semi-infinite cable. This has a solution of the form V (x) = A exp(−x/λ). Suppose
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that we inject current, I0 into the end of the cable. Recall that the longitudinal
current is I0 = −(πd2/4rL)dV/dx. Thus, we find that

A =
4λI0rL
πd2

.

Recall that the input resistance, Rinp of a cable as the ratio of the steady state
potential divided by the current injected. Thus, for the semi-infinite cable,

Rinp = V (0)/I(0) =
4λrL
πd2

=
2
√
rMrL

πd3/2

and the input conductance is given by

Ginp = 1/Rinp =
πd3/2

2
√
rMrL

.

For finite cables, it is convenient to use dimensionless space, X = x/λ and the
electrotonic length, L = ℓ/λ. Assume that the voltage at X = 0 is V0. Then the
general solution to the steady-state equation is:

V (X) = V0
cosh(L−X) +BL sinh(L−X)

coshL+BL sinhL

where BL is an arbitrary constant. This general solution is equivalent to asserting
that the boundary condition at X = 0 is V0 and that at X = L

BLV (L) +
dV

dX
(L) = 0.

The free parameter, BL, is the ratio of the terminal conductance for the cable, GL,
to that of the semi-infinite cable, Ginp. That is, BL = GL/Ginp.

For example, if we want the sealed end condition at X = L we take BL = 0
so that

V (X) = V0
cosh(L −X)

coshL
.

If we want the open end conditions, we take BL = ∞ so that

V (X) = V0
sinh(L−X)

sinhL
.

If we choose BL = 1 then
V (X) = V0e

−X

which is precisely the solution to the semi-infinite cable.
From these equations for the membrane potential, we can compute the input

resistance and input conductance of a finite-length cable. For example, consider
the sealed end condition at X = L. Suppose that a current, I0, is injected into the
other end at X = 0. Then the input resistance is given by

Rinp = V (0)/I0 = V0/I0.
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d0
d1

d2

Figure 3.2. A simple dendritic tree.

Now,

I0 = − 1

λrM
∂Vm∂X =

V0

λrM

sinh(L−X)

cosh(L)

It follows that

I0 =
V0

λrM
tanh(L) at X = 0

Hence,

Rinp = λrM
1

tanh(l)
and Ginp =

λrM
tanh(L)

3.5 Branching and equivalent cylinders.

The infinite cable and the finite cable are simple idealizations of the multi-branched
structure of true neurites. Here, we briefly look at branch points and describe the
Rall model for dendrites. Figure 3.2 hows a simple branched dendritic structure.
Consider the cable with diameter d0, length ℓ0 and space constant λ0 which branches
at x = x1 into two semi-infinite cables with diameters d1 and d2 and space constants
λ1 and λ2. The cable equation for such a structure can be solved on the individual
segments coupled with continuity of the voltages and the conservation of current.
Under certain constraints on the geometry, we can attain a stronger result than
continuity of the voltage and its derivative that is important physically and allows
us to significantly simplify the problem. With these constraints on the geometry,
we will show that having the branch point at x1 is exactly equivalent to extending
branch d0 to infinity.

Conservation of current implies that the current leaving the branch d0 equals
the sum of the currents entering branches d1 and d2. That is,

πd2
0

4rL
V ′

0(x1) =
πd2

1

4rL
V ′

1(x1) +
πd2

2

4rL
V ′

2(x1). (3.15)

Here we assume that the material properties of the cables are the same; only their
geometry differs. Now, if we let V0 ≡ V0(x1) = V1(x1) = V2(x1), then

V1(x) = V0e
λ1x and V2(x) = V0e

−λ2x
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for x > x1. Moreover, if Veq(x) is the membrane potential of the cable obtained by
extending branch d0 to infinity, then

Veq(x) = V0e
λ0x.

Plugging these into (3.15), and recalling that λj ∝
√

dj , we find that we can collapse
the three cables 0, 1, and 2 into a single semi-infinite cable with diameter d0 if

d
3
2
0 = d

3
2
1 + d

3
2
2 (3.16)

Will Rall was the first to recognize that if (3.16) is satisfied and the material
properties of the cables are the same, then the three cables 0, 1 and 2 can be
collapsed into an equivalent cylinder. For a complex structure, starting at the ends,
we can recursively simplify the model to a single semi-infinite cylinder. In the
previous example, we considered only two branches at the branch point; however,
we could have had any number of branches at each branch point as long as

d
3
2

P =
∑

d
3
2

D

where dP is the parent dendrite and dD are the daughter dendrites. If this condition
holds at every branch point and the material properties of the cables are the same,
then the entire dendritic tree can be reduced to an equivalent semi-infinite cable.

We have so far assumed that the branches attached to the final branch point
extend to infinity; that is, they correspond to semi-infinite cables. A similar analysis
holds if we assume that all of the branches have finite lengths. Here we must assume
that all dendrites end at the same electrotonic length. Recall that the electronic
length of a cable of length ℓ and space constant λ is ℓ/λ. Suppose, for example,
that the cables 1 and 2 shown in Figure ?? have lengths ℓ1 and ℓ2. If we assume
that ℓ1/λ1 = ℓ2/λ2, then we can collapse the three cables 0, 1 and 2 into a single
cable of diameter d0 and electrotonic length equal to ℓ0/λ0 +ℓ1/λ1 = ℓ0/λ0 +ℓ2/λ2.

Example

In the figure 3.3, we depict a dendritic tree consisting of several branches with
their lengths and diameters in microns. (a) Can they be reduced to an equivalent
cylinder (b) What is the electrotonic length (c) What is the input conductance.
Assume sealed ends for all terminal dendrites and assume that rM = 2000Ωcm2

and that rL = 60Ωcm.

Answer.

d3/2
a + d

3/2
b + d3/2

c = 1 + 1 + 1 = 3 = 2.083/2 = d
3/2
d

d
3/2
d + d3/2

e = 3 + 3 = 6 = 3.33/2 = d
3/2
f

so the 3/2 rule is obeyed. Clearly a,b,c are all the same electrotonic length. The
space constants are:

λa = λb = λc =
√

darM/4rL = 289µ
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20

3.3

10

10

1

2.08

2.0824

10
1

20
1.58

2 

36.6

40

2.85

EXAMPLE

HOMEWORK

a b

c
d

e

f

Figure 3.3. Example of the Rall reduction to an equivalent cylinder.

λd = λe =
√

derM/4rL = 416µ

λf =
√

dfrM/4rL = 524µ

Thus, the total electrotonic length of abc with d is

Labcd =
ℓa
λa

+
ℓd
λd

=
10

289
+

10

416
= .0586

Le =
ℓe
λe

=
24

416
= .0576

which are close enough to be considered equal (2% difference). Thus, we can com-
bine the whole thing into an equivalent cylinder. The total electrotonic length is
then:

L = Lf + Le = Lf + Labcd =
ℓf
λf

+ Le = 0.096 ≈ 0.1
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Finally, the input conductance is

Gin = G∞ tanh(L) =
πd3/2

2
√
RMRA

tanh(L)

which is

Gin =
tanh(0.1)(3.14159)(3.3× 10−4)3/2

2
√

2000× 60
= 2.7 × 10−9S

3.6 An isolated junction

The equivalent cylinder is a very useful method for reducing the analysis of complex
dendritic trees to a simpler model. However, there are limitations. For example,
one must assume that the so-called 3/2 law (see (3.16)) is satisfied. Another dif-
ficulty is related to the problem of determining the response of the dendritic tree
to an injected current. Consider, for example, the simple dendritic tree shown in
Figure 3.2. If the injection site is along the principle initial cylinder, then the equiv-
alent cylinder will determine how the membrane potential responses at this and the
daughter dendrites. However, if the injection site is along the daughter dendrites,
then, in order to use the equivalent circuit, one must assume that the current is
spread out evenly along all of the daughter dendrites that emerge from the same
junction point. One cannot use the equivalent circuit if only one of the daughter
dendrites receives input and the others receive none.

In this section, we consider a single isolated junction of three semi-infinite
cables with a point source of current injection. We do not assume that the 3/2 law
holds. We note that a considerably more general analysis for dendritic trees with
complex geometries is given in [Rinzel/Rall].

We consider the branched cable shown in Figure ??. The three cables are
denoted as C0, C1 and C2. Assume that the diameters and specific membrane
resistance of the cables are di and rMi, i = 0, 1, 2, respectively. Let rL be the
longitudinal resistivity. We assume that the junction point is at x = 0. Moreover, x
will denote the distance along each cable to the junction point. Finally, we assume
that there is an electrode current at an isolated point along C0; the distance from
this point to the junction point is denoted as y. Note that C0 may be either the
parent dendrite or one of the daughter dendrites.

We derive the steady-state solution to this problem. Except at the junction
and the injection points, each membrane potential Vi(x) satisfies the steady-state
cable equation:

λi
∂2Vi

∂x2
− Vi = 0

where

λi =

√

dirMi

4rL

is the space constant of corresponding cable. We now need to determine the bound-
ary conditions that must be satisfied. At the junction point, the three membrane
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potentials must be equal; moreover, the flow of current must be conserved. Hence,

V0(0) = V1(0) = V2(0) and
∑

d2
i

dVi

dx
(0) = 0.

At the electrode site, the injection current is conserved and spreads towards (de-
creasing x) or away from (increasing x) the junction point. Recall that the lon-
gitudinal current is given by (3.8). It follows that the boundary condition at the
junction point is:

dV0

dx
(y−) − dV0

dx
(y+) =

4rL
πd2

0

I0

where I0 is the total electrode current and the two terms on the left hand side
represent the left-handed and right-handed derivatives of V0 at y, respectively.

We leave it as an exercise to demonstrate that the solution of this problem is
given by:

V0(x) =
I0Rλ0

2
[exp(−|y − x|/λ0) + (2p0 − 1)exp(−(y + x)/λ0)]

V1(x) = p1I0Rλ1exp(−x/λ1 − y/λ0) (3.17)

V2(x) = p2I0Rλ2exp(−x/λ2 − y/λ0)

where, for i = 0, 1, 2,

pi =
d
3/2
i

d
3/2
1 + d

3/2
2 + d

3/2
3

and Rλi
=

4rLλi

πd2
i

.

An example is shown in Figure ??. If the injection site is along the thicker
dendrite, then this has little effect on the attenuation of the potential along the
thin branches. However, if the injection since is along on of the thinner dendrites,
then the big dendrite has a much greater effect on the attenuation between the two
thinner branches.

3.7 Exercises

1. (a) Plot profiles of V (x, t) for the response of an infinite cable (3.13) at different
spatial locations as a function of time. (b) Compute the time at which V (x, t)
reaches its maximum and show that for x large it is asymptotically linear in
x. (c) Compute the maximum value of the voltage for each spatial position.

2. Compute the steady-state response of the cable to a sustained periodic input.
That is I(x, t) = I0 sin(ωt)δ(x). (Hint: Everything will be easier if write the
current as proportional to exp(iωt) and use the linearity of the cable to assume
a solution of the form z(x) exp(iωt).. Then use the steady state infinite cable
result.) Compute the phase-shift as a function of the distance from the source.
Plot the amplitude at x = 0 as a function of the frequency. Determine how
quickly the amplitude falls off with distance as a function of frequency.
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3. Solve the cable equation τvt = −v + vxx + I(x, t) on the finite interval 0 <
x < L subject to the boundary conditions v(0) = 0 and vx(L) = 0. (Hint:
You could compute a Green’s function for this, or you could expand it in an
eigenfunction expansion by solving v′′ = βv with v(0) = 0 and v′(L) = 0.).

4. Consider a cable with electrotonic length L and a sealed end at x = L. Suppose
V (0) = V0. Show that the input conductance at X = 0 is

GL = G∞ tanh(L).

5. Prove that the homogeneous solution to equation

1

d(x)

d

dx

(

d2(x)dV

dx

)

= V (x) (3.18)

with boundary conditions dV/dx(0) = 0 and V (L) = 0 has no nonzero solu-
tions. (Hint: Without loss of generality, you can assume V (0) > 0. Show that
V (x) must be concave up in the interval (0, L).)

6. Numerically compute the solution to (3.18) with d(x) = 1−cx/L where c < 1,
V (0) = 1 and V ′(L) = 0. Compare the solutions for c = 0 to those with c = .95
when L = 10. Try c = −0.5 (corresponding to a fattening cable)

7. Do the equivalent cylinder reduction to the bottom dendrite in figure 3.3.

8. Advanced exercise. Consider a cable with three currents, as shown in figure
equivcyl. Suppose that the concentrations of the ions are those given for the
squid axon in table 2.3 and that the permeabilities are PK = 1, PCl = 0.1
and PNa = .03. Suppose the temperature is 20 C. Let I(V ) denote the total
current as defined by (2.3). Simulate the response to the following cable:

Cm
∂V

∂t
= −I(V ) +K

∂2V

∂x2

to a current step at x = 0. You can make Cm = 1,K = 1 without loss of
generality since these just set the time and space scales. Compare this to
the passive linear conductance cable model. Convince yourself that there is
very little difference. In particular, you might want to solve the steady state
boundary value problem for, say, V (0) = V0 and Vx(L) = 0. You cannot do
this analytically, but numerical solutions should be fairly simple.

3.8 Dendrites with active processes

We have, so far, primarily considered passive dendrites in which all of the conduc-
tances and currents are constant. However, it is now recognized that neurons may
have active voltage-gated conductances along the dendritic trees and these active
conductances may have a profound influence on the neuron’s firing properties and
how the neuron response to synaptic inputs. We note that active channels are typi-
cally unevenly distributed along the dendrites so, for example, there may be a higher
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Figure 3.4. Schematic of 2-compartment model showing applied currents
and outward and inward currents to soma and dendrite compartments.

distribution of, say, sodium channels in the proximal region near the soma than in
the distal region far from the soma. A useful way to model neurons with active
dendrites is to use the multicompartment approach. Here we present an example
of this due to Rinzel and Pinsky.

Pinsky and Rinzel developed a two-compartment model for CA3 hippocam-
pal pyramidal neurons in a guinea pig. This work was motivated by an earlier,
considerably more complex model of Traub which consisted of 19 compartments.
The reduced Pinsky-Rinzel model contained elements of the full model which were
thought to be essential and was capable of reproducing many of the important
stimulus-response properties of the Traub model. By considering a minimal re-
duced model, Pinsky and Rinzel were able to explain how interactions between the
somatic and dendritic compartments generate bursting with unusual wave-forms
which do not seem to arise in single-compartment models. The reduced model is
also considerably easier to implement computationally.

A schemata of the two-compartment model is shown in Figure 3.4. Motivated
by Traub’s model, the fast spiking currents are restricted to the soma while most of
the calcium and calcium modulated currents lie in the dendritic-like compartment.
The soma-like compartment has two voltage-dependent currents, an inward sodium
current and an outward delayed-rectifier potassium current. The dendritic compart-
ment has three voltage dependent currents. There is a fast calcium current and two
types of potassium currents: a Ca-activated potassium current and a potassium af-
terhyperpolarization. Electrotonic coupling between the compartments is modeled
using two parameters, gc and p, where gc represents the strength of coupling and p
represents the percentage of total area in the some-like compartment. Finally, the
model includes terms for applied current to the soma and dendrite.
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The model can generate bursting activity for appropriate values of the param-
eters. Figure 3.5 shows the wave-form of the spiking activity during a burst. This
type of activity does not typically arise in single-compartment models; it results
from interactions between the two compartments. Here we step through how this
burst is generated; a more complete and detailed description is given in [?].

The burst shown in Figure 3.5 results from electrotonic interactions between
soma and dendrite with significant coupling current that flows back and forth, al-
ternately providing depolarizing or hyperpolarizing current to each compartment.
The burst sequence is initiated by a somatic sodium spike. This is because INa

is activated at lower voltages that ICa. The leading sodium action potential de-
polarizes the dendrite through the spread of electrotonic current. The soma then
repolarizes, but only partially. This causes the dendritic membrane potential to fall
below the threshold for calcium spike generation, thereby delaying the full dendritic
spike. During this repolarization phase, current flows into the soma from the den-
drite which then initiates a second somatic spike. The second somatic spike stops
the drain of coupling current from the dendrite, enabling the dendrite to undergo
a full ICa-mediated voltage spike with accompanying rapid increase in Ca. The
dendritic spike then provides depolarization which drives soma activity. We note
that the calcium dendritic spikes are considerably broader than the somatic spikes.
The broad dendritic spike leads to strong stimulation of the soma which leads to
damped, high frequency spiking. The dendritic calcium spike, and hence the burst,
is terminated by the calcium-dependent potassium current. This builds up on a
slow time-scale during the dendritic spiking activity. Hence, the burst duration
is primarily determined by the amount of time required for Ca to build up. We
note that the length of the silent phase is determined by slow variables q and Ca
mediating the outward potassium currents. Both of these currents must decrease
before a somatic action potential can be initiated.

3.9 Bibliography

Much of the pioneering work on the modeling of dendrites was done by Wilfred
Rall. Reviews of this material can be found in Rall [39] and Koch and Segev
[31]. The book [45] was written in honor of Wilfred Rall and contains many of his
original papers, along with commentaries by leading researchers in this field. Other
textbooks include Jack et. al. [25], Tuckwell [52], Johnston and Wu [26] and Koch
[30].
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Figure 3.5. Voltage and calcium traces of a bursting solution in the 2-
compartment model.



i i

i

i

i

i

58 Chapter 3. Dendrites



i i

i

i

i

i

Chapter 4

Dynamics

4.1 Introduction to dynamical systems

Dynamical systems theory provides a powerful tool for analyzing nonlinear systems
of differential equations, including those that arise in neuroscience. This theory
allows us to interpret solutions geometrically as curves in a phase space. By studying
the geometric structure of phase space, we are often able to classify the types of
solutions that the model may exhibit and determine how solutions depend on the
model’s parameters. For example, we can often predict if a model neuron will
generate an action potential, determine for which values of the parameters the model
will produce oscillations and compute how the frequency of oscillations depends on
parameters.

In this chapter, we introduce many of the basic concepts of dynamical systems
theory using a reduced 2-variable model: the Morris-Lecar equations. Although this
model is considerably simpler than the Hodgkin-Huxley equations, it still exhibits
many important features of neuronal activity. For example, the Morris-Lecar model
generates action potentials, there is a threshold for firing and the model displays
sustained oscillations at elevated levels of an applied current. By considering a
reduced model, we can more easily explain the geometric mechanisms underlying
each of these phenomena. Moreover, we can introduce important mathematical
concepts such as phase space analysis, bifurcation theory, oscillations and stability
theory. Each of these concepts plays a fundamental role in the analysis of more
complex systems discussed throughout the book.

4.2 The Morris-Lecar model

One of the simplest models for the production of action potentials is a model pro-
posed by Kathleen Morris and Harold Lecar. The model has three channels: a
potassium channel, a leak, and a calcium channel. In the simplest version of the
model, the calcium current depends instantaneously on the voltage. Thus, the

59



i i

i

i

i

i

60 Chapter 4. Dynamics

Morris-Lecar equations (ML) have the form:

Cm
dV

dt
= Iapp − gl(V − EL) − gkn(V − EK) (4.1)

−gCam∞(V )(V − ECa) ≡ Iapp − Iion(V, n)

dn

dt
= φ(n∞(V ) − n)/τn(V )

where

m∞(V ) =
1

2
[1 + tanh((V − V1)/V2)]

τn(V ) = 1/ cosh((V − V3)/(2V4))

n∞(V ) =
1

2
[1 + tanh((V − V3)/V4)].

Here, V1,2,3,4 are parameters chosen to fit voltage clamp data.
The solutions shown in Figure 4.1 demonstrate that the Morris-Lecar model

exhibits many of the properties displayed by neurons. Here the parameters are
listed in Table 4.2 under the Hopf case. Figure 4.1A demonstrates that the model
is excitable if Iapp = 60. That is, there is a stable constant solution corresponding
to the resting state of the model neuron. A small perturbation decays to the resting
state, while a larger perturbation, above some threshold, generates an action poten-
tial. The solution (V1(t), n1(t)) ≡ (VR, nR) is constant; VR is the resting state of the
model neuron. The solution (V2(t), n2(t)) corresponds to a subthreshold response.
Here, V2(0) is slightly larger than VR and (V2(t), n2(t)) decays back to rest. Finally,
(V3(t), n3(t)) corresponds to an action potential. Here, we start with V3(0) above
some threshold. There is then a large increase of V3(t) followed by V3(t) falling
below VR and then a return to rest.

Figure 4.1B shows a periodic solution of (ML). The parameter values are
exactly the same as before; however, we have increased the parameter Iapp, corre-
sponding to the applied current. If we increase Iapp further, then the frequency of
oscillations increase; if Iapp is too large, then the solution approaches a constant
value.

In the following, we will show how dynamical systems methods can be used
to mathematically analyze these solutions. The analysis is extremely useful in
understanding when this type of model, for a given set of parameters, displays a
particular type of behavior. The behavior may change as parameters are varied;
an important goal of bifurcation theory, which we describe below, is to determine
when and what types of transitions take place.

4.3 The phase plane

It will be convenient to write (4.1) as

dV

dt
= f(V, n)

dn

dt
= g(V, n). (4.2)
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Figure 4.1. Solutions of the Morris-Lecar equations. Parameters are listed
in Table 4.2, the Hopf case. A) A small perturbation from rest decays to the resting
state, while a larger perturbation generates an action potential. Here, Iapp = 60.
B) A periodic solution of (ML). Here, Iapp = 100.

Table 4.1. Morris-Lecar parameters; the current, Iapp, is a parameter.

Parameter Hopf SNLC Homoclinic
φ 0.04 .067 0.23
gCa 4.4 4 4
V3 2 12 12
V4 30 17.4 17.4
ECa 120 120 120
EK -84 -84 -84
EL -60 -60 -60
gK 8 8 8
gL 2 2 2
V1 -1.2 -1.2 -1.2
V2 18 18 18
Cm 20 20 20

The phase space for this system is simply the (V, n)-plane; this is usually referred
to as the phase plane. If (V (t), n(t)) is a solution of (4.1), then at each time t0,
(V (t0), n(t0)) defines a point in the phase plane. The point changes with time, so
the entire solution (V (t), n(t)) traces out a curve (or trajectory or orbit), in the
phase plane.

Of course, not every arbitrarily drawn curve in the phase plane corresponds
to a solution of the differential equations. What is special about solution curves is
that the velocity vector at each point along the curve is given by the right hand side
of (4.1). That is, the velocity vector of the solution curve (V (t), n(t)) at a point
(V0, n0) is given by (V ′(t), n′(t)) = (f(V0, n0), g(V0, n)). This geometric property –
that the vector (f(V, n), g(V, n)) always points in the direction that the solution is
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flowing – completely characterizes the solution curves.
Two important types of trajectories are fixed points (sometimes called equilib-

ria or rest points) and closed orbits. At a fixed point, f(VR, nR) = g(VR, nR) = 0;
this corresponds to a constant solution. Closed orbits correspond to periodic solu-
tions. That is, if (v(t), n(t)) represents a closed orbit, then there exists T > 0 such
that (V (t), n(t)) = (V (t+ T ), n(t+ T )) for all t.

A useful way to understand how trajectories behave in the phase plane is to
consider the nullclines. The V-nullcline is the curve defined by V ′ = f(V, n) = 0 and
the n-nullcline is where n′ = g(V, n) = 0. Note that along the V-nullcline, the vector
field (f(V, n), g(V, n)) points either up or down and along the n-nullcline, vectors
point either to the left or to the right. Fixed points are where the two nullclines
intersect. The nullclines divide the phase plane into separate regions; in each of
these regions, the vector field points in the direction of one of the four quadrants:
(I) f > 0, g > 0; (II) f < 0, g > 0; (III) f < 0, g < 0; or (IV) f > 0, g < 0.

Stability of fixed points

One can determine the stability of a fixed point by considering the linearization
of the vector field at the fixed point. The linearization of (4.2) at a fixed point
(VR, nR) is the matrix

M =

[ ∂f
∂V (VR, nR) ∂f

∂n (VR, nR)
∂g
∂V (VR, nR) ∂g

∂n (VR, nR)

]

.

The fixed point is stable if both of the eigenvalues of this matrix have negative real
part; the fixed point is unstable if at least one of the eigenvalues has positive real
part. For (ML), the linearization is given by

M =

[

−∂Iion(VR,nR)
∂V /Cm −gK(VR − EK)/Cm

φn′
∞(VR)/τn(VR) −φ/τn(VR)

]

≡
[

a b
c d

]

.

Moreover,

a ≡ −∂Iion(VR, nR)

∂V
/Cm

= (−gL − gKnR − gCam∞(VR) + (ECa − VR)gCam
′
∞(VR))/Cm.

We now find conditions on the nonlinear functions in (4.1) for when the fixed point
is stable.

Suppose that the equilibrium voltage lies between EK and ECa, a reasonable
assumption. Then b < 0, c > 0, and d < 0 in the linearization. Only a can be
either negative or positive and the only term contributing to the positivity of a is
the slope of the calcium activation function, m∞(V ). If a < 0, then the fixed point
is asymptotically stable since the trace of M is negative and the determinant is
positive. (Recall that the trace is the sum of the eigenvalues and the determinant
is the product of eigenvalues.) Note that the slope of the V-nullcline near the fixed
point is given by −a/b. Since b < 0, it follows that if this slope is negative then
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the fixed point is stable; that is, if the fixed point lies along the left branch of the
V-nullcline, then it is stable.

Now suppose that the fixed point lies along the middle branch of the V-
nullcline, so that a > 0. Note that the slope of the n-nullcline, −c/d, is always
positive. If the slope of the V-nullcline is greater than the slope of the n-nullcline,
(i.e., −a/b > −c/d) then ad− bc < 0. In this case, the determinant is negative and
the fixed point is an unstable saddle point. In contrast, if the slope of the n-nullcline
is greater than that of the V-nullcline, then the fixed point is a node or a spiral.
We leave it as an exercise to show that the fixed point is a spiral if the parameter
φ is sufficiently small. In this case, the stability of the fixed point is determined by
the trace of M : the fixed point is stable if a+ d < 0 and it is unstable if a+ d > 0.
In summary, if the fixed point lies along the middle branch of the V-nullcline, then
it is unstable if either the slope of the V-nullcline at the fixed point is sufficiently
large, or φ is sufficiently small. Note that φ governs the speed of the potassium
dynamics.

Excitable systems

Recall that for the parameters given in Table 4.2, the Hopf case, the system is
excitable. As Figure 4.1A demonstrates, a small perturbation in voltage from the
resting state decays back to rest, while a sufficiently large perturbation in voltage
continues to increase and generates an action potential.

Phase plane analysis is very useful in understanding what separates the firing
of an action potential from the subthreshold return to rest in this model. The
projection of the solutions shown in Figure 4.1A onto the phase plane are shown
in Figure 4.2A. This figure also shows the V - and the n-nullclines. Note that
the V -nullcline separates points along trajectories in which V ′ < 0 and V ′ > 0.
In particular, V increases below the V -nullcline and V decreases above the V -
nullcline. We further note that the V -nullcline is ’cubic-shaped’. This suggests
that a perturbation from rest that lies to the ’left’ of the middle-branch of the V -
nullcline will return quickly to rest, while a perturbation that lies to the ’right’ of the
V -nullcline will initially display an increase in membrane potential, corresponding
to an action potential, before returning to rest. Therefore, the middle-branch of
the V -nullcline in some sense separates the firing of an action potential from the
subthreshold return to rest.

This analysis can be made more precise if we assume that the parameter φ is
small. Looking at Table 4.2, it can be seen that φ is relatively smaller in the Hopf
case than in the other two cases. For small φ, n will not change much so let’s hold
it at rest. Figure 4.3 shows the phase plane with a horizontal line drawn through
the fixed point. If n does not change much, then the dynamics are governed by
the behavior on the phase-line n = nR. Since the V -nullcline intersects this line
at 3 points, there are three equilibria to the system when n is held constant. The
resting state (and true equilibrium of the full system) VR is stable. There are two
additional equilibria (which are not equilibria of the full model, just the model when
n is held at its resting value): Vθ, which is unstable and Ve, which is stable. On
this line, if the voltage is perturbed past Vθ then it will jump to the right fixed
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Figure 4.2. Phaseplanes and time series for the ML model in the Hopf
regime. (A) I = 60; an excitable system with threshold at about 20 mV. Nullclines
are included as well, (B) Starting at n = nrest and varying V from -20 to -20.1
mV; (C) I = 90 showing bistability between a stable limit cycle (SLC) and a fixed
point, separated by the unstable limit cycle (ULC); (D) I = 95, the fixed point is
stable and only a limit cycle remains.

point, Ve. Otherwise, it will decay to rest, VR. This shows that for small φ, the
“threshold” voltage for generating an action potential is roughly the intersection of
the horizontal line through the rest state and the middle branch of the V -nullcline.
Since experimentalists can only move the voltage through current injection, we can
use this to estimate the magnitude of a current pulse needed to cross threshold.
(See exercise 2 below.)

We note that the peak of the action potential occurs at some latency after the
initial perturbation, but this latency can never get very large. The action potential
itself is graded and takes on a continuum of peak values, as shown in Figure 4.2B. If
φ is not “small” and it is increased, then the spike amplitudes are even more graded
than those shown in Figure 4.2B. Recall that φ is related to the temperature of the
preparation. Thus, increasing the temperature of a neuron should lead to a much
less sharp threshold distinction and graded action potentials. Indeed, Cole et al
demonstrated this in the squid.
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Figure 4.3. Threshold construction for the ML model.

Oscillations

We expect the phase plane to change if a parameter in the equations changes. Figure
4.2D shows the phase plane corresponding to the periodic solution shown in Figure
4.1B. Here, Iapp = 100. Note that the periodic solution corresponds to a closed
curve, or limit cycle. In general, whenever we wish to find periodic solutions of
some model, we look for closed orbits in phase space. In Figure 4.2D, there is a
unique fixed point; this is where the nullclines intersect. This fixed point is unstable,
however.

If we change Iapp to 90, then the model is bistable and the phase plane is shown
in Figure 4.2C. Note that there exist both a stable fixed point and a stable limit
cycle. Small perturbations from rest will decay back to the stable fixed point, while
large perturbations will approach the stable periodic solution. Note that there also
exists an unstable periodic solution. This orbit separates those initial conditions
that approach the stable fixed point from those that approach the stable limit cycle.

It is often difficult to show that a given model exhibits stable oscillations,
especially in higher dimensional systems such as the Hodgkin-Huxley model. Limit
cycles are global objects, unlike fixed points that are local. In order to demonstrate
that a given point is on a periodic solution, one must follow the trajectory passing
through that point and wait to see if the trajectory returns to where it started. This
is clearly not a useful strategy for finding periodic solutions. A powerful method for
locating oscillatory behavior is bifurcation theory, which we describe in the following
section.

4.4 Bifurcation analysis

Bifurcation theory is concerned with how solutions change as parameters in a model
are varied. For example, in the previous section we showed that the Morris-Lecar
equations may exhibit different types of solutions for different values of the applied
current Iapp. If Iapp = 60, then there is a stable fixed point and no oscillations,
while if Iapp = 100, then the fixed point is unstable and there does exist a stable
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limit cycle. Using bifurcation theory, we can classify the types of transitions that
take place as we change parameters. In particular, we can predict for which value
of Iapp the fixed point loses its stability and oscillations emerge. There are, in fact,
several different types of bifurcations; that is, there are different mechanisms by
which stable oscillations emerge. The most important types of bifurcations can be
realized by the Morris-Lecar model. These are described below.

The Hopf bifurcation

In Figure 4.4, we choose the parameters as in Table 1, the Hopf regime, and show
the bifurcation diagram for (ML) as the current Iapp is varied. For each value of Iapp,
there is a unique fixed point, (VR(Iapp), nR(Iapp)). In Figure 4.4A, we plot VR vs.
Iapp. The fixed point is stable for Iapp < 94 ≡ I1 and Iapp > 212 ≡ I2; otherwise,
it is unstable. A Hopf bifurcation takes place at Iapp = I1 and Iapp = I2. By this
we mean the following: Recall that a fixed point is stable if all of the eigenvalues
of the linearization have negative real part; the fixed point is unstable if at least
one of the eigenvalues has positive real part. The fixed point loses stability, as a
parameter is varied, when at least one eigenvalue crosses the imaginary axis. If the
eigenvalues are all real numbers, then they can cross the imaginary axis only at the
origin in the complex plane. However, if an eigenvalue is complex, then it (and its
complex conjugate) will cross the imaginary axis at some point that is not at the
origin. This latter case corresponds to the Hopf bifurcation and it is precisely what
happens for the example we are considering. In this example, (I1, VR(I1), nR(I1))
and (I2, VR(I2), nR(I2)) are called bifurcation points. Sometimes, I1 and I2 are also
referred to as bifurcation points. The Hopf Bifurcation Theorem states that (if
certain technical assumptions are satisfied) there must exist values of the param-
eter Iapp near I1 and I2 such that there exist periodic solutions that lie near the
fixed points (VR(Iapp), nR(Iapp)). A more precise statement of the Hopf bifurcation
theory can be found in numerous texts on dynamical systems.

The curves in Figure 4.4A represent fixed points and periodic solutions of the
Morris-Lecar model. This diagram was generated using the numerical software XP-
PAUT. The curve above the fixed point curve represents the maximum voltages on
the periodic orbits and the curve below the fixed point curve represents the min-
imum voltages. The solid curves represent stable solutions and the dashed curves
represent unstable solutions. The bifurcation diagram shows many interesting and
important features. Note that the periodic solutions near the two bifurcations points
are unstable. These unstable, small amplitude periodic solutions lie on the same
side of the bifurcation points as the stable fixed points. These are both examples
of subcritical Hopf bifurcations. At a supercritical Hopf bifurcation, the small am-
plitude periodic solutions near the Hopf bifurcation point are stable and lie on the
opposite side as the branch of stable fixed points.

If 88.3 < Iapp < I1 and I2 < Iapp < 217, then (ML) is bistable. For these
values of Iapp, there exists both a stable fixed point and a stable periodic solution.
The phase plane for Iapp = 95 is shown in Figure 4.2C. Note that small perturbations
of initial conditions from the resting state will decay back to rest; however, large
perturbation from rest will generate solutions that approach the stable limit cycles.
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Figure 4.4. Bifurcation diagram for the ML model in the Hopf regime. (A)
Voltage as a function of current. The curves above and below the fixed point curve
correspond to the maximum and minimum voltages along periodic orbits. Solid
curves represent stable solutions and dashed curves represent unstable solutions.
Arrows shown at Iapp = 60, 90 and 100 correspond to the solutions shown in Figure
4.1, Figure 4.2A and Figure 4.2B, respectively. (B) Frequency (Hz) versus current.
(C) Two-parameter bifurcation showing the curve of Hopf bifurcations as φ and Iapp

vary.

Figure 4.4B shows the frequency of the periodic solutions versus current. Note
that the frequency lies in a narrow range between 7-16 Hz. In particular, the
frequency does not approach zero as Iapp approaches the bifurcation points. This
is a general property of periodic solutions that arise via the Hopf bifurcation. In
the next section, we shall consider another mechanism for the generation of stable
limit cycles. In that mechanism, the frequency does approach zero.

Finally, we can ask what happens if we change the speed of the potassium
kinetics. Figure 4.4C shows a two-parameter diagram with φ along the vertical axis
and Iapp along the horizontal axis. This shows the locus of Hopf bifurcations in
these two parameters. For fixed values of φ below about 0.4, there are two currents
at which the Hopf bifurcation occurs. Inside the curve, the rest state is stable. One
can numerically show that the Hopf bifurcation is subcritical outside the interval,
124.47 < Iapp < 165.68; inside this interval, the bifurcation is supercritical. The
reader can choose, for example, φ = .35 and show that both Hopf bifurcations are
supercritical; the only oscillations are stable and have small amplitude.

Saddle-node on a limit cycle

The Hopf bifurcation is the best known mechanism through which one can go from
a stable fixed point to an oscillation. Importantly, the fixed point persists through
the bifurcation. Furthermore, the limit cycles which bifurcate are small amplitude
and local, in the sense that it lies close to the branch of fixed points (although, as
we saw in the ML model, the bifurcation is subcritical at low currents and thus
bifurcating periodic orbits are unstable). Another mechanism through which an
oscillation can emerges from a fixed point is called a saddle-node on a limit cycle
or SNLC. It is also called a saddle-node infinite cycle or SNIC. This is an example
of a global bifurcation.
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The behavior of the ML model with these parameters is quite different as is
seen by looking at Figure 4.5. First, unlike Figure 4.2B, the action potentials appear
to occur with arbitrary delay after the end of the stimulus. Secondly, the shape of
the action potentials is much less variable. The reason for this can be understood
by looking at the phase plane in Figure 4.5B. Unlike the Hopf case, here there are
three fixed points, only one of which (labeled N) is stable. The middle fixed point
is a saddle point (labeled S). Thus, the linearized system at this fixed point has
one positive and one negative eigenvalue. Associated with these eigenvalues are the
stable and unstable manifolds. These manifolds consist of trajectories that approach
the saddle point in either forward or backward time, respectively. The two branches
of the unstable manifold, Σ+, form a loop with the stable node N and the saddle
point S. This loop in the plane plane constrains the spike shape; since trajectories
cannot cross, any trajectory starting outside the loop must remain outside of it.
Thus, the spike height cannot fall below a certain level. More importantly, the
stable manifold, Σ−, forms a hard threshold that is precisely determined. This
contrasts with the pseudothreshold we saw in the Hopf case. Any perturbation
which drives the potential to the right of Σ− results in a spike and any to the left
leads to a return to rest without a spike.

Figure 4.5 also explains the delay to firing. Suppose that a stimulus drives
the voltage to a point exactly on the unstable manifold Σ−. Then, the trajectory
will go to the saddle point where it will remain. The closer a perturbation gets to
Σ− (but to the right of it), the longer the delay to spike. Indeed, the spike with the
longest delay in Figure 4.5A stays at a nearly constant voltage close to the value at
the saddle-point before finally firing.

Like the Hopf case, as current is increased, the model fires repetitively. A typ-
ical limit cycle is shown in Figure 4.5D. Figure 4.6A shows the bifurcation diagram
as the current is increased. The steady-state voltage shows a region where there
are three equilibria for Iapp between about -15 and +40. Only the lower fixed point
is stable. As Iapp increases, the saddle-point and the stable node merge together
at a saddle-node bifurcation, labeled SN2. When Iapp = ISN2 , the invariant loop
formed from Σ+ becomes a homoclinic orbit; that is, it is a single trajectory that
approaches a single fixed point in both forward and backward time. This type of
homoclinic orbit is sometimes called a saddle-node homoclinic orbit or a SNIC. As
Iapp increases past Iapp = ISN2 , the saddle-point and node disappear; the invari-
ant loop formed from Σ+ becomes a stable limit cycle. The branch of limit cycles
persists until it meets with a branch of unstable periodic solutions emerging from
a subcritical Hopf bifurcation.

Figure 4.6B shows the frequency of the oscillations as a function of the current.
Unlike Figure 4.4B, the frequency for this model can be arbitrarily low and there
is a much greater dynamic range. Note that the nullclines in Figure 4.5C can be
very close to touching each other and thus create a narrow channel where the flow
is extremely slow. This suggests why the frequency of firing can be arbitrarily low.
Moreover, as Iapp → ISN2 , the limit cycles approach a homoclinic orbit. We expect
that the frequency should approach zero as Iapp → ISN2 . In an exercise below,
the reader shows that the frequency scales as the square root of Iapp − ISN2 and
develops the theta model.
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Figure 4.5. Dynamics of the ML model with saddle-node dynamics. A)
The delay to spike can be arbitrary but the spike height is invariant. B) and C)
Phase-plane explaining A). The fixed points N,S, and U are, respectively a stable
node (the rest state), a saddle-point, and an unstable node. Σ± are the stable (−)
and unstable (+) manifolds of S. D) There exists a stable limit cycle for sufficient
current; the nullclines are also shown.

Saddle-homoclinic bifurcation

By changing the rate of the potassium channel, φ, we can alter the dynamics of the
model so that the SNIC is replaced by another type of global bifurcation; this is
called a saddle-homoclinic bifurcation. In both types of bifurcations, the frequency
of oscillations approach zero as the current approaches the bifurcation value. How-
ever, there are important differences.

Since φ only changes the rate of n, it has no effect on the number and values
of the fixed points, only their stability. Figure 4.7 shows the bifurcation diagram
for the model when φ is increased from 0.067 to 0.23. As before, the fixed points are
lost at a saddle-node bifurcation. The Hopf bifurcation on the upper branch occurs
at a much lower value of current than in Figure 4.6 but the branch of periodic orbits
is still subcritical. The main difference is that the stable branch of periodic orbits
does not terminate on the saddle node as in Figure 4.6. Rather it terminates on
an orbit that is homoclinic to one of the saddle points along the middle branch of
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Iapp = 37 shows tristability. (C) Frequency versus current; note the much steeper
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fixed points. Like the SNIC, this homoclinic orbit has an infinite period. However,
the periods of the limit cycles approach infinity quite differently than before. In
exercise ??? you are asked to show that the period scales as

T ∼ ln
1

Iapp − IHc

where IHc is the current at which there is a saddle-homoclinic orbit. The frequency
T−1 approaches zero much more rapidly than the SNIC case.

Figure 4.8 shows the phase plane for the membrane model near the critical
current, IHc. There are three fixed points. The lower left fixed point is always
stable, the middle point is a saddle, and the upper right point is an unstable spiral.
For Iapp < IHc (panel A), the right branch of the unstable manifold of the saddle
wraps around and returns to the stable fixed point. The upper branch of the
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Figure 4.8. Phaseplane for the ML system near the homoclinic bifurcation
showing A) Iapp < IHc, B) Iapp ≈ IHc and C) Iapp > IHc.
. Perturbations from rest that lie in the starred region shown in C) will approach
the stable limit cycles.

stable manifold wraps around the spiral (in negative time). Note that the unstable
manifold passes on the outside of the stable manifold. In Figure 4.8B, the stable
and unstable manifolds meet and form the homoclinic orbit at Iapp = IHc. For
Iapp > IHc, the unstable manifold passes inside the stable manifold and wraps
around a stable limit cycle. Thus, this model has a regime of bistability where
there is a stable fixed point and a stable periodic orbit. Unlike the bistability in the
Hopf case, the stable limit cycle does not surround the stable fixed point. In the
Hopf case, an unstable periodic orbit acted to separate the stable fixed point from
the stable limit cycle. In the present set of parameters, the stable manifold of the
middle fixed point separates the two stable states. In order to get onto the limit
cycle, it is necessary to perturb the potential into the starred region in Figure 4.8C.
Consider a brief current pulse which perturbs the voltage. If this pulse is weak, the
system returns to rest. If it is very strong and passes the starred region, then the
model will generate a single spike and return to rest. However, for intermediate
stimuli (like the baby bear’s porridge – just right), the system will settle onto the
stable limit cycle.

Finally, we look closely at the bifurcation diagram, Figure 4.7B. Near Iapp =
38, there are two stable fixed points as well as a stable limit cycle. Thus, the model
is actually “tristable”. The reader is urged to explore this aspect of the model more
carefully in exercise *

Class I and class II

The ML model illustrates several important features of neuronal firing. Three dif-
ferent mechanisms for switching from rest to repetitive firing were illustrated. In
particular, the most common mechanisms are through the Hopf and SNIC bifur-
cations. In the 1940’s Hodgkin classified three types of axons according to their
properties. He called these Class I-II; with Class III being somewhere in between
the first two classes which we describe:
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Class I. Axons have sharp thresholds, can have long latency to firing, and can fire
at arbitrarily low frequencies;

Class II. Axons have variable thresholds, short latency, and a positive minimal
frequency.

From this description, we can see that these two classes fall neatly into the dynamics
of the SNIC and the Hopf bifurcations, respectively. Rinzel and Ermentrout (1989)
were the first to note this connection. Now there are many papers which classify
membrane properties as Class I or Class II and mean SNIC and Hopf respectively.

Tateno et al (2004) have characterized regular spiking (RS) neurons (excita-
tory) and fast spike (FS) neurons (inhibitory) in rat somatosensory cortex using
this classification. (Note that many authors call the dynamics Type I,II instead of
Class I,II.) Figure 4.9 show some properties of cortical neurons. RS neurons appear
to be Class I; the minimal frequency is close to zero. Note that RS neurons do not
seem to have subthreshold oscillations (not shown). In contrast, FS neurons appear
to be Class II; they have a minimum frequency of around 15 Hz. They also exhibit
subthreshold oscillations. Near the critical current, they seem to switch back and
forth between rest and firing. This suggests the possibility of a narrow range of
bistability consistent with the subcritical Hopf bifurcation.

T. Tateno, A. Harsch, and H. P. C. Robinson Threshold Firing Frequency-
Current Relationships of Neurons in Rat Somatosensory Cortex: Type 1 and Type
2 Dynamics J Neurophysiol, Oct 2004; 92: 2283 - 2294.

4.5 Bifurcation analysis of the Hodgkin-Huxley
equations

We now consider the spaced-clamped Hodgkin-Huxley model (2.43). In the previous
chapter, we discussed the response to a brief current pulse. Figure 2.13 shows
the effects of a brief current pulse at amplitudes ranging from 1-5 µA/cm2. There
appears to be a very sharp transition between an action potential and a minimal
response. A constant current can induce the membrane to oscillate repeatedly as
seen in the right panel of Figure 2.13.

We can get a more global picture of the dynamics of the equations by looking
at a bifurcation diagram. Figure 4.10A shows the behavior of the voltage as a func-
tion of the applied current, Iapp. Lines represent fixed points and circles represent
periodic orbits. The frequency of the oscillations is shown in Figure 4.10C. The
range is from about 40 Hz to about 150 Hz.

Note that there is a unique equilibrium point for all Iapp. At Iapp ≈ 10, the
rest state loses stability at a Hopf bifurcation. At a large value of Iapp ≈ 154 there
is another Hopf bifurcation. From the figure, it seems clear that the bifurcation is
subcritical at the low current and supercritical at the high current. At the lower
Hopf bifurcation, there is a subcritical branch of unstable periodic orbits. Hence,
the transition from resting behavior to oscillations is Class II.

Figure 4.10B shows a blowup of the region near this Hopf bifurcation. Evi-
dently, there are values of Iapp near 7.88 where there are four different limit cycles.
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C

A B

Figure 4.9. From Tateno etal; Properties of RS and FS neurons in cortex.
A. Firing rate versus current for RS neurons. (Note that these cells have spike-
frequency adaptation so that the inter-spike interval (ISI) is not constant. Thus,
this shows the ISI after several spikes as well as the steady-state.) (B) Same as A
for FS neurons. (C) Mixture of spikes and subthreshold oscillations near the critical
current for FS.
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Figure 4.10. Bifurcation diagram for the HH model. A) V versus Iapp,
the applied current; B) Expanded view of A); C) Frequency as a function of current;
D) (V, n)−phase plane projection showing 4 different limit cycles.

Figure 4.10D shows the projection of these limit cycles in the (V, n)−plane. Gucken-
heimer and Oliva (2002) provide convincing numerical evidence for chaotic behavior
near this lower current value. The chaos that they compute is unstable so that it will
not be observed in simulations. For large values of current, the rest-state stabilizes
again through a supercritical Hopf bifurcation.

The apparent fact that there is a unique equilibrium point for all Iapp has
never been rigorously proved for the HH equations. At equilibrium, each of the
gating variables m,n and h can be written as a function of V so that we find:

Iapp = ḡL(V − EL) + ḡNam
3
∞(V )h∞(V )(V − ENa)

+ḡKn
4
∞(V )(V − EK) ≡ F (V ). (4.3)

The statement that there is a unique equilibrium is a statement that F (V ) is mono-
tone for all V . Since this monotonicity depends very much on the details of the
steady-state gate functions, it is not likely that any general theory of the mono-
tonicity of F exists. We leave it as an exercise to show that if |V | is large enough,
then there is a unique value of Iapp for which there exists an equilibrium.

If we assume that the function F (V ) is monotone, then it is possible to rig-
orously prove the existence of the two Hopf bifurcation points. Troy (1979) proved
under fairly general assumptions that there are two values of the current Iapp at
which the rest state loses stability at a pair of imaginary eigenvalues. Thus, from
the Hopf bifurcation theorem, he was able to conclude that there is a branch of
periodic solutions emerging from the fixed points. A rigorous proof of the direction
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of the bifurcation remains an open question.
Troy’s proof relies on an analysis of the linearized equations and application

of Hurwitz’ criteria to the characteristic polynomial. We can sketch out some of
the details. Troy’s assumption that the function F (V ) is monotone implies that for
each Iapp, there is a unique V that satisfies (4.3). Furthermore, this implies that
there are never any zero eigenvalues of the linear system (see exercise ***). The
linearization about the fixed point leads to a matrix with a very special form. It is
zero except along the diagonal, across the first row, and down the first column:

M =









−FV −Fm −Fh −Fn

m′
∞/τm −1/τm 0 0
h′∞/τh 0 −1/τh 0
n′
∞/τn 0 0 −1/τn









.

The characteristic polynomial for such matrices (which are called mammillary be-
cause they resemble a mammal with many suckling babies; here the voltage is the
mother and the gates are the babies) is easy to compute and the result is a fourth-
order polynomial of the form:

PM (λ) = λ4 + a3λ
3 + a2λ

2 + a1λ+ a0.

The coefficients are messy, but straightforward to compute. The Hopf bifurcation
occurs when there are imaginary roots. The Routh-Hurwitz criterion provides the
simplest test for this condition. (see Digression). For a 4th order polynomial, there
will be a Hopf bifurcation if a0 > 0, a3 > 0, a3a2−a1 > 0, andR ≡ a3a2a1−a2

1−a2
3a0

vanishes. Thus, Troy uses assumptions on the shapes of the gating functions to prove
that there is a Hopf bifurcation by showing that the quantity R changes sign.

Digression. The Routh Hurwitz Criterion. Consider the polynomial:

P (λ) = λn + an−1λ
n−1 + . . . a1λ+ a0. (4.4)

The Routh-Hurwitz determinants provide a simple way to tell of the real parts of
the roots of P are negative. We define an = 1 and aj = 0 for j > n or for j < 0.
We will form a series of matrices containing the coefficients aj :

H1 = an−1

H2 =

[

an−1 1
an−3 an−2

]

H3 =





an−1 1 0
an−3 an−2 an−1

an−5 an−4 an−2





and so on up to Hn. Each matrix is square and the first column contains every other
coefficient, an−1, an−3, . . . . The roots of P (λ) have negative real parts if an only if
det Hj > 0 for j = 1, . . . , n. For example:

n = 1. a0 > 0
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n = 2. a0 > 0 and a1 > 0;

n = 3. a0 > 0, a2 > 0, a1a2 − a0 > 0.

n = 4. a0 > 0,a3 > 0, a3a2 − a1 > 0, a3a2a1 − a2
1 − a2

3a0 > 0.

We note the following:

• det Hn = a0det Hn−1 so that this means a0 > 0 is necessary. If a0 = 0 then
there is a zero eigenvalue.

• If det Hn−1 = 0, a0 > 0 and det Hj > 0 for j < n − 1, then there are
imaginary roots.

These two criteria allow us to determine where possible saddle-node (eigenvalue 0)
and Hopf (imaginary eigenvalues) bifurcations occur.

End digression.

4.6 Reduction of the HH model to a 2-variable model

We have seen that two-dimensional models, such as the Morris-Lecar equations, ex-
hibit many important features of the more complicated Hodgkin-Huxley equations.
The Morris-Lecar equations generate action potentials, there is a threshold for firing
and, depending on parameters, there are several mechanisms for the generation of
oscillatory behavior. In this section, we shall describe two ways in which dynamical
systems methods have been used to formally reduce the four-dimensional Hodgkin-
Huxley model to a two-dimensional system of equations. Reduction methods will
be very useful in later sections when we consider networks of neurons.

Rinzel (Federation Proceedings ??) developed a simple method based on two
observations. The first is that τm(V ), the voltage-dependent time constant for the
gating variable m, is much smaller than both τh and τn. Because τm is small, m(t)
is very close to m∞(V (t)). If we replace m by m∞(V ) in the voltage-equation, then
this reduces the HH-model by one equation. The second observation, first observed
by Krinskii and Kokoz (1973), is that (n(t), h(t) lies nearly along a line n = b− rh
where b and r are constants. Figure 4.11 shows these curves at three different
currents. The slope and the intercept depend somewhat on the current, but Rinzel
ignored this. Hence, we replace n by b− rh in the voltage-equation and obtain the
reduction to a two-dimensional model. We leave the analysis of this model as an
exercise.

A common method for comparing parameters which have different units is to
render the model in terms of dimensionless variables. Kepler et al (1992) describe
a method for comparing the time scales of all the gating variable. Each voltage-
dependent gate x(t) satisfies an equation of the form

x′ = (x∞(V ) − x)/τx(V ).

The functions x∞(V ) are monotonic, so that they are invertible. Thus, Kepler et al
introduce a new variable Vx for each gate, where x(t) = x∞(Vx(t)). They obtain an
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Figure 4.11. Projection of limit cycles in HH equations in the (n, h)−plane.

equivalent dynamical system, but now every variable has the dimensions of voltage.
The equivalent potentials satisfy:

dVx

dt
=
x∞(V ) − x∞(Vx)

τx(V )x′∞(Vh)

where x′∞(V ) is the derivative of x∞ with respect to V. Now, we must simulate the
equations in these new variables and this allows us to compare the amplitudes and
the time courses of the responses of all the variables. Figure 4.12A shows a plot
of the equivalent potentials for the four variable HH equations. From the figure, it
looks as if Vm and V have roughly the same temporal dynamics while Vh and Vn

have similar time courses. Thus, we create a reduced model by setting Vm = V and
Vn = Vh. There are two possible reduced models: use the dynamics of Vh and set
n = n∞(Vh) or use the dynamics of Vn and set h = h∞(Vn). We leave the latter
case to the reader and consider the (V, Vh)-system.

The two-dimensional (V, Vh)-system has the following form:

C
dV

dt
= Iapp − gNam

3
∞(V )h∞(Vh)(V − ENa) − gKn

4
∞(Vh)(V − EK) − gL(V − EL)

dVh

dt
=
h∞(V ) − h∞(Vh)

τ̄h(V, Vh)

where τ̄h is the effective time constant, τh(V )h′∞(Vh). Figure 4.12B shows the bi-
furcation diagram for the reduced system. It cannot have any more fixed points
than the full system since both have identical equilibria. There is a subcritical Hopf
bifurcation at roughly Iapp = 6.8 which is slightly lower than that for the original
HH equations. What is strikingly different is that the reduced model continues to
oscillate at an extremely large applied current. The second Hopf bifurcation does
not occur until Iapp = 267, much higher than the original 4-variable system. The
phase-plane is shown for Iapp = 0 in Figure 4.12C. A convenient aspect of the equiv-
alent potential method is that the Vh−nullcline is just V = Vh. The V−nullcline
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Figure 4.12. Equivalent potentials for the Hodgkin-Huxley model. (A) the
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branch as Iapp increases.

has a cubic form which is typical in many neural models and absolutely necessary
in order to get oscillations.

4.7 Fitzhugh-Nagumo equations

The simplified (V, n) version of the Hodgkin-Huxley equations and the Morris-Lecar
equations both share a common feature in so far as their nullclines are concerned.
The V−nullcline has a cubic shape, while the recovery nullcline is a monotonically
increasing function of the the voltage. In 1961 Dick Fitzhugh (Biophysical Journal
1) developed a simplified model which captures the essence of the cubic nature of
the V -nullcline and has many of the properties of the more complicated models
that we have already discussed. Because of its pivotal importance in the literature
(particularly, the mathematical literature), we discuss it briefly at this point. We
leave as an exercise, the numerical and qualitative analysis of these equations. The
equations have the form:

dV

dt
= V (V − a)(1 − V ) − w + I (4.5)

dw

dt
= ǫ(V − γw) (4.6)
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where 0 < a < 1, ǫ > 0 and γ ≥ 0. The actual model is based on a modification of
the van der Pol equation:

C
dV

dt
+ F (V ) + J = 0

L
dJ

dt
= V.

The van der Pol equation arises from an electrical circuit with a linear capacitor,
linear inductor, and nonlinear resistor in parallel. C is the capacitance, L the
inductance, F (V ) is a nonlinear current depending on the voltage, V , across the
capacitor and J the current through the inductor. By adding a driving current and
the additional −γw, Fitzhugh created a model for the action potential. At about
the same time, Nagumo and colleagues developed a similar model.

The FHN equation has been used to model many physiological systems from
nerve to heart to muscle and is a favorite model for the study of excitability. In
most applications, ǫ is small so that the recovery variable is much slower than the
voltage. When I = 0 and γ is small enough there is a unique fixed point at the
origin. As I increases, this fixed point becomes unstable through a Hopf bifurcation
and a limit cycle emerges. We will provide an extensive exercise below for examining
the behavior of this popular and much studied model.

4.8 Bibliography

An excellent reference for an introduction to dynamical systems is Strogatz [48].
More advanced textbooks include Guckenheier and Holmes [20], Perko [38] and
Kuznetsov [?]. FitzHugh [17] was perhaps the first to use phase plane analysis
to study the Hodgkin-Huxley and reduced models. Much of the analysis in this
chapter builds on the paper by Rinzel and Ermentrout [43] who carefully described
geometric methods, including phase planes and bifurcation theory, applied to re-
duced neuronal models. They also recognized the relationship between Class I and
Class II excitability and the geometric properties of different types of bifurcations.
Izhikevich [24] covers most of the material described in this chapter, but in more
detail.

4.8.1 Exercises

There are a number of exercises about simplified neural models which are popular
in the literature. Rather than discuss these in the text, we have chosen to leave
them as an extended set of exercises. In later chapters, we will refer to these models
and their properties. Thus, it would be a good idea to do those related to the leaky
integrate and fire and quadratic integrate and fire models.

1. Show that the gating functions used by Morris and Lecar are derived from
the Boltzman model.



i i

i

i

i

i

80 Chapter 4. Dynamics

2. Near rest, potential of the ML system can be approximated by its linearization:

C
dV

dt
= I(t) − aC(V − Vr)

where a is as computed above. Suppose that I is a square pulse of current
with duration T and magnitude I0. Estimate the value of I0 needed to evoke
an action potential assuming that one will occur if V crosses Vt (see figure
4.3.) Sketch the critical value I0 as a function of T . This is called the Strength-
Duration Curve. The minimum strength needed to elicit a response is called
the rheobase and the stimulus duration needed to elicit an action potential
when the stimulus is twice the strength of the rheobase is called the Chronaxie.
Now you can drop terms with old time physiologists! Compute the rheobase
and chronaxie using this estimate. Numerically determine them as well.

3. Simulate the ML model with the homoclinic parameters and I = 36 corre-
sponding the phase-plane in figure 4.8C.(a) Starting at rest, give a 5 msec
current pulse sufficient to produce a single spike. Weaken the current pulse to
perturb the model to the stable limit cycle. (b) Set I = 38. This corresponds
to the vertical line in figure 4.7B where there is tristability. Starting at rest,
is it possible to inject a single pulse of current to get the system to go from
the lower rest state to the upper rest state? If not, figure out a stimulation
sequence that will let you go from rest to the upper state.

4. (Exploring the FHN model I.) The fixed points of this model satisfy w = V/γ
and I = V/γ − V (V − a)(1 − V ) ≡ h(V ). The latter is a cubic. It can have
at most three roots. Differentiating h(V ) and setting this to zero allows us
to find local maxima and minima. (a) Find these as a function of a, γ. Show
that γ > 3/(1 − a+ a2) ≡ γ∗(a) in order for such extrema to exist. Next, set
V to these roots and use this to find values of I where there are saddle-node
bifurcations. This summarizes the steady state behavior of the model. (b)
Consider the case when γ < γ∗(a) so that there is only a single root. Since
there is one root, there can be no bifurcation at a zero eigenvalue as I varies.
Thus, the only way to lose stability is a Hopf bifurcation. Show that the trace
of the linearization is

T = −3V 2 + (2 + a)V − a− ǫ.

Show that there are two values of V such that the trace vanishes as long as
3ǫ < a2−a+1. These correspond to two distinct values of current (I = h(V ))
at which there is a Hopf bifurcation.

5. (Exploring the FHN model II.) (a) Choose ǫ = .02 and γ = 1, and a = 0.1. For
I = 0 show that the system is excitable – that is show that there is an action
potential if the voltage is taken sufficiently past threshold. (b) Compute the
bifurcation diagram and look at the frequency-current plot. Notice that the
bifurcation is nearly vertical. Compute several limit cycles along the nearly
vertical branch. Notice how they hug the middle branch of the nullcline. This
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is an example of a phenomena called a canard and is common in systems with
a small parameter (eg ǫ.)

6. (The integrate and fire model.) A classic approximation for the firing of a cell
is the leaky integrate and fire model (Lapique,???). This model has the form:

τ
dV

dt
= −(V − Vr) + RmI (4.7)

where Rm is the membrane resistance, τ the time constant, and Vr, the rest-
ing potential. In addition to this linear equation, there is a nonlinear reset
condition. If V (t−) = Vspike then an action potential occurs and V (t) is re-
set to Vreset. In many cases, an additional condition is imposed in which V
is prevented from firing for a period, Tref , the “refractory” period. Assume
that Vr < Vspike and Vreset < Vspike. Find the critical value of I, Imin under
which the LIF fires repetitively. Compute the F − I curve; the firing rate as
a function of the applied current for I > Imin. Show that for large values of
I, the firing rate is linear with respect to I when Tref = 0.

7. (Spike-response model.) Consider the leaky integrate and fire model with a
time-dependent current, I(t):

τ
dV

dt
= I(t) − V (t) − A

∑

j

δ(t− tj)

where A = τ(Vspike − Vreset). We have formally included the reset into the
equations by adding the delta function term. The values, tj are the times for
which V (t) crosses Vspike from below; that is, the spike-times. Integrate this
equation to convert it to the following form:

V (t) = V (0)e−t/τ +
∑

j

η(t− tj) +

∫ t

0

k(t− s)I(s) ds

where
η(t) = Heaviside(t)(Vreset − Vspike)e

−t/τ

and

k(t) =
1

τ
e−t/τ .

Gerstner and collaborators consider classes of models like this where η takes
a more general form. These models are called spike response models. For
example, η(t) could include an additional spike frequency adaptation term,
eg:

η(t) = Heaviside(t)[k1e
−t/τ + k2e

−t/τa].

Unfortunately, once these extra terms are added, it becomes difficult to com-
pute even the steady state firing rate. Later on in the book, we will use this
formulation to compute the velocity of waves in networks of coupled integrate-
and-fire models.
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VspikeV rVspikeVthrV r Vreset Vthr Vreset< =

8. In the ML model with class I dynamics (the saddle-node), the potential near
the bifurcation satisfies the following differential equation:

dV

dt
= a(I − ISN ) + b(V − VSN )2 (4.8)

where a, b are positive numbers that can be determined from the actual dy-
namics (see Kuznetsov,2002). (What are the physical dimensions of a, b?)
This is called the quadratic integrate and fire model or QIF. (a) By in-
tegrating this equation, show that V can go to infinity in finite time. When
V (t) goes to infinity, we say that a spike has been generated. (b) Suppose that
I < ISN and find the fixed points for this, Vrest and Vthr corresponding to the
stable and unstable fixed points respectively. Suppose V (0) > Vthr. Compute
the time to spike as a function of V (0) − Vthr. (c) Show that if I > ISN ,
then V (t) goes to infinity no matter what the initial condition. In particular,
compute the time it takes to reach infinity if V (0) = −∞. (d) Let

V (t) = VSN +
c

b
tan(θ/2).

where c−1 has dimensions of time. Show that θ(t) satisfies:

dθ

dt
= c(1 − cos θ) +

ab

c
(1 + cos θ)[I − ISN ]. (4.9)

This is called the theta model. Kopell and Ermentrout (1986) showed that
this was the normal form for a system near a saddle-node limit cycle bifur-
cation. Sketch the phase-line for this of I < ISN , I = ISN and I > ISN .
Compute the F − I curve when c = 1.

9. A variant of the QIF model truncates the spike and the reset. Latham first
suggested the model:

τ
dV

dt
= a(V − Vr)(V − Vthr) +RmI (4.10)

with the condition that if V (t) = Vspike > Vthr then V (t) is reset to Vreset.
When I = 0, Vr is the resting state and Vthr is the threshold. If V (0) > Vthr ,
then the model will spike. (a) Compute the FI curve for this model . Note
that it is somewhat different from the QIF in equation (4.8) due to the finite
reset.
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(b) Suppose that Vreset > Vthr. Then this model is bistable for I = 0 or I
sufficiently small and has a fixed point near Vr and a periodic solution. As
Vreset → V +

thr, the period goes to infinity and this model has the equivalent of
a homoclinic orbit. (See the figure above.) Compute the period as a function
of Vreset − Vthr. (c) Now suppose that Vr < Vreset < Vthr. As I increases,
either the stable rest state will reach Vreset from below or the unstable fixed
point will reach Vreset from above and form a homoclinic. Find conditions for
the latter scenario and sketch the bifurcation diagram as I varies. Compare
this to the diagram for the Morris-Lecar model in parameter set 3. From
this exercise, it should be clear that the QIF model has much richer dynamics
that the LIF precisely because it has a true spiking threshold which is different
from the value of the actual spike.

10. Karbowski and Kopell introduce a linear model:

τ
dV

dt
= RmI + a|V | (4.11)

where a > 0 is parameter. (a) Show that this is qualitatively like equation
(4.10). How does the firing rate scale near I = 0? (b) One can define a class
of scalar neural models by considering

τ
dV

dt
= RmI + f(V ).

Suppose that f(V ) = |V |p where p > 1. The model spikes when V (t) reaches
infinity in which case the neuron is reset to negative infinity. What is the
firing rate of such a neuron for I large? That is how does it scale with p. For
example, we know that when p = 2, the firing rate scales like the square root
of I.

11. A class of models related to the theta model are called ring models (Winfree,
1980; Ermentrout and Rinzel 1984). These are models for excitable activity
which lie on the unit circle:

dx

dt
= f(x) + I

where f(x + 2π) = f(x) is a bounded periodic function. For certain ranges
of I, the system has two fixed points a saddle and a node. The saddle point
acts as a threshold. Since f(x) is bounded, for I large enough, there are
periodic solutions to the equation and thus there is repetitive firing. Suppose
that f(x) is C2[0, 2π) and periodic. Write an expression for the period of the
oscillations when there is repetitive firing. Discuss the mechanism from going
from a stable rest state to repetitive firing. Can there ever be bistability?

12. Fourcaud et al have introduced the exponential integrate and fire model:

C
dV

dt
= −gL(V − VL) + a exp(bV ) + I.



i i

i

i

i

i

84 Chapter 4. Dynamics

x=1

y=1

(1,y)

(x,1)

Set gL = 0 and assume a, b, C are positive. Find an expression for the firing
rate as a function of I.

13. (Period near a homoclinic.) This is actually an exercise in dynamical systems,
but is instructive in that it does show the period of the homoclinic orbit.
Assume the origin is a saddle point and the y-axis is the stable manifold with
a decay rate of −µ and the x−axis is the unstable manifold with a decay rate
of ν. Assume that µ > ν. Consider a point (1, y) on the little interval at x = 1.
This gets mapped into the little interval at y = 1, via (1, y) → (ay + b, 1).
The parameter a is positive and won’t really matter. The parameter b is the
distance from the homoclinic orbit. Note that if b = 0, then (1, 0) → (0, 1) is
the homoclinic orbit. Starting at (x0, 1), we follow the linear dynamics

x′ = νx y′ = −µy.

This maps the y = 1 interval onto the x = 1 interval. Thus, we get a map
from (1, yold) → (1, ynew). (a) Show that the map of the y values is:

ynew = (ayold + b)r

where r = µ/ν > 1. For b sufficiently small, show that y = br + o(br) is a fixed
point. Show that the fixed point is stable. (b) Since the map from x = 1 to
y = 1 is instant, the period is the time it takes to go from y = 1 to x = 1.
Show that at the fixed point

T ∼ −1

ν
log b.

(Note: this relies on the fact that r > 1. If r < 1, then the fixed point will be
unstable and so the periodic orbit will also be unstable.)
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Chapter 5

On the variety of
channels.

In the last several chapters, we have discussed several types of active (voltage-gated)
channels for specific neuron models. The Hodgkin-Huxley model for the squid axon
consisted of three different ion channels: a passive leak, a transient sodium channel,
and the delayed rectifier potassium channel. Similarly, the Morris-Lecar model has
a delayed rectifier and a simple calcium channel (with no dynamics). Hodgkin and
Huxley were smart and supremely lucky that they used the squid axon as a model to
analyze the action potential, as it turns out that most neurons have dozens of differ-
ent ion channels. In this chapter, we briefly describe a number of them, provide some
instances of their formulas and describe how they influence a cell’s firing properties.
The reader who is interested in finding other channels and other models for these
channels should consult http://senselab.med.yale.edu/modeldb/default.asp
which is a database for neural models.

5.1 Channels, channels, channels.

We briefly describe various ion channels in this section. Most of the voltage-gated
channels follow the usual formulation that the delayed rectifier, the calcium model,
and the transient sodium current we have already discussed. However, there are
several important channels which are gated by the internal calcium concentration
so that we will describe some simple models for intracellular calcium handling.

All of the channels that we describe below follow the classic HH formulation.
The total current due to the channel is

Ichannel = mphqIdrive(V )

wherem and h are dynamic variables lying between 0 and 1, p and q are non-negative
integers, and V is the membrane potential. Thus, the channel current is maximal
when m and h are both 1. By convention, h will generally inactivate (get smaller)
with higher potentials of the cell and m will activate. Not all channels have both
activation and inactivation. For example, the Hodgkin-Huxley potassium channel,

85
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and both the Morris-Lecar calcium and potassium channels have no inactivation.
The Hodgkin-Huxley sodium channel has both activation and inactivation.

The drive current generally takes two possible forms corresponding to the
linear model or the constant field model respectively:

Ilin = gmax(V − Vrev) (5.1)

and

Icfe = Pmax
z2F 2

RT
V

(

[C]in − [C]oute
−zV F

RT

1 − e
−zV F

RT

)

. (5.2)

The constant gmax has units of siemens per square centimeter and the constant Pmax

has units of centimeters per second so that the driving current has dimensions of
amperes per square centimeter.

The gates, m and h generally satisfy equations of the form:

dx

dt
= ax(1 − x) − bxx

or
dx

dt
= (x∞ − x)/τx

where the quantities ax, bx, x∞ and τx depend on voltage or some other quantities.
The functional forms of these equations often take one of the following three forms:

Fe(V,A,B,C) = Ae(V −B)/C

Fl(V,A,B,C) = A
(V −B)

1 − e(V −B)/C

Fh(V,A,B,C) = A/(1 + e−(V −B)/C).

Generally speaking, most of the voltage gated ion channels can be fit with
functions of the form

x∞(V ) =
1

1 + e(V −VT )/k
(5.3)

and

τx(V ) = τmin + τamp/ cosh
V − Vmax

σ
. (5.4)

5.1.1 Sodium channels

Roughly speaking, there are two types of sodium currents: the transient or fast
sodium current and the persistent or slow sodium current. We have already de-
scribed the former when we discussed the Hodgkin-Huxley model. The fast sodium
current is found in the soma and axon hillocks of many neurons. The persistent
sodium current (which activates rapidly; the “slow” in its name refers to inacti-
vation) has been implicated as underlying both sub- and suprathreshold firing in
many neurons by adding a small depolarizing current which keeps them active.

As an example of the utility of the persistent sodium we will introduce a simple
model of the Pre-Botzinger complex, a group of neurons responsible for generating
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the respiratory pacemaker oscillations in the brainstem. (That is, these are the
cells that make us breathe.) Here the persistent sodium and its inactivation play
a crucial role in generating the pacemaker potential for the oscillation. The model
has the form:

Cm
dV

dt
= −gL(V − EL) − gKn

4(V − EK) − gNam∞(V )3(1 − n)(V − ENa)

− gNapw∞(V )h(V − ENa)

dn

dt
= (n∞(V ) − n)/τn(V )

dh

dt
= (h∞(V ) − h)/τh(V )

In the appendix, we provide all the exact values for the parameters and the func-
tions. Note that for the fast sodium, the inactivation has been replaced by 1 − n
as in the Rinzel reduction of the HH equations. The variable h now corresponds to
inactivation of the persistent sodium channel. The key feature in this model is that
the inactivation of the persistent sodium has a time constant of ten seconds. Figure
5.1A shows a simulation of this model for 40 seconds. The voltage oscillates at a
period of about 6 seconds which is commensurate with the 10 second time constant
for inactivation of the persistent sodium channel. In a later chapter (on bursting),
we will explore the role of the persistent sodium channel in producing the bursts.
Here, we restrict our discussion to the pacemaker duties of the persistent sodium
channel.

Butera etal showed that one of the key parameters in inducing the bursting is
the leak potential EL. If EL = −65 mV, then the system stable resting behavior.
By shifting this parameter from -65 mV to -60 mV, they obtained the pattern shown
in Figure 5.1A. If we block the transient sodium by setting gNa = 0, then we can
see look at the bifurcation diagram of the “spikeless” model as a function of EL.
Figure 5.1B shows the voltage as a function of the leak current. There are two
Hopf bifurcations: a subcritical bifurcation at about -60 mV and a supercritical
bifurcation at about -54 mV. Thus, for a range of leak potentials there is a slow
pacemaker potential. We can further understand this by noting that the variable
h is much slower than (V, n). If we set n = n∞(V ), then this leads to a two-
dimensional system in (V, h), the phaseplane of which we show in Figure 5.1C. At
EL = −62mV, there is a single stable fixed point. As EL increases, the V−nullcline
moves down and intersects the h nullcline in the middle branch. Since h is very
slow, this leads to a relaxation oscillation shown in the phaseplane and in Figure
5.1D. The period of the pacemaker potential is about twice that of the full model
(in Figure 5.1A). This is because the spikes produced by the full model cause more
inactivation of the persistent sodium.

5.1.2 Calcium channels

Calcium channels are quite similar to sodium channels both in their form, function,
and dynamics. However, because the concentration of calcium in the cell is very
low (e.g. on the order of 10−8 M), the small amount of calcium coming into the cell
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Figure 5.1. Persistent sodium provides the pacemaker current for the
model Pre-Botzinger cell. (A) Potential with EL = −60 mV for the full bursting
model. (B) Bifurcation diagram with fast sodium blocked showing onset of pacemaker
oscillations at the Hopf bifurcation. (C) Phaseplane with n = n∞(V ) showing
relaxation oscillation. (D) Potential of the simple relaxation model.

from the channel opening can drastically alter the driving potential. Thus, many
modelers (but no theoreticians!) use the constant field equation (5.2) rather than
the simple ohmic drive (5.1). Using the CFE model requires an extra equation for
the intracellular calcium concentration, but this is often ignored. The CFE just
adds a nonlinearity to the current with little effect on the dynamics.

We can divide calcium channels into roughly two classes (although exper-
imentalists describe many more): (i) T−type calcium currents ICa,T which are
low-threshold but inactivate and (ii) L−type calcium currents ICa,L which have a
high threshold and do not inactivate. ICa,T is fast and both the activation and in-
activation are voltage-dependent. This current is responsible for bursting in many
neurons, particularly in the thalamus where it plays the dominant role in producing
oscillatory activity during sleep. ICa,L is responsible for spikes in some cells (such as
the Morris Lecar model). It does in fact inactivate, but the inactivation is calcium-
rather than voltage-dependent.

The T−current has some interesting properties such as the ability to produce
rebound bursts and subthreshold oscillations. Let’s see some of these features. We
will look at a simple model in which the spiking currents (sodium and potassium)
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are blocked so that all that is left is the T current and the leak:

C
dV

dt
= I0 − gL(V − EL) − IT (5.5)

dh

dt
= (h∞(V ) − h)/τh(V )

IT = m∞(V )2hIcfe(V, [Ca]o, [Ca]i)

m∞(V ) = 1/(1 + exp(−(V + 59)/6.2))

h∞(V ) = 1/(1 + exp((V + 83)/4))

τh(V ) = 22.7 + 0.27/(exp((V + 48)/4) + exp(−(V + 407)/50)).

In order to simplify the analysis of this model, we have set the activation variable m
to its steady statem∞(V ). Full parameters for the model are in the appendix. What
sets the behavior for this model is the resting potential. Various neural modulators
(chemicals which alter the behavior of neurons in a quasi-constant manner) set the
resting potential from either relatively depolarized at, say, -60 mV to relatively
hyperpolarized at -80 mV. The inactivation h has a half-activation at -83 mV in the
present model so that if the resting potential is -60 mV, then h ≈ 0. This means
that no amount of depolarizing current can activate the current. In the sensory
literature, when the thalamic neurons are depolarized like this, the network is said
to be in “relay” mode. Inputs to the thalamus are transmitted as if the cell was
just a nonlinear spiker like we have already encountered. However, if the network
is hyperpolarized, then inactivation of the T-current, h, will be much larger and a
subsequent stimulus will lead to an explosive discharge of the neuron.

Suppose that the leak is set so that the resting potential is around 60 mV.
Figure 5.2A shows the response of the model to brief depolarizing and hyperpolariz-
ing pulses. At -60 mV, the T-current is completely inactivated so that the response
to depolarizing pulses is the same as if the current was not there. In this simplified
model, the result is a passive rise in voltage followed by a passive decay. However,
if the same membrane is provided with a brief and strong hyperpolarizing stimulus,
it responds with a calcium action potential when released from the stimulus. This
is called rebound and is a classic property of cells with a T-type calcium current.
Figure 5.2B provides a geometric explanation for rebound. At rest, the membrane
sits at the lower right fixed point. At this point h ≈ 0. A hyperpolarizing input
moves the V nullcline upward; if the hyperpolarization is maintained, the trajectory
will move towards the new fixed point (upper left circle.) If, instead, the hyperpo-
larization is transient, then when the stimulus is removed, the V -nullcline moves to
its original position. Since h is slow compared to V , the potential will rapidly move
horizontally to reach the right-branch of the V−nullcline leading to the calcium
spike.

In contrast, consider the the system when the leak is -80 mv. Then the rest
state is about -78 mV and the T-current inactivation, h, is no longer negligible.
Figure 5.2C shows that a small depolarizing input is now sufficient to elicit an action
potential. Similarly, a small hyperpolarizing input will also result in the firing of an
action potential. Figure 5.2D provides an explanation for why depolarization will
work in this case. Depolarizing lowers the V−nullcline allowing the trajectory to
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Figure 5.2. Properties of the T-type calcium current.

jump to the right branch of the nullcline and produce a spike.
The T-current also provides a mechanism for subthreshold calcium oscillations

which can be pacemakers for bursting like the persistent sodium current. In exercise
*, you are asked to find these oscillations and give a geometric explanation for them.

5.1.3 Voltage-gated potassium channels.

There is no doubt that the greatest variety of channels is found in those which
involve potassium. We have already seen the workhorse for spiking, the delayed
rectifier, in the Hodgkin-Huxley model, the Butera model of the Pre-Botzinger
complex, and the Morris-Lecar model. The delayed rectifier is rather fast and has
only an activation gate. Potassium channels provide the main repolarizing force
for nerve cells. If they are fast, then the cell are allowed to rapidly repolarize so
that very fast spike rates are possible. If they are slow, they cause the spike rate
to slow down with sustained depolarization, an important form of adaptation. In
addition to the voltage-gated potassium channels which we describe here, there are
also calcium-gated potassium channels which perform similar roles.

A-current

The Hodgkin-Huxley model was based on a quantitative analysis of the squid axon.
In 1971, Connor and Stevens introduced an alternative model for action potentials
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gK = 17.7, gA = 50. (B) Steady-state I-V curve with two different amounts of A-
current. (C) Full bifurcation diagram for the CS model with default parameters.
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in the axons of crab legs. The transient sodium and delayed rectifier were similar to
those in the HH model although they were faster. In addition, Connor and Stevens
introduced a transient potassium current, the A-current. Like the transient sodium
current, this current has both an activation and an inactivation gate:

IA = gAa
3b(V − EA).

The reversal potential EA is close to that of the delayed rectifier. The activation
variable a increases with voltage while the inactivation variable b decreases; b∞(V )
has a half-activation at about -78 mV. (The full Connor-Stevens model (CS) is given
in the appendix.) One consequence of having this current is that it induces a delay
to spiking when the cell is relatively hyperpolarized. Intuitively, the reason for this
is that when the cell is somewhat hyperpolarized, b will be large. Depolarization
engages a and thus there will be a large potassium current. However, when the
membrane is depolarized, b∞(V ) will be small so that b will decrease leading to
a gradual loss of the A-current. The neuron will spike only when this current is
sufficiently small. Thus, the A-current causes a delay to spiking. Figure 5.3A shows
an example of the delay to spiking due to the A current.

One of the most interesting dynamic consequences of the A-current in the
Conner Stevens model is that it converts the transition to repetitive firing from
class II (like the Hodgkin-Huxley model) to class I. Recall that for a class II neu-
ron, the transition from resting behavior to oscillations if via a Hopf bifurcation;
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moreover, the steady-state voltage-current (I-V) relationship is monotonic. For a
class I neuron, the transition to oscillations is via a SNIC bifurcation and the I-V
relationship is non-monotonic.

The A-current provides a means to make the I-V relationship non-monotonic
since the steady state current,

IA,ss = gAa∞(V )3b∞(V )(V − EA),

is nearly zero. Thus, if the majority of the potassium current is A-type rather than
the delayed rectifier current, then the steady-state I-V curve will be dominated by
the sodium current.

In order to explore this idea in more detail, we consider the CS model keeping
the maximal total potassium conductance constant: gA + gK = gtotal = 67.7. The
choice of 67.7 for the total is so that the CS model is our default, gK = 20 and
gA = 47.7. Figure 5.3B shows the steady state I-V curve for the standard CS
parameters and also for when the A-current is reduced to 40 while the delayed
rectifier is increased to 27.7. It is clear that the I-V curve is monotonic with the
reduced A-current so that class I (SNIC) dynamics is impossible. Figure 5.3C
shows the bifurcation diagram for the standard CS model as current is injected. A
branch of periodic orbits emerges at high applied currents at a supercritical Hopf
bifurcation (not shown). This branch terminates via a SNIC on the steady-state
IV curve. The frequency is shown in Figure 5.3D and as predicted by the general
theory has a square-root shape and vanishes at the critical current. We point out
that the steady-state I-V curve in the standard parameter regime is not a simple
“cubic” as the in the Morris-Lecar model. Rather, there are currents where there
appear five fixed points. Rush and Rinzel (1995) were the first to notice this. The
phenomena occurs over a very narrow range of values of gA. In exercise * below,
you are asked to explore the behavior of the system with slightly different values of
gA.

5.1.4 M-current.

There are several slow potassium currents which are responsible for a phenomenon
known as spike frequency adaptation (SFA). That is, this slow low-threshold out-
ward current gradually reduces the firing rate of a neuron which has been depolar-
ized sufficiently to cause repetitive firing. The M-current and related slow potassium
currents are able to stop neurons from firing if they are strong enough and thus can
provide an effective brake to run-away excitation in networks.

Figure 5.4 shows an example of SFA in a simple cortical neuron model due
to Destexhe and Pare (1999). The left-hand figure shows the voltage as a function
of time when the current is instantaneously increased to 6 µA/cm2. The initial
interspike interval (ISI) is short but over time this lengthens. Figure 5.4B shows
the instantaneous frequency (reciprocal of the ISI) as a function of spike number.
The frequency drops from 130 Hz to 65 Hz over about a second of time.

The M-current does far more than just slow down the spike rate. Because it
is active at rest (the threshold is −30 mV), the M-current can have profound effects
on the steady state behavior. Figure 5.5A shows the bifurcation diagram of steady
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function of current at three values of gm. With no M-current, the neuron is class
I and oscillations are borne via a SNIC along the fold curve F. With large enough
M-current (gm = 2), oscillations are borne via a Hopf (H) bifurcation and the fold
points no longer exist since there is a unique equilibrium point. For intermediate
values, the folds still exist, but the Hopf bifurcation occurs on the lower branch of
fixed points. (B) Two-parameter diagram. The two fold curves (F) meet at a cusp
point (C) at near I = 4.8 and gm = 1.8. There is a curve of Hopf points (H) which
terminates at a Takens-Bogdanov (TB) point when the Hopf curve meets a fold
curve. Dashed line corresponds to gm = 1; as I increases, there is first a Hopf point
and then the fold. At gm = 0, no Hopf is encountered and when gm = 2, there are
no folds.

states as the conductance of the M-current (gm) is increased. With no M-current,
the model has a SNIC bifurcation to a limit cycle so that it is a class I membrane.
For larger values of gm (Destexhe and Pare used 2 < gm < 5) the rest state loses
stability at a Hopf bifurcation so that the membrane is class II. The transition from
class I to class II occurs for gm = 1 where the fold points (saddle-nodes) remain but
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the lower branch of fixed points loses stability at a Hopf bifurcation. Figure 5.5 B
shows a two-parameter bifurcation diagram of this system where the applied current
and gm vary. As gm increases, the two fold-points merge at a cusp point (labeled C)
and for gm larger, there is only a single fixed point. Additionally, there is a curve
of Hopf points which terminates on the right-most fold point at a Takens-Bogdanov
(TB) point. In some sense, the TB point marks the transition from class I to class
II excitability. The global picture is complex. For example, when gm = 0, there
is a single branch of periodic solutions terminating at the fold point via a SNIC.
However, when gm = 1, a branch of periodic solutions must bifurcate from the
Hopf. This branch must somehow either merge with the SNIC branch or disappear.
The interested reader could attempt to put together a plausible global picture as a
project.

5.1.5 The inward rectifier.

The inward rectifier is hyperpolarization activated. That is, if the neuron is hyper-
polarized enough, the current is activated, further hyperpolarizing the model. This
implies the possibility for bistability in the hyperpolarizing direction. The current
has the form:

IKir = gKirh(V )(V − EK)

where

h(V ) = 1/(1 + exp((V − Vth)/k)).

Typical values for the parameters are Vth = −85 mV and k = 5 mV. With a leak
current the steady state current satisfies:

I = gL(V − EL) + gKirh(V )(V − EK).

Differentiating this equation, we obtain

dI

dV
= gl + gKirh(V ) + gKirh

′(V )(V − EK).

The first two terms are positive. However, if V > EK , then since h′(V ) < 0, it
is possible that this last term can be large and negative enough so that the I − V
curve is cubic-like. Necessary conditions are that EK < Vth and k must be small
enough. Once there is bistability, it is possible to generate oscillations. Izhikevich
points out that if you add a delayed rectifier potassium current, then it is possible to
generate oscillations with two potassium currents! Given the fact that this current
can induce bistability, this is not surprising. In exercise **, you can give this a
try. Another way to induce oscillations in this model is to assume that there is
extracellular potassium accumulation. This will result in the reversal potential for
potassium becoming more positive, inactivating the channel. Thus, there will be
negative feedback to a bistable system and possibly oscillations. See exercise *.
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tential to hyperpolarizing steps. (Parameters are those from McCormick et al.)

5.1.6 Sag

We end our discussion of voltage-gated channels with a description of the so-called
sag current, Ih. This is a slow inward current with a reversal potential of between
-43 and 0 mV, but which requires hyperpolarization to become active; that is, the
activation curve is monotone decreasing. The ions involved are a mixture of sodium
an potassium so that the reversal potential lies between them. The sag current is
implicated as a pacemaker in many different systems (Luthi et al, Maccaferri and
McBain, Kocsis and Li). There are several models for this current; some have a
single component and others have multiple components. The simplest model is due
to McCormick and Huguenard:

Ih = ghy(V + 43) (5.6)

where

dy

dt
= (y∞(V ) − y)/τy(V )

y∞(V ) = 1/(1 + exp((V − Vth)/k))

τy(V ) = τ0sech((V − Vm)/b).

The time constant, τ0 varies from 50 msec to over 1000. (Note that the function
τy(V ) used by McCormick et al is more complicated than the present version, but
they are almost identical in shape.) Figure 5.6 shows how the sag gets its name.
Hyperpolarizing the membrane causes the potential to drop and thus activates the
sag current which then repolarizes the membrane. In exercise *, you combine this
current with the IKir current from the previous section to obtain a slow pacemaker
oscillation.

5.1.7 Currents and ionic concentrations.

So far, we have assumed that the ionic concentrations both inside and outside the
cell are held constant. This is usually a good assumption except for the ion calcium.
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Because the internal free calcium levels are very low in a cell ( 10−4 millimolar), the
entrance of calcium through voltage-gated channels can substantially contribute to
the intracellular calcium. Indeed, calcium is a very important signaling molecule and
it often sets up complex reaction cascades within the cell. These reactions have both
long and short-term effects on the cell. Thus, it is useful to understand how to model
the flow of calcium due to voltage-gated channels. In certain pathological cases, the
buildup of extracellular potassium can also have profound effects on neurons. Since
normal extracellular media has quite low potassium, if many neurons are firing
simultaneously, they are releasing large amounts of potassium into the medium.
The surrounding nonneural cells (glia) buffer the potassium concentration, but this
process can be slow.

Consider a current due to some ionic species IX . Suppose that this is a positive
ion. The current is typically measured in units of µA/cm2. Recall that an ampere is
a coulomb of charge per second. We need to convert this current to a concentration
flux which has dimensions of millimolar. Recall that one molar is one mole per liter
or one mole per 1000 cubic centimeters. Faraday’s constant, 96,485 Coulomb/mole,
is just what we need. Suppose the valance of the ion is z. Then IX/(zF ) gives us
the transmembrane flux in units of µM/cm/s. To convert this into a concentration
flux, we suppose that the ions collect in a thin layer of depth d (in microns) near
the surface of the cell. Thus, the change in concentration is IX/(zdF ). Finally, we
want out units of concentration to be in millimoles per liter per millisecond. Noting
that a liter is a thousand cubic centimeters, we find that the total in(out)flux of an
ion is

fX = 10IX/(zFd) (5.7)

where F = 96, 485, d is depth in microns, and IX is current in microamperes per
square centimeter.

Having defined the flux of of ions moving through the cell, we need to write
equations for the total concentration of ion, X :

dX

dt
= ±fX − δ(X)

where δ(X) is the decay of ion X through uptake or buffering. Which sign should
we take? If we are interested in the intracellular concentration, then we take the
negative sign and if we are interested in extracellular concentrations, we take the
positive sign. The simplest form is

δP (X) = (X −X0)/τ

which means that in absence of the ionic current, X tends to X0. Another common
form is

δM (X) =
K1X

Kh +X

which is a passive buffering model due to the reaction

X +B ⇀↽ XB −→ B + Y
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where Y is the inactivated form of X . We finally note that the flux term fX can
have a factor multiplying it to account for buffering as well (see Keizer book). Thus,
for intracellular accumulation, we can write:

dX

dt
= −γIX − δ(X) (5.8)

where the parameter γ takes into account the buffering and depth of the membrane
pool.

The main ion of interest is calcium. Wang (1998) uses γ = .002 in µM(msecµA)−1cm2

in order to produce a 200 nM influx of calcium per spike. This amount is based
on careful measurements by Helmchen et al (1996) in cortical pyramidal neurons.
Wang also uses a simple decay for calcium, δ(X) = X/τ , where for the dendrite,
τ = 80msec.

5.1.8 Calcium-dependent channels.

The main reason to track calcium is that there are several important channels
whose behavior depends on the amount of intracellular calcium. The two most
important such channels are IK,Ca, the calcium-dependent potassium current, and
Ican, the calcium-dependent inward current. The former current appears in many
neurons and is responsible for slow after-hyperpolarizations and spike-frequency
adaptation. It is often referred to as the AHP current. The CAN current can last
for many seconds and causes sustained depolarization. It has been implicated in
graded persistent firing (Egorov et al 2002) and in the maintenance of discharges
by olfactory bulb granule cells (Hall and Delaney, 2002). In order to model these
currents, we need to keep track of the calcium. Thus, (i) there must be a source of
calcium and (ii) we need to track it via equation (5.8).

Calcium dependent potassium - the AHP

A typical model for IK,Ca is due to Destexhe:

IK,Ca = gK,Cam
2(V − EK) (5.9)

dm

dt
= (m∞(c) −m)/τm(c) (5.10)

m∞(c) =
c2

K2 + c2
(5.11)

τm(c) = max(τmin, τ0/(1 + (c/K)2). (5.12)

Typically K is 0.025 mM, τmin = 0.1 msec, and τ0 varies. In Destexhe (1994) τ0
is around 40 msec, but values as high as 400 msec can be found in the literature.
A simple way to incorporate this model into one which has a calcium channel is to
assume that it depends instantly on the calcium concentration:

m = m∞(c)
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adaptation showing decrease in frequency over time. (B) Steady-state firing rate
with and without adaptation.

so that to incorporate this current into a spiking model one need only add an
instantaneous calcium channel (if one is not present), the calcium dynamics, and
the instantaneous AHP current. As with all the models, the equations for this
are found in the appendix. Figure 5.7A shows the behavior of the firing rate over
time when this current is added to the Morris-Lecar model. The onset of spiking is
unaffected by the presence of this current because it turns on only when the cell is
spiking (and calcium enters the cell). Thus, unlike the M-current, the AHP current
cannot alter the stability of the rest state.

One very interesting effect of the AHP is shown in Figure 5.7B. It is not
surprising that the current lowers the frequency-current curve. However, it also
tends to make the curve more linear. This point was first described by Wang (1998)
in a model similar to that depicted above. We now attempt to explain the origin of
this linearization effect. We will first formulate this problem rather abstractly and
then consider a full biophysical model.

Suppose that the unadapted neuron is able to fire at arbitrarily low rates and
that the derivative of the firing rate function tends to infinity as the threshold for
firing is approached. Let z be the degree of adaptation in the model and we suppose
that z = αf where f is the firing rate. The adaptation acts negatively on the total
current injected into the neuron, thus

f(I) = F (I − gz)

where F (I) is the unadapted firing rate function and g is some constant. Since
z = αf this leads us to

f(I) = αF (I − gαf). (5.13)

Differentiating this with respect to I and rearranging, we obtain:

df

dI
=

F ′(I − αgf)

1/α+ αgF ′(I − αgf)
.

For large F ′, we see that
df

dI
≈ 1

αg
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showing that it is approximately linear. If we suppose that F (I) = A
√
I so that

the the neuron has a class I firing rate curve , we can exactly solve for f :

f(I) = −κ+
√

κ2 +A2I (5.14)

where κ = A2αg/2. **** Remark: this doesn’t look very linear so it’s not clear
what the point is ***

What does this simple calculation have to do with the full biophysical model?
We can exploit the slow dynamics of adaptation in order to justify equation (5.13).
For simplicity, we assume that conductance of the adaptation is linear rather than
the nonlinear model we have used as an illustration. Consider:

C
dV

dt
= I − Ifast − gz(V − EK) (5.15)

dz

dt
= ǫ[q(V )(1 − z) − z]. (5.16)

here Ifast represent all the ’fast” currents which are responsible for spiking. There
are three keys to the analysis (i) ǫ is very small; (ii) the fast system has class I
dynamics; (iii) the width of the spikes does not change very much as a function of the
firing rate. Figure 5.7B shows that the present model is class I. The interested reader
can verify that the spike width is nearly independent of the frequency. Finally, we
have chosen the calcium time constant to be 300 msec which is at least an order of
magnitude slower than any of the other dynamics. (We remark that the calculations
that follow will be used often to justify simplified firing rate dynamics of biophysical
models.)

Slow-fast analysis.

Since ǫ is small, we can treat z as a constant as far as the dynamics of the fast
variables is concerned. Thus, we can examine (5.15) using I and z as parameters.
Since gz(V −EK) is essentially a constant hyperpolarizing current (when z is fixed),
we expect that if we inject enough current into the cell, it will fire. We also expect
that the onset of firing will be a SNIC at some critical current, ISN (z), depending
on z. A numerical analysis of the model illustrated in Figure 5.7 shows that

ISN (z) ≈ I0 + gI1z.

Recall that the firing rate of class I neurons is (at least near the bifurcation) a
square-root function of the distance from the saddle node:

f(I, z) = A
√

I − ISN (z) ≈ A
√

I − I0 − gI1z. (5.17)

Thus, if I < ISN , then the neuron does not fire and if I > ISN the neuron fires
at a rate dependent on the distance from the saddle-node. Note that the function
f need not be exactly a square root. However, we do assume that it depends only
of the distance from the saddle-node and that the saddle-node value is a linear
function of the degree of adaptation. Now we turn to the slow equation (5.16).
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We assume the function q(V ) is such that if the neuron does not fire an action
potential, then q(V ) = 0. Thus, at rest, q = 0 and z = 0. Since the adaptation
in this section is high-threshold, the subthreshold membrane behavior will have no
effect on the degree of adaptation. Now, suppose the neuron is firing with period
T . Then equation (5.16) is a scalar periodically driven equation:

dz

dt
= ǫ[q(V (t))(1 − z) − z].

Since ǫ is small, we can use the method of averaging (see chapter *) and replace z
by its average Z:

dZ

dt
= ǫ < q > (1 − Z) − Z

where

< q >=
1

T

∫ T

0

q(V (t)) dt.

Now, we invoke the hypothesis that the spike width is independent of the frequency.
Since q(V ) is zero except during a spike and the spike width is independent of the
frequency, the above integral simplifies to

< q >=
c

T
.

Here c is the integral of q(V (t)), a frequency-independent constant. But 1/T is
just the frequency and this is given by equation (5.17). Thus, we obtain a closed
equation for the degree of adaptation:

dZ

dt
= ǫ[cA

√

I − I0 − I1Z(1 − Z) − Z]. (5.18)

The steady-states for this equation will yield the steady-state F-I curve. However,
one has to solve a cubic equation to get the steady-states, so that it is not analyti-
cally tractable. (However, see exercise *).

CAN current.

The CAN current can be modeled very much like the AHP but instead of hyperpo-
larization, the current provides depolarization. We model the CAN current simply
as

ICAN = gCANm
p
Can(V − ECAN ).

The gate mCAN obeys dynamics much like the AHP:

dmCAN

dt
= (q(c)(1 −mCan) −mCAN)/τCAN

where q(c) is some monotone function of the calcium. Typically, q(c) = α(c/c0)
2.

The CAN current has been implicated in sustained firing of many neurons, notably
those in the entorhinal cortex (Egorov, et al). A simple illustration of sustained
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firing due to the CAN current is shown in Figure 5.8. We use the Destexhe-Pare
spiking model for the generation of action potentials and add a small amount of the
CAN current

ICan = gcanmc(V + 20)

where
dmc

dt
= 0.005[Ca]2(1 −mc) −mc/3000.

Since the spiking model does not have any calcium channels, we suppose that the
synaptic stimulation of the model produces a square pulse of calcium of width 50
msec and magnitude 1 mM. (See the section on synaptic channels below). The
results of three pulses at t = 200, 700, 1200 shows the long-lasting graded persistent
activity. (This model is quite naive and cannot maintain the firing rate since the
CAN current decays. One way to rectify this is to have calcium channels in the
model for spiking which will then provide positive feedback. Problems related to
this are explored below in one of the exercises/projects.)

5.1.9 Exercises

1. Based on what you have seen in the ML system, one might guess that there is
the possibility of getting oscillations in the Butera model when the fast sodium
is blocked and the inactivation of the persistent sodium is held constant (that
is dh/dt = 0). Thus, the model could be reduced to a planar system in V, n:

Cm
dV

dt
= −gL(V − EL) − gKn

4(V − EK) − gNaPw∞(V )h(V − ENa)

dn

dt
= (n∞(V ) − n)/τn(V ).

Compute the bifurcation diagram of this using h as a parameter at a variety
of different values of EL. Conclude that there can be no oscillations for this.
How would you change the shape of n∞(V ) in order to generate oscillations
in this model?
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2. Compute the bifurcation diagram of the T−current model using EL as a
parameter starting it at -60 mV and decreasing it to -85 mV. Simulate the
model when there are calcium oscillations.

3. Add sodium and potassium currents to the T-current model using the equa-
tions in the Appendix for cat-spike.ode. Show that when the resting po-
tential is depolarized (EL = −65), the application of sufficient depolarizing
current leads to a train of action potentials. Show the analogues of figure
5.2A,C for the spiking model.

4. The T−type calcium current was shown to be capable of oscillations and
rebound depending on the leak current. Explore the L−type calcium current
which has calcium-dependent inactivation. The model equations for this are
given in the appendix. The activation is set to its steady state so that the
resulting model is planar. Explore the bifurcation to periodic solutions as a
function of the applied current. Compute the bifurcation diagram as I0 the
applied current is increased.

5. The Connor-Stevens model has its parameters balanced at a nearly critical
value in that there are many complicated bifurcations which can occur nearby.
This has not been systematically explored although Rush and Rinzel make
some mention of the unusual behavior. Use the CS model in the appendix in
which the A- and delayed rectifier currents are balanced so that their total
maximal conductance is fixed. (That is, let gK = 67.7− gA in the CS model.)
The standard values are gA = 47.7 and gK = 20. (i) Change the model so
that gA = 48.7 and gK = 19. Compute the bifurcation diagram and show that
there are at most three fixed points. (ii) Change gA = 47.4 and gK = 20.3.
Compute the bifurcation diagram as a function of the current. Show that there
is a small range of currents where there are two stable fixed points. Now, use
the parameters gA and I0 to create a two-parameter diagram of fold points and
Hopf points. You should find something that looks like the figure below. There
are three cusp points corresponding to the coalescence of fold points. There is
also a curve of Hopf points which terminates on one to the folds at a Takens-
Bogdanov point. Thus, the standard parameters for the CS model are quite

weird!
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6. Compute the FI curve for the Destexhe-Pare model with gm = 0 and with
gm = 5 and compare the two.
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7. Create a figure like 5.4B for the DP model (I = 6, gm = 2.) and try to fit the
data to a function of the form:

F = Fss + (Finst − Fss)λ
n−1

where Fss is the steady state firing rate, Finst is the instantaneous rate, λ is
a parameter and n is the ISI number. The parameters Fss, Finst characterize
the degree of adaptation and the parameter λ characterizes the time scale of
adaptation.

8. Make a neural oscillator using the inward-rectifier and a delayed rectifier model
of the form

IK = gKn
4(V − EK)

where
dn

dt
= (1/(1 + exp(−(V − a)/b)) − n)/τ.

You should try to pick a, b, τ so that the model oscillates. Don’t worry if the
choices of a are pretty low. Use gKir = 0.5, EK = −90, EL == 60, gL = 0.05,
and Vth, k as in the text.

9. Inward rectifier and potassium accumulation. Let

IK = gKm∞(V )(V − EK)

where
m∞(V ) = 1/[1 + exp((V + 71)/0.8)]

and
EK = 85 log10Kout.

Consider the model with external potassium accumulation with passive up-
take:

C
dV

dt
= I − gL(V − EL) − IK

τ
dKout

dt
= αIK +K0 −Kout

where K0 = 0.1, α = 0.2, gL = 0.1, gK = 0.1 Sketch the phaseplane for
various hyperpolarizing currents. Show that if you choose I in some small
range and τ sufficiently large, that you will obtain oscillations in the potential.
(Hint: Show that the V -nullcline can be cubic and that it can intersect the
Kout nullcline in the middle branch. Then increase τ until this fixed point is
unstable.

10. Consider a combination of the sag current and the inward rectifier. Parameters
should be taken from the model in the appendix. Draw the phaseplane and
integrate the equations. Change the sag model from the McCormick to the
Migliore parameters. Does the model still generate subthreshold oscillations?
Compute the bifurcation diagram for the model using I as a parameter. How
is the oscillation borne and how does it die?
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11. Suppose that Z is small in equation (5.18) so that the equation is well ap-
proximated by

dZ

dt
= ǫ[cA

√

I − I0 − gI1Z − Z].

Find the steady-states of Z and obtain the FI curve from this.

12. Repeat the calculations for the slow adaptation model by explicitly computing
the averaged quantities for the theta model:

dθ

dt
= 1 − cos θ + (1 + cos θ)[I − gz]

dz

dt
= ǫ[δ(θ − π) − z]

The right-hand side of z says that each time θ crosses π, z is incremented by
an amount ǫ. Numerically compute the FI curve for this model with different
values of g (say 0,1,5). Since the firing rate of the unadapted theta model is
known exactly (see exercise **), you should try to fit the numerically computed
FI curves to equation (5.14).

13. A related model to the previous exercise adds spike-adaptation to the quadratic
integrate and fire model. The simplest form of this model is:

V ′ = I + V 2 − u (5.19)

u′ = a(bV − u)

along with reset conditions such that when V = Vspike, V is reset to c and u
is incremented by d. By rescaling V , you can set Vspike = 1 with no loss in
generality. (Do this as an exercise.) The variable u plays several roles in this
model. If a = 0, then it can have no effect on the local behavior of the rest
point. However, if a 6= 0 the adaptation can change the stability of rest.

(a) Suppose there is a rest state, (V̄ , ū). Linearize about the rest state and
find the parameters (a, b, I) where there is a saddle-node bifurcation, a
Hopf bifurcation, and where the two bifurcations merge at a Takens-
Bogdanov point. This is not surprising as the next part of this exercise
will show.

(b) The Takens-Bogdanov bifurcation occurs when there is a double zero
eigenvalue which has geometric multiplicity 1. The Takens normal form
for this bifurcation takes the form:

dw

dt
= z + βw + w2,

dz

dt
= α+ w2.

Let r = w − z and write equations for the new (r, w) system. Next let

x = w +
β + 1

2

z =
r

β + 1
+
α+ (β + 1)2/2

β + 1
.
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yielding:
dx

dt
= −(β + 1)z + x2 + k,

dy

dt
= x− y

where
k = α+ (β + 1)2/4.

Thus, the local dynamics of the QIFA model is the same as that of the
normal form. Note that we can get rid of the parameter a by rescaling
time and V, z in (5.19). You should attempt this.

(c) The FI curve of this model cannot be analytically derived even when a =
0. Nor can we use AUTO or other bifurcation tools to obtain the FI curve
since the reset condition makes the equations discontinuous. However,
we can pose this as a boundary value problem which is smooth and so
can be computed with AUTO. We suppose that there is a repetitively
firing solution with period P . This means that V (0) = c and V (P ) = 1.
Thus, the boundary conditions for V are specified. We also require that
u(0) = u(P ) + d since u is incremented whenever V crosses 1. Since the
period is unknown, we rescale time, t = Ps and thus have the following
equations:

V ′ = P (V 2 + I − u)

u′ = Pa(bV − u)

V (0) = c

V (1) = 1

u(0) = u(1) + d.

There are three boundary conditions, but only two differential equations.
However, there is a free parameter P which can allow us to solve the
equations. For example, take (a, b, c, d) = (0.1, 1,−0.25, 0.5) and I = 1
and you will find a repetitive spiking solution with u(0) = 1.211 and
period P = 5.6488. Try this, and then use AUTO or some other method
to compute the FI curve. The analysis of the rest state that you did
above should tell you the lowest possible current for repetitive firing.

14. (Izhikevich model) Eugene Izhikevich has adapted the quadratic integrate-
and-fire model with linear adaptation (5.19) to look more like a biophysical
model. The model has 4 free parameters as well as the current. The equations
are

dV

dt
= 0.04V 2 + 5V + 140 + I − u (5.20)

du

dt
= a(bV − u)

along with the reset conditions if V = 30 then V = c and u = u + d. Find
a change of variables which converts (5.20) to (5.19). Izhikevich suggests the
following sets of parameters (a, b, c, d, I) for various types of neurons. Try
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these and classify the behavior: (.02,.2,-65,6,14); (.02,.2,-50,2,15); (.01,.2,-
65,8,30); (.2,.26,-65,0) and let I vary on this example. In each of these, start
with I = 0 and then increase I to the suggested value. Can you derive a
method for numerically following a bursting solution as a function of some
parameter? (It is likely you will have to fix the number of spikes in a burst.)

15. Sakaguchi has recently devised a simple model for a one-variable bursting
neuron. The equation is as follows:

C
dV

dt
= α(V0 − V +DH(V − VT )) (5.21)

where H(X) is the step function. There are two reset conditions. If V crosses
VT from below, then V is boosted to V1. If V crosses VT2 from above, V is
reset to V2. Sakaguchi takes α = .035, C = 2, V0 = 30, D = 5, VT = −35,
V1 = 50, V2 = −50, and VT2 = 40. Compute the period of the Sakaguchi
burster for these parameters. What are the conditions on the various resets
and thresholds for this model to have sustained periodic behavior?

5.1.10 Projects

In this section, we lay out some projects that could be used in a classroom setting.

1. Artificial respiration. The Hering-Breuer reflex is a phenomena through which
it has been shown that mechanical deformation of the lungs can entrain the
respiratory pattern generator. Use the full Butera model as your simple pace-
maker. This pacemaker provides the motor out put for the inspiratory phase
of breathing. The ventilator provides both inflation and deflation. Inflation
is known to inhibit the motoneuron pools for inspiration, so assume that the
ventilator provides periodic inhibitory input. Explore the range of frequen-
cies and patterns of entrainment and the conditions under which there is 1:1
locking.

2. Calcium feedback and bistability. Consider a spiking model

C
dV

dt
= −IL − INa − IKdr − ICa − ICan + I(t)

where you can take the Destexhe-Pare model of the leak, sodium, and potas-
sium current. Choose a very small instantaneous high-threshold calcium cur-
rent as was done in the calcium-dependent potassium current. Add calcium
dynamics and a CAN current. Try to adjust parameters so that a sufficient
stimulus generates sustained firing. If you give a very strong stimulus, you
should be able to get more calcium into the system and thus increase the
CAN current. This may lead you to believe that you can get graded persis-
tent firing. But, simulations should convince you that the best you can get is
bistability. Can you design a model (even an abstract one) which has many
fixed points and thus admits a variety of steady state firing rates? (Hint:
See recent papers by Loewenstein and Sompolinsky (2003) and Teramae and
Fukai (2004) who find a solution to this problem.)
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3. Bifurcation analysis of the aEIF. Brette and Gerstner (2005) propose the
following simple two-variable integrate-and-fire model:

C
dV

dt
= I − gL(V − EL) + gL∆T e

(V −VT )/∆T − w

τW
dw

dt
= a(V − EL) − w

with the provision that when V (t) = 20, it is reset to Vr and w is increased by
an amount b. A lengthy project would be to study the local behavior of this
model using combined analytical and computational methods. For example,
find the saddle-node and Hopf bifurcations. The above authors fit this model
to a detailed biophysical model with parameters C = 281 pF, gL = 20 nS,
EL = −70.6 mV, VT = −50.4 mV, ∆T = 2 mV, τw = 144 msec, a = 4 nS,
b = .0805 nA. Note the units, w is a current and V is a voltage. The time
constant of the cell at rest is roughly, 9 msec.
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Chapter 6

Bursting Oscillations

6.1 Introduction to Bursting

Many neurons exhibit much more complicated firing patterns than simple repetitive
firing. A common mode of firing in many neurons and other excitable cells is burst-
ing oscillations. This is characterized by a silent phase of near steady state resting
behavior alternating with an active phase of rapid, spike-like oscillations. Examples
of bursting behavior are shown in Figure ??. Note that bursting arises in neuronal
structures throughout the central nervous system. Bursting activity in certain tha-
lamic cells, for example, are implicated in the generation of sleep rhythms, while
patients with Parkinsonian tremor exhibit increased bursting activity in neurons
within the basal ganglia. Cells involved in the generation of respiratory rhythms
within the Pre-Botzinger complex also display bursting oscillations.

**** Figure of Bursting Cells as in Wang-Rinzel *****

At least two biophysical mechanisms are required to produce bursting: a mech-
anism responsible for the generation of spiking and a separate mechanism underlying
the slow modulation, responsible for the switch between the silent and active phases.
The spikes are action potentials and typically arise from interactions between an
inward sodium current and an outward potassium current. In order to generate the
slow modulation, there must be another process that slowly builds up (or possi-
bly decays) during the spiking phase and then decays (builds-up) during the silent
phase. This process typically involves an ionic current which either activates or
inactivates at a rate slower than the other currents.

A classic example of an ionic current underlying the slow modulation is the
calcium-dependent potassium current IKCa. Calcium enters the cell during the
active spiking phase and this leads to activation of the IKCa current. Once this
outward current is sufficiently large, the cell can no longer sustain spiking activity
and the active phase terminates. During the silent phase, calcium leaves the cell
and calcium-dependent potassium channels close. Spiking resumes once IKCa is
sufficiently small. This is just one of many mechanisms that may underlie the slow

109



i i

i

i

i

i

110 Chapter 6. Bursting Oscillations

modulation. In this example, an outward current slowly activates, because of the
build-up of calcium, and this eventually terminates the spiking phase. Another
possibility is that an inward current slowly inactivates, thereby weakening spiking
activity. An example of such a current is the persistent sodium current INaP and
this mechanism underlies bursting in models for cells in the Pre-Botzinger complex.

The examples shown in Figure ?? demonstrate that the firing properties of
bursting cells may be quite different. There has been considerable effort to clas-
sify mechanisms underlying bursting oscillations. Mathematical classifications have
been in terms of geometric properties of the corresponding phase space dynamics.
Note that bursting cannot happen in a two-variable model such as the Morris-Lecar
equations. This is because each spike corresponds to a loop in phase space and
trajectories cannot cross each other in a two-dimensional phase plane. Hence, a
minimal model for bursting must include at least three dependent variables.

Models for bursting typically involve multiple time scales and can often be
written as

dx

dt
= f(x, y) (FS)

dy

dt
= ǫg(x, y) (SS) (6.1)

where ǫ > 0 is a small singular parameter. Here, x ∈ Rn are fast variables respon-
sible for spike-generation, while y ∈ Rm are slow variables responsible for the slow
modulation of silent and active phases. Note that if ǫ = 0, then y is constant. We
denote to the first equation in (6.1), with y constant, as the fast subsystem (FS).
During the silent phase, a bursting trajectory passes near a manifold of fixed points
of (FS), while during the active phase of repetitive spikes the trajectory passes
near a manifold of periodic solutions of (FS). The slow processes modulate the
fast dynamics between these two phases. Different classes of bursting oscillations
are distinguished by the mechanisms by which the bursting trajectory switches be-
tween the silent and active phases. This is closely related to the global bifurcation
structure of the fast subsystem with the slow variables treated as parameters.

Models for bursting may exhibit other types of oscillatory activity, as well as
more exotic behavior including chaotic dynamics. Geometric dynamical systems
methods are extremely useful in determining what sorts of solutions may arise and
how the solutions depend on parameters. The models contain multiple time scales
and this often leads to very interesting issues related to the theory of singular
perturbations. Transitions from one type of behavior to another usually involve
global bifurcations. Homoclinic orbits, for example, often play an important role in
the generation of bursting activity: the active phase of rapid oscillations may either
begin or end (or both) as the bursting trajectory crosses near a homoclinic point in
phase space. At these points, standard singular perturbation methods may break
down, so more delicate analysis is required.
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Figure 6.1. Square-wave bursting. Note that the active phase of repeti-
tive firing is at membrane potentials more polarized than during the silent phase.
Moreover, the frequency of spiking slows down at the end of the active phase.

6.2 Square-wave Bursters

Perhaps the best studied form of bursting is so-called square-wave bursting. This
class of bursting was first considered in models for electrical activity in pancreatic-
beta cells; these play an important role in the release of insulin. Another example
of square-wave bursters is respiratory generating neurons within the Pre-Botzinger
complex.

An example of a square-wave burster is shown in Figure 6.1. Note that the
active phase of repetitive firing occurs at membrane potentials considerably more
polarized than during the silent phase. Another feature of square-wave bursting
is that the frequency of spiking slows down during the active phase. These firing
properties reflect geometric properties of the trajectory in phase space corresponding
to the bursting solution. In fact, it is these geometric properties which uniquely
characterize square-wave bursters and what distinguishes them from other classes
of bursters.

We have already noted that bursting cannot arise in two-variable models.
There is simply not enough room in a two-dimensional phase plane to generate the
repetitive spiking. However, it is rather simple to generate bursting activity if we
periodically drive a two-variable model. Consider, for example, the Morris-Lecar
equations (4.1) with parameters given in Table 4.2 for the homoclinic regime. The
bifurcation diagram, with bifurcation parameter Iapp, is shown in Figure 6.2. The
set of fixed points forms an S-shaped curve. There is a branch of periodic orbits
which originates at a subcritical Hopf bifurcation along the upper branch of fixed
points and terminates at an orbit homoclinic to the middle branch of fixed points.
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(The fact that the Hopf bifurcation is subcritical is not important here.) Moreover,
there is an Iapp-interval between Iapp = IHOM and Iapp = ISN for which the model
is bistable: there are stable rest states along the lower branch of fixed points and
stable, more depolarized, limit cycles. When Iapp = IHOM , there is a homoclinic
orbit and when Iapp = ISN there is a saddle-node bifurcation. Now suppose that
Iapp slowly varies back and forth across this interval. Because of the bistability,
it is easy to see how a hysteresis loop is formed in which the membrane potential
alternates between resting and spiking activity. Note that the frequency of firing
slows down near the termination of the active phase. This is because the active
phase ends as the solution crosses the homoclinic orbit.

32 33 34 35 36 37 38 39 40 41 42
−40
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0
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Stable Fixed Points

Homoclinc
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Interval of Bistability

Figure 6.2. A bifurcation diagram of the Morris-Lecar equations, homo-
clinic case. The set of fixed points form an S-shaped curve (not all of which is
shown). A branch of limit cycles originates at a Hopf point and terminates at a ho-
moclinic orbit. There is an interval of applied currents for which the system displays
bistability.

This example provides a simple mechanism, and geometric interpretation, for
square-wave bursting. However, this mechanism is unsatisfactory since we imposed
an external, periodic applied current. What we really wish to understand is au-
tonomous bursting; that is, bursting that arises due to interactions among intrinsic
properties of the cell. One way to achieve autonomous square-wave bursting is to
again consider the Morris-Lecar model except now we redefine I to be a dynamic
dependent variable that decreases during the active phase of repetitive firing and
increases during the silent phase. This example demonstrates the basic principle
that slow negative feedback together with hysteresis in the fast dynamics underlie
square-wave bursting.

Many different ionic current mechanisms could produce the slow negative feed-
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back. Here, we construct an autonomous model for square-wave bursting by starting
with the Morris-Lecar model (4.1) and adding a calcium-dependent potassium cur-
rent. The complete model can be written as:

Cm
dV

dt
= −gL(V − EL) − gKn(V − EK)

−gCam∞(V )(V − ECa) − IKCa + Iapp

dn

dt
= φ(n∞(V ) − n)/τn(V )

d[Ca]

dt
= ǫ(µICa − kCa[Ca]) (6.2)

where the calcium-dependent potassium current IKCa is given by

IKCa = gKCaz(V − VK). (6.3)

Here, gKCa is the maximal conductance for this current and z is the gating variable
with a Hill-like dependence on [Ca], the near-membrane calcium concentration.
Hence,

z =
[Ca]

p

[Ca]
p

+ 1
.

For simplicity, we set the Hill exponent p = 1. The third equation in (6.2) represents
the balance equation for [Ca]. The parameter µ is for converting current into a
concentration flux and involves the ratio of the cell’s surface area to the calcium
compartment’s volume. The parameter kCa represents the calcium removal rate and
ǫ is the ratio of free to total calcium in the cell. Since calcium is highly buffered, ǫ is
small so that the calcium dynamics is slow. We shall refer to the first two equations
in (6.2) as the fast-subsystem (FS) and the third equation as the slow equation.

Note that IKCa is an outward current. If its conductance gKCaz is large, then
the cell is hyperpolarized and the cell exhibits steady-state resting behavior. If, on
the other hand, this conductance is small, then the cell can fire action potentials.
Figure 6.3 shows the bifurcation diagram of (6.2), in which z is the bifurcation pa-
rameter. Note that the curve of fixed points is now Z-shaped, not S-shaped. There
is a branch of limit-cycles that begins at a subcritical Hopf point and terminates
at an orbit homoclinic to the middle-branch of fixed points. Finally, there is an
interval of z-values for which the fast-subsystem exhibits both a stable fixed point
and a stable limit cycle.

Now the full system exhibits square-wave bursting, as shown in Figure 6.1.
Parameter values are given in Table 6.2. When the membrane is firing, intracellu-
lar calcium slowly accumulates, turning on the outward IKCa current. When this
current is sufficiently activated, the membrane can no longer maintain repetitive
firing thus terminating the active phase. During the silent phase, intracellular cal-
cium concentration decreases thereby closing KCa channels. Once enough outward
channels are closed, the cell may resume firing.

The projection of the bursting solution onto the bifurcation diagram of the fast
subsystem is shown in Figure 6.3B. During the silent phase, the solution trajectory
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Figure 6.3. (A) Bifurcation diagram of the fast-subsystem for square-wave
bursters. (B) The projection of the bursting trajectory onto the bifurcation diagram.

lies close to the lower branch of fixed points of the fast subsystem. The silent phase
ends when the trajectory reaches the saddle-node of fixed points at which point the
trajectory jumps close to the branch of stable limit cycles of the fast subsystem.
While the membrane is spiking, the solution remains close to this branch until it
crosses the homoclinic orbit of the fast-subsystem. The trajectory is then forced to
jump down to the lower branch of fixed points and this completes one cycle of the
bursting trajectory.

This example illustrates some of the basic features of square-wave bursting.
We now consider a more general class of fast/slow systems and describe in more
detail what geometric properties are needed to generate square-wave bursting. In
general, square-wave bursting can arise in a system of the form (6.1) in which there
are at least two fast variables and one slow variable. In order to obtain square-
wave bursting, we must make assumptions on both the bifurcation structure of the
fast subsystem and the slow dynamics. In order to describe these assumptions, we
consider a three-variable model of the form:

v′ = f(v, w, y)
w′ = g(v, w, y)
y′ = ǫh(v, w, y, λ). (6.4)

In the third equation, λ represents a fixed parameter. Later, we discuss complex
bifurcations that arise when λ is varied. What distinguishes square-wave bursting
is the bifurcation diagram of the fast subsystem: the set of fixed points of the fast
subsystem forms a Z- (or possibly S-) shaped curve and there is a branch of stable
limit cycles that terminate at a homoclinic orbit. The fixed points along the lower
branch are stable with respect to the fast subsystem, while those fixed points along
the middle branch are saddles with one stable and one unstable direction. The
branch of limit cycles terminates at an orbit homoclinic to one of these saddles. In
what follows, we denote the curve of fixed points of the fast subsystem as CFP and
the branch of stable limit cycles as P .
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Table 6.1. Bursting parameters.

Parameter Square-wave Elliptic Parabilic
φ 4.6 .8 1.33
gCa 4.4 4.4 4
V3 2 2 12
V4 30 30 17.4
ECa 120 120 120
EK -84 -84 -84
EL -60 -60 -60
gK 8 8 8
gL 2 2 2
V1 -1.2 -1.2 -1.2
V2 18 18 18
Cm 1 1 1
Iapp 45 65 65
ǫ .1 .04 .01
kCa 1 1 1
µ .02 .0167 .025
k 1 1 1
gKCa .25 1 1
τs, gCaS .05, 1

Assumptions are also needed for the slow dynamics. The slow variable y must
decrease during the silent phase and increase during the active phase. (Here we
are assuming that the set of fixed points of the fast subsystem is Z-shaped, not
S-shaped.) Note that the y-nullsurface {h = 0} is two-dimensional. We assume
that this surface intersects CFP at a single point that lies along the middle branch
of CFP below the homoclinic point. Moreover, h > 0 above {h = 0} and h < 0
below {h = 0}. This allows for y to slowly increase (decrease) while the bursting
solution is in the active (silent) phase. Note that the point where the y-nullsurface
intersects CFP is a fixed point of the full system (6.4) with ǫ > 0.

It is important that the slow nullsurface {h = 0} intersects CFP below the
homoclinic point; in particular the nullsurface must lie between the lower branch
of CFP and the branch of stable limit cycles P . If this condition is not satisfied,
then the system may exhibit other types of solutions. For example, suppose that
{h = 0} intersects the lower branch of CFP . This point of intersection will be a
stable fixed point of (6.4), corresponding to a resting state of the neuron. If, on the
other hand, {h = 0} intersects CFP along its middle branch above the homoclinic
point, then the (6.4) may exhibit a stable limit cycle which lies near P . This type
of solution is often referred to as either continuous or tonic spiking.

Rigorous results concerning the existence and stability of bursting oscillations
and continuous spiking are presented in [??]. In order to describe these results,
we suppose that there exists λ0 such that if λ < λ0 then {h = 0} intersects CFP

along its middle branch below the homoclinic point while if λ > λ0 then {h = 0}
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intersects CFP along its middle branch above the homoclinic point. The results
in [?] state that if ǫ is sufficiently small, then (6.1) exhibits bursting oscillations
for λ < λ0 and continuous spiking for λ > λ0, just as expected. However, it is
important to realize that how small ǫ needs to be depends on how close λ is to λ0.
In particular, ǫ→ 0 as λ→ λ0. This is illustrated in Figure 6.4. Note that there is
a wedge-shaped region emanating from (λ, ǫ) = (λ0, 0) where we cannot conclude
that there exists bursting or spiking. Numerical studies and rigorous analysis have
shown that as λ varies across this wedge-shaped region, between the bursting and
continuous spiking regimes, the bifurcation structure of solutions must be very
complicated. In particular, there will be solutions in which the number of spikes
per burst varies considerably. Further discussion of chaotic dynamics in models for
bursting oscillations will be given later.

SPIKINGBURSTING

?

λλ
0

ε

Figure 6.4. Dependence of bursting oscillations and continuous spiking
with respect to ǫ and λ. Bursting exists if λ < λ0 and spiking exists if λ > λ0.
However, how small ǫ must be depends on how close λ is to λ0. There is an wedge-
shaped region in which chaotic dynamics exist.

6.3 Elliptic Bursting

Square-wave is only one type of bursting. Examples of two other types are shown
in Figure 6.5; these are commonly known as elliptic and parabolic bursters. El-
liptic bursters exhibit small amplitude oscillations during the silent phase and the
amplitude of spikes gradually wax and wane. An important feature of parabolic
bursters is that the frequency of spikes first increases and then decreases during
the active phase. Both elliptic and parabolic bursters arise in models for neuronal
activity and other excitable systems. Elliptic bursters arise in models for thalamic
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neurons, rodent trigeminal neurons, certain neurons within the basal ganglia and
40-Hz oscillations. Parabolic bursting is found in models for Aplysia R-15 neurons.
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Figure 6.5. (A) Elliptic burster. Note the subthreshold oscillations. (B)
Parabolic bursting. The frequency of spiking first increases and then decreases dur-
ing the active phase.

Elliptic bursting can arise in a system of the form (6.1) in which there are two
fast variables and one slow variable. Parabolic bursting, on the other hand, requires
at least two slow variables. What characterizes each class of bursting are properties
of the bifurcation diagram of the fast subsystem in which the slow variables are
considered as bifurcation parameters.

The elliptic burster shown in Figure 6.5 is a solution of (6.2) and (6.3) with
parameter values given in Table 6.2 . As before, we denote the first two equations
in (6.2) as the fast subsystem (FS) and the third equation for calcium as the slow
equation. The bifurcation diagram of (FS) is shown in Figure 6.6; the bifurcation
parameter is the slow variable [Ca]. Note that (FS) exhibits bistability: there is a
range of values of [Ca] for which there exist both a stable fixed point and a stable
limit cycle. Bistability is also an important feature of square-wave bursting. An
important difference, however, between square-wave and elliptic bursting is that for
elliptic bursting the curve CFP of fixed points of (FS) need not be Z-shaped; there
may be only one fixed point of (FS) for each value of [Ca]. The branch of periodic
solutions P now originates at a subcritical Hopf bifurcation along CFP . Suppose
that the Hopf point is at [Ca] = [Ca]HB . Then the fixed points of (FS) are stable
for [Ca] > [Ca]HB and unstable for [Ca] < [Ca]HB . Since the Hopf bifurcation is
subcritical, the branch of periodic orbits which bifurcates from the Hopf point are
unstable. This branch ”turns around” at some [Ca] = [Ca]SN > [Ca]HB giving rise
to a stable branch of limit cycles for [Ca] < [Ca]SN . There are two limit cycles for
[Ca]HB < [Ca] < [Ca]SN , one of which is stable and the other unstable. The two
limit cycles come together at [Ca] = [Ca]SN where there is a fold or saddle-node
bifurcation of limit cycles. This is where that active phase of the bursting trajectory
terminates.

To obtain bursting, we must make some assumptions on the slow variable
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Figure 6.6. Bifurcation diagram associated with elliptic bursting. The
projection of the elliptic bursting trajectory onto the bifurcation diagram is shown
in (B).

dynamics so that [Ca] decreases during the silent phase and (on average) increases
during the active phase. In what follows, we define h(V, n, [Ca]) so that the right
hand side of the third equation in (6.2) can be written as

d[Ca]

dt
= ǫh(V, n, [Ca]).

We hypothesize that h(V, n, [Ca]) < 0 near CFP . During the silent phase, the
bursting solution evolves near the stable portion of CFP , with [Ca] decreasing, until
it passes the Hopf point, beyond which the fixed points along CFP are no longer
stable. Note, however, that the trajectory does not jump up to the active phase
immediately after crossing the Hopf point. The slow variable [Ca] may traverse
a distance that is O(1) with respect to ǫ past the Hopf point before jumping up.
This type of delayed behavior or slow-passage past a Hopf point has been studied
extensively in the singular perturbation literature.

We next consider the active phase. We cannot expect that h(V, n, [Ca]) > 0
near all of P , as was the case for square-wave bursting. This follows from geometric
considerations. For square-wave bursting, the two-dimensional surface {h = 0}
separates the curve CFP and the cylindrical-shaped surface P . For elliptic bursting,
CFP lies ”inside” of P , so {h = 0} cannot separate them. Since h < 0 near CFP , it
follows that we must expect that h < 0 near at least some part of P ; that is [Ca]
must decrease during some portion of the active phase. The best we can hope for
is that there is a net increase of [Ca] as the bursting trajectory passes near P .

In order to make this more precise, we consider the average increase or decrease
of [Ca] along the bursting trajectory. For each [Ca] ≤ [Ca]SN , let (v[Ca](t), w[Ca](t))
denote the periodic solution along the outer branch of P and let T ([Ca]) be the
corresponding period. Then

h̄([Ca]) =
1

T ([Ca])

∫ T ([Ca])

0

h(v[Ca](t), w[Ca](t), [Ca])dt
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represents the average of h along this fixed limit cycle. We assume that h̄([Ca]) > 0
for each [Ca] < [Ca]SN . This assumption implies that in the limit ǫ → 0, the net
change in [Ca] during the active phase is positive. Thus during the active phase,
[Ca] slowly increases, on average, until the bursting solution passes the fold along
P . The fast dynamics then forces the trajectory back towards CFP and a new silent
phase begins.

Both square-wave and elliptic bursting depend on bistability and hysteresis.
An important difference is how the active phase is initiated and terminates. For
square-wave bursting, the silent phase ends at a saddle-node of fixed points and the
active phase ends at a homoclinic orbit of the fast subsystem. For elliptic bursting,
the silent phase ends when there is a slow passage through a Hopf bifurcation and
the active phase ends at a saddle-node of limit cycles. These contrasting mechanisms
reflect differences in firing properties. For square-wave bursting, the frequency of
spiking slows down at the end of each active phase; for elliptic bursting there are
subthreshold oscillations during the silent phases.

6.4 Parabolic Bursting

Both square-wave and elliptic bursting can be achieved in a system with only one
slow variable. Moreover, both depend on bistability of the fast dynamics. Parabolic
bursting, on the other hand, requires at least two slow variables and does not arise
from a hysteresis phenomenon. The parabolic burster shown in Figure 6.5B satisfies
the equations:

Cm
dV

dt
= −IL − IK − ICa − IKCa − ICaS + Iapp

dn

dt
= φ(n∞(V ) − n)/τn(V )

d[Ca]

dt
= ǫ(µICa − [Ca])

ds

dt
= ǫ(s∞(v) − s)/τs (6.5)

where IL, IK , ICa and IKCa are leak, potassium, calcium and calcium-dependent
potassium channels, respectively, as described in (6.2) and (6.3). Here, we have
added a new calcium current

ICaS = gCaSs(V − ECa) (6.6)

which depends on the gating variable s. Here, s∞(V ) = .5(1 + tanh((v − 12)/24)).
Parameter values are given in Table 6.2. Note that in this model there are two fast
variables, V and n, and two slow variables, [Ca] and s.

A geometric model for parabolic bursting is the following. Consider a system
of the form (6.1) where x ∈ Rn, n ≥ 2, and y = (y1, y2) ∈ R2. There are now two
slow variables, namely y1 and y2. We first describe the bifurcation structure of the
fast subsystem with both slow variables considered as parameters. We then discuss
properties which the slow dynamics must satisfy.
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Figure 6.7. Bifurcation diagram of the fast-subsystem for parabolic burst-
ing. (A) One of the slow variables is fixed. Note that the branch of periodic orbits
end at a SNIC. (B) With both slow variables as bifurcation parameters, the sets
of fixed points and limit cycles form surfaces. Also shown is the projection of the
bursting trajectory onto the bifurcation diagram.

The bifurcation diagram of the fast subsystem is illustrated in Figure 6.7
where we plot one component of the fast variable, corresponding to the membrane
potential. In Figure 6.7A, we fix one of the slow variables to be constant and
compute the bifurcation diagram with the other slow variable as constant. Note
that there is a Z-shaped curve of fixed points and a branch of periodic orbits that
originate at a subcritical Hopf point and that terminate at a SNIC. If we allow both
slow variables to vary, as shown in Figure 6.7B, then the set of fixed points and
branch of limit cycles become surfaces, while there is a curve of Hopf points, as well
as SNIC’s. The fixed points along the lower branch are assumed to be stable fixed
points of (FS). In Figure 6.7B, we also show the maximum and minimum values of
the fast variable along each of these periodic solutions along with the projection of
the parabolic bursting solution shown in Figure 6.5. In Figure 6.8, we show regions
in the slow phase plane where the fast dynamics exhibit spiking and stable resting
behavior along with the projection of the bursting solution. Note that these regions
do not overlap; that is, the fast dynamics do not exhibit bistability. The spiking
and resting regions are divided by a curve at which the fast dynamics exhibit a
SNIC; this curve also corresponds to the fold of the fixed-point surface.

The existence of a parabolic bursting solution also requires hypotheses on the
slow dynamics. There must be a mechanism by which the slow variables drift back
and forth between the spiking and resting regions. In what follows, we exploit the
singular nature of the fast/slow system to obtain reduced equations for just the slow
variables y1 and y2. This is done in two steps, one for the silent phase and one for
the active phase. The method we describe here is quite general and can be applied
to any bursting model of the form (6.1).

First consider the silent phase. We change to the slow time-scale τ = ǫt in
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Figure 6.8. Projection of the parabolic bursting solution onto (V, y1, y2)-
space. There is a curve in the slow (y1, y2)-plane corresponding to SNIC’s. This
curve separates the regions where the fast subsystem exhibits spiking and resting
behavior.

(6.1) and then set ǫ = 0 to obtain:

0 = f(x, y)
dy

dτ
= g(x, y).

The first equation in (10.9) simply states that during the silent phase, the (singular)
solution lies close to the lower branch of the fixed-point surface. If we write this
branch as x = Φ(y), then the second equation in (10.9) becomes:

dy

dτ
= g(Φ(y), y). (6.7)

This is then the reduced system for the evolution of the slow variables during the
silent phase.

To obtain the reduced equations for the evolution of the slow variables in the
active phase we use the method of averaging. Suppose that y = (y1, y2) lies in the
region where there exists a stable limit cycle of (FS). Let xy(t) be the corresponding
periodic solution of (FS) with period T (y) and consider the averaged quantity

ḡ(y) =
1

T (y)

∫ T (y)

0

g(xy(t), y)dt.

The evolution of the slow variables during the active phase is then given by the
averaged equations

dy

dτ
= ḡ(y). (6.8)
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Parabolic bursting corresponds to the existence of a closed curve in the slow
(y1, y2) phase plane which passes through both the region of stable fixed points
and the region of stable limit cycles. While passing through the silent and active
regions, the curve must satisfy (10.35) and (6.8), respectively.

The active phase of the bursting solution both begins and ends along a curve
of homoclinic bifurcations. Since the limit cycles have frequencies which approach
infinity at the homoclinic bifurcations, the inter spike interval is longer at both the
beginning and the end of each burst. This accounts for the parabolic nature of the
period of fast oscillations.

6.5 Classification of Bursters

We have now described three types of bursters. Other types are possible and do, in
fact, arise in important applications. There has been considerable effort to classify
the types of bursters, beginning with Rinzel who was the first to analyze bursting
models using fast/slow geometric methods. He described square-wave, parabolic
and elliptic bursting and this classification scheme was extended by Bertram et.al.
Izhikevich has given a complete topological classification of bursters arising from co-
dimension-1 bifurcations; he identified 120 different topological types. All of these
classification schemes are based on the bifurcation structure of the fast-subsystem in
which the slow variables are considered to be bifurcation parameters. Different types
of bursters correspond to different ways in which there can be transitions between
resting behavior and repetitive spiking. Since resting behavior and repetitive spike
correspond to branches of stable equilibria and periodic limit cycles of the fast
subsystem, it follows that different classes of bursters represent different bifurcations
of these branches. For example, square-wave bursting corresponds to a saddle-node,
or fold, bifurcation of the branch of stable fixed points and a saddle-homoclinic
bifurcation of the branch of stable limit cycles of the fast-subsystem. It follows
that in order to classify bursters, we need to understand all possible co-dimension-1
bifurcations of equilibria and limit cycles.

It turns out that there are just four types of bifurcations of equilibria and
four types of bifurcations of limit cycles. Hence, there are 16 types of bursting in
which the resting state is a stable equilibrium point and its spiking state is a stable
limit cycle. The four bifurcations of equilibria are: saddle-node (fold), saddle-node
on an invariant circle (SNIC), supercritical Hopf, and subcritical Hopf. The four
types of of bifurcations of limit cycles are: saddle-node on invariant circle (SNIC),
saddle homoclinic orbit, supercritical Hopf and subcritical Hopf. In Izhikevich’s
classification scheme, each type of bursting is named according to: bifurcation of
equilibria / bifurcation of limit cycle. Hence, the square-wave burster is denoted as
fold/homoclinic, while an elliptic burster is referred to as subHopf/fold cycle.

An example of a bursting-type not discussed earlier is shown in Figure 6.9.
Here the branch of stable fixed points of the fast subsystem ends at a saddle-node
bifurcation (fold) and the branch of stable limit cycles of the fast subsystem end at a
fold limit cycle bifurcation. Note that the branch of limit cycles that bifurcate from
the homoclinic orbit are unstable with respect to the fast subsystem. This branch
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“turns around” at the fold limit cycle bifurcation to form the branch of stable limit
cycles. Bertram et. al. referred to this as Type IV bursting; it corresponds to
a fold/fold cycle in Izhikevich’s classification scheme. This type of bursting was
first discovered in the Chay-Cook model for bursting in Pancreatic β-cells. It also
arises in a model for a leech heart interneuron and in a model for synaptically
Pre-Botzinger cells, where it was referred to as top hat bursting.
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Figure 6.9. Top hat bursting.

6.6 Chaotic Dynamics

6.6.1 Chaos in Square-wave Bursting Models

Even three-variable minimal bursting models can exhibit complex dynamics as pa-
rameters are varied. There are at least two ways in which square-wave bursters, for
example, may generate chaotic behavior. As the singular perturbation parameter ǫ
decreases, the number of spikes per bursts increases. The process of adding a spike
may be quite complicated. It was shown in [ ] that chaotic dynamics may arise
during this transition. For example, Figure 6.10A) and C) show solutions of (6.2)
in which there are 3 and 2 spikes per burst. The parameters are given in Table 6.2
with ǫ = .0072 and ǫ = .0073, respectively. For the solution shown in Figure 6.2),
ǫ = .00721998. Note that there are bursts which possess 2, 3 and 4 spikes. The
pattern of spikes per burst does not appear to repeat in a periodic manner. We
note that this mechanism for chaotic dynamics only arises for a very small range
of parameter values. It was shown in [?] that the size of this range is of the order
e−k/ǫ for some k > 0. This is indeed very small, so the chaos is probably not of
much biological interest.

A second mechanism for chaos arises during the transition from bursting
to continuous spiking. Figure 6.11 shows four solutions of (6.2); the parame-
ters are chosen as in Table 6.2 except for kCa. In Figures 6.11) A)-D), we set
kCa = 1, 1.225, 1.228 and 1.3, respectively. Note that as we increase kCa, the
systems appears to transition from exhibiting periodic bursting, chaotic bursting,
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Figure 6.10. Chaotic dynamics may arise during the transition of adding
spikes. As we increase ǫ, the number of spikes per burst will increase. As B)
demonstrates, during this transition, there may exist solutions in which the number
of spikes per burst is not constant.

chaotic spiking and finally periodic spiking. For the chaotic bursting shown in Fig-
ure (6.11))B), some bursts are much longer than others; the occurrence of long or
short bursts appear to be random.

A standard way to analyze oscillatory behavior, including chaos, is in terms
of a Poincare return map. We start with a given periodic bursting orbit and then
consider a two-dimensional cross-section S that is transverse to the flow; i.e., tra-
jectories cross S at a non-zero angle. Then the Poincare map is defined from some
subset of S back to S as follows: For each p0 ∈ CFP let γ(t, p0) be the solution
starting at p0. If p0 is sufficiently close to the original periodic orbit, then this tra-
jectory must eventually cross S at some time T0 > 0. The Poincare map is defined
as π(p0) ≡ γ(T0, p0). This is where the solution starting at p0 “returns” to the
cross-section.

Consider the example illustrated in Figure 6.11C). Here, the solution exhibits
repetitive firing that is not regular. We compute a Poincare map by recording
the value of n and [Ca] each time that V decreases through 0. For this model,
the recorded values of n are all about .35; however, the value of calcium varies
between 18.7 and 20.8. The solution is approximately represented by the time
series of values of calcium, [Ca]1, [Ca]2, .... We can generate a one-variable map
whose solutions approximate this time series as follows. With initial conditions
n = 0 and n = .35, we specify a value for calcium, and then integrate the full
differential equations until V crosses 0 again, obtaining the next value of calcium.
This is then the Poincare map, which we denote as y = F ([Ca]), and is shown
in Figure 6.12. From the figure, it is evident that there is an intersection of the
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Figure 6.11. A chaotic burst arising during the transition between bursting
and continuous spiking. As we increase the parameter kCa, the model may exhibit
A) regular bursting; B) chaotic bursting; C) chaotic spiking; and D) continuous
spiking.

line y = [Ca] and y = F ([Ca]). This means that there is a single concentration of
calcium [Ca]∗, to which the trajectory returns after one cycle. This corresponds
to a periodic solution to the mode equations. If |F ′([Ca]∗)| > 1, as is the case
here, then the periodic solution is unstable. This type of map is characteristic of
dynamics that have chaotic behavior. Further analysis of the map is presented in
the exercises.

6.6.2 Symbolic Dynamics

In the preceding section, we saw that the complex dynamics that arise during the
transition from bursting to continuous spiking in square-wave bursting models can
be described in terms of a one-dimensional map. This description must be an ap-
proximation of the full dynamics since the model has three dependent variables and
the Poincare section, along with the return map, must be two-dimensional. Ter-
man analyzed this two-dimensional map and rigorously demonstrated that chaotic
dynamics must arise during the transition from bursting to continuous spiking;
moreover, the dynamics can be described in terms of symbolic dynamics. Here, we
will present the main result in [?].

In order to state this result, we need to recall some basic properties of two-
dimensional maps and how they relate to symbolic dynamics. The most famous
two-dimensional map that exhibits complex dynamics is the Smale-horseshoe map,
which we will now quickly describe. A more detailed discussion of this map can be
found in [?].
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C a
C a

Figure 6.12. Poincare map.

Figure 6.13. The Smale Horseshoe. The square S is stretched in the verti-
cal direction, contracted in the horizontal direction and then folded. The intersection
of π(S) with S forms two vertical strips.

Let S be the unit square in R2. Then the Smale-horseshoe map is a map,
which we denote as π, from S to R2. The construction of this map consists of
two steps, as shown in Figure 6.13. First we contract S by an amount µ in the
horizontal direction and expand S in the vertical direction by an amount λ. Here,
0 < µ < 1 and λ > 1. The second step is to fold the resulting rectangle so that
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π(S) ∩ S consists of two vertical rectangles as shown in the Figure.
While the Smale-horseshoe map is easy to define, it is not at all clear if it

has any interesting properties. Note, for example, that not every point in S is
mapped back into S. It is not obvious if there is any point x0 whose entire orbit
{πk(x0) : k = 0,±1,±2, ...} lies entirely in S. In what follows, we let

Λ = {x0 : πk(x0) ∈ S for all k}.

We can also ask if there are any fixed points or periodic orbits of π; that is, does
there exist x0 ∈ S and an integer k such that πk(x0) = x0? If there do exist
periodic orbits, then how many are there? Or, does there exist an orbit in S that
is not periodic; that is, does there exist x0 ∈ S such that πk(x0) ∈ S for every
integer k but πk(x0) 6= x0 unless k = 0? As it turns out, this map does indeed have
infinitely many periodic orbits and uncountably many aperiodic orbits. There is a
very eloquent way to prove this result and this involves symbolic dynamics.

Let Σ be the set of all bi-infinite sequences of two symbols; that is,

Σ = {ai : −∞ < i < +∞}, where ai = 0 or 1.

Consider the shift map σ : Σ → Σ defined as follows: Suppose that a = {ai} and σ(a) =
b where b = {bi}. Then bi = ai−1. That is, σ shifts the indices of a. Now σ defines
a dynamical system on Σ and it easy to see that this dynamical system contains
infinitely many periodic orbits. For example, if

a = {.... 0 1 0 1 0 1 .....}

then the orbit {σk( a)} has period two. It is also easy to see that there are un-
countable many aperiodic orbits. This is left as an exercise.

A remarkable fact is that Σ and Λ are topologically equivalent. There is a
one-to-one correspondence between points in Σ and points in Λ; moreover, there is a
one-to-one correspondence between orbits generated by σ and orbits generated by π.
It follows that π has a countably infinite number of periodic orbits and uncountably
many aperiodic orbits.

To state the result concerning chaotic dynamics in square-wave bursting mod-
els, we will need to consider another two-dimensional map. This is shown in Figure
6.14. We start with two squares, denoted as S1 and S2. Each square is expanded,
contracted, folded and mapped into R2 as shown in the Figure. Note that π(S1)
intersects both S1 and S2 in a single vertical strip; π(S2) intersects S1 in a verti-
cal strip but does not intersect S2. This map also generates symbolic dynamics;
however, the symbolic dynamics is somewhat different than that generated by the
Smale-horseshoe map. A description of the symbolic dynamics is given in [ ]. Fi-
nally, we will need to consider generalizations of this map. These are shown in
Figure 6.4. For each integer K > 1, there are K-squares; each rectangle is con-
tracted, expanded, folded and then mapped into R2 as shown. We denote the
map corresponding to K-rectangles as πK . These maps generate increasingly more
complicated symbolic dynamics.

We can now describe the main result in [?]. Consider the (λ, ǫ) parameter
plane shown in Figure 6.4. Recall that there is a wedge shaped region, arising
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Figure 6.14. A generalized Smale horseshoe-type map that generates sym-
bolic dynamics. The two squares S1 and S2 are stretched, contracted and then folded
onto each other as shown.

from (λ, ǫ) = (λ0, 0), in which we could not conclude whether the system exhibits
bursting or continuous spiking. The results in [?] state that there are infinitely many
wedge-shaped regions that emanate from (λ0, 0) as shown in Figure 6.15. There is
a return map π(λ, ǫ) such that in each odd sector S2j−1, the map gives rise to
dynamics topologically equivalent to that shown in Figure 6.15 with j-rectangles.
Hence, as we fix ǫ > 0 sufficiently small and we increase λ from the bursting to
the spiking regions, then the system must undergo a series of increasingly more
complicated global bifurcations. We note that each sector may only be defined for ǫ
sufficiently small. Hence, each line segment ǫ = ǫ0 may only intersect finitely many
sectors. However, the number of sectors which the line segment ǫ = ǫ0 intersects
becomes unbounded as ǫ0 → 0.

6.6.3 Bistability and the Blue-Sky Catastrophe

Shilnikov et.al. described a mechanism in which a model can exhibit coexistence
of both stable continuous spiking and stable bursting oscillations. The system also
generates chaotic dynamics, through a mechanism known as the blue-sky catastro-
phe. The mechanism underlying bistability between spiking and bursting is shown
in Figure 6.16. Note that the fast-subsystem has the bifurcation structure of the
fold/fold or top hat burster. This bifurcation structure is actually not that crucial
for what follows; a square-wave burster would work just as well. Here we consider
the top hat burster, since this is what was used in the original papers.

For bistability, what is important is that there are two periodic orbits of the
full system that lie close to the branch of limit cycles of the fast-subsystem. See
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Figure 6.15. The transition from bursting to spiking in the square-wave
bursting model. If one fixed ǫ > 0 and increases λ, then there is a series of in-
creasingly more complex global bifurcations in which the system exhibits symbolic
dynamics.

Figure 6.16A. One of these periodic orbits is stable, while the other is unstable.
The unstable periodic orbit is a saddle with a two-dimensional stable manifold.
Trajectories which lie on one side of this manifold will approach the stable periodic
orbit and exhibit continuous spiking, while trajectories that lie on the other side
will display bursting. In order to explain the geometry in more detail, we need to
say more about the fast-subsystem and how it perturbs if the singular perturbation
parameter is positive.

Consider a fast/slow system of the form (6.1) in which there are two fast
variables and one slow variable; that is, x ∈ R2 and y ∈ R1. Suppose that the
set of fixed points of (FS) forms a Z-shaped curve whose left knee is at y = yLK .
Moreover, there is a branch of stable limit cycles of (FS), which we denote as P .
Recall that, for ǫ > 0 small, the dynamics near P is determined by the averaged
equations. That is, let x(y; t) denote the limit cycle of (FS) for some y and suppose
that this periodic orbit has period Ty. Then the evolution of the slow variable near
P for ǫ > 0 is determined by the averaged equation:

dy

dτ
= ĝ(y) ≡ 1

Ty

∫ T (y)

0

g(x(y; t), y)dt. (6.9)

Here, τ = ǫt is the slow time variable. A fixed point of this equation corresponds to
a periodic solution of the full system. If ĝ(y0) = 0, then there is a periodic solution
γǫ(t) = (xǫ(t), yǫ(t)) of the full system (6.1) such that |yǫ(t) − y0| = O(ǫ) for all
t and ǫ sufficiently small. This periodic solution is stable, with respect to the full
system, if ĝ′(y0) < 0 and unstable if ĝ′(y0) > 0. In general, a solution (x(t), y(t))
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Figure 6.16. A) Bistability of bursting and spiking. There are stable and
unstable limit cycles of the full system that lie close to P, the branch of periodic
solutions of the fast-subsystem. The stable manifold of the unstable limit cycle
separates those orbits that approaching the bursting solution from those that exhibit
continuous spiking. B) The periodic orbits lie to the right of the left knee. Bursting
no longer exhibits; however, there are orbits heteroclinic between the two limit cycles.
C) and D) A blue-sky catastrophe occurs if the two limit cycles form a saddle-node
bifurcation.

with |y(0)−y0| small, will first evolve according to the fast dynamics to near P and
then evolve according to the slow averaged equation either towards or away from
γǫ(t).

Suppose that ĝ′(y0) > 0 so that γǫ(t) is unstable. Then the stable manifold
of γǫ separates those solutions which drift to the left from those that drift to the
right. To understand this stable manifold further, consider the case ǫ = 0. The local
stable manifold of γ0(t) = (x(y0; t), y0) is the set of points in the plane {y = y0}
that lie close to P . (By local we mean near the periodic orbit.) It follows that for
ǫ > 0, the two-dimensional local stable manifold of γǫ(t) lies very close, i.e. O(ǫ),
to the plane {y = y0}.

It is now easy to see how the model can display both stable spiking and stable
bursting. Suppose that the averaged equations has both a stable and a unstable



i i

i

i

i

i

6.7. Bibliography 131

fixed point at ys > yu, respectively. Fix ǫ > 0 and denote the corresponding
periodic solutions of the full system as γs(t) and γu(t). We further assume that
yu < yLK so that the right knee lies to the ”right” of the unstable periodic orbit.
The two-dimensional stable manifold of γu(t) divides phase-space into two regions.
Trajectories in the region y < yu will approach P and then drift towards γs, while
trajectories in the region y > yu will drift away from γu towards the fold in P . Once
these trajectories cross P they will be forced down towards the branch of stable fixed
points of (FS). Since yLK > yu, a stable bursting oscillations will result.

Chaotic dynamics can arise in this model as follows. Suppose that as some
parameter changes, the positions of yu and ys change. In particular, suppose that
both move to the right so that at some parameter value, ys > yLK . This is shown in
Figure 6.16B. In this case, if a trajectory begin near P in the region where y > yu,
then this solution will drift away from γu towards the fold in P , fall down to the
silent phase and eventually jump back up. Since yu > yLK , the trajectory will
approach γs as t → ∞. We note that this solution will approach γu as t → −∞.
This corresponds to an orbit that is heteroclinic between the two periodic orbits.

We now suppose that as a parameter changes the stable and unstable periodic
orbits come together at a saddle-node of periodic bifurcation. This is shown in
Figure 6.16C. In this case, there will be orbits that are homoclinic to the saddle-
node periodic orbit. A more detailed diagram of this is shown in Figure 6.16D. Once
the periodic orbit near P , disappears, the system exhibits bursting oscillations.
However, it has been demonstrated that the bursting is chaotic. The dynamics
illustrated in Figure 6.16 has been called the ’blue-sky catastrophe’ and the behavior
described in this section has been observed in neuronal models. Details can be found
in [silnikov].

6.7 Bibliography

Rinzel [40, 41] was the first to classify bursting oscillations using fast/slow analysis
and to consider their geometric properties in phase space. He described square-
wave, parabolic and elliptic bursting, and this classification scheme was extended
by others, including Bertram [5]. A complete classification of bursting oscillations.
has been given by Izhikevich [23]; a detailed description of his classification scheme
is presented in his book [24], where there is also a discussion of possible roles of
bursting oscillations in neuronal computations.

Several authors have studied the transitions between resting behavior, bursting
and continuous spiking. References include Ermentrout and Kopell [12], Terman
[35, 49, 50], Destexhe and Gaspard [?], Shilnikov and Cymbalyuk [46]and Medvedev
[?].

A recently published book edited by Coombes and Bressloff [9] contains many
review articles pertaining to various aspects of bursting oscillations.

6.8 Exercises

1) For the square-wave, elliptic, and parabolic bursting models:



i i

i

i

i

i

132 Chapter 6. Bursting Oscillations

a) compute the bifurcation diagrams of the fast-subsystem
b) draw the phase planes of the fast-subsystem for various values of the slow

variable
c) in Matlab, draw the projection of the bursting solution onto the bifurcation

diagram
d) change parameters to see how the transitions are made

2) Poincare map. Consider the square-wave bursting model and choose parameters
so that it exhibits nice continuous spiking. Compute the Poincare map. Now
change parameters so that it goes into bursting. Identify parameters where periodic
doubling bifurcations of the Poincare map take place. Find parameter values where
the map is chaotic.

3) Bistability of the fast subsystem. Start with a square-wave burster and solve
it until the solution is in the silent phase. Now introduce a short perturbation
to “kick” it into the spiking regime. How long is the subsequent burst of spiking
activity? How does the length of spiking activity depend on the phase at which the
perturbation was introduced? Next, introduce the perturbation while the bursting
solution is spiking so that the perturbation kicks the solution into the silent phase.
How does the length of the subsequent silent phase depend on the phase at which
the perturbation was introduced? Do the same thing for elliptic bursters.

3) Smale horseshoe.
a) Prove that the Smale horseshoe map exhibits a countable number of periodic

orbits and uncountably many aperiodic orbits.
b) How many periodic orbits are there with period N .
c) Prove that there is a dense orbit.

4) Wang’s 2-compartment model for 40hz oscillations.

5) Rinzel-rush model for triangular bursting.
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Chapter 7

Propagating Action
potentials.

Neurons need to communicate over long distances. This is accomplished by electrical
signals, or action potentials, that propagate along the axon. We have seen that
linear cables cannot transmit information very far; neural signals are able to reach
long distances because there exist voltage-gated channels in the cell membrane.
The combination of ions diffusing along the axon, together with the nonlinear flow
of ions across the membrane, allows for the existence of an action potential that
propagates along the axon with a constant shape and velocity.

One of the great successes of the Hodgkin-Huxley model is that it exhibits the
propagating action potential; moreover, it accurately predicts the speed of the action
potential. We remark that the Hodgkin-Huxley equations is a system of a nonlinear
partial differential equation coupled with three ordinary differential equations. It
is not at all clear how Hodgkin and Huxley were able to numerically solve these
equations in order to compute the speed of the propagating action potential.

Mathematically, the Hodgkin-Huxley model is an example of a system reaction
diffusion equations. The propagating action potential corresponds to a traveling
wave solution; that is, it is a solution that ’moves’ with constant shape and velocity.
Motivated to a large part by the Hodgkin-Huxley model, there was a flowering
of papers in the mid seventies and eighties in which mathematicians developed
sophisticated techniques in order to rigorously analyze the existence, uniqueness
and stability properties of traveling wave solutions to reaction diffusion equations.

In this chapter, we will begin by describing a geometric way to think about
the propagating action potential. As we shall see, the traveling wave corresponds
to a homoclinic orbit of a system of ordinary differential equations. Hodgkin and
Huxley numerically computed the speed of the wave by considering this system of
ODE’s and we shall briefly describe how Hodgkin and Huxley did this. We will then
describe mathematical methods for analyzing the existence and stability properties
of traveling waves. Here we will consider reduced models such as the Morris-Lecar
equations. We will also consider periodic wave trains and models for myelinated
axons and discrete diffusion.

133
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7.1 Traveling waves and homoclinic orbits

The propagating action potential corresponds to a traveling wave solution of the
Hodgkin-Huxley model. By this we mean the following: We rewrite the Hodgkin-
Huxley model from Chapter 2 as

Cm
∂V

∂t
=

4d

Ri

∂2V

∂x2
− Iion + I (7.1)

∂Γ

∂t
= αΓ(V )(1 − Γ) − βΓ(V )Γ

where Γ = m,h, or n. Figure 7.1 shows a simulation of the action potential down
a 10 centimeter axon with a diameter of a millimeter. The time between the two
action potentials at 6 and 7 centimeters is about 8 milliseconds so that the velocity
of this action potential is 1.25 meters per second. The spatial profile looks just like
the temporal profile in backwards time and scaled by the velocity. The propagating
action potential thus corresponds to a solution of (7.1) that ’travels’ with constant
shape and velocity; that is, it is a traveling wave solution. If we denote the shape of
the wave as V̂ (x) and the speed of the wave as c, then the traveling wave solution
satisfies V (x− ct, t) = V̂ (x).

Suppose we change coordinates and replace x by ξ = x− ct. For convenience,
we will also write V instead of V̂ . Then the new equations are

Cm
∂V

∂t
= Cmc

∂V

∂ξ
+

4d

Ri

∂2V

∂ξ2
+ I − Iion (7.2)

∂Γ

∂t
= c

∂Γ

∂ξ
+ αΓ(V )(1 − Γ) − βΓ(V )Γ

where, again, Γ = m,h or n. A traveling wave is thus a time-independent solution
in ξ and satisfies a system of ordinary differential equations. We will consider an
infinite domain. Then the traveling wave solution must also satisfy V (ξ = ±∞) =
Vrest.

It will be more convenient to write (7.2) as a first-order system; that is, we set
dV
dξ = U . Then (7.2) is equivalent to the following system of five ordinary differential
equations:

dV

dξ
= U

dU

dξ
=
Ri

4d
(Iion − I − cCmU)

dΓ

dξ
= −(αΓ(V )(1 − Γ) − βΓ(V )Γ)/c

The solution must also satisfy the boundary conditions

(V, U,m, h, n)(±∞) = (Vrest, 0, 0, 0, 0).

If follows that the propagating action potential corresponds to a homoclinic orbit
of (7.3). Figure 7.1C shows a projection of this orbit in the coordinates (V, n, cdV

dξ ).
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Figure 7.1. Action potential propagation for the HH equations. Discretiza-
tion of the nonlinear PDE for a 10 cm axon into 150 segments.Ri = 100Ωcm and
d = 0.1cm. (A) Voltage at x = 6 cm and x = 7 cm, showing velocity if about 1.25
meters/second (B) Spatial profile at t = 20 msec; (C) Three-dimensional trajec-
tory of the wave at grid point 50; axes are voltage, potassium gate and the voltage
derivative.

This system is parameterized by c and one only expect homoclinic orbits to
exist for discrete values of c. This is because homoclinic orbits are generically
codimension 1 bifurcations. The mathematical question is to prove that there is
such a c for which there is a homoclinic orbit. Once the homoclinic has been found,
we have to determine whether it is a stable stationary solution to equation (7.2). We
generally expect that for parameters near the homoclinic orbit, there are periodic
orbits with arbitrarily long periods in the space-like variable ξ. Furthermore, in
some cases, we can find very complex dynamics for equations (7.3).

Hodgkin and Huxley did not attempt to numerically solve the full partial
differential equation (??) as they did not have the necessary computing equipment.
(Although, we can now do it in less than a few seconds on a laptop!). Rather,
they used a shooting procedure to estimate the speed of the wave. What they did
was to first fix a value of c and find a solution that decays to rest as ξ → −∞.
Denote this solution as Û(ξ, c). They then needed to find a value of c for which
limξ→+∞ U(ξ, c0) = 0. For most values of c, the solution Û(ξ, c) satisfies either
limξ→+∞ U(ξ, c) = +∞ or limξ→+∞ U(ξ, c) = −∞. If one finds two values of c, say
c1 and c2, such that limξ→+∞ U(ξ, c1) = −∞ and limξ→+∞ U(ξ, c2) = +∞, then
there must be a value c0 between c1 and c2 for which limξ→+∞ U(ξ, c0) = 0; that
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Figure 7.2. Numerical shooting for the HH ODE. (A) Shooting from the
one-dimensional stable manifold (SM) by integrating backward in time. For c too
low, the stable manifold gos off the top and for c too high, out the bottom. (B)
Numerically computed dispersion relation. This shows the speed c as a function of
the spatial period, P . For each period P > P ∗ there are two velocities; one fast and
one slow.

is, Û(ξ, c0) is a homoclinic orbit and c0 is the speed of the traveling wave. Using
an iteration scheme, Hodgkin and Huxley used this idea to estimate the speed of
the wave. Figure 7.2A shows an example of numerical shooting in order to find the
homoclinic orbit.

7.2 Scalar bistable equations.

There have been numerous papers in which mathematical methods were developed
to rigorously analyze the existence and stability of traveling waves. Most of these
studies considered simplified neuronal models such as the FitzHugh-Nagumo or the
Morris-Lecar equations. These papers also often assume that the recovery dynamics
((h, n) in the Hodgkin-Huxley equations) is slow. One then lets the rates of these
equations go to zero and this leads to a singular perturbation problem. The basic
idea is to then piece together a traveling wave or periodic orbit. This basic idea has
also been used to analyze the stability of the wave.

We will discuss some of these methods in detail. However, before considering
to a two-dimensional example, we first review the general theory of bistable scalar
reaction-diffusion equations. This theory will be important in the construction of
traveling waves in higher dimensional systems. Moreover, by considering a simpler
example, we can more easily introduce some of the geometric constructions that
will be needed later.

Consider the following equation defined on the real line:

∂u

∂t
= f(u) +

∂2u

∂x2
, −∞ < x <∞. (7.3)

We assume, for now, that f(u) = u(1−u)(u−α) where 0 < α < 1/2. Then, 0 and 1
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are stable equilibria to the equation du/dt = f(u) and α is an unstable equilibrium.
We would like to find traveling wave solutions to (7.3) which join the two stable
states. That is, we want a solution of the form u(x, t) = U(ξ), ξ = x − ct, that
satisfies

limξ→−∞U(ξ) = 1 and limξ→+∞U(ξ) = 0.

Here, c is the velocity of the wave. Note that U(ξ) satisfies the ordinary differential
equation

c
dU

dξ
= f(U) +

d2U

dξ2
. (7.4)

We rewrite this as the first order system

dU

dξ
= Y

dY

dξ
= cY − f(U). (7.5)

We want to show that there exists a unique value of c for which there is a solution
that satisfies the boundary conditions

limξ→−∞(U(ξ), Y (ξ)) = (1, 0) and limξ→+∞(U(ξ), Y (ξ)) = (0, 0).

Hence, we need to show that there is a (unique) value of the wave-speed c for
which (7.5) exhibits a heteroclinic orbit. One proves the existence of a heteroclinic
orbit using a standard shooting argument. Here we will only outline the geometric
construction and leave details to the reader as exercises.

Note that for every value of c, the fixed points at (0, 0) and (1, 0) are saddles.
Both the stable and unstable manifold of each of these fixed points has dimension
one. A heteroclinic orbit corresponds to a trajectory that lies in both the unstable
manifold of (1, 0) and the stable manifold of (0, 0). The phase planes of (7.5) for
c = 0 and c very large are shown in Figures 7.3. Note that when c = 0, the unstable
manifold of (1, 0) lies ”below” the stable manifold of (0, 0) (in the region 0 < U < 1),
while if c is very large, then opposite is true. Since these manifolds depend in a
continuous way on the parameter c, one can show that there must exist at least one
value of c for which the manifolds ”cross”. This then corresponds to the heteroclinic
orbit, or traveling wave solution of (?). In the exercises, you are asked to fill in the
details and prove that the wave speed is uniquely determined.

We note that this construction does not depend on the precise form of f(u).
More generally, we may assume that f is any smooth ’cubic=shaped’ function such
that f(0) = f(1) = 0, f ′(0) < 0 and f ′(1) < 0. (In fact, we don’t even need that
f is ’cubic-shaped’; it may have an arbitrary number of zeros.) Then the shooting
argument outlined above can be used to demonstrate the existence of the traveling
wave solution.

A key point of interest for us is how c depends on f. Multiply (7.4) by dU/dξ
and integrate over the real line:

c

∫ ∞

−∞

(dU(ξ)/dξ)2 dξ =

∫ ∞

−∞

(dU(ξ)/dξ) f(U(ξ))dξ+

∫ ∞

−∞

(dU(ξ)/dξ) (d2U/dξ2)dξ.
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Figure 7.3. Existence of fronts in equation (7.4). For c = 0, the system
is integrable. For c small, the unstable manifold of the right fixed point (UM) falls
below the stable manifold of the left-fixed point (SM). For large c, the positions of
the manifolds are reversed. For a single intermediate value of c = c∗, the manifolds
intersect for a homoclinic.

Since U(ξ) is monotone, we let u = U(ξ) be a new variable. Then du = (dU/dξ)dξ so

that the first integral on the right-hand side is now
∫ 1

0
f(u)du. The second integral

vanishes since

(dU/dξ)(d2U/dξ2)dξ =
1

2
d

(

dU

dξ

)2

which integrates to zero because dU/dξ(±∞) = 0. Thus we have

c

∫ ∞

−∞

(U ′(ξ))2dξ =

∫ 1

0

f(u)du. (7.6)

Since the integral in (7.6) is positive, this shows that the sign of the velocity, c, is
the same as the area of f between the two-stable equilibria. What does it mean
intuitively? Suppose that the middle root α is close to 0. Then the region where
f(u) is negative, (0, α), is small compared to where f is positive. Thus the integral
will be positive and the wave will move to the right converting the medium from
the 0-state to the 1-state. On the other hand, if α is close to 1, then the area will be
negative, the velocity will be negative, the wave will move to the left and the 1-state
will be converted to the 0-state. Finally, if the positive and negative areas balance
exactly, the velocity of the wave will be zero. The case of more than two-stable
equilibria can be similarly handled and under fairly general circumstances; there
can be multiple wave fronts with multiple speeds joining these fixed points.
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7.2.1 Numerical shooting.

How do we obtain the velocity c numerically? let us write the traveling wave
equations as a system:

U ′ = Y, Y ′ = −cY − f(U).

Consider the fixed point at (1, 0). The linearization is:

A ≡
(

0 1
−f ′(1) −c

)

.

Since f ′(1) < 0, the determinent of A is negative, so the fixed point is a saddle and
the eigenvalues are

λ± =
−c±

√

c2 − 4f ′(1)

2
.

The unstable manifold is tangent to the eigenvector corresponding to λ+ which is
simply [1, λ+]T . Thus, we take initial conditions, (U, Y ) = (1 − a,−aλ+) where a
is a small positive number. We then integrate the equations until the trajectory
crosses either the U−axis or the Y−axis. If the U−axis is hit, then c is too big
while if the Y−axis is hit, c is too small. In exercise *, we have you try your hand
at shooting for the problem f(u) = u(u− α)(1 − u).

7.3 Singular construction of waves.

We now describe the construction of a traveling pulse for the equation:

∂v

∂t
= f(v, w) +

∂2v

∂x2

∂w

∂t
= ǫg(v, w)

where ǫ is a small positive number. We will consider a general class of nonlinear
functions f and g. We assume that the v-nullcline, {f(v, w) = 0}, is a cubic-shaped
curve; moreover, f > 0 (< 0) below (above) this nullcline. We further assume that
the w-nullcline, {g(v, w) = 0}, is a monotone increasing function that intersects
the v-nullcline at precisely one point which we denote as (vr , wr). Moreover, this
point lies along the left branch of the cubic-shaped v-nullcline. Finally, assume that
g > 0 (< 0) below (above) the w-nullcline. Note that (vr, wr) corresponds to a
stable (resting) state of the kinetic equations

dv

dt
= f(v, w)

dw

dt
= ǫg(v, w).

We remark that these assumptions are satisfied for many two-variable models for
neurons including the FitzHugh-Nagumo equations and the Morris-Lecar equations.
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A traveling wave solution is a solution of the form (v(x, t), w(x, t)) = (V (ξ),W (ξ))
where ξ = x + ct. As before, c is the (yet to be determined) wave speed; (V,W )
now corresponds to the profile of the wave. We note that we have now chosen
ξ = x+ ct instead of ξ = x− ct as was done in the preceeding section. The wave is
now ’moving’ to the left.

The traveling wave equations are:

dV

dξ
= U

dU

dξ
= cU − f(V,W ) (7.7)

dW

dξ
=
ǫ

c
g(V,W )

along with the boundary conditions

lim
ξ→±∞

(V, U,W )(ξ) = (vr , 0, wr). (7.8)

Hence, we seek values of c for which there exists an orbit homoclinic to the fixed
point (vr, 0, wr). There may, in fact, be at least two waves. This was demonstrated
for the FitzHugh-Nagumo model by Hastings, Carpenter and Conley. It has been
demonstrated that the wave with the larger speed is the stable one and this is what
we will concentrate on. In a later section, we will consider the stability of this wave.

We demonstrate the existence of a homoclinic orbit using methods from the
geometric theory of singular perturbations. The idea is to formally set ǫ = 0 and
construct a singular homoclinic trajectory. Once we construct the singular trajec-
tory, we worry about proving that this trajectory perturbs to an actual homoclinic
orbit for ǫ > 0. The singular trajectory will consist of four pieces; these correspond
to the jump-up from the silent to the active phase, the active phase, the jump-down
to the silent phase, and the return to rest in the silent phase. See Figure 7.4. We
note that the jumps up and down take place on a fast time scale ξ, while the active
phase and the return to rest take place on a slower time scale η = ǫξ. It will be im-
portant to exploit this separation of time-scales in the construction of the singular
orbit.

It will be convenient to introduce some notation. Recall that the nullcline
f(V,W ) = 0 is cubic-shaped. For fixed W , let (VL(W ),W ) and (VR(W ),W ) be
the points that lie on the left and right branch of the cubic, respectively. (Here
we are assuming that W lies below the local maximum of the cubic.) Note that
VL(wr) = vr, since (vr , wr) is a fixed point of the kinetic equation (7.7).

We first consider the jump-up to the active phase. Let ǫ = 0 in (7.7); this
leads to the reduced system

V ′ = U

U ′ = cU − f(V,W ) (7.9)

W ′ = 0.

Note that W must be constant. For the jump up, we take W ≡ wr and (7.9)
becomes just the traveling equation for the scalar equation. From the discussion
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in the previous section, we know that there exists a unique value of c, which we
denote as c∗, for which there exists a unique heteroclinic orbit of (7.9) that connects
(vr, 0, wr) along the left branch of the cubic nullcline to (VR(wr), 0, wr) along the
right branch. This heteroclinic orbit corresponds to the jump-up piece of the full
singular orbit and c∗ corresponds to the (ǫ = 0) velocity of the traveling pulse. For
the remainder of the analysis we assume that c = c∗.

We next consider the active phase. Here we introduce in (7.7) the slow variable
η = ǫξ and then set ǫ = 0 to obtain the reduced system

0 = U

0 = cU − f(V,W ) (7.10)

dW

dη
=

1

c
g(V,W ).

The first two equations state that this piece of the singular orbit lies on the cubic
nullcline f(V,W ) = 0 and the third equation gives the rate at which the orbit
evolves along the cubic. For the active phase, the singular orbit lies on the right
branch of the cubic beginning at the point (VR(wr), 0, wr). See Figure ??

Now consider the jump down. Once again we use the fast time scale and
consider the reduced system (7.9) with c = c∗. Now W is constant, say Wjd, along
this piece; however, it is not clear how we should choose this constant. Analysis
similar to that given in the preceding section demonstrates for each such W that
lies below the local maximum of the cubic, there exists a wave-speed c(W ) for which
there exists a solution of (??) that approaches (VR(W ), 0,W ) along the right branch
as ξ → −∞ and approaches (VL(W ), 0,W ) along the left branch as ξ → +∞. Now
the pulse must maintain a constant width, so the speed of the jump up and the
jump down must be the same. That is, we must choose the position of the jump
down so that c(Wjd) = c∗. This condition determines Wjd uniquely. We remark
that this condition may not be satisfied. In this case, the jump-down is at the local
maximum of the v-nullcline. Such systems admit traveling waves for a continuum
of velocities. (See exercise *). For some models, it is possible to compute Wjd

explicitly. In the exercises, the reader is asked to do this for the FitzHugh-Nagumo
equations in which f(v, w) = v(1 − v)(v − α) − w.

Finally, we consider the return to rest. Here, we use the slow time scale η and
consider the reduced system (??). This piece of the singular orbit lies along the
left branch of the cubic, as shown in Figure 7.4, and approaches the rest state as
ξ → ∞.

Note that during the active phase, the traveling wave lies along the right
branch of the cubic V -nullcline; moreover, the slow-variable W satisfies (7.10).
From this we can compute the width, Ξ, of the action-potential. Using the slow
variable η, we find that

Ξ = c∗
∫ Wjd

wr

dw

g(VR(w), w)
.

For the membrane models that we have considered, g(v, w) = ǫ(w∞(v) − w)/τ(v).
If w∞(v) is very sharp, then, w∞(vR(w)) will be close to 1. Assuming that τ(v)
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Figure 7.4. Singular construction of the traveling wave. (A) Projection
of the wave onto the (V,w)−phase plane. Initiation of the action potential is a
front from the rest state to the right-branch with w held constant. Then along the
right-branch of the nullcline w increases until wj where a wave back goes to the left
branch. w then decays to rest along the left branch. (B) Pieces of the wave and the
relevant voltages. Solid lines are front dynamics governed by (??) and dashed are
branch dynamics governed by (??). (C) Details of the left and right branches.

does not vary much, we can approximate g(VR(w), w) by (1 −w)/τR where τR is a
constant. Then, it is easy to show that the width of the action potential is

Ξ = τRc
∗ ln

1 − wr

1 −Wjd
.

7.3.1 Wave trains.

How do we compute the periodic wave trains for this model? Basically, the method
is relatively easy. Instead of jumping from wr, we jump at a slightly higher value
of w, say, wP . Thus, we first compute a jump from VL(wP ) to VR(wP ). This will
have a smaller velocity than the solitary pulse (why?); call it cP . As before, we need
to find a jump-back point, wQ, such that the velocity of the wave from VR(wQ)
to VL(wQ) matches cP . Then we compute the dynamics on the left branch until w
reaches wP and the process repeats. The up-jump and down-jump are relatively
fast compared to the evolution time of w along the two branches. Thus the actual
period of these wave trains is approximately:

ΞP ≈ cP
ǫ

[

∫ wQ

wP

dw

g(VR(w), w)
+

∫ wP

wQ

dw

g(VL(w), w)

]

.
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7.4 Dispersion relations

In general, if a dynamical system has a homoclinic orbit for at a special parameter
value, then for parameters nearby, we expect to find periodic orbits. What do such
orbits correspond to in equation (7.2)? Consider the following “experiment:” We
initiate an action potential at one end of a semi-infinite cable. Then, after a period
of time T , we initiate another one, and so on. This will asymptotically produce
a traveling wave train. Denote the temporal period by T , the spatial separation
between the successive action potentials by P and assume that the wave train travels
at a velocity c. Note that c, P and T are not independent of each other: P = cT ,
since the spatial period is dictated by the velocity and the temporal period. The
velocity c will not be the same as the velocity of the homoclinic orbit (solitary
action potential) because sucessive action potentials travel on a cable which may
be refractory from the prior activity. As we will see below, this can lead to either
lower values of c or, surprisingly, higher values of c. Thus, we expect that c will be
a function of T or P. This notion is well known from nonlinear wave theory. The
spatial and temporal frequencies (1/P and 1/T ) are related through the so-called
dispersion relation. Traditionally, in mathematical neuroscience, the relationship is
given by c = c(P ), the spatial period between waves. A way to think about this is
to suppose that we make the axon into a ring. A periodic wave train with spatial
period P is a solitary wave propagating around the ring with circumference P.

The dispersion relationship is very important since it tells us how the axon
respond to multiple stimuli. As with the homoclinic orbit, it is possible to numeri-
cally compute the dispersion relationship by looking for a periodic orbit and varying
c, the speed. Figure 7.2B shows the dispersion relationship for the HH equations.
There are several important points to note. There is a minimum period, P ∗, below
which waves do not seem to exist. This means that there is a limit to how closely
spaced action potentials can be on the axon; not surprising, given the refractoriness
(recovery from the hyperpolarization). For each P > P ∗, there are two possible
speeds, one is fast and the other slow. What is perhaps most interesting is that
the velocity exhibits damped oscillations around the solitary wave speed c∞. This
means that for some spatial periods, the waves move faster than the solitary wave.
The reason for this is complex, but we can provide a bit of intuition. Consider the
recovery to rest after the wave is passed. This is dominated by the behavior of the
linearization of (7.3) at rest. We note that this linearization has a single negative
eigenvalue and all the remaining eigenvalues have positive real parts. Two of these
eigenvalues are complex, α± iβ, so that we expect that there will be some damped
oscillations on return to rest. (Note that we shoot backward in ξ, the traveling
coordinate, so the oscillations are damped rather than growing.) This means that
the membrane potential shows damped oscillations near rest, e.g.

V (ξ) ≈ Vrest +Aeαξ cosβξ

for ξ large and negative. This implies that for some values of ξ, V (ξ) is larger than
Vrest so that it takes less current to produce an action-potential. Thus, waves which
are spaced close to the characteristic length 2π/β would have the added “boost”
and would travel faster.
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Figure 7.5. Velocity versus temporal period T = P/c for the HH equations.
(A) Full dispersion relation; (B) The function D(φ) = 1/c(φ) − 1/c∞.

7.4.1 Dispersion kinematics.

Rinzel and Maginu (1984) came up with a clever method for studying multiple waves
along axons without using the full neuron model. The idea is to use the dispersion
relation to compute the instantaneous velocity of an action potential which is a
certain distance (in space or time) from an initial impulse. Suppose that an initial
pulse is initiated at x = 0 and at time t1. Then the time at which this first impulse
reaches a point x is T1(x) = t0 + x/c∞ where c∞ is the spead of the solitary pulse.
Suppose we introduce a new spike at x = 0 at time t2. The instaneous velocity of
this new spike at x = 0 will depend on the time since the last spike occured at x = 0;
that is, t2 − t1. Rinzel and Maginu suggest that the instantaneous velocity should
be approximated by c(t2 − t1) where c(T ) is the velocity of a wave with temporal
period T. (If one has the dispersion curve as a function of the spatial period, P ,
divide this by c(P ) to get the temporal period.) Figure 7.5 replots the data from
Figure 7.2B to show the temporal dispersion relationship for the HH equations.
Given this Rinzel-Maginu approximation, the time that a second action potential
reaches a point x will evolve as:

dT2

dx
=

1

c(T2(x) − T1(x))
. (7.11)

The time interval, φ ≡ T2(x) − T1(x), between two action potentials initiated at
x = 0 will evolve (in space, x) as

dφ

dx
=

1

c(φ)
− 1

c∞
≡ D(φ). (7.12)

If D(φ) has a zero(s), φ̄, then the time-difference between the two action potentials
will lock at these zeros. Figure 7.5B shows a plot of D(φ) and two zeros of this
function. Viewed as an evolution equation, we see that ifD′(φ) < 0, then the timing
difference is stable. Intuitively, this says the following: Suppose that φ is slightly
larger than φ̄ so that D(φ) < 0. This means that c(φ) > c∞ so that the trailing
action potential will speed up and the temporal difference, φ, decreases. The case
of multiple action potentials is easily analyzed by assuming that the only action
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potential which matters is the one preceding. The timing of the (j + 1)st action
potential will depend only on the time since the jth,

dTj+1

dx
=

1

c(Tj+1 − Tj)
.

7.5 Morris-Lecar revisited and Shilnikov dynamics

Here we will briefly describe additional properties of traveling wave solutions for the
Morris-Lecar equations. In particular, we point out that these properties depend
on whether the model cells exhibit class I or class II dynamics.

7.5.1 Class II dynamics

The Morris-lecar model is two-dimensional, so that the analysis of propagating
action potentials leads to a three-dimensional dynamical system of the form:

dV

dt
= U (7.13)

dU

dt
= −U/c− f(V,W )

dW

dt
= −g(V,W )/c.

We start as in Chapter *, with the ML model with class II dynamics. There is a
unique fixed point, (vr, 0, wr), and as shown in exercise *, it has a one-dimensional
stable manifold and a two-dimensional unstable manifold. Figure 7.6 shows the
dispersion relation for the the ML model in this regime. As expected, it looks very
similar to Figure 7.2B as both types of cells are class II. At I = 80, the linearization
of (7.13) at the fixed point has eigenvalues, −ν and µ ± iω with ν > µ > 0. Thus,
we can apply a very powerful theorem from dynamical systems due to Shilnikov.
This theorem implies that if (7.13) has a homoclinic orbit for c = c∗, and if the
linearization of the fixed point has a real eigenvalue, r, and a pair of complex
conjugate eigenvalues, α± iβ, with r and α of opposite signs and 0 < |α| < |r|, then
there must exist infinitely many periodic orbits for values of c near c∗. Furthermore,
the system contains so-called Smale horseshoe dynamics. This implies very complex
behavior. Indeed, we can expect very complicated sequences of action potentials to
persist on the axon. An interesting project would be to use the kinematics of the
dispesrion relationship to find some of these complex orbits.

We note that Shilnikov-type dynamics may also exist for the FitzHugh-Nagumo
model:

∂v

∂t
=
∂2v

∂x2
+ f(v) − w + I

∂w

∂t
= b(v − kw)

where f(v) = v(1 − v)(v − a), 0 < a < 1, b > 0 and k ≥ 0. Here we assume
that I = k = 0. Hastings and Carpenter proved the existence of traveling wave
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Figure 7.6. Dispersion relation for the ML model. (A) Class II dynamics
showing characteristic damped oscillatory form with fast and slow wave branches
connected (I = 80.) (B) Class I dynamics showing disconnected fast and slow
waves (slow waves for I = 30 are on the c = 0 axis.)

solutionss (or homoclinic orbits) for this model when the recovery variable b is
sufficiently small. These results will be described in some detail later. However,
it is easy to show that when the recovery is very slow, then all the eigenvalues of
the linearized system are real. Thus, one cannot obtain Shilnikov-type dynamics
in this case. However, Hastings (1982) proved that the homoclinic orbit exists
when the recovery is fast enough such that the linearized system does have complex
eigenvalues. In a related paper, Feroe (1982) shows the existence of the Shilnikov
structure for the piecewise-linear McKean model, f(v, w) = I−v+H(v−a)−w where
H is the step function. Finally, Evans Fenichel and Feroe (1982) proved a theorem
similar to the Silnikov theorem and applied it to the question of double-impulse
solutions. They show that if the return to the fixed point is damped oscillatory,
then there are double pulse solutions and that if the return is monotonic, then there
are none. (See exercise *)

7.5.2 Class I dynamics.

Surprisingly, no one has looked at the propagation of action potentials in Class I
membranes, except in a scalar case. Figure 7.6B shows the dispersion relationship
for the ML equations with class I dynamics at two different currents. At I = 30,
there is only a fast branch of waves. At I = 25, there is a new slow branch of waves.
The explanation of this is somewhat complicated and not suitable for a textbook.
However, Ermentrout (2005) has provided an analysis of waves in the class I system.
Rather than go through the details, we consider the scalar model for an excitable
medium.

Class I excitability is characterized by dynamics which lies on a circle. Figure
7.7A shows the phase-space for simple scalar dynamics which is equivalent to the
θ-model:

dV

dt
= f(V )

where V lives on the circle of radius 1 and f(V ) is 2π−periodic. We assume that
f(V ) has two roots in [0, 2π) and denote the unique root r where f(r) = 0 and
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Figure 7.7. Ermentrout-Rinzel excitable model. (A) Dynamics lies on a
circle; the nonlinearit is periodic with period 2π and two fixed points. (B) Phase-
space of the travelling wave equations is a cylinder. For c = c∞ > 0 there is a
“big” homoclinic which wraps around the cylinder; for c = 0, there is also a small
homoclinic. These are depicted on the unfolded cyclinder; the “big” homoclinic is
now a heteroclinic joining (2π + r, 0) to (r, 0) where f(r) = 0 and f ′(r) < 0. (C)
Dispersion relation for f(V ) = I − cos(V ) when I = 0.95. (D) Velocity of a large
period (100) wave as I varies.

f ′(r) < 0. Ermentrout and Rinzel (1982) considered

∂V

∂t
=
∂2V

∂x2
+ f(V )

where V (x, t) ∈ S1, the unit circle. In exercise *, we have the reader prove the exis-
tence of a fast wave and the associated dispersion curve. In travelling coordinates,
we obtain

−cV ′ = V ′′ + f(V ),

the dynamics of which lie on a cylinder. There are two types of homoclinic solutions:
a “big” homoclinic and a “small” homoclinic. Figure 7.7B shows these solutions as
well as their projections onto the unfolded cylinder. The small homoclinic occurs
when c = 0, for then the dynamics is

V ′′ = −f(V )

which is an integrable equation. That is, all solutions lie on a curve defined by

E = (V ′)2/2 + F (V )
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where F ′(V ) = f(V ). There is a family of periodic orbits (inside the small ho-
moclinic) whose period varies between pmin and ∞. This branch of solutions for
c = 0 corresponds to the “slow” branch of solutions we have seen in other models.
The “big” homoclinic is actually a heteroclinic orbit joining r and r − 2π. But in
the cylindrical phase space, these two are the same point, so that, projected on
the cylinder, the solution is a homoclinic. The theory of bistable reaction-diffusion
equations provides the existence of a unique value of c for the heteroclinic.

7.6 Stability of the wave.

Perhaps the most influential work done concerning the stability of traveling wave
solutions of nerve impulse equations was that done by John Evans. In a series of
four papers, he developed a general mathematical framework in which to study a
general class of models that include the Hodgkin-Huxley equations. In his fourth pa-
per, Evans constructed a complex analytic function, now called the Evan’s function,
with the property that eigenvalues of the equations linearized about the traveling
wave correspond to zeros of the Evan’s function. Using other properties developed
by Evans, this implies that the stability of the traveling wave is determined by
computing the roots of the Evans’ function. Here we will briefly describe issues sur-
rounding stability of waves and define the Evans’ function. Actually defining the
Evans’ function is not that hard; what is difficult is to compute the Evans’ func-
tion and say something concrete about the eigenvalues. Jones applied the Evan’s
function to the FitzHugh-Nagumo equations and completed the rigorous proof of
the stability of the traveling wave solution. Another stability proof was given by
Maginu.

Here we consider the FitzHugh-Nagumo equations and we denote the traveling
wave solution as (V (ξ),W (ξ)), ξ = x + ct. For stability, we need to consider the
initial value problem

vt = vxx + f(v) − w

wt = b(v − kw) (7.14)

(v(x, 0), w(x, 0)) = (v0(x), w0(x)).

It is not completely obvious how one should define asymptotic stability of the trav-
eling wave. Intuitively, we would like to say that the wave is asymptotically stable
if we start with initial data that is “close” to the wave, then the corresponding
solution will asymptotically approach the wave as t → ∞. One issue is how do we
define “close”; that is, what norm or function space should we use? This turns out
not to be a problem and any reasonable norm, such as the sup-norm, works. A
more serious issue is that the traveling wave is, in fact, not unique; every translate
of a traveling wave is also a traveling wave. That is, if (V (ξ),W (ξ)) is a traveling
wave solution, then so is (V (ξ+ ξ0),W (ξ+ ξ0)) for any constant ξ0. Now if take our
initial data to be (V (ξ+ ξ0),W (ξ+ ξ0)) with ξ0 very small, then the initial data lies
very close to the original traveling wave; however, the solution with this initial data
does not approach the original traveling wave as t → ∞. In general, the best that
we can hope for is that a perturbation of a traveling wave solution will approach



i i

i

i

i

i

7.6. Stability of the wave. 149

some translate of the original traveling wave solution. With this in mind, we define
asymptotic stability as follows. By || · || we mean the usual sup or L∞ norm.

Definition: The traveling wave (V (ξ),W (ξ)) is asymptotically stable if for each
δ0 > 0 there exists δ1 > 0 and ξ0 such that if ||(V (x),W (x)) − (v0(x), w0(x))|| < δ1
then ||(V (x + ct),W (x + ct)) − (v(x, t), w(x, t))|| < δ0 for all t > 0. Moreover,
limt→∞||(V (x+ ct+ ξ0),W (x + ct+ ξ0)) − (v(x, t), w(x, t))|| = 0.

7.6.1 Linearization

A common approach to proving the stability of the wave is to use the method of
linearization. In fact, this is one of the few mathematical methods available to treat
the initial value problem for the system of partial differential equations (7.14). The
first step in applying this method is to reduce the issue of stability to an eigenvalue
problem. This is done as follows. We first change to the moving coordinate frame
ξ = x+ ct. In this new variable, (7.14) becomes

vt = vξξ − cvξ + f(v) − w

wt = ǫ(v − kw) − cwξ (7.15)

(v(ξ, 0), w(ξ, 0)) = (v0(ξ), w0(ξ)).

Note that the traveling wave is a steady solution of this system. We then look for
solutions of (7.15) that are perturbations of the traveling wave. In particular, we
look for solutions of the form:

(v(ξ, t), w(ξ, t)) = (V (ξ) + p(ξ)eλt,W (ξ) + r(ξ)eλt).

This solution either grows or decays (in time) with rate λ. If we plug a solution
of this form into (7.15), “linearize” around the traveling wave, drop higher order
terms, use the fact that the traveling wave is a steady solution and let q = p′, then
we find that (p(ξ), q(ξ), r(ξ)) must solve the eigenvalue problem

p′ = q

q′ = cq + (λ − f ′(V (ξ))p+ r

r′ =
b

c
(p− kr) − λ

c
h. (7.16)

Note that we are interested in solutions of (7.16) that satisfy the boundary condi-
tions

limξ→±∞(q, p, r)(ξ) = (0, 0, 0). (7.17)

Now λ is an eigenvalue if there exists a bounded, nonzero solution of (7.16) that
satisfies the boundary conditions (7.17). We note that λ = 0 must be an eigen-
value because every translation of the wave is also a wave; in particular, (p, q, r) =
(V ′, V ′′,W ′) is the corresponding eigenvector. Evans proved that if all the remain-
ing eigenvalues are in the left half complex plane (and 0 is a simple eigenvalue),
then the traveling wave is asymptotically stable.
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7.6.2 The Evan’s Function

Here we will show how to define the Evan’s functions for a broad class of reaction-
diffusion systems. Unfortunately, this class does not include the nerve impulse
equations, for reasons we point out below. Our discussion will at least give a taste
for how such a function is defined and why it has the properties that it does. It is
not too difficult to extend this definition to nerve impulse equations; however, this
becomes somewhat technical so we simply refer the interested reader to [ ].

We consider a general class of reaction-diffusion equations of the form:

Ut = DUxx + F (U). (7.18)

Here, U(x, t) ∈ Rn and F : Rn → Rn is sufficiently smooth. We assume that D is
a n−dimensional diagonal matrix with nonzero, positive entries along the diagonal.
Note that this rules out the nerve impulse equations since these do not have diffusion
in the recovery variables. We assume that U = A and U = B are fixed points (that
is, F (A) = F (B) = 0) and there is a traveling wave solution V (ξ) of (7.18), with
speed c, which connects A with B. Note that we do not rule out A = B.

As before, we change to a moving coordinate frame, ξ = x+ ct, and consider
perturbations of the wave of the form p(ξ)eλt. This leads to an eigenvalue problem
of the form:

p′ = q

q′ = D−1{cq + (λ− F ′(V ))p. (7.19)

Then λ is an eigenvalue if there is a nontrivial solution (eigenfunction) (p(ξ), q(ξ))
of (?) that satisfies

limξ→±∞(p, q)(ξ) = (0, 0). (7.20)

Note that an eigenfunction is a pair of (complex) functions that satisfy (?)
and decays at ±∞. In order to define the Evan’s function, we consider the two sets
of solutions that decay at either +∞ or decay at −∞. That is, let

E+(λ) = {solutions of (?) such that limξ→+∞(p(ξ), q(ξ)) = (0, 0)}
E−(λ) = {solutions of (?) such that limξ→−∞(p(ξ), q(ξ)) = (0, 0)}.

It is obvious that λ is an eigenvalue if the intersection of E+(λ) and E−(λ) is
nontrivial. It is important to realize that E+(λ) and E−(λ) are linear subspaces.
This is because (7.19) is linear. A standard result from the theory of linear ODE’s
implies that the dimension of each of these linear subspaces is n. We choose a basis
for each of these linear subspaces. That is, suppose that

E+(λ) = span{Q+
1 (ξ), ....., Q+

n (ξ)}

and

E−(λ) = span{Q−
1 (ξ), ....., Q−

n (ξ)}.
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Note that each Q+
j and Q−

j is an 2n-dimensional vector. We next form the 2n x

2n-dimensional matrix in which the first n columns are Q+
1 , ....., Q

+
n and the next n

columns are Q−
1 , ....., Q

−
n . We denote this matrix by M(ξ).

We are now ready to define the Evan’s function. Let

D(λ) = detM(ξ0) (7.21)

where ξ0 is some arbitrary point (say 0).
Now the Evan’s function is certainly well defined. Evan’s proved that this

function has many important properties. Perhaps the most important property is
that λ is an eigenvalue if and only if D(λ) = 0. This is actually trivial to prove.
The proof is simply:

D(λ) = 0
if and only if detM(λ) = 0
if and only if The rows of M(λ) are linearly dependent
if and only if There exist constants c1, c2, ...., c2n such that

c1Q
+
1 + c2Q

+
2 + ...+ cnQ

+
N + cn+1Q

−
1 + cn+2Q

−
2 + ....+ c2nQ

−
n = 0

if and only if

c1Q
+
1 + c2Q

+
2 + ...+ cnQ

+
N = −(cn+1Q

−
1 + cn+2Q

−
2 + ....+ c2nQ

−
n )

if and only if E+(λ) and E−(λ) have nonzero intersection
if and only if λ is an eigenvalue.

Another important property of the Evan’s function is that it is analytic. More-
over, if λ is a zero of D, then the order of this zero is equal to the algebraic multi-
plicity of λ as an eigenvalue. These two properties are considerably more difficult
to prove.

While it is straightforward to define the Evan’s function, it is quite challenging
to actually compute this function in any given example. For stability, one needs
to prove that there are no roots of D in the right-half plane, there are no roots on
the imaginary axis except at the origin (because of translation) and zero is a simple
eigenvalue. Methods that have been developed for computing D go well beyond the
scope of this book.

7.7 Myelinated axons and discrete diffusion.

Many vertebrate axons are covered a fatty substance called myelin which serves to
both insulate the axons and decrease the membrane capacitance. Myelin consists
of the membranes of glial cells which wrap around the axons to make a thick layer.
At regularly spaced intervals, the nodes of Ranvier, the axon is exposed to the
extracellular medium and there is a high density of sodium channels. The decreased
resistivity implies that little current leaks out along the myelinated portions of the
axon, so that we can expect the velocity of propagation to be greatly enhanced.
(See below.)
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V n
V n+1

V n−1

I n I n+1

Node of Ranvier

L

Figure 7.8. Myelinated axon. Currents in myelinated region are confined
to the axial direction. Potentials at the nodes are governed by active currents.

Let a1 denote the diameter of the axon and a2 denote the diameter of the
myelinated axon. Dayan and Abbot (2001) show that the total capacitance due to
the myelination is

1

cm
=

ln(a2/a1)

2CmπdmL

where L is the length of the myelinated region, Cm is the usual material constant for
capacitance, and dm is the thickness of a cell layer. Because of the large transmem-
brane resistance and small capacitance, the potential in the myelinated membrane
satisfies the diffusion equation:

cm
L

∂V

∂t
=

4πa2
1

RL

∂2V

∂x2
(7.22)

where RL is the transmembrane resistivity. Dividing by cm/L, this is the diffusion
equation with D = 4a2

1 ln(a2/a1)/(2CmRLdm). The larger the diffusion coefficient
the faster the propagation. Suppose we fix the outer diameter, a2. Then, we can
ask what inner diameter maximizes the diffusion coefficient. It is easy to show that
this occurs when a1 = a2 exp(−1/2) ≈ 0.6a2. At the optimal diameter, D = Ka2

2

so the velocity of propagation (which scales as
√
D) scales linearly with diameter.

The velocity of propagation for unmyelinated axons scales as the square root of the
diameter.

Figure 7.8 shows a cartoon of a myelinated axons with nodes of Ranvier spaced
a distance of L apart. We assume that the nodes are sufficiently small so that
they are isopotential. Let Vn denote the potential at a node. The transmembrane
conductance and the capacitance of myelinated regions are roughly 100-fold smaller
than the unmyelinated portions of the axon (the nodes of Ranvier.) Thus, there is
a sense in which we can regard the myelinated axon as a collection of discrete active
nodes separated by a purely resistive medium. Take the limit as cm → 0 in equation
(7.22). Then Vxx = 0 between nodes n− 1 and n. The voltage at x = 0 and x = L
must match the voltage at the nodes. Thus, the potential is linear between nodes:
V (x) = Vn−1 + (Vn − Vn−1)x/L. The current flowing into node n is proportional
to the gradient of the voltage in the myelinated segments. Thus, at a node n, the
voltage satisfies:

ACm
dVn

dt
= −AIionic(Vn, . . .) + In − In+1 (7.23)
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where A is the area of membrane exposed at the node, and the longitudinal current
(recall equation (3.8))

In = −4a2
1

Rl

∂V

∂x
= 4πa2

1

(Vn − Vn−1)

RlL
.

The area A is πµa1 where µ is the length of the node. Dividing through by the
area, we obtain:

Cm
dVn

dt
= −Iionic(Vn, . . .) +D(Vn+1 − 2Vn + Vn−1) (7.24)

where D = 4a1/(RlLµ). Thus the continuous axon equation, in the presence of
myelin, becomes a discrete system of differential equations. Surprisingly, this is
much more difficult to analyze, even in the simple bistable case. A traveling wave,
if it exists, satisfies Vn+1(t) = Vn(t − τ); that is, translating by one space unit
results in a time shift of τ. The speed of the wave is thus L/τ since L is the distance
between nodes. With the traveling wave ansatz, we must solve the differential-delay
equations:

Cm
dV

dt
= D[V (t+ τ) − 2V (t) + V (t− τ)] − Iionic(V,w, . . .)

dw

dt
= g(V,w)

where w represents the gating variables, calcium, etc. In the scalar bistable case,
we set f(V ) = −Iionic(V ) and assume that f(V ) has three roots, Vrest, Vthr, Vex,
the rest state, threshold, and excited state. We seek solutions to the delay equation
where V (−∞) = Vex and V (+∞) = Vex. There have been a few results on this
problem (Zinner, 1992; Carpio et al 2001.)

Keener and Sneyd offer the following approximate analysis. Approximate
V (t+ τ) − 2V (t) + V (t− τ) by τ2V ′′ so that we have to solve

CmV
′ = f(V ) +

τ2

Lµ

4a1

Rl
V ′′

with τ an unknown parameter. In order to compare this to the continuous cable,
we contast the term multiplying V ′′ with that in equation (??). We introduce the
new space-like variable, ξ =

√
Lµ/τ. Then, the traveling wave equation is:

Cm

√
Lµ

τ
Vξ = f(V ) +

4a1

Rl
Vξξ.

Let c be the traveling wave speed of the unmyelinated axon. Then, we can imme-
diately identify c =

√
Lµ/τ , so that

cmyelin = L/τ ≈
√

L

µ
c.

Since µ is often a micron and L is around a hundred microns, the increase in velocity
of myelinated axons can be almost ten times that of unmyelinated. In practice, the
factor is closer to 6, but we have made a rather crude approximation here.
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7.8 Bibliography

There have been a great deal of papers devoted to a rigorous treatment of propa-
gating waves in reaction diffusion models, including nerve impulse equations. Two
of the most influential papers concerning scalar reaction diffusion equations were
those by Aronson and Weinberger [4] and Fife and McLeod [16].

As we have described in this chapter, the propagating action potential corre-
sponds to a homoclinic orbit in phase space. Conley [8] developed a very powerful
topological method (known as the Conley index) for rigoursly proving the existence
of heteroclinic and homoclinic orbits, as well as other invariant sets such as periodic
orbits. This approach was used by Carpenter [2] to prove the existence of homoclinic
orbits for the Hodgkin-Huxley model. Hastings also considered this problem, using
a topological shooting arguments [21]. Analyis of homoclinic orbits often involves
fast/slow analysis and methods from the geometric singular perturbation theory. A
seminal paper on geometric singular perturbation theory was that of Fenichel [15].

The most influential papers concerning the stability of the traveling wave
solution were those by Evans [13], who developed what is now known as the Evan’s
function. In these papers, Evan’s developed the mathematical machinary needed to
begin to analyze the stability of the waves; however, he did not consider whether the
traveling wave solution of a specific nerve inpulse equation is stable. This step was
carried out for the FitzHugh-Nagumo model by Jones [27]. The Evan’s function has
also been used to study integro-differential equations that arise as neuronal models;
see, for example, Zhang [55], Coombes [3].

7.9 Projects

1. Consider the Morris-Lecar model with no potassium:

Cm
dV

dt
= I − gL(V − EL) − gCam∞(V )(V − ECa)

with parameters as in chapter *. This is bistable when there is enough injected
current. Compute the velocity of wave-fronts for this as a function of the
current, I. Now, in the original ML model, m is a dynamic variable, but we
have set it to its steady state. Study the velcoity of wave fronts for the ML
model:

Cm
dV

dt
= I − gL(V − EL) − gCam(V − ECa)

ǫ
dm

dt
= m∞(V ) −m

as ǫ increases.

2. Aglantha digitale, a lovely jellyfish (see the figure), has an interesting axon
(Mackie and Meech, 1985). When the animal is moving through the water,
slow moving spikes are generated in the axon, but when trying to escape,
the animal produces fast action potentials. The slow waves occur at a lower
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Figure 7.9. The jellyfish, A. digitale and the phaseplane for a tristable system

threshold stimulus, have low amplitude, and are produced by a calcium spike.
The fast waves are generated by a high threshold sodium current. One way to
think about this behavior theoretically is to study the initiation of the spike
by looking at a model with no recovery. That is, imagine a tristable system in
which there are five fixed points, three of which are stable and two unstable.
The slow wave is a front from rest to the middle fixed point. The fast wave is
a front from the rest to the highest fixed point. Consider a simple model like
(??) with

Iion(V ) = gL(V − EL) + gCam1(V )(V − ECa) + gNam2(V )(V − ENa).

Find parameters using EL = −70, ENa = 55, ECa = 150, and mj(V ) =
1/(1 + exp(−(V − Vtj)bj)) so that Iion has five zeros.Arrange these zeros so
that there are the requisite fronts. Figure 7.9 shows our attempt at this. The
figure shows three different fronts at three different speeds.

7.10 Exercises

1. Simulate the reduced HH cable model using m = m∞(V ) and h = 0.8 − n.
Deduce that the velocity of an action potential is about 2-3 times faster than
that of a full model. Why do you think this is?

2. Use shooting to estimate the velocity of an action potential for the Rinzel re-
duction. Try to find the slow velocity wave and then use continuation software
(such as AUTO) to draw the dispersion relation.

3. What is the velocity of an action potential using the HH dynamics for an axon
of diameter d in centimeters and axial resistance Ri is ohm-centimeters? (Use
the numerically computed value above in your formula; that is when d = 0.1
and Ri = 100, you should get 1.25 m/sec.)

V

w

w’=0

V’=0
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4. Consider a two-dimensional model such as the ML class II or reduced HH
equations. At rest with no current, assume the nullclines are as shown above.
Show that if the velocity, c is large enough, then there is exactly one negative
real root and two roots with positive real parts to the linearization of the
traveling wave equation. Thus, there is a one-dimensional stable manifold
and a two-dimensional unstable manifold.

5. Analyze equation (??) for k > 0 and show that the rest state can become
unstable as I increases. (Hint: Show that the Hopf bifurcation occurs when
f ′(V̄ ) = k and solve this for two values of V̄ and plug these into the expression
for equilibria to get two values of I, thus showing there are two possible HB
points. Find a relationship between a and k guaranteeing that these points
exist.)

6. Suppose that the stable dispersion relation satisfies:

c(P ) = c∞(1 − αe−β(P−Pmin))

where α = (c∞ − cmin)/c∞. Analyze the kinematics of this type of dispersion
curve. What happens to a pair of spikes on an axon? (c∞ > cmin > 0 and
β > 0. More generally, suppose that c = F (P ) and F is monotone increasing.
Show that if F (P ) > PF ′(P ), then D(φ) has no roots. Thus, show that if
the dispersion relation is monotonic, there are no double pusle solutions. (See
Evans et al 1982).

Suppose that the dispersion curve c = F (P ) has infinitely many local extrema
with the peaks and valleys centered aroind c∞. Does that imply that c = G(T )
has infinitely many extrema and thus, that there are infinitely many roots to
D(φ) = 0 ?

7. For many class II axons, the dispersion relation c(P ) is oscillatory. For sim-
plicity, suppose that

1

c(P )
=

1

c∞
+ ηe−aP cos bP

where a, b are positive constants and η > 0 is smaller than c−1
∞ . Find an

equation for the interspike interval of a pair of pulses on the cable. What is
the minimal interval? Pick some values of a, b, η and look at the kinematics
of pulse triplets, etc.

8. (a) Find the velocity to 3 decimal places for the traveling front to the equation
Vt = f(V ) + Vxx where f(V ) = V (1 − V )(V − α) and α = 0.1. (b) Consider
the same equation where f(V ) = I−cosV and 0 < I < 1. There are two fixed
points of interest, V0 = − arccos(I) and V1 = 2π − arccos(I). For I = 0.95,
find the velocity of the front joining V1 to V0. (c) Find the velocity exactly
for the model with f(V ) = H(V − α) where α < 1/2 and H(V ) is the step
function.
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9. Consider the simple ring model for excitability:

Vt = I − cosV + Vxx.

In the previous exercise, you computed the front from V1 = 2π− arccos(I) to
V0 = − arccos(I). Let c∞(I) be the velocity of the front. Since the state space
for this system is a cylinder (recall figure 7.7), we can also look for “periodic”
solutions. Take it as a fact that if c < c∞, then the unstable manifold of V1 hits
the V ′-axis before it hits the V axis. Show that, on the cylinder, the unstable
manifold approaches a periodic solution, that is V (ξ + P ) = V (ξ) − 2π. (See
Ermentrout & Rinzel, 1984).

10. Here is a cool trick. Consider

f(u) = Au(u− a)(1 − u)

where a ∈ (0, 1). The front satisfies:

−cu′ = f(u) + u′′

with u(−∞) = 1 and u(+∞) = 0. Consider the equation

u′ = −bu(1 − u)

Find a value of b and c so that the solution to the second equation is a solution
to the first. Thus, find an exact expression for the velocity. Solve the second
equation by quadrature to get a closed form expression for ther wave front!
Compare the value of the velocity to that computed numerically in exercise
*(a).

11. Consider the equation:

−cV ′ = V ′′ + V 2(1 − V )

V = 0 is a double root. Show that there are infinitely many values of c for
which there is a front joining 0 and 1.

12. (Propagation failure.) (A).Consider the equation

dvn

dt
= f(vn) +D(vn+1 − 2vn|vn−1).

Suppose that f has roots 0, 1, a with 0 < a < 1 and 0, 1 stable fixed points to
v′ = f(v). Let Un(t), Vn(t) be two solutions to this equation with initial data
such that Vn(0) > Un(0) for all n. Prove that Vn(t) ≥ Un(t) for all t > 0.
(B) Part A implies that if there is a stationary front (that is, a zero velocity
front) with Vn → 1 as n→ ∞ and Vn → 0 as n→ −∞, then there will be no
traveling front, since this static front blocks the propagation. It is clear that
if D = 0, such a stationary front exists, just take Vn = 0 for n < 0, V0 = a,
and Vn = 1 for n > 0. This is a hyperbolic fixed point, so that for small D, it
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will persist. Thus, we expect that the dtationary front exists for D sufficiently
small. Keener (1987) showed that there is a D∗ > 0 such that if D ≤ D∗,
there is a stationary front. Suppose that f(v) = −v +H(v − a) where H is
the step function. Find D∗ for this model. (Hint: consult Keener & Sneyd, p
280.) Ans: D∗ = a(1 − a)/(2a− 1)2.

13. Show that the G for the HH equations satisfies the cubic hypothesis for the
Carpenter theorem.

14. Use the computer to check assumption (6) in the hasting HH theorem.

15. Consider the equation vt = vxx + f(v) − w where f(v) is as above and w is
constant. Note that there is a range of w for which there are three fixed points;
we denote these as vL(w) < vM (w) < vR(w). For which values of w does there
exist a TWS such that limξ→−∞V (ξ) = vL(w) and limξ→∞V (ξ) = vR(w)?
How does the wave speed depend on w? For which value of w is the wave
speed equal to zero? For which values of w does there exist a TWS such that
limξ→−∞v(ξ) = vR(w) and limξ→∞v(ξ) = vL(w)? For which value of w does
the speed of this wave equal to c∗.

16. Prove that the traveling wave solution of the bistable equation (7.3) exists for
a unique value of the wave-speed. In what sense is the traveling wave unique?

17. Suppose that f(v) = v(1 − v) in (7.3). Prove that there exist a value c∗ such
that there is a traveling wave solution for wave-speeds c > c∗.

18. Consider the FitzHugh-Nagumo equations (?) with k > 0 and I = 0. Note
that if k is sufficiently large, then there are three fixed points. One of these is
at the origin O and we denote the fixed point on the right branch of the cubic
as q0. As above, we can construct singular heteroclinic orbits that connect
either O to q0 or q0 to O (for some value of the wave speed). For which values
of k does there exist a singular heteroclinic orbit? For which values of k does
there exist a singular homoclinic orbit to the origin?
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Chapter 8

Synaptic channels.

So far, we have restricted our modeling and analysis efforts to single neurons. In
order to begin to develop networks and the theoretical background for networks,
we need to introduce an additional class of membrane channels. We have already
looked at voltage-gated and ion-gated channels. However, there are many other
channels on the surface of nerve cells which respond to various substances. Among
the most important of these, at least theoretically, are synaptic channels.

The events leading to the opening of synaptic channels involve several steps.
The action potential travels down the axon and terminates at many presynaptic
sites invading regions called synaptic terminals. These terminals contain calcium
channels which when depolarized, cause (a) release of calcium; (b) calcium activates
a calcium binding protein which promotes transmitter release by binding to vesicles
containing the transmitter; (c) these “docked” vesicles release their transmitter
into the synaptic cleft; (d) the transmitter diffuses through the cleft where it binds
to various receptors on the postsynaptic neuron (often on protuberances on the
dendrites called spines); (e) these receptors open channels which either depolarize
or hyperpolarize the neuron depending on the nature of the transmitter.

Transmitter release can get quite complex for there are sometimes presynaptic
receptors near the site of transmission which can be modulated by various chemi-
cals. Furthermore, the release of transmitter is probabilistic and occurs in discrete
amounts called quanta. Presynaptic stimulation can lead to more vesicles becoming
docked to the membrane so that on the next presynaptic spike, more transmitter
is released than on the first spike. This increase is called potentiation. Addition-
ally, after several presynaptic spikes, the transmitter release per spike can decrease
through various means (such as depletion) and take some time to recover. De-
crease of transmitter over successive firings of action potentials is called synaptic
depression.

The consequences of synaptic dynamics and short-term plasticity (e.g. de-
pression and facilitation) have not been thoroughly explored in terms of dynamical
systems theory. Here, we will develop several models for both the release and for
the plasticity of synaptic release. In a later chapter, when we look at networks, we

159
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will show some interesting behavior which occurs because of synaptic depression.

8.1 Synaptic dynamics.

In this section, we deal with the five most common classes of synaptic dynam-
ics. The main transmitters associated with cortical neurons are glutamate and
γ-aminobutyric acid (GABA). A good rule of thumb is that glutamate excites the
postsynaptic cell while GABA inhibits it. However, the reversal potential of some
GABA receptors is mainly dependent on chloride concentration so that it can be
close to rest and even above rest. Thus, (particularly, early in development) some
GABA synapses can be excitatory. Like other currents, we model the synaptic
currents as the product of a conductance with a voltage difference:

Isyn = g(t)(Vpost − Vrev).

Unlike our previously studied channels, the conductance g(t) depends on the presy-
naptic neuron.

There are several ways to model the conductance g(t). A popular method
among computational neuroscientists is to assume that g(t) is the sum of fixed
functions which depend only on the times that the presynaptic cell has spiked:

g(t) = ḡ
∑

k

α(t − tk) ≡ ḡz(t) (8.1)

where ḡ is a constant conductance and α(t) is a prescribed function of time, van-
ishing for t < 0 and positive for t > 0. The times tk are when the presynaptic cell
has spiked. The most general form for the function α(t) is:

α(t) =
adar

ar − ad
(e−adt − e−art). (8.2)

The parameter ar characterizes the rise rate of the synaptic conductance and ad

the decay. Many modelers assume that ad = ar in which case, the function has the
form

α(t) = a2
dte

−adt.

Letting ar → ∞ reduces the model to a single exponential. The maximum of α(t)
occurs at t∗ = ln(ar/ad)/(ar − ad). The constants multiplying these functions are
chosen so that the area under α(t) is 1. Other normalizations are possible; for
example, choosing the value of α(t∗) = 1 for some t∗ > 0.

If one uses alpha functions in simulations, then equation (8.1) implies that it
is necessary to keep track of all the incoming spikes at times tk. Since z(t) in (8.1)
is the solution to a second order linear differential equation:

z′′ + (ar + ad)z
′ + aradz = 0, (8.3)

we need only solve this equation in time with the proviso that each time tk that a
presynaptic spike arises, z′(t) is incremented by an amount adar. Formally, we can
write

z′′ + (ar + ad)z
′ + aradz = arad

∑

k

δ(t− tk).
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If the spike train is random (say Poisson) with a time varying rate, ν(t), then we
can formally average this equation to obtain

z′′ + (ar + ad)z
′ + aradz = aradν(t). (8.4)

The solution to this linear equation provides a formula for the average net synaptic
input for a time varying random stimulus.

Choosing a fixed function α(t) for the synaptic response has some advantages
which will become apparent when we study networks. However, from a physical
point of view, the use of alpha functions is unsatisfying. First, as noted above,
we need to track the time of a spike which could be ambiguous. Furthermore, this
approach does not connect well with our notion of voltage and ligand-gated channels.
We introduce a simple model for synapses which is identical to the formalism that we
previously described. Let [T ] denote the concentration of transmitter released into
the synaptic cleft by a presynaptic spike. Note that [T ] will be time dependent since
synaptic transmitter is rapidly taken up and/or degraded. Then the conductance
g(t) = ḡs(t) where s(t) denotes the fraction of open channels. s(t) satisfies:

ds

dt
= ar[T ](1 − s) − ads. (8.5)

Suppose that at t = t0, [T ] jumps to Tmax and at t = t1, [T ] falls back to zero. Then

s(t− t0) = s∞ + (s(t0) − s∞)e−(t−t0)/τs , for t0 < t < t1,

where

s∞ =
arTmax

arTmax + ad
and τs =

1

arTmax + ad
.

After the pulse of transmitter is gone, s(t) decays as

s(t) = s(t1)e
−ad(t−t1).

While it may appear that, like the alpha function, there is a rise rate and a decay
rate, the formula for τs shows that the rates are not independent. If arTmax is
large, the synapse will saturate near 1 so that it is not possible to make this rise
rate arbitrary. However, by varying the residence time of the transmitter, t1 − t0,
it is possibe to mimic the alpha function quite closely. We now must connect the
transmitter release [T ] with the presynaptic neuron. We assume a model of the
form:

[T ](Vpre) =
Tmax

1 + exp(−(Vpre − VT )/Kp)
. (8.6)

Destexhe at al (1994) suggest that Tmax =1 mM, VT = 2 mV, and Kp = 5 mV.
[ Destexhe A, Mainen ZF, Sejnowski TJ (1994) Synthesis of models for excitable
membranes, synaptic transmission and neuromodulation using a common kinetic
formalism. J Comput Neurosci 1:195-230

Saftenku EE (2005) Modeling of slow glutamate diffusion and AMPA receptor
activation in the cerebellar glomerulus. J Theor Biol 234:363-82]

We now have a complete model of the conductance changes of a simple synapse
connected to the presynaptic voltage. We turn next to the four main classes of
synaptic transmission used in models of cortical neurons. Figure 8.1 shows the
conductance changes due to each of our four model synapses.
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Figure 8.1. Model synaptic conductances. (A) AMPA (black) and GABA-
B conductance due to a single presynaptic spike. (B) NMDA conductance to a single
(red) and a burst of four (black) spikes. (C) GABA-B conductance to a burst of 8
spikes. Single spike response is negligible.

8.1.1 Glutamate

The neurotransmitter glutamate activates two different kinds of receptors: AMPA/kainate
which are very fast and NMDA which is implicated in memory and long-term po-
tentiation of synapses. Both of these receptors lead to excitation of the membrane.

AMPA/Kainate.

The current from a fast AMPA synapse is

IAMPA = ḡAMPAs(V − VAMPA) (8.7)

where VAMPA = 0 mV . For the synapse shown in Figure 8.1A, s satisfies equations
(8.5) and (8.6) with ar = 1.1 mM−1ms−1, and ad = 0.19 ms−1.

The AMPA synapses can be very fast. For example, in some auditory nuclei,
they have submillisecond rise and decay times. In typical cortical cells, the rise time
is 0.4 to 0.8 milliseconds. Using the above model with a transmitter concentration
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of 1 mM, the rise time would be 1=/(1.1 + 0.19) = 0.8 msec. Decay is about
5 milliseconds. As a final note, AMPA receptors onto inhibitory interneurons are
about twice as fast in rise and fall times as those onto excitatory neurons.

Real AMPA synapses show quite strong depression. That is, the peak ampli-
tude of the AMPA current decreases with each subsequent spike. We will address
this short term plasticity in the next section. Figure 8.1A shows the conductance
change for a single presynaptic spike.

8.1.2 NMDA

The NMDA receptor is also sensitive to glutamate but has effects that last consider-
ably longer than those of AMPA. However, under normal physiological conditions,
the NMDA receptor is blocked by magnesium ions. The magnesium block can be
removed if the postsynaptic neuron is depolarized. Thus, if the postsynaptic cell is
already active, then the NMDA receptor opens and the effect of the current will be
long lasting. Because of the property that both the pre- and postsynaptic cells must
be active in order for the NMDA current to flow, the presence of these receptors
is believed to be necessary for many types of long term changes in the synapses.
Indeed, one of the ions carried by NMDA current is calcium which is a main player
in long term changes in neurons. The NMDA current is modeled as:

INMDA = ḡNMDAsB(V )(V − VNMDA) (8.8)

where s obeys equations (8.5,8.6) and B(V ) represents the magnesium block (Jahr
and Stevens, J. Neuroscience 10, 1830-183):

B(V ) =
1

1 + e−0.062V [Mg++]/3.57
.

It is convenient to rewrite this is

B(V ) =
1

1 + e−(V −VT )/16.13

where VT is the half activation and is given by

VT = 16.13 ln
[Mg++]

3.57
.

At the physiological concentration of 2 mM, VT ≈ −10 mV so that the post-synaptic
cell has to be quite depolarized. Even at the relatively low concentrartion of 1
mM, VT ≈ −20 mV. The synaptic parameters for s are well fit by the choices
ar = 0.072 mM−1ms−1, ad = 0.0066, and VNMDA = 0 mV. Figure 8.1B shows the
conductance change for a model NMDA synapse when there is a single spike and
when there are four spikes. The rise time is fast enough so that each spike can be
seen in the model trace.

8.1.3 GABA

GABA is the principle inhibitory neurotransmitter in the cortex. There are two
main receptors for GABA: GABAA and GABAB.
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GABAA

GABAA is responsible for fast inhibition and, like AMPA and NMDA, requires a
single presynaptic spike to be evoked. The current is

IGABAA
= ḡGABAA

s(V − VGABAA
) (8.9)

where s obeys (8.5) and (8.6) with ar = 5 mM−1ms−1, ad = 0.18 ms−1 and
VGABAA

varying between -81 and -60 mV. This GABA current is carried by chlo-
ride (among other ions) and thus there is a wide range of values depending on
the physiological conditions and the developmental stage of the neurons. (Early
in develoment GABA is mainly depolarizing with a reversal potential well above
rest.) In most models in the literature, VGABAA

= −75 mV. Figure 8.1A shows
the conductance change for our model GABAA synapse.

GABAB

The three synapses described so far (AMPA/Kainate, NMDA and GABAA) share
the common feature that the ion channel and the receptor are the same protein.
Thus, the effects of transmitter on these synaptic recptors is direct. However, there
are other synaptic events which are indirect in that the activation of the receptor
sets off a cascade of intracellular events which eventually alter the conductivity
of an ion channel. The GABAB receptor is an example of this indirect effect:
transmitter binds to a receptor protein which activates an intracellular complex
called a G-protein which in turn activates a potassium channel to hyperpolarize
the membrane. Such indirect effects can have several consequences. The responses
can be: (i) nonlinear; (ii) slow to activate; and (iii) long-lasting. There are several
models for the activation of GABAB synapses; we will consider only the simplest
one. There is a receptor r which is activated exactly as described by equations (8.5)
and (8.6). This receptor activates the ionic channel, s, and results in the GABAB

current. The current is a nonlinear saturating function of s. Thus, the model for
GABAB is

IGABAB
= ḡGABAB

sn

Kd + sn
(V − EK) (8.10)

dr

dt
= arT (1 − r) − brr

ds

dt
= K3r −K4s.

For the synapse shown in Figure 8.1C, ar = 0.09 mM−1ms−1, ad = 0.0012 ms−1,
n = 4, Kd = 100, K3 = 0.18 ms−1, and K4 = 0.034 ms−1. We use the same
function (8.6) for the transmitter release, T, as we have in the other synaptic models.
The nonlinearity in equation (8.10) means that s must become large enough for the
synapse to take effect. GABAB is more effective when several action potentials occur
in a row. Note also that the reversal potential is that of potassium; in a cortical cell
this can be around −90 to −105 mV. GABAB is unambiguously hyperpolarizing.
Figure 8.1C shows the effective synaptic conductance, seff = s4/(s4 + Kd) for a
burst of eight spikes. The conductance for a single spike is very close to zero.
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8.1.4 Gap or electrical junctions.

Many cells can directly communicate with each other via tight junctons between
their membranes. These act as resistors connecting compartments in two different
cells and are called either electrical or gap junctions. The difference between gap
junctions and chemical synapses is that the former always keep the cells in commu-
nication while the latter occur only when there is a presynaptic action potential.
(Although, there are some neurons which release transmitter in a graded fashion,
these are rare and atypical. The granule cells in the olfactory bulb of mammals are
the best known example.) We model the current for this type of synapse as:

Igap = ḡgap(Vpost − Vpre) (8.11)

where ggap is the conductance.

8.2 Short term plasticity.

Our conceptual model for synapses treats them as though there is no history depen-
dence. That is, the magnitude of the post synaptic current (PSC) is independent
of how many times that it has been invoked in recent history. However, the ex-
perimental work of many groups over the years shows that many synapses exhibit
short term plasiticity. Here, the emphasis is on the words short-term as opposed to
long-term changes that are associated with learning and memory. Short term plas-
ticity occurs over times scales of the order of milliseconds to minutes and takes the
form of short term depression (the magnitude of successive PSCs decreases), facili-
tation (the magnitude of successive PSCs increases) or possibly both. We point out
that the GABAB model in section * shows facilitation in that several closely timed
action potentials lead to a much larger current. Markram et al (1998), Castro-
Alamancos (2002) and Beierlein et al (2003) are among those who have quantified
synaptic plasticity in mammalian brains. Abbott was among the first to recognize
the computational consequences of short term plasticity. Here, we briefly describe
some models and some consequences of this plasticity. Later on, we will see that
the effects on networks or neurons can be much more interesting.

Figure 8.2A shows examples of synaptic depression (SD) and facilitation (SF)
in cortical neurons. We now describe phenomenological and mechanistic models for
short term plasticity. The phenomenological model is due to Dayan and Abbott
but is closely related to many other models. We suppose for that we want to
characterize the magnitude, M(t), of synaptic release per presynaptic spike. We
write this magnitude as the product of two factors, the depression d(t) and the
facilitation f(t), so that:

M(t) = d(t)f(t).

We could also call M(t) the probability of release if one is interested in treating
the process stochastically. Both f(t), d(t) lies between 0 and 1 and each has a
resting value of f0, d0 respectively, to which it returns with a time constant, τf , τd,
respectively. Thus, in absense of any inputs,

τf
df

dt
= f0 − f and τd

dd

dt
= d0 − d.
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Figure 8.2. (A) Short-term synaptic plasticity in cortical neurons (From
Beierlein et al 2003). Connections between cortical excitatory cells (RS) and cortical
fast spike units (inhibitory) show synaptic depression to 20 Hz stimuli while RS to
low threshold spike (LTS) inhibitory cells show facilitation. (B-D) simulations of
equations (8.12) and (8.13) to periodic stimuli.Parameters for B are τd = 300,
ad = 0.5, d0 = 1, τ = 10 and there is no facilitation. Parameters for C are
τf = 500, af = 0.2, f0 = 0, τ = 10 with no depression. Frequency is 20 Hz.
D has both depression and facilitation with f0 = 0, d0 = 1, τf = 50, τd = 400,
af = 0.2, ad = 0.05 and τ = 5. The frequency is 100 Hz.

Each time there is a spike, f(t) is incremented by an amount af (1 − f) and d(t) is
decremented by an amount add. In both cases, the change is multiplied by a factor
which keeps the variables bounded between 0 and 1. We assume that both af and
ad are less than one. Formally, we can write the facilitation equation as:

df

dt
=
f0 − f

τf
+





∑

j

δ(t− tj)



 af (1 − f) (8.12)

where tj are the times of the incoming spikes. Similarly, for the depression equation,
we have:

dd

dt
=
d0 − d

τd
−





∑

j

δ(t− tj)



 add. (8.13)

We leave the analysis of these equations when stimuli are periodic as an exercise.
Figures 8.2B-D show the results of a simulation of these equations when there is
a periodic input. Each time a stimulus comes in, the synaptic variable s(t) is
incremented by M(t) and both d(t), f(t) are updated. Between stimuli, s(t) decays
exponentially with a time constant of τ .

Suppose that the inputs to the synapse are Poisson with rate r. (See Chapter
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* for a definition of Poisson). Averaging equation (8.12), we obtain:

df

dt
= (f0 − f)/τf + afr(1 − f).

The steady state value of f is:

fss =
f0 + afτfr

1 + afτfr
.

A similar calculation for d yields:

dss =
d0

1 + adτdr
.

The effective average rate is

reff = rfssdss = rd0
f0 + afτfr

(1 + afτf r)(1 + adτdr)
.

If there is depression, then this function saturates as the true rate goes to infinity.
Abbott points out that SD has a useful computational property in that it

emphasizes changes in input rates. That is, starting at a low rate and jumping to a
high rate results in a huge jump of reff . Suppose that d0 = 1 and the input jumps
from rlo to rhi. At the moment before the jump

r−eff =
rlo

1 + adτdrlo
.

Right after the jump,

r+eff =
rhi

1 + adτdrlo

since the depression has not had a chance to take effect. That is, the denominator
is still that for the low rate. Over time, the effective rate will decrease to the steady
state:

reff =
rhi

1 + adτdrhi
.

By the same argument, if the rate is suddenly lowered again, the effective rate
will be very small since the denominator is large from the high prior rate. Thus,
SD behaves much like a differentiator of the input rate and allows for very strong
temporal contrast. We note that Bertram (2001) calls our depression model a vesicle
depletion mechanism as one can regard the variable d as the amount of transmitter
available for release.

8.2.1 Other models.

The above models for plasticity require that one track the time of spikes. In this
sense, they are analogous to using alpha functions for synapses rather than the
mechanistic models. Bose and Nadim (2005) use a channel-like model for synaptic
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depression. They combine an activation model like (8.5) with a depression model
of the form:

dd

dt
=

d∞(V ) − d

τ1 + τ2d∞(V )

where

d∞(V ) =
1

1 + ek(V −Vthr)

and k > 0 and Vthr are parameters. The threshold is set close to V = 0 and k is
somewhat large so that when V is near rest, d∞(V ) is close to 1 and d(t) will relax
to 1 with a time constant roughly like τ1 +τ2. When the neuron spikes, d∞ is nearly
zero and d(t) will decay to 0 with a time constant of τ1. Thus, 1/τ1 is like ad and
τ2 is like τd in the heuristic model. Given the equation for d(t) and a model such
as (8.5) for s(t), the total synaptic conductance is ḡs(t)d(t). Similar models can be
built for potentiation of synapses, but k < 0 so that at rest the potentiation variable
goes to a low value which is increased with each spike. A more direct mapping that
has been used in the past is:

dd

dt
= (d0 − d)/τd − ad(V )d

where

ad(V ) =
a

1 + e−k(V −Vth)
.

When the neuron spikes ad(V ), is large; otherwise it is negative.
We close this section with a three state model for depression which is based

on a simple physical model:

A −→ S

S −→ U

U −→ A.

A is the available transmitter, S is the conducting state which produces the synaptic
conductance, and U is the transmitter which is unavailable for release. Since A +
S +U is conserved, we can eliminate A and obtain the following pair of differential
equations:

ds

dt
= α(V )(1 − s− u) − βs and

du

dt
= βs− β2u.

By varying β2, we can incorporate various degrees of synaptic depression. This
simple model does not have the degree of freedom that other models have; there is
only one free parameter β2 since β determines the decay rate of the synapse and
α(V ) is voltage dependent.

8.3 Exercises.

1. Simulate and recreate all of Figure 8.1 using the parameters in the text.
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2. If inputs come into a synapse periodically, determine the steady state values
of d(t) and f(t) at the moment after a stimulus arrives.

3. What rate r maximizes the probability of release for a synapse which has both
facilitation (f0 = 0) and depression (d0 = 1)?

4. Simulate
dd

dt
=

1 − d

τd
− adr(t)d

with ad = .4, τd = 500 msec, and r(t) changes as follows: for the first 200
msec, it is 25 Hz. It jumps to 100 Hz for the next 300 msec. Then it falls to
10 Hz and at t = 1000 msec it junps to 40 Hz. Plot the effective firing rate
d(t)r(t).

5. Castro-Alamancos (2002) describes a synapse with the following peoperties.
The ratio of the first spike to the second spike is 0.6 when the time between
spikes is 50 msec. If the time between spikes is 25 msec, the ratio is 0.4.
Given that d0 = 1, find parameters ad, τd which match this assuming there is
no potentiation.

6. Given an alpha function (8.2), compute the steady state value of s(t) assuming
that the presynaptic spikes, tk = kP are periodic with period P.

7. Suppose that ν(t) in (8.4) is sinusoidal, ν(t) = sinωt. Find z(t). Find the
magnitude of the response.

8. Gulledge and Stuart (Neuron 2003 37:299-309) demonstrate an interesting
example of GABA enhancing the post-synaptic response to an excitatory
synapse. They record from pyramidal neurons in rat somatosensory cortex
and produce both dendritic and somatic GABA stimulation. (pas in.ode)

Beierlein M, Gibson JR, Connors BW. Two dynamically distinct inhibitory
networks in layer 4 of the neocortex. J Neurophysiol. 2003 Nov;90(5):2987-3000.
Epub 2003 Jun 18.

Castro-Alamancos MA. Properties of primary sensory (lemniscal) synapses in
the ventrobasal thalamus and the relay of high-frequency sensory inputs.J Neuro-
physiol. 2002 Feb;87(2):946-53.

Markram H, Wang Y, Tsodyks M. Differential signaling via the same axon of
neocorticalpyramidal neurons. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5323-8.

Abbott LF, Regehr WG. Synaptic computation.Nature. 2004 Oct 14;431(7010):796-
803.

Abbott LF, Varela JA, Sen K, Nelson SB. Synaptic depression and cortical
gain control. Science. 1997 Jan 10;275(5297):220-4.

Varela JA, Sen K, Gibson J, Fost J, Abbott LF, Nelson SB. A quantita-
tive description of short-term plasticity at excitatory synapses in layer 2/3 of rat
primary visual cortex. J Neurosci. 1997 Oct 15;17(20):7926-40. Bertram R. Dif-
ferential filtering of two presynaptic depression mechanisms. Neural Comput. 2001
Jan;13(1):69-85.
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Chapter 9

Neural oscillators: Weak
coupling

This chapter begins the second part of the book. By now, we hope that the reader
has a thorough knowledge of single cell dynamics and is ready to move onto net-
works. There are two main approaches to the analysis and modeling of networks
of neurons. In one approach, the details of the action potentials (spikes) matter a
great deal. In the second approach, we do not care about the timing of individual
neurons; rather, we are concerned only with the firing rates of populations. This
division is reflected in the sometimes acrimonious battles between those who believe
that actual spike times matter and those who believe that the rates are all that the
brain cares about. On these issues, we have our own opinions, but for the sake of
the reader, we will remain agnostic and try to present both sorts of models.

If spikes matter, then it is important to understand how the spikes of one
neuron affect the timing of the spikes of another neuron to which it is synaptically
(or otherwise) connected. General theories on the influence of inputs on the dy-
namics of single neurons do not exist. Here we have emphasized the word “general”
as there has been some work on the influence of transients on firing patterns of
cells. In order to say something rigorously, we consider, in this chapter, a very
specific situation in which the individual neurons intrinsically oscillate. This is not
an unreasonable assumption at least in the short time scale. a neuron receiving
a slowly varying current may throw off a few fairly regularly spaced spikes; thus,
at least for those few moments, it can be regarded as an oscillator. Hence, we are
interested in how networks of neural oscillators behave when the are are allowed to
interact. Such oscillatory (or transiently oscillatory) networks arise in many areas
of neuroscience. There is absolutely no doubt that these networks play a critical
role in motor patterns for repetitive activity such as locomotion, feeding, breath-
ing, and mating. Such central pattern generators (CPGs) consist of networks of
neurons which produce robust rhythmic output. Kopell (1988) was among the first
to recognize the connection between the mathematical theory of coupled oscillators
and CPGs. This alone should be sufficient motivation for studyng the properties of
coupled neural oscillators. However, a more controversial role for neural oscillations
and synchrony has emerged over the last twenty years. A major question in cog-
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nitive psychology concerns how different sensory modalities are brought together
to produce a unified percept. The problem of how such different aspects of, say,
an object, are brought together is called the binding problem. von der Malsberg
and Schneider (1986) were among the first to suggest that neural oscillations could
“solve” this problem. That is, different areas of the brain would synchronize when
there was a common percept. Wolf Singer’s group found tantalizing evidence for
this theory in electrical recordings of the cat visual cortex. So called gamma os-
cillations (30-80 Hz) were found to have a high degree of synchrony under certain
situations presumably related to perceptual grouping. Thus, an industry was born
and there are now hundreds of papers which concern the role of gamma oscillations
and synchrony in perception. We list some of the in the references below. Our point
here is not to ask whether these synchronous oscillations do in fact play a role, but
rather, use this possibility to motivate the study of spike synchronization between
neurons.

9.1 Neural oscillators, phase, and isochrons

A single neuron often fires repetitively when it is injected with a constant current.
Indeed, we studied the onset of these oscillations in many different neural models
in previous chapters. Thus, it is not unreasonable to regard a stimulated neuron
as a limit cycle at least in the short-term (over a period of several spikes.) Thus it
behooves us to consider some general properties of limit cycles. Unlike a stable fixed
point, a stable limit cycle oscillator has a degeneracy associated with it; namely,
the fact that any solution X(t) can be arbitrarily translated in time and still be a
solution. In the first two exercises, we explore the notion of linear stability for limit
cycles. In particular, one can never get the same kind of asymptotic stability as
with fixed points. Instead, one gets orbital asymptotic stability.

Consider the differential equation in Rn:

dX

dt
= F (X) (9.1)

and suppose that Γ is a T−periodic limit cycle. Recall that the limit cycle is said to
be orbitally asymptotically stable if nearby initial conditions approach Γ as t→ ∞.
We can parametrize Γ by time modulo the period T (see Figure 9.1A) and thus
define a phase, θ ∈ [0, T ) along the limit cycle. Let Θ(x) denote the phase of the
oscillator for a point x on Γ. When the cycle is asymptotically stable, it is possible to
define a phase for points y in a neighborhood of the cycle. LetX(t; y) be the solution
to (9.1) with initial condition y. Suppose that y is a point in the neighborhood of
the limit cycle and x is a point on the limit cycle such that ||X(t;x)−X(t; y)|| → 0
as t → ∞. Then we define Θ(y) = Θ(x). That is, as t → ∞, the solutions are
indistinguishable. The set of points y which have the same asymptotic phase are
called the isochrons of the limit cycle (see Figure 9.1B.) We denote the isochron
through a point x ∈ Γ as N(x). Isochrons are local sections; that is, for a point
y ∈ N(x), X(y, T ) ≡ y′ ∈ N(x). The map y → y′ is a Poincare map for the limit
cycle which takes time exactly T to return. The existence of isochrons allows us to
define the phase of any point in the neighborhood of the limit cycle which as above
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Figure 9.1. Phase for a limit cycle. (A) Time trace showing definition
of the phase zero as the peak of the potential. (B) Limit cycle in the phase plane
showing contours with the same asymptotic phase. These are called isochrons. Ini-
tial condition x(0) is mapped to y0 on the limit cycle with phase φ. (C) Geometry
of phase-resetting. At point (i) a perturbation along the x−axis at phase φ tends
to a new asymptotic phase φ′ which is closer to spiking with respect to the original
phase. The same perturbation at (ii) delays the next spike time.

we call Θ(x). In most of this chapter, we define the zero phase to be the peak of
the voltage, so that any point on the limit cycle has a uniquely defined phase lying
between 0 and T.

In practice, the isochrons can only be computed numerically. However, for
some simple models, an exact formula can be found (cf Exercise *). Izhikevich
(2006) provides MatLab code for computing isochrons for planar models limit cycles.
Figure 9.2 shows the color-coded isochrons for the Morris-Lecar model. The function
Θ(x) is not at all isotropic and shows very slow changes near the spike and very
rapid changes near the “ghost” of the saddle-node bifurcation. For example, the
time difference between the isochrons labeled a and b is about 2.5 msec while the
time difference between those labeled c and d is about 40 msec. This says that small
changes in the variables near the points c and d will have a much greater effect on
the phase of the oscillator than similar magnitude perturbations near a and b. We
will see the implications of this next.
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Figure 9.2. Morris-Lecar oscillator (Class I parameters, I = 42) showing
the asymptotic phase function Θ(x) and some representative isochrons. Black dots
show values on the limit cycle in increments of 2.5 msec. Period of the limit cycle
is 145 msec.

9.1.1 Phase resetting and adjoints.

Suppose that we are merrily rolling along the limit cycle and a brief stimulus is
given. For example, in Figure 9.1C, we have applied a horizontal perturbation to
the vector field at phase φ. This perturbation puts us on the isochron for φ′ so
that the phase of the oscillator is reset to a different value which depends on its
initial phase. For each phase φ at which the stimulus is applied, we get a new
phase φ′. The map from old phase φ to new phase, φ′ is called the phase transition
curve (PTC), φ′ = P (φ). Winfree (1980) and others have noted that the PTC has
two different topological forms that are called type 0 (strong) and type 1 (weak)
resetting. In weak resetting, the map P (φ) is an invertible map of the interval [0, T )
to itself. With strong resetting, the map is not invertible. For example, suppose the
stimulus is so strong that the phase is always reset to 0 (that is, the neuron spikes
immediately). For the classic integrate-and-fire model, any finite increase of the
voltage always results in type 0 resetting (see exercise *) while for the QIF model
with infinite reset, all perturbations show type 1 resetting. For the normal form at
a Hopf bifurcation, resetting can be both type 1 and type 0 depending on the size
of the perturbation.

In this chapter, we will be concerned almost exclusively with type 1 resetting,
where the function P (φ) is invertible. In the next chapter, where there is strong
coupling applied to relaxation oscillators, we will analyze the opposite extreme in
which essentially all resetting is type 0.

Experimentalists are often interested not in the phase transition curve, but
rather in the actual change in phase due to the perturbation. This function, knows
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as the phase resetting curve is defined as the difference between the new phase and
the old phase:

∆(φ) ≡ φ′ − φ = P (φ) − φ.

Figure 9.3 shows some examples of experimentally computed PRCs from cortical
and related neurons. In each case, if the stimulus is given at the moment of spiking,
the PRC is zero. This says that a stimulus given at the moment of the action
potential is ignored.

Figure 9.1A shows the time trace of, say, the voltage of a neuron, with and
without the brief perturbation given at time (phase) φ. Suppose that the time of
the spike given the perturbation is at T ′. We now relate T ′ with the PRC. Note
that the phase of a limit cycle satisfies:

dθ

dt
= 1 mod T.

Suppose that at time φ the stimulus is applied and this causes a shift to a new phase
φ′. Assume for the moment that the new phase is less than T , the period of the
limit cycle. (This is not an unreasonable assumption for neurons since it says that
the perturbation will never cause an immediate spike; rather there is some delay.)
The time until the next spike is just τ = T − φ′ so that the time of the next spike,
T ′ = φ+ τ = φ+ T − φ′ = T − ∆(φ). Thus, we have:

∆(φ) = T − T ′. (9.2)

Typically, if one is trying to measure a PRC either experimentally or from a numer-
ical simulation, the time of the phase zero defining event is measured as a function
of the time of the stimulus. This is just T ′. If T ′ < T , then the stimulus advances
the phase (speeds up the cycle) and vice versa. Figure 9.3A,B show that excitatory
stimuli can lengthen the time to spike if they occur very shortly after the spike, but
otherwise shorten the time to spike. Figure 9.3C essentially shows only lengthening.
Inhibitory stimuli (Figure 9.3A,B (ii)) always appear to lengthen the time to the
next spike – they phase delay the oscillator.

Many people normalize the phase to lie between 0 and 1 or 0 and 2π so that
we have to rescale φ and ∆, e.g. multiply by 1/T or 2π/T. The rescaling is useful
if we want to compare the PRCs for oscillators at different frequencies since they
then have the same domain and range. Unless otherwise noted, we will not rescale
the phase and the PRC.

We now relate the PRC to the phase function Θ(x) defined by the isochrons of
an attracting limit cycle. Let x = X0(φ) be the point on the limit cycle, X0(t), with
phase (time) φ ∈ [0, T ). Note that Θ(x) = φ by definition. Consider an arbitrary
perturbation, y ∈ Rn, of the vector field. The new phase is

φ′ = Θ(x+ y) = φ+ ∇XΘ(x) · y +O(|y|2).

Thus for small perturbations

∆(φ; y) = ∇XΘ(x) · y.
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Figure 9.3. Some experimentally measured PRCs from neurons. (A) En-
torhinal cortex cells (Netoff et al 2005) for excitatory (i) and inhibitory (ii) synaptic
perturbations; (B) rat barrel cortex pyramidal cells (Stoop et al 2000) with inhibitory
(i) and excitatory (ii) perturbations; (C) cat motor cortex neurons. Note that in B,
what is plotted is T ′(φ)/T = g(φ) = 1 + ∆(φ)/T

(We have included y in the PRC to emphasize that this corresponds to a very
general perturbation.) If we suppose that the first component of the differential
equation is the voltage of the neuron and take y = (a, 0, . . . , 0) where a is the scalar
size of the perturbation of the potential, then we see that the PRC is approximately
the first component of the gradient of the phase function Θ(x) evaluated at X0(φ).
Indeed, for neuroscientists, the PRC comes from some experimental perturbation
which typically involves only at most a few of the variables which make up the
dynamical systems governing the oscillation. The vector function

Z(φ) ≡ ∇XΘ(X0(φ)) (9.3)
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provides a complete description of how infinitesimal perturbations of the limit cycle
change its phase. Kuramoto (1980) introduced the function Z(φ) and Winfree
(1967) was a long-time proponent of the utility of the PRC. In the correct limit, we
see that they are related. The PRC is exactly related to Θ(X0(φ) + y) − φ, but in
practice the function Θ(x) for arbitrary x is very difficult to calculate. However, the
gradient evaluated at the limit cycle, the function Z(φ), is very simple to compute
as we will now see.

9.1.2 The adjoint

.
As we have noted, the phase function Θ(x) is not easy to compute. The

function Z(φ) could be computed by applying small stimuli to the limit cycle along
each of the n−components of the limit cycle and then linearly interpolating the
results to zero amplitude. The reader with time on her hands is urged to try this!
However, it turns out that the function Z(φ) is the solution to a linear differential
equation which is closely related to the linearization of (9.1) about the limit cycle.

Suppose that X0(t) is a T−periodic limit cycle solution to (9.1). Let

A(t) = DXF (X)|X0(t)

be the n × n matrix resulting from linearizing (9.1) around the limit cycle. Then
solutions to the linearized equation satisfy:

dy(t)

dt
−A(t)y(t) ≡ (Ly)(t) = 0. (9.4)

Let

(u(t), v(t)) =

∫ T

0

u(t) · v(t) dt (9.5)

be the standard inner product on T−periodic functions in Rn. Recall that if L is a
linear operator, then the adjoint linear operator, L∗, satisfies (u, Lv) = (L∗u, v) for
all u, v. As shown in exercise *, the adjoint L∗ is

(L∗y)(t) = −dy(t)
dt

−A(t)T y(t). (9.6)

We now use Brown etal’s (2003) simple proof that Z(t) satisfies the adjoint equation.
Recall that the asymptotic phase to an infinitesimal perturbation y(t) is given

by Z(t) · y(t). By definition, this phase is independent of time. Note that y(t)
satisfies Ly = 0 since y is arbitrarily close to the limit cycle. Thus

0 =
d

dt
Z(t) · y(t)

=
dZ(t)

dt
· y(t) + Z(t) · dy

dt

=
dZ(t)

dt
· y(t) + Z(t) · A(t)y(t)
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=
dZ(t)

dt
· y(t) +A(t)TZ(t) · y(t)

= [
dZ(t)

dt
+A(t)TZ(t)] · y(t).

Note that the operator inside the [ ] is −L∗. Since y(t) is arbitrary, we must have
that

L∗Z(t) = 0.

If X0(t) is a stable limit cycle, then the operator L(t) has a nullspace spanned by
scalar multiples of dX0(t)/dt (see exercise *) which is a periodic function. The
adjoint has a one-dimensional nullspace (in the space of T−periodic functions in
Rn) as well, so that Z(t) must be proportional to this eigenfunction. It remains
to determine the appropriate normalization. But this follows immediately from the
observation that Θ(X0(φ)) = φ. Differentiate this with respect to φ and see that

Z(φ) · dX0(φ)

dφ
= 1.

This uniquely defines Z(t) as the solution of the L∗Z = 0 and Z · dX0/dt = 1.
Numerically solving L∗y = 0 is done by integrating the equation:

dy

dt
= −A(t)T y

backward in time. Since the limit cycle is aymptotically stable, backward integration
damps out all components except the periodic one which is the solution of the adjoint
equation. Suitable multiplication by a scalar provides the necessary normalization.

Examples.

Ring models. Consider the differential equation:

x′ = f(x)

where f(x) > 0 and x ∈ S1. Thus, f(x+1) = f(x). This equation has a T−periodic
solution x0(t) with period

T =

∫ 1

0

dx

f(x)
.

The adjoint is just z(t) = 1/f(x0(t)) since z(t)dx0/dt = 1. For example, consider
the function f(x) = 1 + a cos 2πx where |a| < 1. This has a period T = 1/

√
1 − a2

and a bit of algebra shows that the adjoint is just

x∗(t) =
1 − a cos 2πt/T

1 − a2
. (9.7)

In particular, note that x∗(t) is always positive. One can only phase advance the
oscillator when the stimulus is positive. On the other hand, plotting −x∗(t) as
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would be the response to an inhibitory stimulus looks a great deal like the PRC
in Figure 9.3Bii. In general for any ring model, the PRC/adjoint is always non-
negative, a fact that should be obvious. Exercise * asks the inverse problem – given
a positive PRC, find a ring model.

λ − ω systems. Kopell and Howard (197?) introduced a class of nonlinear
oscillators (which is closely related to the normal form for the Hopf and Bautin
bifurcations):

u′ = λ(r)u − ω(r)v, v′ = λ(r)v + ω(r)u (9.8)

where r2 = u2 + v2. Suppose that λ(0) = 0, ω(1) = 1 and λ′(1) < 0. Then there
is a stable limit cycle solution (u, v) = (cos t, sin t). Kopell and Ermentrout (1984)
were the first to compute the adjoint for this system; we leave it as an exercise to
prove that

(u∗(t), v∗(t)) = (a cos t− sin t, a sin t+ cos t) (9.9)

where a = −ω′(1)/λ′(1). Note that the normal form of the Hopf bifurcation, λ(r) =
1 − r2 and ω(r) = 1 + q(r2 − 1), so a = q.

QIF model. The quadratic integrate-and-fire model with infinite reset:

V ′ = V 2 + I

is a singular example of a scalar “ring” model. The solution to this is

V (t) = −
√
I cot

√
It.

The adjoint is thus, V ∗(t) = 1/V ′(t):

V ∗(t) = sin2(
√
at)/a = (1 − cos(2

√
at))/a.

An alternate way to find V ∗(t) is to compute the PTC for a finite perturbation, b
(exercise *), differentiate with respect to b and evaluate at b = 0.

We note that for a finite reset and finite spike, the model is essentially a ring
model. In exercise *, you will compute the adjoint for this case.

Singularly perturbed systems. In exercise *, you find a general formula
for the adjoint of any stable planar limit cycle. The result is not particularly trans-
parent. However, for a relaxation oscillator, the singular limit makes the calculation
more useful. Izhikevich was the first to do this and we follow his presentation here.
Figure 9.4 shows the singular trajectory (µ = 0) for the system:

µx′ = f(x, y)

y′ = g(x, y).

Let Γ(t) be the singular trajectory. The x−component of Γ(t) has jumps at t = tj
corresponding to the jumps in the phase-plane from aj to bj. The linearized equation
is

0 = fx(Γ(t))x + fy(Γ(t))y

y′ = gx(Γ(t))x + gy(Γ(t))y.
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The linearized system has a solution Γ′(t) = (f(Γ(t)), g(Γ(t))) which, because of the
jumps at tj in Γ(t), will consist of a smooth part and a singular part (with Dirac
delta functions at tj .). The adjoint equation is

0 = −fx(Γ(t))u − gx(Γ(t))v (9.10)

v′ = −fy(Γ(t))u − gy(Γ(t))v. (9.11)

The normalization is

ux′ + vy′ = uf(Γ(t)) + vg(Γ(t)) = 1.

Consider, first, the smooth parts of the trajectory, t 6= tj . Along the singular
trajectory, f(Γ(t) = 0 so that the normalization yields:

v = 1/g(Γ(t)). (9.12)

Since fx(Γ(t)) is nonzero away from the jump points the equality (9.10) implies that

u = − gx(Γ(t))

g(Γ(t))fx(Γ(t))
. (9.13)

At t = tj , v(t) jumps from 1/g(aj) to 1/g(bj). From (9.11):

u(t) = − 1

fy(Γ(t))
(v′(t) + gy(Γ(t))) .

Since v jumps, u must have a Dirac delta function singularity. Integrating across
this we have to have

u(t+j ) − u(t−j ) = − 1

fy(aj)

(

1

g(bj)
− 1

g(aj)

)

≡ cj.

Thus, at t = tj we have

(u, v) = (cjδ(t− tj), 1/g(aj)) . (9.14)

Equations (9.12), (9.13), and (9.14) provide the complete adjoint solution

9.1.3 Bifurcations and adjoints.

In general, except for the few examples described above, it is not possible to find
the adjoint explicitly for a limit cycle. Certainly, the minimal condition is that an
explicit solution for the limit cycle be provided and there are very few examples
of that. However, several of the examples are suggestive that they may be more
general than they first appear. For example, in class I excitability, the behavior
near the bifurcation is the same as that of the QIF/theta model. Thus, we expect
that near the onset of rhythmicity, the adjoint of any class I oscillator should look
like 1 − cos t. How well does this actually work in practice? We can numerically
compute the adjoint for any oscillator and compare the shape to that predicted near
the bifurcation.
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Figure 9.4. Singular trajectory and the fast variable as a function of time.
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Figure 9.5. The numerically computed adjoint for the ML model near the
saddle-node bifurcation and its comparison to the asymptotic solution. Left panel,
I = 40 and T = 943; right panel, I = 50 and T = 75.5.

Class I excitability.

From equation (9.7) we expect that near a saddle-node on a circle bifurcation, the
adjoint should be proportional to 1 − cos θ. As an example, we will look at the
Morris-lecar model about which we have already exhausted a great deal of ink.

Figure 9.5 shows the numerically computed adjoint (black) and the approxi-
mation (red) for two different currents. When I = 40, the model is very close to
the bifurcation as can be seen from the length of the period, which is nearly 1000
msec. The adjoint is quite close to the theoretical value from equation (9.7). When
I = 50, the period drops more than ten-fold and the approximation is not as good,
but remains qualitatively similar.
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Figure 9.6. The numerically computed adjoint for the Golomb-Amitai
model near the supercritical Hopf bifurcation. Bottom figure shows the bifurcation
diagram as a function of the current. Top two curves show the adjoint (black)
and the approximation (red) a sin θ + b cos θ. Choices of a, b come from the Fourier
expansion of the numerically computed adjoints.

Hopf bifurcation.

Very few neural models actually undergo supercritical Hopf bifurcation at least at
the onset of the rhythmic behavior. Thus, it is difficult to make comparisons.
However, for illustrative purposes, we use a model from Golomb and Amitai which
has a supercritical Hopf bifurcation at high applied currents. The normal form
for the supercritical Hopf bifurcation is of the form (9.8) and, for this model, each
component of the adjoint is a pure sinusoid:

u∗(θ) = α sin θ + β cos θ.

We thus compute the adjoint numerically and see how well it is approximated
by pure sinusoids. Figure 9.6 shows the results for currents close to the Hopf
bifurcation and further away. The key take-home lesson here is that models near
a Hopf bifurcation have regimes of phase advance and phase delay in contrast to
class I models which are dominated by phase advance dynamics.
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Limit point.

In most Class II neural models, the Hopf bifurcation is subcritical but the unstable
branch folds back to become stable. Thus, there is a saddle-node bifurcation of
limit cycles. What can we expect the adjoint to look like in this case? A hint of
the behavior can be found in returning to the lambda-omega system (9.8) since we
can easily obtain this type of bifurcation by choosing:

λ(r) = p+ r2 − r4

where p is a bifurcation parameter. For p < 0 and small, there are two roots to
λ(r) = 0, r1 < r < 2, corresponding to a stable and unstable limit cycle. They
coalesce when r1 = r2 which occurs when λ′(r) = 0. From equation (9.9), we see that
the magnitude of the adjoint is dominated by the terms multiplied by ω′(r)/λ′(r)
since λ′(r) goes to zero as the limit point is approached. Thus, we expect that the
magnitude of the adjoint will tend to infinity as the limit point is approached. This
may seem somewhat counter-intuitive since we know that u∗(t) ·u′(t) = 1. Thus, all
of the growth of the adjoint is in a direction orthogonal to the limit cycle. Exercise
* gives an explicit formula for the adjoint to any planar system. The computation
depends on solving a scalar equation of the form:

dc/dt = (fu + gv)c+ p(t).

For a planar limit cycle the attraction is determined by

ν =

∫ T

0

fu + gv dt.

As a limit point or saddle-node of limit cycles is approached, the eigenvalues, ν
tends to zero so that the quantity c(t) will grow like 1/ν. This c(t) multiplies a
vector which is orthogonal to the limit cycle, so we expect to see that adjoint grow
rapidly as the bifurcation is approached. Figure 9.7 confirms this fact for the ML
model. As we approach the bifurcation, the adjoint rapidly increases. Intuitively,
this makes sense: if the attraction to the limit cycle is weak, then the motion around
the limit cycle will be very fast compared to the motion into the limit cycle so the
isochrons will have a very pronounced twist.

Takens-Bogdanov.

In chapter channel we showed that the M-type potassium channel (an outward
current which acts at voltages near rest) can convert the transition to oscillations
from Class I (saddle-node on a circle) to Class II (Hopf bifurcation). The mechanism
for this transition is organized around the Takens-Bogdanov bifurcation (see figure
5.5B). Our results so far suggest that this should have a big effect on the shape of the
PRC. Figure 9.8A shows the effects of adding an M current to the Destexhe-Pare
model described in chapter channel. The PRC (where we have added sufficient
current so that the cell fires at about 40 Hz) switches from strict positivity to a
substantial negative region.
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Figure 9.7. The adjoint for the ML model near the turning point bifurca-
tion. Black curve is closest to the limit point and the adjoint has been scaled by a
factor of 10 to fit on the same figure. Phase is normalized from 0 to 1 for easier
comparison since the periods are different.

How can we understand this switch? In exercise * in chapter channel, you
show that the quadratic integrate and fire model with adaptation (5.19) is locally
equivalent to the normal form for the Takens-Bogdanov. We compute a PRC for this
model by injecting a brief current (the discontinuous resetting makes the adjoint
difficult to compute accurately) at different times in the spike cycle. Recall the
equations:

V ′ = I + V 2 − u, u′ = a(bV − u)

with reset of V to c when there is a spike and at the same time the variable u
is incremented by an amount d. The adaptation is manifested in two ways: the
parameter b governs subthreshold effects and the parameter d governs effects due
to spikes. Since only the parameter b (which acts at rest) can switch the cell from
class I to class II, we expect that this parameter will produce a negative component
in the PRC. This is illustrated in figure 9.8B. With no adaptation (b = d = 0),
the PRC is close to the canonical form, 1 − cos t. When b = 1, the rest state loses
stability at a Hopf bifurcation and the excitability class is II. The PRC shows a
pronounced negative component. However, if b = 0 and d is nonzero, then the PRC
stays positive but is flattened in the early part of the cycle. In exercise * below,
you explore this effect more systematically in a biophysical model.

Other currents.

Other currents affect the PRC in subtle ways. A good project would be to explore
these currents in a systematic fashion. Exercises ** explore the roles of adaptation
and the sag current. The reader should look at some of the other oscillators from
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Figure 9.8. The effects of outward currents on the PRC. (A) Adding an
M-type potassium current to the Destexhe-Pare model adds a negative component
to the adjoint. (B) PRCs for the quadratic integrate and fire model with adaptation
computed by injecting a pulse with amplitude 1 for 0.2 time steps.

chapter channel and examine the adjoints of these models.

9.1.4 Spike-time response curves.

With the advent of the dynamic clamp, it is possible to add and subtract channels
and synapses in real neurons in a slice. Thus, several experimental groups now use
the dynamic clamp to look at the behavior between two or more cells when they are
coupled with artificial (that is computer) synapses. The first step in understand-
ing the behavior of these coupled neurons is to understand how a single neuron
responds to a synaptic current. If this current is an infinitesimal perturbation of
the membrane potential, then we know that the response is precisely the adjoint.
More generally, we can compute a phase resetting curve to any stereotypical in-
put. Indeed, we already used this idea to compute the PRC for the QIF model by
applying a small rectangular pulse of current at different times.

Let’s consider this generally. Let X be the vector of variables satisfying

dX

dt
= F (X)

and let G(t, t0) be the vector of inputs parametrized by the onset time t0. Our
system is thus

dX

dt
= F (X) +G(t, t0).

We assume that X ′ = F (X) has a stable limit cycle. We multiply by the phase
gradient function (9.3) and find that the phase of the oscillations satisfies:

dθ

dt
= 1 + Z(t) ·G(t, t0).

This is an exact equation for the phase. We start with θ = 0 and ask when θ(T ′) =
T , the period the unperturbed limit cycle. T ′ is a function of t0 and is the time of
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the spike. When G(t, t0) = 0, T ′(t0) ≡ T. We integrate this function and find:

θ(T ′) = T ′ +

∫ T ′

0

Z(t) ·G(t, t0) dt = T.

Solving this for T ′ tells us when the next spike occurs. The PRC for a stimulus
G(t, t0) is just PRC(t0) = T −T ′(t0) which tells us how much the stimulus advances
or delays the next spike. Suppose that G(t, t0) is small, say G(t, t0) = ǫg(t, t0). Then
we can expand T ′(t0) as

T ′(t0) = T + ǫτ(t0) + . . . .

This leads to

0 = τ(t0) +

∫ T

0

Z(t) · g(t, t0) dt

so that to lowest order

PRC(t0) =

∫ T

0

Z(t) ·G(t, t0) dt. (9.15)

This is the time advance/delay due to the input G. Often one expresses it in terms
of the fraction of a cycle in which case we divide by T . Note that if G(t) is a Dirac
delta function along one of the components of X , then the PRC is exactly the same
as the adjoint as it is just a component of Z.

WhenX(t) is a membrane equation andG(t, t0) is a synaptic current generated
by an alpha function type of synapse:

G(t, t0) = α(t− t0)(Vsyn − V (t)),

then the function (9.15) is called the spike time response curve or STRC. It tells
us how the spike time of a neuron is changed by a stereotypical input as a function
of when that input arrives. In the reduction to maps and phase equations which
follows later in this chapter, we do not distinguish between the STRC and the usual
PRC.

9.2 Who cares about adjoints?

At long last, we come to the core of this chapter. We have spent several pages
extolling the virtues of PRCs, STRCs, and adjoints. There are at least two ways in
which these response functions are useful. First, we can use them directly to create
systems of pulse coupled equations which we can reduce to maps. Secondly, we can
use the weak coupling assumption and averaging to reduce arbitrarily coupled net-
works of neurons to systems of equations on a torus. The most obvious application
of a PRC is to study the effects of periodic drive on an oscillator; the subject of the
next section.
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Figure 9.9. Post stimulus time histogram for a neuron.

9.2.1 Relationship of the adjoint and the response to inputs.

The adjoint and its cousin the PRC are relevant beyond purely oscillating neurons
and they provide information about how a neuron responds to inputs even when
it is not a regular oscillator. Clearly, if the neuron is at a stable rest state, then
a weak input will, by definition, have no effect on it and only strong inputs will
produce a spike. In this case, there is dependence of the response on time of the
inputs since the cell is at rest. However, if the neuron is subject to sufficient
depolarization that it is firing (irregularly, perhaps) then even “weak” inputs can
alter the time of a spike. The amount by which the spike time is altered depends on
when the neuron last spiked and thus we can expect that there is some relationship
to the PRC. Gutkin et al (2005) numerically showed that the shifting of spikes in
a nonstationary system (that is, a non-constant stimulation, either slowly varying
input currents or fast noisy inputs) is determined by the steady-state PRC of the
neuron. That is, the PRC can tell us how an input shifts a spike even when the
neuron is not a regular oscillator.

One of the most common measurements done by neurophysiologists is the post-
stimulus time histogram (PSTH). The PSTH is the probability of a spike occurring
at a given time t after the onset of a stimulus. It is measured by collecting the
spike times of a neuron over many repetitions of the same stimulus. Implicit in
the usefulness of the PSTH is that the dynamics are stationary. For example, the
mean firing rate of the neuron before the stimulus is constant and the time between
repetitions is long enough so that the effect of the stimulus wears off. A cartoon
of the PSTH is shown in Figure 9.9. A brief stimulus is applied at t = 0 causing
the probability of firing for the neuron to increase transiently before returning to
the baseline uniform probability. Gutkin et al (2005) show that the PSTH can be
related to the PRC, an argument that we now repeat. We assume that

i. The mean firing rate of the neuron is 1/T prior to the stimulus and the
probability over trials of firing is uniform.

ii. The stimulus is sufficiently weak so that no new spikes are added. That is,
the probability of firing is shifted, but there are no new spikes.

iii. The neuron rapidly returns to its baseline mean firing rate after one cycle.

Assumptions (ii) and (iii) imply that the area between t = T and t = 2T is 1 since
no new spikes are added and all the rearranging of spikes is finished within one
average period. Consider the spike at time s in the figure. In the absence of the
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stimulus, the expected time of the next spike is s + T since the mean firing rate
is 1/T. But, because of the stimulus, the expected spike time is shifted to s′. The
mean period of the neuron is T so that with respect to the spike at time s, the
stimulus comes T − s milliseconds after the neuron last fired. From the definition
of the PRC, the expected time of s′ is:

s′ = s+ T − ∆(T − s) ≡ F (s).

Note that F (0) = T and F (T ) = 2T . Furthermore, F ′(s) = 1 + ∆′(T − s) > 0
since the stimulus is assumed to be weak. Thus, F (s) is an invertible map from
the interval [0, T ] to [T, 2T ]. The PSTH is the probability that a spike occurs in a
given window of time after the stimulus. Thus, the probability that s′ < t for some
t ∈ [T, 2T ] is just:

Pr{s′ < t} =

∫ t

T

PSTH(t′) dt′.

However,

Pr{s′ < t} = Pr{F (s) < t}
= Pr{s < F−1(t)}

=
1

T
F−1(t).

The last equality comes from the fact that the distribution of spikes before the
stimulus arrives is uniform. We thus have the relationship between the PSTH and
the PRC:

F−1(t) = T

∫ t

T

PSTH(t′) dt′. (9.16)

9.2.2 Forced oscillators.

PRCs are directly computable from experimental data, thus they provide a way of
creating a model of a specific biological oscillator without needing a mechanistic
basis. Let us first explore how one can use the PRC to develop a map for the
dynamics of a single oscillator which is periodically forced by an external pulsatile
stimulus. This type of analysis has a long history and the reader should consult the
comprehensive book by Glass and Mackey for references and applications to cardiac
and other oscillators. Stoop and colleagues as well as several older references have
also used PRCs to compute the behavior of forced systems.

Suppose that an oscillator X(t) has a PRC, ∆(t) which describes the advance
or delay as a function of the time of the stimulus, 0 ≤ t < T , where T is the period
of the oscillator. Suppose that a stimulus is applied every Tf time steps and let φn

denote the phase of the oscillator at the instant before the stimulus arrives. Right
after the stimulus, the phase is given by P (φn) ≡ φn+∆(φn). Recall that φ ∈ [0, T ).
Between stimuli, the oscillator advances by an amount Tf in phase. Thus, at the
moment of the next stimulus, we have

φn+1 = φn + ∆(φn) + Tf = P (φn) + Tf ≡M(φn) (9.17)
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where P (φ) is the phase transition map. This is a map on the circle and there is a
huge literature on such maps. Since PRC theory is valid mainly when stimuli are
weak, the size of ∆ is assumed to be small. Therefore, P (φ) is monotonic and its
derivative is

P ′(φ) = 1 + ∆′(φ)

Invertible maps on the circle are completely characterized by their rotation number
which is defined as the average number of cycles covered per stimulus. We can make
this more precise as follows. Instead of considering φn to be defined modulo T , we
let it evolve on the real line. The rotation number is defined as

ρ ≡ lim
n→∞

1

T

φn

n
. (9.18)

This quantity has a nice intuitive appeal. For example, if ρ = 1 then, on average,
the oscillator completes one cycle per stimulus and we say that there is 1 : 1 locking.
On the other hand, if ρ = 2/3, then the oscillator completes two cycles for each
three of the stimulus and we call this 2 : 3 locking. The rotation number is described
by a beautiful theorem which we state without proof. This version of the theorem
appears in Hale and Kocak (1991).

Theorem. (Denjoy) The rotation number is well-defined; that is, the limit exists
and is independent of the initial condition. Furthermore, if M(φ) is twice continu-
ously differentiable then

(i) ρ is rational if and only if M(φ) has a periodic orbit of some period: φn+N =
φn modT .

(ii) ρ is irrational if and only if every orbit {φn} is dense in the circle.

(iii) ρ is a continuous function of any parameters in the function M.

We turn to the analysis of the map (9.17). We first find conditions for 1 : 1
locking, 2 : 1 locking, and 1 : 2 locking and determine the stability. We then look
at the rotation number of two relevant simple maps as a function of Tf the period
of forcing.

For 1:1 locking, we must have φn+1 = φn + T ; that is, the oscillator must
complete one cycle per stimulus. This means that

φ+ T = φ+ ∆(φ) + Tf

so that we must solve:

∆(φ) = T − Tf (9.19)

for φ. In class I neurons, the PRC is typically non-negative everywhere so that in
order to entrain this type of neural oscillator, the period of the forcing stimulus must
be smaller than the natural period. In the other hand, for class II firing, the PRC
can be both positive and negative so that the period of the forcing stimulus can be
both shorter and longer than the natural period. Since ∆(φ) is a periodic function,
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we expect that there will be at least two roots to (9.19) except at bifurcation points
(see below). To determine the stability, we linearize and obtain:

yn+1 = (1 + ∆′(φ))yn ≡ cyn.

We know that c > 0 since the PTC is monotone. If ∆′(φ) > 0, then c > 1 and
the fixed point is unstable while if ∆′(φ) < 0, then 0 < c < 1 and the fixed point
is stable. The only bifurcation that can occur corresponds to c = 1 or ∆′(φ) = 0
which means φ is a double root and occurs at a local maximum or minimum of
∆(φ).

2:1 locking occurs when φn+1 = φn + 2T ; that is, the oscillator fires twice for
every cycle of the stimulus. In this case, we have to solve

∆(φ) = 2T − Tf .

Note that if ∆(φ) is centered around zero, then we can solve this equation when
T is close to Tf/2. Stability follows in the same way as the 1:1 case. In general,
phase-locking of the form m : 1 is very simple to analyze and is done in a manner
similar to the 1:1 case.

1:2 locking means that the oscillator fires only once for every two stimuli so
that

φn+2 = φn + T.

We note that φn+2 = M(φn+1) = M(M(φn)) where M(φ) is as in (9.17) so that
we must solve:

T = 2Tf + ∆(φ) + ∆[φ+ ∆(φ) + Tf ]. (9.20)

Obviously, this is more difficult to solve than the m : 1 case. However, we note that
if ∆ is small, then this can be solved only when 2Tf ≈ T . That is, the stimulus must
be roughly twice as fast as the intrinsic period of the oscillator, another intuitively
appealing observation. Stability proceeds in a similar manner and we require that
c = M ′(M(φ))M ′(φ) be less than one for stability. This gives a condition on ∆(φ)
and its derivatives:

c = [1 + ∆′(φ)][1 + ∆′(φ+ ∆(φ) + Tf)] < 1.

In general, for m : r locking, in which the stimulus fores r times and the oscillator
fires m times, we have to solve

φ+mT = M r(φ)

where M r is r iterates of M(φ). We note that

M r(φ) = φ+ rTf + . . .

where the remaining terms depend on ∆. Thus, for small PRCs, we want Tf/T ≈
m/r.

The analysis above hints that whenever Tf/T is near a rational number, m/r,
then there can be phaselocking and thus a rational rotation number. If the PRC



i i

i

i

i

i

9.2. Who cares about adjoints? 191

is nontrivial (that is, it is not constant), then we should be able to solve for φ
and thus find m : r locked solutions for some open set of forcing periods, Tf . This
means that if Tf is a parameter, then ρ(Tf ) should be constant over the open regions
where there is locking. Figure 9.10 shows the rotation number for (9.17) for two
different PRCs: ∆1(φ) = 0.8(1− cosφ) and ∆2(φ) = cφ6(2π− φ) where c is chosen
so that the maximal magnitude of the slope is the same as ∆1. The shape of this
PRC is meant to mimic that of Figure 9.3C. Since the magnitude of ∆2 is much
smaller than that of ∆1, the width of the plateaus is much shorter. In both cases,
the rotation number increases with Tf and is punctuated with regions where it is
constant. This diagram is called “the Devil’s staircase.” We note an interesting
pattern in the steps. The largest steps are 2:1, 1:1, 0:1. The next largest are 3:2
and 1:2. Between any flat regions a : b and c : d, the largest regime is always the
one obeying the Farey addition rule, (a+ c) : (b + d). Allen (1983) was the first to
notice this pattern in the context of neural firing.

If the slope of the PRC becomes more negative than -1, the invertibility of
M(φ) is violated and it is possible to get very complex behavior in these simple
maps, such as chaos. In neural models, a slope of -1 means that the neuron fires at
the instant of the stimulus. Thus it is impossible to get slopes more negative than
-1.

9.2.3 Coupled oscillators.

We now turn our attention to the case of two mutually coupled cells where we use
the computed PRC to create a dynamical system. The cells are both oscillators and
to start, we assume that they are identical with the same period, T0. Each time one
cell spikes, the cycle of the other cell is perturbed according to the PRC. This is
the only time there is interaction between the cells. There are at least two ways to
derive the dynamics. One is to derive equations for the spike times of the cells. The
second is to derive equations for the phase of one cell when the other cell fires. The
latter is considerably more convenient and can be formally generalized in a more
straightforward manner. So that we can close this section on a good note, we start
with the firing time idea.

Firing time maps.

Consider the spike times shown in Figure 9.11. Our goal is to derive a map for
t′j given tj . If there was no spike t2 then t′1 = t1 + T0, since the cell is oscillatory
with period T0. The spike from cell 2 occurs at a time t2 − t1 after cell 1 spikes so
that the time of the next cell 1 spike is shifted according to the PRC. Recalling the
definition (9.2), we obtain

t′1 = t1 + T0 − ∆(t2 − t1).

Now, we turn our attention to t′2, the time of the next spike from cell 2. As with
cell 1, without coupling, t′2 = t2 + T0, but the intervening spike at t′1 produces a
phase-shift in the cell 2 spike. Thus, we obtain:

t′2 = t2 + T0 − ∆(t′1 − t2).
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Figure 9.10. The rotation number for the map M(φ) = φ+∆(φ)+Tf for
∆(φ) = 0.8(1 − cosφ) (black) and ∆(φ) = 0.000013φ6(2π − φ) (red) as Tf varies.
Expanded region is shown on below. Some rational rotation numbers are shown.
The right panel shows the relative sizes of the two PRCs. The slope of the red PRC
at φ = 2π is the same as that of the black at φ = 3π/2.

Note that t′2 depends on the difference between t′1 and t2, not the difference between
t1 and t2 since t′1 is the spike occurring between t2 and t′2. These equations are valid
provided that no cell spikes twice before the other cell spikes. Thus, the spike
alternation must be maintained for all finite time. We can reduce this equation to
a one-dimensional map for the time difference between the cell 2 spike and the cell
1 spike. Let τ = t2 − t1 and let τ ′ = t′2 − t′1. Now,

t′1 − t2 = t1 − t2 + T0 − ∆(t2 − t1) = T0 − φ− ∆(τ) ≡ D(τ),

so the t′2 equation is:

t′2 = T0 + t2 − ∆[T0 − τ − ∆(τ)].
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t’1 t’2t 1 t 2

21 1 2

Figure 9.11. Spike times of 2 coupled oscillators

We subtract the t′1 equation from the t′2 equation to obtain

τn+1 = τn − ∆[T0 − τn − ∆(τn)] + ∆(τn) = D[D(τn)]. (9.21)

The new time difference between cell 1 and cell 2 is just the composition of two
identical maps, D(τ) = T0 − τ − ∆(τ). The map D(τ) tells us how much longer we
have to wait for a spike when a stimulus arrives τ after the previous spike. This map
is the “time” equivalent of the phase transition curve. Recall that a fixed point of a
scalar map x→M(x) satisfies x = M(x) and it is stable provided that |M ′(x)| < 1.
We seek a fixed point for (9.21); thus,

0 = ∆(τ) − ∆(T0 − τ − ∆(τ)).

For most of the PRCs which we have encountered (see Figures 9.3 or 9.5, e.g.)
∆(0) = ∆(T0) = 0. That is, the oscillator is not affected by stimuli at the moment
it spikes. In this case, D(0) = 0 so that synchrony τ = 0 is a fixed point. Synchrony
is a stable fixed point if:

|1 + ∆′(0) + ∆′(T0)(1 + ∆′(0))| = |[1 + ∆′(0)][1 + ∆′(T0)]| < 1.

We have not assumed that ∆′(T0) = ∆′(0) since for experimental PRCs (see Figure
9.3C, e.g) this may not be the case. We can also remove the absolute value since
throughout this section we have assumed that the phase transition map τ + ∆(τ)
is monotone. Thus synchrony is stable when:

[1 + ∆′(0)][1 + ∆′(T0)] < 1. (9.22)

For “nice” PRCs such as the adjoint (in which the PRC is continuously differen-
tiable), this condition is reduces to ∆′(0) < 0. There may be other fixed points as
well. Indeed, since D2(τ) is a monotonic map of the circle to itself, there must be
at least one other fixed point corresponding to the so-called antiphase solutions in
which τ ≈ T0/2. We can see this if, for example, ∆(τ) = a sin τ (or any odd periodic
function for that matter). In this case, it is clear that τ = π is also a fixed point;
as with the synchronous case, it is stable if ∆′(π) < 0.

In the derivations, we have assumed that the oscillators are identical. We
leave it as an exercise for the reader to show that, in this case, the map becomes:

τn+1 = T2 − T1 + τn + ∆1(τn) − ∆2[T1 − τn − ∆1(τn)] (9.23)

where Tj is the natural period of oscillator j and ∆j is the PRC.
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Figure 9.12. Coupling of two phase equations.

Phase equations.

The firing time methods that we derived above are useful for pairs of oscillators,
but it is difficult to generalize them to many oscillators. Instead, we will turn to
the phase-description of oscillators. The phase of an oscillator is complimentary
to its firing time in that, for our purposes, the phase is the amount of time since
the oscillator last fired. Many researchers define phase so that it is normalized
and represents, not an absolute time, but rather the percent or fraction of a cycle
covered. As we pointed out earlier in this chapter, normalization of phase makes
it easier to compare cells with different frequencies. Since the remainder of this
chapter deals with phase equations, we will normalize the PRC. In order to prevent
confusion with the un-normalized PRC, we define the normalized PRC as:

d(φ) =
1

T0
∆(T0φ). (9.24)

d(φ) is unitless and is 1−periodic. The derivative of d has the same magnitude as
that of ∆.

We now derive equations for a pair of cells coupled by their normalized PRCs:

θ′1 = ω1 + δ1(θ2)d1(θ1) (9.25)

θ′2 = ω2 + δ(θ1)d2(θ2). (9.26)

δ1(φ) is the “periodized” Dirac delta function – a unit impulse at every integer. We
interpret this equation to mean that each time θ2 crosses an integer (completes a
cycle), θ1 is incremented by its normalized PRC, d1(θ). This equation is a flow on
the torus and if the PRCs are not too big and the frequencies are close, then, we
expect that there will be a cycle of θ1 for each cycle of θ2. Thus we can define a
Poincare map; we take the Poincare section to be θ2 = 0. That is, we let φ denote
the phase of oscillator 1 at the moment that oscillator 2 fires but before oscillator 1
is reset. Figure 9.12 shows the setup. Between spikes, each oscillator runs according
to its frequency until it hits 1, is reset, and jolts the other oscillator. Let d1,2(φ) be
the response of oscillator 1 (respectively 2) to a spike from oscillator 2 (respectively
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1). Let fj(φ) = dj(φ)+φ be the phase transition curve. This is the new phase after
a stimulus as a function of the current phase. ψ is the phase of oscillator 2 when
oscillator 1 reaches 1:

ψ =
ω2

ω1
[1 − f1(φ)].

To see this, note that the solution to (9.25) is θ1 = ω1t + f1(φ) so that θ1 fires at
t1 = (1 − f1(φ))/ω1. In that time, θ2 has advanced by ω2t1. Oscillator 2 is reset to
f2(ψ) and fires again at t2 = (1 − f2(ψ))/ω2. At this point, θ1 has advanced, to
φ′ = ω1t2. Thus we find that

φ′ =
ω1

ω2
[1 − f2(ψ)]

where ψ is as above. We can think of the map φ → φ′ as the composition of two
maps:

φ′ = G2(G1(φ)) (9.27)

G1(φ) =
ω2

ω1
[1 − φ− d1(φ)]

G2(φ) =
ω1

ω2
[1 − φ− d2(φ)].

We must be very careful in applying this map and using it since it requires that the
spikes of the two oscillators alternate. If one oscillator is sufficiently fast compared
to the other, then the fast oscillator may spike twice before the slow oscillator can
spike. This violates the premise of alternation which we used to derive the map.
Thus, we will assume that the ratio ω2/ω1 is sufficiently close to 1 to guarantee
that this happens. In fact, the main role of the map is to examine the existence
and stability of fixed points which we now do. We note that the map (9.27) is quite
similar to the time map (9.23) in that it is the composition of the effects of one
oscillator on the other. Let us first suppose that ρ ≡ ω1/ω2 = 1. As in the rest of
this chapter, we assume that dj(0) = dj(1) = 0. Then, Gj(0) = 1 and Gj(1) = 0, so
that φ = 0 is a fixed point to the composed map (9.27). A fixed point φ̄ is linearly
stable if

λ = G′
2(G1(φ̄))G′

1(φ̄)

is less than 1 in magnitude. That is

[1 + d′1(0)][1 + d′2(1)] < 1. (9.28)

This is exactly the same condition as we saw for stability of the synchronous state
for the time map (9.22) since d(φ) = ∆(Tφ)/T. Other locking patterns besides 1:1
are possible. In the exercises, the reader is asked to derive equations for 2:1 locking
in which oscillator 1 fires twice for each firing of oscillator 1.

Mirollo and Strogatz.

It is possible to analyze larger systems of pulse-coupled oscillators, but due to the
singular nature of the coupling, only special types of solutions can be easily analyzed.
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In particular, “all-to-all” identical pulse coupling was first analyzed by Mirollo and
Strogatz (1990). These authors studied strong coupling between oscillators – that
is the phase-transition curve is not invertible. Specifically, they assume that in
absence of coupling each oscillator obeys dynamics governed by xj(t) = f(t) where
f(t) is a prescribed function satisfying f(0) = 0, f(1) = 1, f ′(t) > 0 and f ′′(t) < 0.
When xj(t) = 1, it is reset to 0. For example, if f(t) is a solution to the integrate
and fire model, then with rescaling of time, f(t) will satisfy the assumptions. Note
that the QIF models do not satisfy the concavity assumption so the MS theorem
does not hold. Oscillators communicate to each other by advancing those which
have not fired by an amount ǫ > 0. Each oscillator is coupled identically to all the
others with the following rules:

1. At time t−, if m oscillators fire (cross 1), then all other oscillators which are
below 1 are incremented by mǫ;

2. If this increment is sufficient to cause an oscillator to fire (cross 1), then it is
set to 1 but does not contribute a pulse to the others;

3. All oscillators at 1 are immediately reset to 0.

Because the oscillators are identical, rule 2 implies that once an oscillator joins a
group which has fired (by crossing 1 due to the inputs) it is absorbed into the group
for all times and will remain synchronous with them. Intuitively, it is clear how
this type of strong coupling will lead to synchronization of the entire group by the
process of absorption. Indeed, as more and more oscillators become absorbed, their
effect on the remaining oscillators becomes very large and will rapidly bring them
into the fold.

Mirollo and Strogatz prove that, with the above assumptions on f(t) and on
the coupling, the set of initial conditions for which the oscillators are not completely
absorbed has measure zero. We sketch the proof for N = 2 as it is the basis for
the general proof and it also exposes some problems with basic assumptions of the
model. As with the rest of this section, we reduce the analysis of the behavior of a
pair of oscillators to a simple map.

Since f(t) is monotonic and f(0) = 0, f(1) = 1, f(t) has an inverse, t = g(x)
which provides the phase (or time) in the cycle given the value x ∈ [0, 1). Let φ
be the phase of oscillator B right after A fires; that is, after B has received a kick
from A. If B is pushed past 1, we are done since now B and A are synchronous;
we therefore assume that φ < 1. B will fire at time 1 − φ and at this point A is at
xA = f(1 − φ). A receives a kick of size ǫ and if this now exceeds 1, we are done
since the two are synchronous. Thus, suppose that f(1−φ)+ ǫ < 1. The phase of A
is now g(f(1 − φ) + ǫ) ≡ h(φ). We are exactly where we started before except that
the roles of A and B are reversed. Since the oscillators are identical, the complete
map is just two iterates of h(φ). Thus our map is:

φ→ h(h(φ)) ≡ R(φ).

Note that the domain of R(φ) is not the whole interval [0, 1] because for any finite
ǫ, if φ is sufficiently close to 0, then f(1 − φ) + ǫ will cross 1. Let δ be such
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Figure 9.13. Mirollo-Strogatz map with f(t) = t(2 − t) and ǫ = 0.02

that f(1 − δ) + ǫ = 1. The function h(φ) is defined for φ ∈ (δ, 1). f and g are
monotonically increasing so h′ < 0; that is, h is monotonically decreasing. Since
R(φ) = h(h(φ)), we must have h(φ) > δ as well. That is, φ < h−1(δ) because h is
a decreasing function. Thus the domain of R is the interval (δ, h−1(δ)). We need
to prove that this is nonempty. That is δ < h−1(δ) or, equivalently, h(δ) > δ. But,
clearly, h(δ) = 1 > δ.

We can define the map on the whole of [0,1) as follows. For φ > h−1(δ), we set
R(φ) = 1 and for φ < δ we set R(φ) = 0. These conditions correspond to absorption,
that is, once you hit 0 or 1, you stay there for all time. Since the phase-space is the
circle, the point 1 is identified with 0.

Before continuing with the analysis, it is useful to consider a specific example,
say, f(t) = t(2 − t). Then g(x) = 1 −

√
1 − x. Figure 9.13 shows R(φ) for this

example when ǫ = 0.02. Note that the map is only defined for a subinterval of [0, 1].
There is a single fixed point at φ = 1/2 and it is evidently a repellor (since the
slope at the fixed point is greater than 1). The red curve shows successive iterates
of the map until there is absorption and φ = 0. Any initial condition except the
fixed point will be absorbed into either 0 or 1 after a finite number of cycles.

Thus, we can prove that almost all initial data are eventually absorbed if we
can prove two things about R(φ): (i) there is a single fixed point and (ii) it is
unstable. Since R(φ) = h(h(φ)), we can prove (ii) if we can show that |h′(φ)| > 1
for all φ where it is defined. Since f and g are inverses, f ′(y) = 1/g′(f(y)) so:

h′(φ) = −g′(f(1 − φ) + ǫ)f ′(1 − φ) = −g
′(f(1 − φ) + ǫ)

g′(f(1 − φ))
.

Let u = f(1 − φ). Then
h′ = −g′(u+ ǫ)/g′(u).

By hypothesis, f ′′ < 0 so that g′′ > 0; thus, g′(u) is monotone increasing. This
means that g′(u+ ǫ) > g′(u) for ǫ > 0. Thus the above ratio is less than -1 and we
have proven that any fixed points (if the exist) are unstable.
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Figure 9.14. Hippocampal oscillatory circuit. Two “columns” coupled via
E to I synapses with a delay.

All that is left to do is to prove that there is a unique fixed point. If there
is a fixed point to φ = h(φ), then this is also a fixed point for φ = R(φ) since
R(φ) = h(h(φ)). Let F (φ) = φ − h(φ). Note that F (δ) = δ − h(δ) = δ − 1 < 0.
On the other hand, F (h−1(δ)) = h−1(δ) − δ > 0 so that there is root between
(δ, h−1(δ)). Since F ′(φ) = 1 − h′(φ) > 2, this root is unique.

Mirollo and Strogatz prove the all:all case forN oscillators in a similar manner.
The original motivation for their work was a conjecture by Charles Peskin for the
leaky integrate and fire model. For the LIF, the profile of x(t) is 1 − exp(−t) so
this satisfies the concavity assumption which is critical. On the other hand, the
QIF and other models like it rise to the spiking threshold in a manner which can
be concave up. What happens in this case is for the reader to explore.

9.2.4 Other map models.

Ermentrout and Kopell (1998) studied the circuit shown in Figure 9.14 in order to
understand results from the Whittington lab (1996, nature). Specifically, gamma
(40 Hz) rhythms were induced in brain slices which contained both halves of the
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hippocampus. Long fibers connected the two halves and there was consequently
a delay in the coupling between the two networks. The experiments showed that
for each spike forced by the excitatory cells, the local inhibitory cells fired “dou-
blets” or pairs of spikes. But the doublets only occurred when the two halves were
synchronized. The figure shows a simple abstraction of the circuit (A) and the spik-
ing pattern of one side near synchrony (B). The single excitatory-inhibitory pair is
driven by the E cell. That is, without the synaptic excitation, the I cell would not
fire. The feedback inhibition from the I cell slows the E cell down to about a 40 Hz
rhythm. Thus, the first spike, I1, is a consequence of the excitation from the local
circuit and the second spike, I2, comes from the distant excitation.

Let us devise a simple map for this model and then use this to analyze the
existence and stability of the synchronous state. In order to do this, we will make
some simplifying assumptions:

a. The E cell spikes a fixed time after the last I spike that it receives.

b. All I spikes produce the same amount of inhibition on their target E cells.

c. The second I spike (I2) occurs at a time which depends on the time difference
between its two excitatory inputs.

d. The first I spike (I1) occurs a fixed time after the local E spike received.

e. The delay τ between columns is not long compared to the period of the un-
coupled system.

Assumption (a) implies that the E cells have no memory of when they last spiked
and what keeps them from spiking is the inhibition. They can only spike when the
inhibition has worn off sufficiently. Assumption (b) says that the inhibition from
the same cell does not facilitate or add up. Each time the I cell spikes, the total
inhibition to the E cell is reset to the maximum where it then decays. Assumption
(c) is crucial. It says that the I cell has some memory of when it last fired since
a second E input does not necessarily make it spike immediately. Assumption (d)
says that the effect referred to in (c) wears off quickly. Assumption (e) is a necessary
one to make the map well-defined.

We now put these assumptions into mathematical terms to derive a simple
map for the timing difference between the E cells. In the figure, we have labeled
several different times. Assumptions (a) and (b) say that the time between t̂1 and
t4 is a fixed number we will call Tie. Assumption (d) says that the time between t1
and t2 is fixed at Tei. Thus, the key to the derivation of the map is to determine t4.
In absence of coupling, the period of the single circuit is Tie + Tei by assumptions
(a) and (d). If the distant E cell spikes at time t2, then the local I cell receives the
input at a time t3 +τ where τ is the delay. Assumption (c) says that t4 is a function
of the time difference, t3+τ−t2. Call this function M(t); t4 = M(t3+τ−t1)+t3+τ.
That is, the second I spike occurs with a delay M after its second excitatory input.
We are now done, since we can write:

t̂1 = Tie + t4

= Tie +M(t3 + τ − t1) + t3 + τ
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We can write exactly the same type of equation for t̂3:

t̂3 = T ′
ie +M(t1 + τ − t3) + t1 + τ.

We have put a prime on Tie above to account for possible heterogeneities between
the two circuits. For example, if the drive to the right-hand circuit is larger than that
of the left-hand circuit, we would expect the right circuit to recover from inhibition
quicker and hence, T ′

ie would be less than Tie. Let ζ = t3 − t1 and ζ̂ = t̂3 − t̂1 and
µ = T ′

ie − Tie. Then, subtracting these two equations leads to

ζ̂ = µ− ζ +M(−ζ + τ) −M(ζ + τ) ≡ F (ζ). (9.29)

Note that because of the delay, the distant I input always occurs after the local I
input even if t3 < t1. This means that, unlike our timing maps above, we do not
require that the E spikes keep the same order. Indeed, with effective inhibition
coupling the cells and with the delay, we never have to worry about a distant input
making the local E cell fire immediately.

Let us turn our attention to the map M(t). This can be numerically computed
as follows. Create the single circuit so that the E and I cells fire exactly one spike
per period. At a time t after the E cell spikes, stimulate the I cell with an excitatory
synaptic input and then examine when the I cell spikes. This sounds, at first, like
a PRC since the I cell fires periodically and receives a stimulus. However, the basic
premise of PRC theory is that the stimulus is weak enough to move the spike but
not strong enough to add new spikes. In the present setting, the input from the
distant E cell is strong enough to cause the I cell to produce an extra spike. Thus,
this is a large-amplitude theory, rather than an infinitesimal one. What accounts
for the shape of this map? A biophysical interpretation is that if the input comes in
right after the I cell has spiked, then the cell will not be able to fire again at all. As
the second input is delayed, the I cell just manages to cross threshold. Since the I
cell is class I (cf chapter CHANNEL), the delay to spiking can be arbitrarily large.
This accounts for the vertical asymptote. Finally, for long times after spiking, the I
cell has forgotten the previous spike so that it fires at a finite delay after the input.
In exercise *, we put some mathematical meat on these meager heuristic bones.

Turning back to equation (9.29), we know that M(t) is a strictly decreasing
function which has a rather steep slope for small t. Phaselocking between the two
columns occurs if there is a fixed point to the map in (9.29). Let ζ̄ be such a fixed
point. It is linearly stable if |F ′(ζ̄| < 1 which means that

0 <
1

2
[M ′(−ζ̄ + τ) +M ′(ζ̄ + τ)] < −1.

The left hand inequality is always true since M ′ is a decreasing function. However,
if M is very steep, then this condition can be violated. Since the slope decreases
with large delay τ , increasing τ can stabilize a given fixed point. If the two columns
are identical, µ = 0, and ζ = 0 is the synchronous fixed point. The stability
condition reduces to M ′(τ) < −1. Thus, the delay must be large enough to prevent
the destabilization. However, the delay should also not be too long (see exercise
**).



i i

i

i

i

i

9.2. Who cares about adjoints? 201

9.2.5 Weak coupling.

We will now analyze a pair of nonlinear oscillators which are coupled in an arbitrary
fashion, but the coupling is “weak.” Kuramoto (1984) popularized the methods and
ideas of weak coupling using a very intuitive geometric concept which employs the
gradient of the phase map ∇XΘ(x) – an object which we have seen is the solution
to the adjoint.

Geometric idea.

Suppose that X ′ = F (X) has an asymptotically stable limit cycle, U(t). Consider
two identical oscillators which are coupled:

dXj

dt
= F (Xj(t)) + ǫGj(Xj(t), Xk(t)) (9.30)

where j = 1, 2 and k = 3 − j. Kuramoto (1984) suggests a simple approach to this.
We make the change of coordinates along the limit cycle, θj = Θ(Xj) where Θ is
the asymptotic phase function as in Figure 9.1. Then

dθj

dt
= ∇Θ(Xj) ·

dXj

dt
= ∇Θ(Xj) · F (Xj(t)) + ǫ∇Θ(Xj) ·Gj(Xj , Xk)

= 1 + ǫ∇Θ(Xj) ·Gj(Xj , Xk). (9.31)

This equation is exact but quite useless since we do not know what Xj(t) is so that
we cannot evaluate the right-hand side. However, if ǫ is small, then Xj(t) is close to
U(θj). Thus, equation (9.31) becomes an equation which only involves the phases,
θ1,2 :

dθj

dt
= 1 + ǫ∇Θ[U(θj)] ·G[U(θj), U(θk)]. (9.32)

Equation (9.32) is intuitively appealing since it shows that the evolution of the phase
is determined by a product of the coupling with the response function. Winfree
(1967) deduced this equation on first principles. For neurons, the coupling is often
only through input currents to the membrane potential of the cell leading to a
simpler pair of equations:

dθ1
dt

= 1 + ǫP2(θ2)d1(θ1)

dθ2
dt

= 1 + ǫP1(θ1)d2(θ2)

where dj(θ) is the PRC for the oscillator and Pj(θ) is the synaptic input of the
presynaptic oscillator. Note the similarity between this simple equation and equa-
tions (9.25,9.26). One can regard (9.32) as a smooth equivalent of the pulsatile
coupling we considered above.

We exploit the fact that ǫ is small once more to further reduce equation (9.32).
Let us introduce the variables, φj = θj − t. Then (9.32) becomes:

dφj

dt
= ǫ∇Θ[U(t+ φj)] ·G[U(t+ φj), U(t+ φk)]. (9.33)



i i

i

i

i

i

202 Chapter 9. Neural oscillators: Weak coupling

All functions involved are smooth and U is itself T−periodic. Thus, we have a
system of the form

y′ = ǫM(y, t)

and we can apply the method of averaging which says that y(t) is close to ȳ where

ȳ′ = ǫ
1

T

∫ T

0

M(ȳ, t) dt.

Recall that ∇XΘ(X) is exactly the solution to the adjoint equation, Z(t). Applying
averaging to (9.33), results in the following equations

dφ1

dt
= ǫH1(φ2 − φ1) (9.34)

dφ2

dt
= ǫH2(φ1 − φ2)

where

Hj(φ) =
1

T

∫ T

0

Z(t) ·Gj [U(t), U(t+ φ)] dt. (9.35)

The beauty of equation (9.34) is that the interactions between the two oscillators
only show up in the phase-differences between them: φ2 − φ1 = θ2 − θ1. Indeed,
let ψ = φ2 − φ1 denote the phase difference between the two oscillators. Then
subtracting the two equations in (9.34) results in the following scalar equation for
the phase-difference:

dψ

dt
= ǫ[H2(−ψ) −H1(ψ)]. (9.36)

Stable (unstable) fixed points of (9.36) correspond to stable (unstable) periodic
solutions to the full equations (9.30). For example, if ψ = 0 is a stable fixed point
of (9.36), then the two oscillators will synchronize.

Equation (9.34) generalizes to N coupled neural oscillators leading to the
following system of differential equations:

dφj

dt
= ǫHj(φ1 − φj , φ2 − φj , . . . , φN − φj), j = 1, . . . , N. (9.37)

While (9.37) represents a considerable simplification of a general system of N cou-
pled oscillators, it is by no means a trivial system to analyze and there are many
open problems concerning the behavior of this dynamical system on the N−torus.
An entire book could easily be devoted to the subject! We define a phase-locked
state of (9.37) to be a solution of the form:

φj(t) = Ωt+ ξj

where Ω is called the ensemble frequency, ξ1 = 0, and ξj are constants called the
relative phases. We pin ξ1 to zero since you can add an arbitrary constant to
all of the phases φj(t) corresponding to the arbitrary translation in time of any
autonomous limit cycle oscillator. Thus, the existence os a phase-locked solution
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to (9.37) reduces to solving a set of N algebraic equations in the N unknowns,
Ω, ξ2, . . . , ξN :

Ω = ǫHj(−ξj , ξ2 − ξj , . . . , ξN − ξj), , j = 1, . . . , N. (9.38)

If we can find such states, then there is a convenient theorem which provides suffi-
cient (but not necessary) conditions for stability.

Theorem. (Ermentrout,1992). Let S = {Ω, 0, ξ2, . . . , ξN} be a phase-locked solu-
tion to (9.37). Let ajk denote the partial derivative of Hj(η1, . . . , ηN ) with respect
to ηk evaluated at S. Suppose that ajk ≥ 0 and that the matrix A = (ajk) is
irreducible. Then S is asymptotically stable.

We provide an intuitive definition for irreducibility. DrawN points on a paper.
Draw a directed line from point j to point k if ajk > 0. The matrix A is irreducible
if and only if it is possible to start at any point n and go to any other point m
following the directed lines.

Applications of weak coupling.

Before proceeding to specific neural examples, we examine (9.36) more closely. Re-
call that Hj is the average of the interaction with the PRC. Let’s break Gj into two
parts:

Gj(X,Y ) = Bj(X) + gCj(X,Y )

where g is the strength of the coupling between the two cells and Bj represents
intrinsic differences between the two neurons. For membrane models, the main
coupling is through the membrane potential so that Bj(X) may be something as
simple as a small bias current and Cj(X,Y ) is the synaptic current. In this case,
equation (9.38) becomes the equation typically studied:

Ω = ǫ

(

ωj +
∑

k

Hjk(ξk − ξj)

)

(9.39)

with ξ1 = 0.
We consider two cases for the synaptic current: chemical synapses and elec-

trical synapses:

Csyn(X,Y ) = −sY (VX − Vsyn)~eV

Cgap(X,Y ) = (VY − VX)~eV

where ~eV is the vector of all 0’s except for a 1 in the voltage component. sY (t) is
the synaptic response of the presynaptic cell. If we define V ∗(t) to be the voltage
component of the adjoint solution, V (t) the potential, and assume that except for
the heterogenity, both cells are identical, then we see that

Hj(φ) = ωj + h(φ)
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where

h(φ) = hsyn(φ) ≡ 1

T

∫ T

0

V ∗(t)s(t+ φ)[Vsyn − V (t)] dt (9.40)

h(φ) = hgap(φ) ≡ 1

T

∫ T

0

V ∗(t)[V (t+ φ) − V (t)] dt (9.41)

We remark that these equations have a nice intuitive interpretation. The adjoint is
(at least for weak perturbations) a scaled version of the PRC of a neuron. When
the PRC is computed, it is done so by perturbing with a brief current. However,
chemical synapses between cells are best modeled as conductances. Thus, the effect
of a presynaptic conductance change on the postsynaptic cell is the product, Q(t) ≡
V ∗(t)(Vsyn − V (t)). The presynaptic cell alters the phase of the postsynaptic cell
by averaging the effective response, Q(t), with the time course of the synapse. The
function Q(t) will not differ substantially from the adjoint, V ∗(t), for excitatory
conductances since Vsyn − V (t) is positive except for a a short period when the
neuron spikes. (Recall that Vsyn = 0mV for excitatory synapses.) However, there
can be a rather large difference between Q(t) and V ∗(t) for inhibitory synapses since
the reversal potential can sometimes be very close to the resting state of the neuron.
In project ** below, you can explore how the reversal potential of the inhibition
affects the synchronization properties of pairs of cells. Since the reversal potential
of inhibition varies a great deal during the development of the nervous system, this
could have important implications in setting up local cortical circuits.

9.2.6 Synaptic coupling near bifurcations.

Equation (9.40) provides a formula for the interaction function between a presy-
naptic and postsynaptic neural oscillator. Equation (9.36) provides the equations
for the phase-difference between two coupled neurons. Suppose that both neurons
are identical. Then the phase difference, ψ satisfies

ψ′ = −2Hodd(ψ) (9.42)

where 2Hodd(ψ) = H(ψ) −H(−ψ). Any continuous odd periodic function vanishes
at ψ = 0 and ψ = T/2 where T is the period of the function. Thus a pair of
mutually coupled neural oscillators will always have a synchronous and an anti-
phase pattern of behavior. If ψ̄ is a zero of Hodd(ψ), then from equation (9.42), it
will be stable if and only if H ′

odd(ψ̄) > 0. (Note the − sign in the equation!) For
a pair of mutually coupled identical oscillators, the key function is the odd part of
the interaction function. Zeros of this function are phase-locked states. In general
computing H and its odd part must be done numerically since the explicit form for
the adjoint is not generally available. However, near bifurcations, we have formula
for the adjoint and thus we can study some of the effects of frequency and synaptic
parameters on the ability of a pair of neurons to synchronize.

Suppose that we choose

s(t) =
e−β[t]+ − e−α[t]+

α− β
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as out synaptic conductance. Here [t]+ is the positive part of t; the alpha-function
synaptic conductances vanish for t < 0.

H(φ) =
1

T

∫ T

0

V ∗(t)

∞
∑

j=−∞

s(t+ jT + φ) dt.

The sum arises since the synaptic function s(t) is not itself periodic so that we have
to “periodize” it by adding the synaptic response for every spike at intervals of the
period. We leave it as an exercise to the reader to show that

H(φ) =
1

T

∫ ∞

0

V ∗(t− φ)s(t) dt.

Since the interval of integration is non-negative, we can drop the [ ]+ and just
evaluate the integrals. Finally, we can rescale the period of the oscillations allowing
us to express V ∗(t) and H(φ) in simple sines and cosines. Thus, a long period
oscillation is like an oscillation of period 2π, but with very fast synapses: α→ α/ω
and β → β/ω where T = 2π/ω.

Near bifurcations we have explicit formula for the adjoint so that we can ana-
lyze H(φ) explicitly by evaluating the integrals. Suppose that the neural oscillator
is class I so that the adjoint is V ∗(t) = 1 − cos t. If the synaptic current is Is(t)
with I > 0 for excitatory synapses and I < 0 for inhibitory, then

Hodd(φ) = −I sinφ
α+ β

(α2 + 1)(β2 + 1)
.

We recover the well-known result (van Vreeswijk et al 1994; Ermentrout 1996 -
Type I) that excitatory coupling (I > 0) results in stable anti-phase and inhibitory
coupling (I < 0) results in stable synchrony.

The behavior near a Hopf bifurcation depends on the parameters in the nor-
mal form. The adjoint can be written as V ∗(t) = − sin(t) + q cos(t) where q is a
parameter from the normal form. Evaluation of the integral yields:

Hodd(φ) = I sinφ
q(α + β) + αβ − 1

(α2 + 1)(β2 + 1)
.

Unlike systems near a saddle-node, the stability of, say, synchrony, depends on the
timing of the synapses and the parameter q. Even when q = 0, it is possible to
switch from stable synchrony to stable anti-phase as the frequency of the oscillator
(the timing of the synapses) changes.

In neither case does there exist bistability between synchrony and anti-phase,
nor are any other phase-locked patterns possible. The reason for this is that the
adjoint has only pure sines and cosines without any higher modes. Looking at, say,
Figure 9.3Ai or C, it is clear that these two simple models for the adjoint (PRC)
are not particularly good approximations. We can combine the two types and add
two more terms to obtain a pretty good approximation for neural PRCs:

V ∗(t) = a(1 − cos(t)) + c(1 − cos(2t)) + b sin(t) + d sin(2t). (9.43)
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With this model, we find

Hodd(φ) =

(−a(α+ β) − b(αβ − 1)

(α2 + 1)(β2 + 1)

)

sinφ (9.44)

+

(−2c(α+ β) − d(αβ − 4)

(α2 + 4)(β2 + 4)

)

.

We remark that since we have normalized the period to be 2π, the parameters α, β
should be scaled as α = α0T and similarly for β where α0 is the true synaptic time
scale and T is the period of the oscillator. Note that for T large, the terms b, d
dominate.

9.2.7 Small central pattern generators.

A central pattern generator (CPG) is a network of neurons which is able to produce
a patterned oscillator output to motor neurons. For example, in chapter *, we
looked at a model for the respiratory oscillation driven by the so-called preBotzinger
complex. Much research has been done on simple locomotor CPGs which govern
the different gaits for walking, running, etc. Most mammalian CPGs are poorly
understood and their actual location in the brain is not known. However, the
story for certain fish and invertebrates is much clearer. There are numerous review
articles on CPGs and their modeling (see Grillner et al for a recent review with
many references to other reviews or Yuste et al for a call to treat cortical circuits in
the way that motor patterns have been treated.) We will consider three examples:
finger tapping, hand clapping, and quadrupedal locomotion.

In a clever series of experiments Kelso and collaborators (see his book for a
complete discussion and analysis) studied the transition from one pattern to another
as the frequency increased. In the experiment (and you can do this yourselves) the
subject is asked to tap his fingers in an alternating rhythm. The subject is asked
to speed up the rhythm and try to maintain the pattern. However, at high enough
frequencies, the subject tends to switch into synchronous tapping. The subject
is able to tap fingers synchronously at all frequencies, thus there appears to be
bistability between the two types of coupling.

Imagine that each finger is controlled by an oscillatory circuit and that the
two sides are synaptically coupled. Then we can ask whether this kind of model
can explain the bistability and the switch as the frequency increases. Figure 9.15
shows a numerical computation for the Wang-Buszaki model with inhibitory and
excitatory synapses as the frequency changes. At low frequencies with inhibitory
coupling (about 9 Hz) both the synchronous and the anti-phase state are stable
since the odd part of H has a positive slope. However at higher frequencies (30 Hz)
only the synchronous state is stable. Thus, there is a transition from bistability
to monostability at high frequencies. In contrast, with excitatory coupling (right
figure), the synchronous state is unstable for both high and low frequencies. This
simple model of mutually coupled inhibitory circuits shows that we can induce
a switch from the anti-phase state to synchrony as the frequency increases. van
Vreeswijk et al (1994) demonstrated this phenomena for weakly coupled integrate
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Figure 9.15. Weakly coupled WB model for inhibitory (left) and excitatory
(right) coupling

name left rear (LR) right rear (RR) left front (LF) right front (RF)

pronk x1(t) x1(t) x1(t) x1(t)

rack/pace x1(t) x1(t+ 1
2 ) x1(t) x1(t+ 1

2 )
bound x1(t) x1(t) x1(t+

1
2 ) x1(t+ 1

2 )
trot x1(t) x1(t+ 1

2 ) x1(t+
1
2 ) x1(t)

jump x1(t) x1(t± 1
4 ) x1(t± 1

4 ) x1(t)
walk x1(t) x1(t± 1

2 ) x1(t± 1
4 ) x1(t± 3

4 )

Table 9.1. Common simple quadruped gaits

and fire neurons and also showed that a similar effect occurs in the Hodgkin Huxley
model. We can use the simple adjoint approximation (9.43) to analytically obtain
this result. We leave this as an exercise to the reader.

Quadruped gaits. An interesting and well-studied problem is the existence
and stability of patterns of movement in four-legged animals (quadrupeds). There
are many subtly different gaits; here we present only the so-called primary gaits.
Table 9.1 shows the relative phases of the six primary gaits. x1(t) is the dynamics
of a single limb, so that all the other limbs can be specified in terms of their relative
phase with the left rear limb. Golubitsky and his collaborators have derived minimal
circuits which can explain the gaits using symmetry arguments. Their methods
are elegant and from them they conclude that the minimal number of oscillators
required is eight corresponding to two oscillators per limb. Their reasoning goes
something like this. Suppose there are only four oscillators and suppose an animal
has both a stable walk and a stable trot. Then by symmetry, it must also have
a stable pace. Since no animal both paces and walks, there must be additional
structure to break the symmetry. We can see this for ourselves by considering the
following network of 4 coupled oscillators:

θ′1 = Ha(θ2 − θ1) +Hb(θ3 − θ1) +Hc(θ4 − θ1) (9.45)

θ′2 = Ha(θ1 − θ2) +Hb(θ4 − θ2) +Hc(θ3 − θ2)

θ′3 = Ha(θ4 − θ3) +Hb(θ1 − θ3) +Hc(θ2 − θ3)
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θ′4 = Ha(θ3 − θ4) +Hb(θ2 − θ4) +Hc(θ1 − θ4).

Here θ1 − θ4 are the left front, right-front, right-rear, and left-rear limb oscillators,
respectively. Connections labeledHa are left-right coupling, those labeledHb couple
“diagonal” limbs, and Hc couple the same side. Phase-locked solutions have the
form

θj = ωt+ φj

where φ1 = 0, Ω is the ensemble frequency, and φ2,3,4 are the phases of the other
limbs relative to the left front limb, θ1.We are interested in several types of solutions.
The walk corresponds to W = (0, π, 3π/2, π/2), the trot, T = (0, π, 0, π), the pace
P = (0, π, π, 0) and the bound, B = (0, 0, π, π). The “pronk” is a fully synchronous
state. If you walk your dog slowly, you will notice that she moves using the walk
while as you speed up, she will switch to a trot, the gait used in the show ring.
(Hopefully, your dog will have nice long legs to make this evident; my dog, a corgi,
makes the observation somewhat difficult.) We leave as an exercise, the analysis of
this network. If the functions Ha,b,c are general and periodic, then there will be a
walk state if and only if Hb = Hc. From this, you can deduce that there is also a trot
and a pace state and that they must have the same stability properties. This result
(easily deduced in the present case) actually follows from the symmetry arguments
of Golubitsky and others.

Schoner G, Jiang WY, Kelso JA. A synergetic theory of quadrupedal gaits
and gait transitions. J Theor Biol. 1990 Feb 9;142(3):359-91.

Kelso, J.A.S. (1995). Dynamic Patterns: The Self-Organization of Brain and
Behavior. Cambridge: MIT Press

Grillner S, Markram H, De Schutter E, Silberberg G, LeBeau FE. Microcir-
cuits in action–from CPGs to neocortex. Trends Neurosci. 2005 Oct;28(10):525-33.

Yuste R, MacLean JN, Smith J, Lansner A. The cortex as a central pattern
generator. Nat Rev Neurosci. 2005 Jun;6(6):477-83.

Excitatory/inhibitory coupling.

We have already seen that near a saddle-node bifurcation, weak excitatory coupling
tends to push pairs of oscillators into anti-phase. However, most cortical networks
consist of networks with both excitation and inhibition. Can the inhibition affect
the response of coupled networks? Naturally, this depends on the nature of the
individual neurons, but, at least near bifurcations, we can explore these questions
using simple models like the theta model. Consider a single “column” consisting of
an E and an I cell:

θ′e = 1 − cos θe + (1 + cos θe)(0.25 − 2si) (9.46)

θ′i = 1 − cos θi + (1 + cos θi)(−0.2 + 2se) (9.47)

s′e = 4[1 + exp(−20(1 + cos θe))](1 − se) − se/3 (9.48)

s′i = 4[1 + exp(−20(1 + cos θi))](1 − si) − si/8. (9.49)

When simulated, this produces a nearly 40 Hz rhythm. (In absence of inhibition,
the network fires at 200 Hz.) Figure 9.16 shows the results of a weak coupling
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Figure 9.16. Interaction functions for an excitatory-inhibitory pair. Inset
shows pure excitatory network.

analysis of the above network. There are several important points. The inset shows
the interaction function for a purely excitatory network adjusted so that frequency
is about 40 Hz. H(φ) has a positive slope at the anti-phase solution and a negative
slope at φ = 0 so that synchrony is unstable but the anti-phase state is stable. This,
of course, was anticipated from our results above. However, in an EI network, the
period (at least for strong recurrent inhibition) is largely determined from the decay
of the inhibition. In this case, E-E coupling no longer stabilizes the anti-phase state.
Instead, there is a near synchronous state which is stabilized. Coupling in which
the I cell is the recipient is an order of magnitude less efficacious than coupling to
the E cell. This is because the E cell is really the driver of the rhythm with the I
cell firing only because of the strong transient E cell input. Note that I→E coupling
is quite strongly synchronizing but also produces a stable anti-phase solution. We
leave it as an exercise to the reader to simulate a pair of these simple models and
show that the weak coupling results predict what happens for the full model.

It should not be surprising to the reader that the effect of, say, excitatory
coupling between a pair of cells in isolation is quite different from the same pair
in the presence of recurrent inhibition. In this case, we can regard the inhibition
as a delayed negative feedback – much like an additional outward current. Since



i i

i

i

i

i

210 Chapter 9. Neural oscillators: Weak coupling

Figure 9.17. V ′(t) and two different adjoints.

the phase-resetting curve of an oscillator is sensitive to the presence of different
currents, so should the effects of coupling pairs of oscillators.

Pfeuty et al explore how synchrony between neurons coupled with gap junc-
tions depends strongly of the shape of the PRC. We can see this geometrically by
recalling that the interaction function for a pair of cells coupled with gap junctions
has the form:

Hgap(φ) =
1

T

∫ T

0

V ∗(t)[V (t+ φ) − V (t)] dt.

Here, V (t) is the somatic potential and V ∗(t) is the adjoint. Synchrony is stable if
H ′

gap(0) > 0 which we write as:

H ′
gap(0) =

1

T

∫ T

0

V ∗(t)V ′(t) dt.

Figure 9.17 provides a geometric interpretation for how the shape of the PRC
can alter synchrony for gap junctions. If the area of the product of V ′(t) (the black
curve) and the adjoint (red or blue curves) is positive (negative) then synchrony will
be stable (unstable). Since the bulk of the PRC is towards the left for the blue curve,
the total area is positive and synchrony will be stable while for a PRC like that in
the red curve, synchrony will be unstable. Ermentrout and Kopell (Handbook) were
the first to make this argument. Pfeuty et al show how the addition of a persistent
sodium current or removing some potassium current can shift the PRC from the
rightward leaning to the leftward leaning case and thus demonstrate how intrinsic
membrane properties alter the stability of the synchronous state.

Dendritic structure. All of the results for weak neural coupling have con-
sidered only point neurons. The same methods here can be applied to models with
active dendrites by discretizing them to a finite number of compartments and then
computing the adjoint. However, if the dendrites are nothing more that passive
cables, then we can treat the dendrite as a cable with a sealed end at the apical tip
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and a periodic current at the somatic end due to the oscillating soma. Suppose that
there is a synapse at a point x on the dendrite (where x = 0 is the soma). Then
the synaptic current felt at the soma from a synaptic current I(t) at x is:

Isoma(t)

∫ ∞

0

G(x; s)I(t − s) ds

where G(x; t) is the Green’s function associated with the dendrite. That is, the
dendrite acts as a linear filter. Thus, ifH(φ) is the interaction function for a synapse
occurring at the soma, then the interaction function for a synapse a distance x from
the soma on a passive dendrite is simply

H(x;φ) =

∫ ∞

0

G(x; s)H(φ − s) ds. (9.50)

Crook et al showed how stability of synchrony between two oscillators changes as
the position of the synapse is changed. For example, if we take H(φ) = sinφ and
G(x; t) = exp(−t) exp(−x2/t)/

√
πt (which is the Greens function for an infinite

dendrite) then at x ≈ 1.25, the slope of H(x;φ) at φ = 0 changes sign. Thus, distal
synapses (further away than about 1 space constant) will have opposite synchro-
nization properties to proximal synapses.

9.2.8 Linear arrays of cells.

There are a number of neural systems which can be regarded as a one-dimensional
array of oscillators at least at a crude level. The locomotor pattern generator
of the lamprey (a eel-like fish vampire) is among the best characterized examples
of such a model. The leech swim generator is also organized in a linear array.
However, some sensory systems are similarly organized, notably, the procerebral
lobe (“olfactory brain”) of the slug. In both the lamprey and the slug brain, the
network of oscillators produces oscillatory waves which propagate down the network.
Interestingly, similar waves have been observed in cortical brain slices in which the
magnesium is reduced. In all of these systems, the local uncoupled network appears
to oscillate so that the idea of a locally coupled network of intrinsic oscillators is a
good first approximation. Some jellyfish have swim generators which are organized
into a ring so that one-dimensional arrays of oscillators with periodic boundary
conditions could also be biologically relevant.

For simplicity, we discuss only nearest neighbor coupling. The more general
types of coupling can also be analyzed but not as transparently. Consider a linear
array of N oscillators, possibly with heterogeneity in the frequencies:

θ′j = ωj +Hj+1,j(θj+1 − θj) +Hj−1,j(θj−1 − θj). (9.51)

These equations are valid for j = 2, . . . , N − 1 and at the ends, we can impose a
number of different boundary conditions. For example, if we identify θ0 with θN and
θN+1 with θ1, then we have a periodic array. On the other hand, identifying θ0 = θ1
and θN+1 = θN gives reflecting conditions. Finally, the “cut” conditions assume
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that the interactions with j = 0 and j = N + 1 do not exist. Both the reflecting
and periodic boundary conditions lead to a homogenization of the network while
the cut condition can produce waves even in absence of any heterogeneities.

Homogeneous networks. Consider the case in which Hj,k = H for all j
and such that there is no heterogeneity: ωj = ω. For the reflecting and the periodic
boundary conditions, there is a synchronous state, θj = Ωt where Ω = ω + 2H(0)
which is stable if and only if H ′(0) > 0. (Note the “if” follows from Theorem **,
but the only if requires explicit calculation of the eigenvalues. Since the linearized
matrix is just tri-diagonal, this is a relatively simple calculation. See exercise **).
For periodic boundary conditions, there is also a wave solution of the form: θj =
Ωt+2πj/N where Ω = ω+H(2π/N)+H(−2π/N). In the exercises, you are invited
to examine this solution in more detail.

Cut ends. The “cut” end case is rather interesting, even when there is no
frequency gradient. The oscillators at j = 1 and j = N receive less input than the
rest of the oscillators. Thus, unless, H(0) = 0 there will be no synchronous solution.
That being the case, what happens? Suppose that H(φ) is positive near the origin.
Then since the end oscillators receive less inputs than the middle ones, we expect
that they will oscillate faster so that we expect a phase gradient symmetric about
the center of the chain so that the phase increases from oscillator 1 until it reached
the middle and then the phase decreases back to zero at oscillator N. If the chain
is anisotropic, then we expect to see a traveling wave. To understand why this is,
consider the following model:

θ′1 = ω1 +Ha(θ2 − θ1) (9.52)

θ′j = ωj +Ha(θj+1 − θj) +Hd(θj−1 − θj)

θ′1 = ωN +Hd(θN−1 − θN ).

Now, set ωj = ω and suppose that Ha(φ) ≡ 0 so that there is only coupling from
the lower numbered oscillator. Then, clearly θ1 = ωt and in order for there to
be a phase-locked solution, oscillator 2 must be of the form θ2 = ωt + ξd. This
means that Hd(−ξd) = 0. Continuing down the chain in this manner, we see that
θj+1 − θj = ξd. If Hd has a nondegenerate zero (that is, one such that H ′(x) 6= 0),
then, since it is continuous and periodic, it must have at least two and one of these
has a positive slope. This stable zero sets the wavelength of the traveling wave, so
that θj = ωt + ξ(j − 1). If ξ > 0 then the wave travels to the left and if ξ < 0
it travels to the right. (If oscillator 2 has a positive phase difference with respect
to oscillator 1, then it fires earlier so that the wave travels to the left.) So, for
unidirectional coupling, if there is a nondegenerate zero to Ha,f (x) = 0, then this
sets the phase difference between successive oscillators in the chain. If the chain
is anisotropic but bidirectional, then the two types of coupling will “fight it out.”
For large N , it can be shown that the oscillators will form a wave (except near one
end) of the form θj = Ωt+ ξ(j − 1) where ξ is either ξa or ξd and Ha(ξa) = 0 and
Hd(−ξd) = 0. A proof of this result appears in Kopell and Ermentrout (1986). If
the chain is completely isotropic, Ha(φ) = Hd(φ) and H has a zero with a positive
slope, then for large N , the chain will organize into a pattern that consists of a pair
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symmetric waves moving toward or away from the center of the chain. Let ξ be
such that H(−ξ) = 0 and H ′(−ξ) > 0. Then, the phase-locked solution will look
roughly like:

θj = Ωt− |(N + 1)/2 − j|ξ, , j = 1, . . . , N, (9.53)

where Ω = ω +H(ξ). Figure 9.19A shows the phase-locked solutions to a chain of
50 nearest-neighbor coupled oscillators along with the above approximation. Since
H(φ) = sinφ+0.5 cosφ, ξ = tan−1(0.5). Except near the center, this approximation
matches extremely well.

By manipulating the two end frequencies, ω1 and ωN while keeping the middle
frequencies the same, we can produce waves of the form θj = Ωt+ ξ(j − 1). Choose
ξ so that H ′

a(ξ) > 0 and H ′
d(−ξ) > 0. Then choose

ω1 = ω +Hd(−ξ) and ωN = Ha(ξ).

One must be cautious in using a linear array of oscillators for a cortical slice
because of the importance of boundary effect and the fact that they can have global
effects on the behavior of the network. For this reason, it is best to use some type of
homogeneous condition so as to avoid waves which are driven solely from the bound-
aries. Weak coupling theory, nevertheless, works quite well and one may be tempted
to suggest that the organized oscillations seen in pharmacologically treated cortical
slice preparations may be a consequence of nothing more than coupled heteroge-
neous oscillators. Figure 9.18 shows an example of application of weak coupling to a
linear array of cells. 50 Wang-Buszaki neurons were coupled with nearest neighbor
inhibition and a a small degree of heterogeneity was introduced in the form of con-
stant randomly chosen applied currents. The figure shows approximately one period
of the cycle after a steady state is reached. While the currents were random, the
network organizes itself into a rather simple pattern which consists of a right-ward
moving wave which collides with a leftward moving wave. Using a single neuron
model, we have computed the interaction function H(φ) and used this to derive the
phase model (9.52). The heterogeneous currents become heterogeneous frequencies
for the phase model. (In the full model, we have a frequency current relationship for
an individual cell, ω = F (I). Since I is close to I0, we obtain, ω ≈ F (I0)+ c(I − I0)
so that the frequency in the phase model is just a scalar multiple of the heterogene-
ity of the currents.) The phase model produces a pattern very close to that of the
full model. Such colliding waves are seen in experiments as the small inset in the
figure shows.

Richard A. Satterlie Neuronal control of swimming in jellyfish: a comparative
story1 Can. J. Zool. 80: 16541669 (2002) (notably figure 6)

Bao W, Wu JY. Propagating wave and irregular dynamics: spatiotemporal
patterns of cholinergic theta oscillations in neocortex in vitro.

Ermentrout-B; Flores-J; Gelperin-A, Minimal model of oscillations and waves
in the Limax olfactory lobe with tests of the model’s predictive power. J-Neurophysiol.
1998 May; 79(5): 2677-89

Wu JY, Guan L, and Tsau Y. Propagating activation during oscillations and
evoked responses in neocortical slices. J Neurosci 19: 5000-5015,1999
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Figure 9.18. 50 Wang-Buszaki neurons coupled to nearest neighbors with
inhibitory synapses (Reversal potential -80 mV, decay 6 msec). Each oscillator is
driven by a constant current of 0.5 plus a small random value(between −0.0035 and
0.0035) to produce heterogeneity. Coupling strength is 0.02. Right-hand side is the
phase-locked solution to the corresponding phase model. Below shows the space-time
plot from Bao & Wu for a carbachol-treated slice.

A.H. Cohen, G.B. Ermentrout, T. Kiemel, N. Kopell, K.A. Sigvardt, T.L.
Williams, 1992, Modeling of intersegmental coordination in the lamprey central
pattern generator for locomotion, TINS 15:434-438.

S. Grillner, T. Deliagina, O. Ekeberg, A. El Manira, R.H. Hill, A. Lansner,
G.N.Orlovsky, P. Wallen, 1995, Neural networks that coordinate locomotion and
body orientation in lampreys, TINS 18:270-279.

P.D. Brodfuehrer, E.A. Debski, B.A. O’Gara, and W.O. Friesen, 1995, Neu-
ronal control of leech swimming, J. Neurobiology, 27:403-418.

M. Steriade, D. McCormick, and T.J. Sejnowski, 1993, Thalamocortical oscil-
lations in the sleeping and aroused brain, Science 262:679-685.

9.2.9 Two-dimensional arrays.

There are fewer studies (both experimentally and theoretically) of two-dimensional
arrays of neural oscillators. Ren and Ermentrout proved that phase-locked solu-
tions of two-dimensional arrays coupled to the four neighbors (left, right, above,
below) decomposed into the product of one-dimensional chains. This behavior is
only “interesting” if the boundary effects dominate so the one-dimensional chains
themselves produce interesting patterns. For example, consider an isotropic two-
dimensional array of oscillators with “cut” boundary conditions. Let H(φ) have a
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Figure 9.19. Steady state phases for a chain of 50 oscillators, H(φ) =
sinφ+ 0.5 cosφ with cut ends. Black line is equation (9.53). Right panel shows an
array of 50 × 50 oscillators with the same H.

zero with H ′(φ) positive at the zero. Then the Ren theorem says that

θj,k ≈ Ωt− ξ(|j − (N + 1)/2|+ |k − (N + 1)/2|).

Figure 9.19B shows an example. The pattern of phases is like a square target
pattern. This pattern completely disappears when the boundary condition is ho-
mogeneous; it is driven by the boundary. Intuitively, as with the chain, neurons
along the edges get less input than those in the center and if H(0) > 0, this means
that they will lag the oscillators in the middle producing waves which begin at the
center of the array. If H(0) < 0, then they will lead the center oscillators and waves
start at the edges and propagate to the center.

Patterns such as shown in Figure 9.19 are derived from the inhomogeneities
at the boundaries which act like pacemakers along the edges of the medium. There
are, however, patterns which arise from the intrinsic two-dimensional nature of
the coupling. Spiral waves are well-known in the reaction-diffusion literature and
are distinct from the target waves shown in the above figure in that they do not
require any heterogeneity in the medium. Figure 9.20 shows examples of rotating
waves from a variety of neural systems. The first example (of which these authors
know) of rotating electrical activity in the CNS was on rabbit cortex treated with
penicillin (which makes the network “epileptic”). Petsche et al reconstructed the
spatio-temporal activity from a 4 × 4 array of electrodes placed on the surface of
the occipital lobe (back of the brain). Fuchs and others reconstructed activity from
the human electroencephalogram during resting (alpha) activity. Prectl et al used
voltage-sensitive dyes to extract spatio-temporal activity from turtle cortex when
certain stimuli were presented. Most recently, Huang et al created tangential slices
of cortex and using voltage-sensitive dyes were able to record over thirty rotations
of a spiral wave on the slice.

The classic model for spiral wave in the reaction-diffusion literature consists of
an excitable medium with local coupling. However, there is no need for the medium
to be excitable and intrinsically oscillator media can exhibit rotating waves and
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spiral waves as seen in Figure 9.20D,E. A simple discrete model has the form:

θ′i,j = ω +
∑

k,l

H(θk,l − θi,j)

where the sum is over the 4 neighbors. The figure shows the phase distribution for
H(φ) a pure sine and also with a cosine component. The existence and stability
of the first pattern has been established through a theorem due to Paullet (1994).
For any 2N × 2N array with nearest neighbor coupling such that H(φ) is odd and
H ′(φ) > 0 for −π/2 < φ < π/2, then Paullet and Ermentrout prove that there
exists a rotating wave and it is asymptotically stable. The pattern of phases for
the wave is such that in the upper left corner the phase is 0, the upper right, φ/2,
the lower right, π and the lower left 3π/2. The diagonals from these 4 corners have
the same phase as their respective corners and all meet in the central 2 × 2 array
of oscillators. We leave the 4 × 4 case as an exercise to the reader. If H(φ) is not
odd, then the behavior can be quite complex. For a small amount of even periodic
coupling, the pattern evolves into a spiral wave (see Figure 9.20E) but as the even
component increases, the “core” of the spiral breaks away and complicated (even
chaotic) behavior ensues. (See Sakaguchi et al and Ermentrout 1995). The existence
of stable phase patterns for this case has yet to be proven.

Sakaguchi, H, Shinimoto, S, and Y.Kuramoto, 1988, Mutual entrainment os-
cillator lattices with nonvariational coupling, Prog Theor Physics 79:1069-1079.

Paullet, J.E., and Ermentrout, G.B. (1994). Stable rotating waves in two-
dimensional discrete active media. SIAM J. Appl. Math. 54, 17201744.

Prechtl, J.C., Cohen, L.B., Mitra, P.P., Pesaran, B., and Kleinfeld, D. (1997).
Visual stimuli induce waves of electrical activity in turtle cortex. Proc. Natl. Acad.
Sci. USA 94, 76217626.

Prechtl, J.C., Bullock, T.H., and Kleinfeld, D. (2000). Direct evidence for
local oscillatory current sources and intracortical phase gradi- ents in turtle visual
cortex. Proc. Natl. Acad. Sci. USA 97, 877882.

Ermentrout-B, A heuristic description of spiral wave instability in discrete
media, Physica D, 82:154-164, 1995

Huang X, Troy WC, Yang Q, Ma H, Laing CR, Schiff SJ, Wu JY. Spiral
waves in disinhibited mammalian neocortex. J Neurosci. 2004 Nov 3;24(44):9897-
902. Petsche H, Prohaska O, Rappelsberger P, Vollmer R, Kaiser A. Cortical seizure
patterns in multidimensional view: the information content of equipotential maps.
Epilepsia. 1974 Dec;15(4):439-63.

Petsche H, Rappelsberger P, Trappl R. Properties of cortical seizure potential
fields. Electroencephalogr Clin Neurophysiol. 1970 Dec;29(6):567-78

Fuchs A., Friedrich R., Haken H., Lehmann D.: ‘Spatio-Temporal Analysis of
Multichannel alpha-EEG Map Series’, in: Computational Systems – Natural and
Artificial, H. Haken, ed., Springer, Berlin (1987)

Friedrich R., Fuchs A., Haken H.: ‘Spatio-Temporal EEG Patterns’, in: Rhythms
in Physiological Systems, H. Haken, H.P. Koepchen, eds., Springer, Berlin (1991)
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A

B C

D E

Figure 9.20. Rotating and spiral wave patterns seen in neural tissue. (A)
From Huang et al in a tangential dis-inhibited cortical slice; (B) From Fuchs et
al reconstructed from EEG electrodes in a human during alpha activity; (C) from
Ermentrout and Kleinfeld optical activity in the turtle visual area; (D) steady state
phases in a 20×20 array of nearest neighbor phase oscillators (H(φ) = sinφ); (E)as
in (D) but H(φ) = sinφ+ 0.5(cosφ− 1).

9.2.10 All-to-all coupling.

(Note that this section may be a bit technical and could easily be skipped.) In
this section, we consider the so-called Kuramoto model and in so doing introduce
a powerful method for analyzing large networks of neurons. We will start with a
very general system of phase models with additive noise and heterogeneities in their
frequency:

θ′j = ωj +
K

N

∑

k

H(θk − θj) + σdWj . (9.54)

Here dWj is the usual white noise process. K is the strength of the coupling which
we will regard as a parameter. We can assume without loss of generality that the
average value of H(φ) is zero for if it is nonzero, we can write H(φ) = H1(φ)+H̄ and
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then replace ωj by ωj +KH̄. The frequencies, ωj are taken from some distribution
(see below). Since we can always replace θj by θj + Ct, where C is a constant, we
can assume that the mean frequency is zero.

Rather that looking at the individual neurons, θj , the idea of the population
density method is to consider the distribution of phases, θ that any randomly chosen
neuron might take. Kuramoto studied a particular case when the noise is zero and
H(φ) = sinφ. His method was formal and we refer the reader to the excellent
review article by Strogatz (2000) to see how Kuramoto proceeded. Strogatz and
Mirollo devised a method based on the phase density which was more rigorous and
can be readily generalized such as to equation (9.54). (Strogatz describes his burst
of insight for using the population density method in his popular book, Sync. It
reminded one of the authors of the present volume of Kekule’s insight into the
structure of benzene, both occurring in a near dreamlike state.) Neu (1978) was the
first to introduce the notion of density to coupled oscillators, but he did not take it
to the extent that Strogatz and those who followed him did.

We will not attempt to rigorously derive the equations; rather we write down
an equation for the population density which should allow the reader to apply to
her own results and models. We assume that N → ∞ and let ρ(θ, ω, t) denote
the density of oscillators with uncoupled frequency ω and phase θ at time t. Note
that the oscillators cannot change their uncoupled frequency. Let g(ω) denote the
density function for the distribution of frequencies. We will define g on the real line
with

∫ ∞

−∞

g(ω) dω = 1.

The density, ρ, satisfies the continuity equation:

∂ρ

∂t
= − ∂

∂θ
J(θ, ω, t)ρ.

This equation simply says that the phase of a given oscillator evolves in time and

that total “mass” of the oscillators,
∫ 2π

0 ρ(θ, ω, t)dθ, is conserved. The flux is given
by dθ/dt so that

J(θ, ω, t) = ω − σ2

2

∂ρ

∂θ
+KQ(θ, t).

The first term is pretty obvious, the second is the diffusive flux from the noisy
inputs, dWj which as usual are independent. The last term is:

Q(θ, t) = lim
N→∞

N
∑

k=1

H(θk − θ).

The reader will recognize this as the average of H over the phases of the other
oscillators so that we can write:

Q(θ, t) =

∫ ∞

−∞

g(ω)

∫ 2π

0

H(φ− θ)ρ(φ, ω, t) dφ dω. (9.55)
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Thus, we have the following continuity equation:

∂ρ

∂t
=
σ2

2

∂2ρ

∂θ2
− ∂

∂θ
((ω +KQ(θ, t)) ρ) . (9.56)

Unlike the Fokker-Planck equations which we studied in earlier chapters, equation
(9.56) is nonlinear since Q is a functional of the density ρ. Because of the nonlin-
earity, it is difficult to write down any closed form solutions. However, one solution
is the fully asynchronous state in which the distribution of phases is uniform. Sub-
stitute ρ = 1/2π into equation (9.55) to see that Q = H̄ , the average value of H(θ)
over [0, 2π).. We can always absorb the average value of H into the frequency and
thus we suppose H̄ = 0. Plugging this into equation (9.56), we see that the uniform
density is in fact a solution. The key to Strogatz’ analysis (and, in fact, all other
analysis) is that we can linearize (9.56) about this stationary solution and study
stability as a function of the coupling strength, K. Let ρ = 1/2π+z. Then to lowest
order

∂z

∂t
=
σ2

2

∂2z

∂θ2
− ω

∂z

∂θ

+
K

2π

∫ ∞

−∞

g(ω)

∫ 2π

0

H ′(φ− θ)z(φ, ω, t) dω dφ.

Note that the dependence on θ appears through the convolution of z with the
derivative of H(θ). This linear equation is homogeneous with respect to t and to θ
and they must be 2π−periodic int θ so we can look for solutions of the form:

z(θ, ω, t) = einθeλtf(ω).

f(ω) is an unknown function which we must compute. Since H(θ) is periodic and
square integrable (well, we never actually asserted this, but for reasonable models,
it is), we can expand it in a trigonometric series:

H(θ) =

∞
∑

n=−∞

ane
inθ

and since H is real, a−n = ān. Finally, since H̄ = 0, we also assume a0 = 0. If H is
differentiable, then

H ′(θ) = i

∞
∑

n=−∞

nane
inθ.

With these preliminaries, we plug the solution z into the linearized equation and
obtain:

λf(ω) = (−inω − σ2n2

2
)f(ω) − inānK

∫ ∞

−∞

g(ω)f(ω) dω. (9.57)

The last part of the equation follows from the fact that

1

2π

∫ 2π

0

eim(φ−θ)einφ dφ
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vanishes unless n = m in which case it is einθ.We shall not worry about the essential
spectrum for this problem (Crawford and others ??? have proven that it lies in the
left half plane) and instead will focus on the discrete spectrum. Let

A =

∫ ∞

−∞

g(ω)f(ω) dω.

Then from equation (9.57), we can solve for f(ω):

f(ω) =
−ina−nKA

λ+ inω + σ2n2/2
.

Recalling how A is defined, we find the equation for A must satisfy:

A = −inAKa−n

∫ ∞

−∞

g(ω)
1

λ+ inω + σ2n2/2
dω.

Dividing through by A (since A = 0 is the zero solution) we obtain:

1 = −inKa−n

∫ ∞

−∞

g(ω)
1

λ+ inω + σ2n2/2
dω. (9.58)

We will study two cases: (i) no noise and (ii) no heterogeneity. In the first case, we
must have:

1 = −inKa−n

∫ ∞

−∞

λ− inω

λ2 + n2ω2
g(ω) dω. (9.59)

This is an equation for λ which depending on the function g(ω) may or may not be
possible to evaluate in closed form. Suppose that g(ω) is symmetrically distributed
around 0. Then equation (9.59) becomes:

1 = −2inKa−n

∫ ∞

0

λ

λ2 + n2ω2
g(ω) dω.

Finally, we make one last simplification. Suppose that H(φ) is an odd function,

H(φ) =
∑

n

bn sinnφ

so that an = −ibn/2 and the eigenvalue equation is then:

1 = nKbn

∫ ∞

0

λ

λ2 + n2ω2
g(ω) dω.

Stability of the asynchronous solution occurs asK changes if λ crosses the imaginary
axis. Clearly,λ = iβ is impossible, so that the only way to lose stability is through
a real eigenvalue. (We remark that if H has even components or if the frequency
distribution is asymmetric, then the zero eigenvalue will not generally occur and
instead stability will be lost through imaginary eigenvalues.) We will let λ tend to
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zero and use this to compute the critical value of the parameter, K. Let ω = λγ be
a change of integration variables. Then

∫ ∞

0

λ

λ2 + n2ω2
g(ω) dω =

∫ ∞

0

g(λγ)

1 + n2γ2
.

As λ→ 0, this integral is just

g(0)
π

2n
.

This, we find that for each n,

Kc(n) =
2

πg(0)bn
.

In particular, for Kuramoto’s case of a pure sinusoidal coupling, b1 = 1 and all
other bm = 0, Kc = 2/πg(0). If all the bj < 0, then the asynchronous state is always
stable. However, as long as g(0) > 0, if there is a single positive bn, then for strong
enough coupling the asynchronous state will destabilize. Since the mode exp(in)
becomes unstable with stronger coupling, standard bifurcation methods (see later
chapters when we explore spatial models), predict that the new solutions which
bifurcate from the asynchronous state will have the form:

ρ(ω, θ) =
1

2π
+ cf(θ) cosnθ.

where c is some small parameter.
We will leave case (ii) of noise with no heterogeneity as an exercise to the

reader. But we provide a start here. Referring to equation (9.57), we can set
f(ω) = 1 a constant since there is no frequency dependence. The integral with
respect to ω becomes 1 and we have:

λ = (−inω − σ2n2

2
) − inānK. (9.60)

If stability is lost for n > 1, then the solution which emerges will generally have n
peaks and is called a clustered state. Noise-free two-clustered states are left as an
exercise to the reader.

9.3 Pulse-coupled networks: solitary waves

The method of phase reduction provides a very general way to reduce systems of
coupled oscillatory neurons to simple phase models. However, it presumes that
the individual cells are intrinsically oscillatory. In the next chapter, we address
the behavior of networks with strong coupling, some of which are not intrinsically
oscillating. Recall that when a single nerve cell is stimulated, an action potential
propagates down the axon mediated by the diffusion of the potential along the un-
myelinated axon. Similar propagation of electrical activity can be found in networks
of neurons in which a spatially localized region is stimulated and results in the out-
ward spread of activity over distances of several millimeters. Figure 9.21 shows
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Figure 9.21. Propagating wave of activity in a brain slice preparation in
which the inhibition has been blocked (Pinto et al 2006) (a) shows where the slice
comes from (b) the exracellular potential recorded from a 16 electrode array (c) plot
of (b) in pseudocolor (d) simulation of an array of 200 HH neurons with excitatory
synaptic coupling and exponentially decaying spatial connectivity, (e) the membrane
potential from cells at position 25 and 125 in the array

an example of an experimental demonstration of synaptically generated waves in a
network of cortical cells with the inhibition blocked. A slice is removed from the
brain of a rat and bathed in a medium which blocks the effects of synaptic inhi-
bition. A stimulating electrode produces a brief local shock which causes neurons
to fire and this activity is transmitted via excitatory synapses to neighboring cells
exciting them and so on. The result is a wave which propagates at a ?? mm/sec.
This is slower than axonal propagation since the wave depends on the activation of
synapses rather than direct diffusive coupling. The figure also shows a simulation
of the Hodgkin-Huxley model coupled in a network of 200 neurons with excitatory
synapses.

We consider the following general system:

C
∂V

∂t
= −Iion(V, z, . . .) −

(

gsyn

∫ ∞

−∞

W (x− y)s(y, t) dy

)

(V (x, t) − Vsyn)(9.61)

∂z

∂t
= Z(V, z, . . .)

s(x, t) =
∑

m

α(t− tm(x))

where the sum is taken over all spikes produced by the neuron at spatial location x,
and α(t) is a predefined function which vanishes for t < 0 and represents the time
course of the synaptic conductance. z represents the possibly many gating variables
(such as the activation of potassium and inactivation of sodium). W (x) describes
the distance-dependent strength of interactions between neurons. We assume that
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W is symmetric, non-negative, and integrates to 1 over the whole line. For the
model in the figure, α(t) = exp(−t/5) and W (x) = exp(−|x|)/2. We define the time
of a spike to be that time at which the potential crosses so predefined threshold, VT .
In figure 9.21d each neuron spikes exactly one time during the course of the wave.
We can exploit this to construct and analyze the propagation of waves. Suppose
that (as in the simulation, but not in the experiment), each neuron fires exactly
once at time T (x). Then that cell contributes α(t−T (x)) to the other cells and the
total conductance produced by the wave is:

G(x, t) = gsyn

∫ ∞

−∞

W (x− y)α(t− T (y)) dy.

A constant speed traveling wave satisfies, T (x) = x/ν where ν is the velocity of
the wave. The simulations in the figure suggest that we look for traveling wave
solutions to the integro-differential equation. That is, we seek solutions of the
form, V (x, t) = v(x − νt), z(x, t) = u(x − ct) where v, u are functions of the single
variable, ξ = x − ct. We note that in these coordinates, the conductance, G(x, t)
can be written as

G(x, t) = g(ξ, ν) = gsyn

∫ 0

−∞

W (ξ − η)α(−η/ν) dη.

The traveling waves start at rest and end at rest. Thus equation (9.61) becomes
the non-autonomous ODE:

−νC dv
dξ

= −Iion(v, u) − g(ξ, ν)(v − Vsyn) (9.62)

−ν du
dξ

= Z(u, z).

We must solve this for v(ξ), u(ξ) satisfying:

(u(±∞), z(±∞) = (Vrest, zrest)

u(0) = VT .

Here (Vrest, zrest) is the resting state for the each neuron. Since traveling waves
are translation invariant, the second condition set the origin of the wave ξ = 0 to
be the point at which the neuron crosses threshold. We note that g(ξ) → 0 as
ξ → ±∞ since W (x) is integrable, α(t) decays as t → ∞ and vanishes for t < 0. If
the velocity, ν is positive, then the boundary condition at −∞ is simple to achieve
since the rest state is asymptotically stable and g decays to zero. On the other
hand, it is natural to ask how we can attain the decay of (v, u) to rest as ξ → ∞
since the rest state is unstable as a solution to (9.62) for ν > 0 and for ξ → ∞.
There is no proof for the existence of a wave speed, ν such that (v(ξ), u(ξ)) go to
the rest state as ξ → ∞. However, for simple models like the integrate-and-fire, the
solution can be explicitly computed.
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9.3.1 Integrate-and-fire model.

The analogue of (9.61) for an integrate and fire model is

τ
∂V

∂t
= Vrest − V + a(Vsyn − V )S(x, t)

where a = gsynRm and

S(x, t) =

∫ ∞

−∞

W (x− y)
∑

k

α(t− tk(y)) dy. (9.63)

Here, α(t) is the proscribed synaptic gating variable (e.g., it could be a simple
exponential, or difference of exponentials) and tk(x) represents the firing times of
a neuron at spatial point x. This says that the effect of other neurons on a neuron
at spatial point x depends on the distance (the function W (x)) and the times that
those neurons fire, Tk(y). We note that in this formalism, there could be delays to
the synapse and it is clear that we could also introduce delays that depend on the
distance. This makes the model more complex but it remains solvable. We have
absorbed any applied current to the model into the constant Vrest which we assume
is less than the threshold for firing. (Otherwise, the neuron would spontaneously
fire and we are interested on evoked waves, so we don’t want spontaneous activity.)
We shift the potential by Vrest, V̂ = V − Vrest so that the driving force for the
synaptic coupling is

Vsyn − Vrest − V̂ .

The equation is still difficult to analyze since the potential, V̂ is multiplied by
the synaptic activity, S(x, t) making it difficult to integrate the equation. Thus,
we make one more simplification. We replace the voltage-dependent drive by a
constant drive, Vsyn − Vrest. Noting that a is dimensionless, we absorb it into the
drive, Vdrive = (Vsyn − Vrest)gsynRm and now turn our attention to the simpler
problem:

τ
∂V

∂t
= −V + VdriveS(x, t) (9.64)

with S(x, t) as defined in (9.63). We have dropped the hats on the voltage for
notational simplicity. As in the conductance-based model, we suppose that there
is only one spike per neuron so that the index k can be dropped from the sum in
(9.63). By assuming that there is only one spike per wave, we don’t have to worry
about what happens after the wave passes through. This makes our work much
simpler. Equation (9.64) can be integrated with the integrating factor exp(−t/τ)
leading to the following equation:

V (x, t) = Ce−t/τ + Vdrive

∫ ∞

−∞

W (x− y)A(t− T (y)) dy (9.65)

where

A(t) =
1

τ

∫ t

0

α(t− s)e−s/τ ds.
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(The proof of this statement is left as an exercise.) We take C = 0 since we are
interested in what happens when the neurons all start from rest. The function
A(t) vanishes for t < 0 since the function α(t) vanishes for t < 0. A(t) is the
response to a passive membrane with time constant τ to a synaptic current of
the form α(t). An obvious generalization of equation (9.65) could include passive
dendrites between the synapse and the spike-generating zone of the neuron. In
this case, A(t) is the convolution of α(t) with the spatio-temporal Green’s function
for the dendrite evaluated at the spatial location of the synapse (see chapter ???).
(Coombes, Bressloff, and others have considered many of these cases; there are
differences as expected, but the basic theory remains identical.) Since each neuron
fires exactly once, this means that the membrane potential of a neuron at t = T (x)
must be equal to it’s firing threshold, VT (which has been shifted by Vrest) thus, we
must have

V (x, T (x)) = VT .

Evaluating (9.65) at t = T (x), we have the following functional differential equation:

VT = Vdrive

∫ ∞

−∞

W (x− y)A(T (x) − T (y)) dy. (9.66)

We note that if the neuron fires multiple times, we have to take into account the
resetting properties of the integrate and fire model and also that there will be a
family of firing times, Tk(x). This problem has been investigated by Osan, et al.

A traveling wave with velocity, ν satisfies, T (x) = x/ν. Keeping in mind that
A(t) is nonzero only if t > 0, expression (9.66) reduces to

VT

Vdrive
=

∫ x

−∞

W (x− y)A((x − y)/ν) dy

=

∫ ∞

0

W (y)A(y/ν) dy

≡ Q(ν).

This is just an algebraic equation for ν as a function of VT /Vdrive. For example, if
W (x) = exp(−|x|σ)/(2σ) and α(t) = exp(−βt), then

Q(ν) =
1

2

σν

ν2τ + σν(1 + τβ) + βσ2
.

Notice that Q(0) = 0 and as ν → ∞, Q(ν) → 0. Note also that Q(ν) has a single
maximum. Thus if VT /Vdrive is too big, we cannot solve

VT /Vdrive = Q(ν)

but that if it is small enough, then there are always two roots, ν. In exercise ???,
you are asked to draw this function and solve for ν. For most functions W (x), one
cannot evaluate the integral, Q; however, it is possible to prove some properties
(see exercise ***). Figure 9.22A shows a typical plot of Q(ν) and the calculation
of roots to Q(ν) = VT /Vdrive. As long as this latter quantity is small enough,
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Figure 9.22. (A) Calculation of the wave speed for single-spike traveling
waves as a function of the threshold and drive (B) Experimental velocity in a one-
dimensional cultured network as a function of the amount of excitatory synaptic
blocker, DNQX; (C) Same for a disinhibited slice.

there are two possible wave velocities, one slow and one fast. Intuition tells us
that if we increase the drive, the wave should travel faster; increasing the drive
corresponds to lowering the dashed line. The fast wave increases in speed and
the slow decreases. Thus, we would like to conclude that the fast wave is the one
that is observed experimentally and numerically. Indeed, that is the case as would
appear from figures 9.22B,C which show experimentally determined wave velocities
in two different preparations as the strength of the recurrent excitatory connections
is pharmacologically decreased. In 9.22B, neurons are grown in a one-dimensional
cultured array (Feinerman, et al) and the velocity of evoked waves is measured while
different concentrations of the excitatory synaptic blocker, CNQX are applied. The
authors of this paper have attempted to fit their data to a curve similar to that
in figure 9.22A. The slow velocity is estimated by applying a minimal stimulation
which results in a slow initial propagation that switches to the fast wave after a small
transient. Pinto et al (Figure 9.22C) observe a similar qualitative dependence of the
velocity on the strength of connections in a disinhibited cortical slice preparation.

9.3.2 Stability.

The stability problem for the traveling waves is difficult. However, we can explore
a simple version of stability called spatial stability. We suppose that T (x) = x/ν +
b exp(λx) where b is a small deviation. Plugging this into equation (9.66) we see
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that

0 = b

∫ ∞

−∞

W (x− y)A′((x− y)/ν)[eλx − eλy] dy.

Factoring out eλx and using the fact that A(t) and therefore A′(t) vanishes for t < 0,
we must have

0 =

∫ ∞

0

W (y)A′(y/ν)[1 − e−λy] dy ≡ E(λ).

This is the “Evans” function and zeros correspond to eigenvalues. Any eigenvalues
with positive real parts will lead to an exponential growth of T (x) away from the
traveling wave as x increases. In exercise ***, you show that if W (x) is a monotone
decreasing function of x on the positive real line and if A(t) ≥ 0, then the slow
wave (cf figure 9.22) is unstable. The stability of the fast wave is proven in Bressloff
(2000). Bressloff also considers periodic traveling waves and their stability as well
as some extensions to two-dimensional spatial domains.

Bressloff P C 2000 Traveling waves and pulses in a one-dimensional network
of excitable integrate-and-fire neurons J. Math. Biol. 40 16998

9.4 Adjoints and weak coupling using XPP

XPPAut contains an algorithm for finding the adjoint of any stable limit cycle
by integrating the adjoint equation backward. It also allows you to compute the
interaction function from the weak coupling reduction. subsectionComputing a limit
cycle and the adjoint. To use XPP to compute the adjoint, a necessary first step
to computing the interaction function H , we first have to compute exactly one full
cycle of the oscillation. We will use the Traub model with no adaptation and with
both gap junctional and synaptic coupling. The file in the appendix should do the
trick. We will look at:

v′1 = . . .+ gsyns2(Vsyn − v1)

v′2 = . . .+ gsyns1(Vsyn − v2)

when gsyn ≪ 1. Since the method of averaging depends on the two oscillators being
identical except possibly for the coupling, all you need to do is integrate the isolated
oscillator. Use the Traub file with gm = gahp = 0 and I = 1. Integrate the equations
for about 30 msec and click on Initialconds Last a few times to make sure you
have gotten rid of all transients. Now you are pretty much on the limit cycle. To
compute the adjoint, you need one full period. In many neural systems, coupling
between oscillators occurs only through the voltage and thus, the integral average
involves only one component of the adjoint, the voltage component. For whatever
reason, the numerical algorithm for computing the adjoint for a given component
converges best if you start the oscillation at the peak of that component. Thus,
since we will only couple through the potential in this example, we should start
the oscillation at the peak of the voltage. Here is a good trick for finding that
maximum. In the Data Browser click on Home which makes sure that the first
entry of the data is at the top of the window. Click on Find and in the dialog box,
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choose the variable v and for a value, choose 1000and then Ok. XPP will find the
closest value of v to 1000 which is obviously the maximum value of v. Now click
on Get in the Data window which grabs this as initial conditions. In the main
window, click on Initialconds Go to get a new solution. Plot the voltage versus
time. Use the mouse to find the time of the next peak (With the mouse in the
graphics window, click the button and move the mouse around. At the bottom of
the windows, read off the values). The next peak is at 23. In the Data window scroll
down to this time and find exactly where v reaches its next maximum. Note that it
is, as we suspected, at t = 23. In the main window , click on the nUmerics menu
and then Total to set the total integration time. Choose 23. Escape to the main
menu and click on Initialconds Go. Now we have one full cycle of the oscillation!
The rest is easy.

Computing the adjoint.

Click on nUmerics Averaging New adjoint and after a brief moment, XPP
will beep. (Sometimes, when computing the adjoint, you will encounter the Out

of Bounds message. In this case, just increase the bounds and it recompute the
adjoint.) Click on Escape and plot v versus time. This time, the adjoint of the
voltage is in the Data window under the voltage component.

9.4.1 Averaging

Now we can compute the average. Recall that the integral depends on the adjoint,
the original limit cycles and a phase-shifted version of the limit cycle:

X∗(t) ·G(X0(t+ φ), X0(t)).

In XPP, you will be asked for each component of the function G. For unshifted
parts, use the original variable names, e.g., x,y,z and for the shifted parts, use
primed versions, x’,y’,z’. The coupling vector in our example is

(s(t+ φ)(Vsyn − V (t), 0, . . . , 0).

We will take Vsyn = 0 for excitatory coupling. Thus, for our model, the components
for the coupling are (s’*(0 - v), 0, ..., 0). This says that we take the phase-
shifted version of the variable s, called s’ by XPP and multiply it by the drive.
With these preliminaries, it is a snap to compute the average. Click on nUmerics
Averaging Make H. Then type in the first component of the coupling, s’*(0-v)
and the 0 for the rest of the components. Then let it rip. In a few moments, the
calculation will be done. If your system has more than two columns in addition to
time, t (as this example does) then the first column contains the average function
H(φ), the second column contains the odd part of the interaction function, and
the third column contains the even part. Plot the function H by escaping back to
the main menu and plotting v versus time – remember v is the first column in the
browser after the t column. This is a periodic function.

Summarizing,
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1. Compute exactly one period of the oscillation – you may want to phase-shift
it to the peak of the dominant coupling component.

2. Compute the adjoint from the nUmeric Averaging menu.

3. Compute the interaction function using the original variable names for the
unshifted terms and primed names for the shifted terms.

9.5 Projects.

• Use the Izhikevich model or a similar “integrate-and-fire” model to compute
a PSTH for a weak perturbation and then use this to reconstruct the PRC.

• Synchrony without coupling. Two oscillators which are driven with com-
mon weak noise can synchronize even if they are not coupled (Teramae and
Tanaka, 2004). To see this, start with any two oscillators (for example, the
Izhikevich model) and drive them with a common white noise process, started
from slightly different initial conditions. Over time, they will converge to a
synchronous solution. In this project, you use the results of chapter Noise
to analyze the resulting equations. To simplify the analysis, we restrict our
attention to simple ring model oscillators which are continuous and differen-
tiable:

dx1 = a(x1)dt+ σdW

dx2 = a(x2)dt+ σdW

Assume that a(x) > 0, a(x+2π) = a(x) and P =
∫ 2π

0
dx

a(x) <∞. Then we can

regard each x as an oscillator

Step 1. Make a change of variables x = U(θ) where U ′ = a(U). Since a(U) >
0, this is an invertible transformation. Let f(x) be the inverse, so that
θ = f(x). Recall Ito’s formula when you make the change of variables.

Step 2. Recall that for the scalar oscillator, the adjoint, Z(θ) is given by
Z(θ) = 1/a(U(θ)). Use regular calculus to show that with the change of
variables in step 1, the equations are:

dθ1 = [1 +
σ2

2
Z ′(θ1)Z(θ1)]dt+ σZ(θ1)dW

dθ2 = [1 +
σ2

2
Z ′(θ2)Z(θ2)]dt+ σZ(θ2)dW.

Step 3. One solution to this SDE is θ1 = θ2 = θ. Let φ = θ2 − θ1. Then φ
satisfies:

dφ =
σ2

2
[Z ′(θ)Z(θ)]′φdt+ σZ ′(θ)φdW.

Again, using Itos, formula, let y = log(φ) and show that y satisfies:

dy

=

σ2

2
{[Z ′(θ)Z(θ)]′ − Z ′(θ)2}dt+ σZ ′(θ)dW.
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Step 4. The long time behavior of y(t) determines the stability of the syn-
chronous state. That is, if

λ ≡ lim
T→∞

1

T
(y(T ) − y(0))

is negative, then φ(t) will decay to zero. λ is the time average of y(t)
and we can replace this with the ensemble average:

λ =
σ2

2

∫ 2π

0

Pst(θ){[Z ′(θ)Z(θ)]′ − Z ′(θ)2}dθ.

Here Pst(θ) is the stationary distribution of θ which satisfies the SDE:

dθ = [1 +
σ2

2
Z ′(θ)Z(θ)]dt + σZ(θ)dW.

If the noise is small, then θ is nearly uniform and you can approximate
Pst(θ) = 1/(2π). Show that with approximation:

λ = −σ
2

2

1

2π

∫ 2π

0

Z ′(θ)2 dθ.

Conclude synchrony is stable.

Supplement the analysis with some numerical simulations. Additionally, add
independent noise to each oscillator, say, 10% of the common noise. Solve this
numerically and look at the stationary distribution of the phase-differences.

• Development and synchrony. During the development of the nervous system,
there are two important features of neural communication. First, there are
many electrical or gap junctions between cells. Second, the reversal potential
of GABA-ergic synapses is such that they actually act to depolarize rather
than hyperpolarize. In this project, you should perform the weak coupling
analysis for a pair (or more) of coupled neurons as the reversal potential of
the inhibition changes from, say -40 mV down to -75 mV. You should also
apply the weak coupling analysis to a gap junctionally coupled neuron. A
good choice for the membrane model is the Wang-Buszaki model (found in
the list of models in the appendix and also available on the web). Drive the
WB model so that it fires at about 40 Hz and use a fast GABA synapse such as
defined in the synapse chapter. Vary the reversal potential of the synapse and
compute the interaction function H(φ). Use this to predict whether a pair of
synaptically coupled neurons will synchronuze or fire in anti-phase. With this
“prediction”, couple two WB membrane modesl with weak inhibition and see
if the theoretical results agree. Look at larger networks either using a phase
model or the full blown network.

• Kuramoto and coupling. Suppose that instead of heterogenity in the frequen-
cies of the Kuramoto model, there is instead heterogenity in the coupling. In
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general, there is little one can do to analyze this case, but there is one type of
coupling which lends itself to rigorous analysis. Suppose that H(0) > 0 and
consider:

θj = ω +
1

N

∑

k

CjCkH(θk − θj).

The coupling coefficients Cj are taken from some distribution with mean µ
and variance σ. Develop a population density theory for this and analyze the
stability (and existence) of the asynchronous state. (You could probably do
this with Cj , Ck different.)

• Integrate and fire neurons and phase-locking. Consider a system of integrate
and fire neurons which we write simply as:

dVj

dt
+ Vj = Ij +

∑

k,l

Cjkα(t− tlk) −B
∑

l

δ(t− tlj)

where Cjk are the coupling currents and tlk are the firing times. The delta
function appearing on the right-hand side represents the reset when the neuron
fires. B is the distance between threshold and reset. Let E(t) = exp(−max(t, 0))
and let A(t) denote the integral

A(t) =

∫ t

0

e−t+sα(s) ds.

Show that we can rewrite this equation as:

Vj(t) = Vj(0)e−t + Ij(1 − e−t) − B
∑

l

E(t− tlj) +
∑

k,l

CjkA(t− tlk).

Now suppose that the integrate-and-fire neurons all fire with a period T (un-
known) so that they are phase locked. That is, tlj = lT + ζj . Let Vth denote

the threshold for firing; that is Vj(t
l
j) = Vth. Let

AT (t) =
∑

l

A(t+ lT ) and ET (t) =
∑

l

E(t+ lT ).

Show that a phase-locked solution for the integrate-and-fire model must sat-
isfy:

Vth = Ij −
B

1 − e−T
+
∑

k

CjkAT (ζk − ζj).

This equation is very similar to equation ** which provides a set of algebraic
conditions for locking in weakly-coupled oscillators. The only difference here
is that the coupling function AT depends on the ensemble period. Bressloff
and his collaborators have shown that many of the results proven for weakly
coupled oscillators also hold for synaptically coupled integrate and fire models.
As a project, you should evaluate some of these functions and look at, say, a
pair of neurons or an array of neurons in a circle and compute the conditions
for phaselocking. In the case of neurons in a circular array, you could also
find the algebraic conditions for a traveling wave.
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• Solve the identical frequency, noisy, Kuramoto density model numerically as
follows. Assume that ρ(θ, t) can be written as a finite number of terms:

ρ(θ, t) =

N
∑

n=−N

pn(t)einθ.

Write
H(φ) =

∑

m

hme
imθ.

Show that
∫ 2π

0

H(φ− θ)ρ(φ, t) dφ = 2π
∑

n

h−npn(t)einθ.

From this, you should be able to write a series of ordinary differential equations
for pn(t) satisfying:

p′n(t) = −σ2n2/2pn − 2πin
∑

k

h−kpkpn−k.

Write these in real coordinates to get 2N + 1 differential equations. If, for
example, H(φ) = K sinφ, then hk vanishes except when k = ±1 so this is a
very simple set of equations. In the case for which H is the pure sine model,
show that the equations reduce to:

p′n = −σ2n2/2pn +Kπn[p1pn−1 − p−1pn+1].

Finally, since H is odd, we can assume that the density is symmetric so that
p−j = pj and thus, this becomes a set of N ODEs:

p′n = −σ2n2/2pn +Kπnp1[pn−1 − pn+1], , n = 1, . . . , N.

The end conditions are p0 = 1/(2π) and pN+1 = 0. The condition at n = 0
comes from the fact that

∫ 2π

0

ρ(θ, t) dθ = 1.

The condition at n = N + 1 is just our truncation. Use whatever methods
you have at your disposal (analytic, numerical) to study the stability of the
state pj = 0, j = 1, . . . , N and compute the bifurcation diagram for K as a
parameter. (Note that this numerical approximation of the PDE is consider-
ably better than simply applying the method of lines to the density model.)
If you are ambitious, you can try H(φ) as a sum of several sines and analyze
the emergence of clustered states.

• (Noisy synchrony.) A model that has been used for a pair of coupled neurons
in the presence of noise is:

dθ1 = (ω1 +H(θ2 − θ1))dt+ σdW1

dθ2 = (ω2 +H(θ1 − θ2))dt+ σdW2
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where dWj is white noise. Subtract these two equations and let φ = θ2 − θ1
to obtain:

dφ = (δ − 2G(φ))dt + σ
√

2dW

where δ = ω2 − ω1 and G(φ) is the odd part of H(φ). The
√

2 factor arises
because the sum of two wiener processes with unit variance and zero mean
is also a wiener process with variance 2. Write a Fokker-Planck equation for
this Langevin equation. For the case δ = 0 write the steady state probability
density for φ. (The more general case is doable but not so compactly.) Pfeuty
et al have shown that this density function is related to the spike-time cross
correlation of the two neural oscillators.

9.6 Exercises

1. Suppose that X0(t) is a T−periodic solution to the differential equation:

dX

dt
= F (X)

where F (X) is C1. Show that X0(t + t0) is also a solution foe any number
t0. Let A(t) = DXF (X0(t)) be a the matric formed by linearizing the above
ODE around the limit cycle. Show that

dY

dt
= A(t)Y (t)

has a nontrivial periodic solution, Y (t) = dX0(t)/dt. Consider the adjoint
equation:

dX∗

dt
= −A(t)TX∗(t).

Show that if X∗(t) is a periodic solution to the adjoint, then

X∗(t) · dX0

dt
= 1

for all t.

2. Floquet theory is the periodic analogue of stability theory for fixed points.
Floquet’s theorem states the following: Consider the homogeneous linear pe-
riodic system:

dx

dt
= A(t)x, A(t+ T ) = A(t), T > 0. (9.67)

Then every fundamental solution, X(t) to (9.67)has the form

X(t) = P (t)eBt

where P (t) is a T−periodic matrix and B is a matrix. The matrix C = eBT is
called the monodromy matrix and the eigenvalues of C are called the Floquet
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multipliers. If the Floquet multipliers are all inside the unit circle then the
origin is an asymptotically stable solution to (9.67).

If A(t) is as in the previous exercise, show that there is always at least one
Floquet multiplier with value 1.

A classic result from linear differential equations is

det X(t) = e

∫

t

0
Tr A(s) ds

det X(0).

Use this to show that a planar limit cycle:

u′ = f(u, v) v′ = g(u, v)

is asymptotically stable if

∫ T

0

fu(t) + gv(t) dt < 0.

Note that fu means the partial derivative of f(u, v) with respect to u evaluated
along the limit cycle.

3. Show by direct calculation that the adjoint L∗ of the operator L in equation
(9.4) under the inner product (9.5) is:

L∗y = −dy(t)
dt

−A(t)T y(t).

4. Let Φ(t) ba a fundamental solution to the differential equation:

dX

dt
= A(t)X(t).

Show that Ψ(t) =
(

Φ(t)−1
)T

satisfies the adjoint equation:

dY

dt
= −AT (t)Y (t).

Suppose that A(t) is as in exercise 1 so that there is a unique (up to scalar
factor) periodic solution to (9.67). Let the first column of Φ(t) be this periodic
solution. Show that the first column of Ψ(t) is also periodic.

5. Consider the normal form for a Hopf bifurcation in polar coordinates:

r′ = r(1 − r2) θ′ = 1 + q(r2 − 1).

Suppose that (r(0), θ(0)) = (r0, θ0) and r(0) > 0. Find the asymptotic phase
and use this to sketch the isochrons. (Hint: let R = r2 and rewrite the
equations in terms of R.) When q = 0, this oscillator is sometmes called the
radial isochron clock. Why?
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6. Consider the LIF model:

τ
dV

dt
= I − V

with I > 1 such that when V = 1, it is reset to 0. Define phase zero as the
moment of reset to 0. Suppose that at time (phase) t < T the voltage is
incremented by an amount a. If V +a > 1 the voltage is immediately reset to
0. Compute the PTC for this model and show that for any a > 0, the PTC is
type 0.

7. Consider the model oscillator

r′ = r(1 − r) θ′ = 1.

The period of this is 2π. In rectangular coordinates, (u, v) = r(cos θ, sin θ),
we define the zero phase to be the peak of u(t). Thus, θ = 0 is the zero
phase. Suppose at time (phase) t u(t) is instantly incremented by an amount
a. Compute the PTC for this model as a function of a. For what values of a
is this type 1 resetting? Can you offer a geometric interpretation of this?

8. Consider the QIF on the whole line:

dV

dt
= V 2 + I

where I > 0 and such that when V = +∞ it is reset to −∞. Define phase
zero to be the time of reset. You have already shown that the period of this
oscillator is T = π/

√
I. Suppose that at time (phase) t ∈ [0, T ), the voltage is

instantly incremented by an amount a. Compute the PTC for this and show
that no matter how big a is, it is always type 1 resetting.

9. Davis Cope derives a formula for the adjoint equation for arbitrary nonlinear
planar systems, u′ = f(u, v), v′ = g(u, v). He shows that

(

u∗(t)
v∗(t)

)

=

(

u′(t)
u′(t)2+v′(t)2

v′(t)
u′(t)2+v′(t)2

)

+ c(t)

(

−v′(t)
u′(t)

)

(9.68)

where c(t) is periodic and satisfies:

dc

dt
= −(fu + gv)c+

2u′(t)v′(t)[fu − gv] + (v′(t)2 − u′(t)2)[fv + gu]

(u′(t)2 + v′(t)2)2
. (9.69)

Here fu is the derivative of f(u, v) with respect to u evaluated along the limit
cycle. fv, gu, gv are similarly defined. Prove this formula satisfies the adjoint
equation:

u∗t = −fuu
∗ − guv

∗, v∗t = −fvu
∗ − gvv

∗

along with the condition that u∗u′+v∗v′ = 1. Also, prove that if the limit cycle
is asymptotically stable, then the equation for c(t) has a periodic solution.
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10. We saw how a ring model has a strictly positive PRC. So, suppose that you
are given a model with a continuous positive PRC, ∆(t). Given the positive
PRC, does there exist a function f(x) > 0 such that the ring model

x′ = f(x)

has the given PRC? (Note that the ring length is unspecified and it depends
on the choice of PRC.) For the most part, you cannot arrive at a closed
form solution for f(x). However, for some problems, it is possible. Try,
∆(t) = a+ t(1 − t). Try ∆(t) = exp(t).

11. Compute the adjoint for

(a) the LIF model:

τ
dV

dt
= V0 − V

with the condition that if V (t) = Vspike < V0, the voltage is reset to
Vreset.

(b) the QIF model with finite reset:

dV

dt
= aV 2 + I

with I > 0 and such that if V = Vspike then V is reset to Vreset.

12. Ermentrout et al considered the QIF with infinite reset and with a delayed
inhibition. Consider

dV

dt
= V 2 + I

such that at time τ < T after firing, the voltage is decremented by an amount
b > 0. If T is the period of the oscillation without the inhibition, compute
the period as a function of τ and b. For τ, b fixed, compute the PRC for this
model for a stimulus which arrives at time t after the spike and increments V
by a > 0. How does the shape of this PRC compare to the uninhibited PRC.

13. In this exercise, you consider the Traub model for hippocampal pyramidal
cells (see the appendix for the equations) in which a small high-threshold
calcium current is added (to produce calcium only when the cell spikes) and
two types of adaptation are included. There is a M-type voltage dependent
calcium current acting at rest and a calcium-dependent potassium current
acting only when there is a spike. The conductances for these are respectively
gm and gahp. You should first compute the bifurcation diagram for this model
when both are set to zero as the current varies. Now change the adaptation
to 0.5, 1.0, 1.5 and compute the bifurcation diagram. Note that the onset of
spiking is still via a saddle-node. Do a similar analysis with gm and see that
the onset of spiking is via a Hopf bifurcation. Pick gahp = 0, gm = 0 and
add sufficient current to get a 40 Hz oscillation. Compute the adjoint. Add
gahp = 0.5 and enough current so that the frequency stays at 40 Hz. Compute
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the adjoint and compare to the adaptation-free adjoint. Finally, set gahp = 0
and gm = 0.5 and add sufficient current to keep the frequency at 40 Hz.
Compute the adjoint. Thus show that the type of adaptation has a drastic
effect on the adjoint.

14. In the previous exercise, you show how some outward currents can affect
the PRC. Take the above Traub model without the calcium and adaptation
currents. Add to this the sag current (which is an inward current - this is in the
appendix in the sag+inward rectifier model) using the McCormick parameters
and pick gh = 4. Apply current so that the frequency is 40 Hz. Compute the
adjoint. You should see that there is a negative region in it. Check the nature
of the bifurcation to a limit cycle. Is it now a Hopf? Conclude that like the
M−type potassium current (previous exercise), the sag converts a saddle-node
limit cycle to a Hopf.

15. Derive the analogue of equation (9.21) when the oscillators have slightly dif-
ferent periods, say, T0 and T0 + c Suppose ∆(φ) = a sinφ with −1 < a < 0.
Study the existence of fixed points as c varies with a held fixed. Use a com-
puter to solve for the fixed points and determine the maginitude of c such
that there exists a stable fixed point.

16. Suppose the PRC is ∆(φ) = b(1 − cosφ). What is the behavior of the map
(9.21)? Can you prove that the synchronous state is asymptotically stable?
(Hint: What is the behavior of the map x→ x+ cx2?)

17. (i) Consider the map (9.27) and use d(φ) = a sin 2πφ. For what values of a is
synchrony a stable fixed point when ρ = ω1/ω2 = 1. Fix a = −.1 and vary ρ.
Plot the map and figure out for what values of ρ there is a saddle-node and
locking is lost. You should be able to do this analytically, since a saddle-node
occurs when (9.28) is exactly equal to 1. (ii) Suppose that dj(φ) = aj sin 2πφ.
Even though the two PRCs are different, show that synchrony is still a solution
and find conditions for which it is stable.

18. Derive a map for 2:1 locking of two oscillators satisfying (9.25), (9.26) with
ω1 ≈ 2ω2. That is suppose the firing pattern is 1 1 2 and so on. Let φ
denote the phase of 2 when 1 fires the first time. Assume that φ is close
enough to 0.5 so that oscillator 1 fires again before oscillator 2 fires. Use this
sequence to devise a map for φ. Find a condition like (9.28) for determining
stability. Suppose that the normalized PRC is an odd periodic function so
that d(0) = d(1/2) = 0. Show that if the frequency ratio is exactly 2:1, then
φ = 1/2 is the fixed point.

19. In order to better understand the shape of the map M(t) in section x.2.3, we
will examine the behavior near threshold. Recall that the I cell is a class I
neuron so that at threshold, it undergoes a saddle-node bifurcation. Thus, we
approximate its dynamics as

V ′ = qV 2. (∗)
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Suppose that after it fires, the I cell is set to V = −V0 < 0. The larger is
V0 the more refractory the cell is. Now, t∗ milliseconds later the second E
spike arrives to the I cell and suppose that all it does is increment V (t) by an
amount A. If V (t∗) + A > 0, then the I cell will fire (reach infinity) in finite
time. Compute this firing time, tf and show that it can be written as

tf (t∗) = c+
a

t∗ + b

where c, a, b are parameters. In particular, the parameter b can be positive or
negative. This simple function provides a good fit to the map M(t) and each
parameter has a nice physical interpretation in terms of the size of the input
A and the degree of refractoriness, V0. (Hint: Solve (*) starting at t = 0 with
the given inital data up to t∗. Then increment V (t) by A and solve (*) up to
the point that V (t) becomes infinite. This is tf (t∗).)

20. What is the nature of the bifurcation which occurs in the map (9.29) when
M ′(τ) = −1? (If you need to recall what sorts of bifurcations occur in maps,
see the appendix for a review of dynamical systems.) Since we know that for
sufficient delay, the synchronous state can be stable, explain why a very long
delay (thus, where M ′(t) is small) might also be bad. (Hint: If M ′(t) = −ǫ
where ǫ is a small positive parameter, then the map reduces to:

zn+1 = µ− zn + 2ǫzn

What is the fixed point for this and how long does it take to settle into it?)

21. (Mirollo and Strogatz) (a) Analyze the map for two coupled Mirollo-Strogatz
oscillators when ǫ < 0. (b) Analyze the map for f ′′(t) > 0 for ǫ < 0 and ǫ > 0.

22. (Mirollo and Strogatz II.) Plot h(φ) and R(φ) when

a.

f(t) =
1 − e−ct

1 − e−c

for different values of c and ǫ. This, of course, is the profile for the LIF.
Explicitly compute the interval of existence for R(φ).

b. Repeat (a) for the firing map:

f(t) =
tan[a(x− 1/2)] + tan(a/2)

2 tan(a/2)

where 0 < a < π. This is the map which occurs for a quadratic integrate-
and-fire model with finite reset. It is both concave and convex!

23. Using the following model for the PRC:

V ∗(t) = 1 − cos(t) − sin(t) + sin(2t)/2
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and s(t) = I0te
−βt as the synaptic current,compute Hodd(φ). (Hint, use for-

mula (9.44) and set α = β.) Compute the derivative of Hodd at φ = 0 and
φ = π and plot the result for excitatory (I0 = 1) and inhibitory (I0 = −1)
coupling as a function of β. Recalling that β large means low frequency, con-
clude that this simple model with inhibition could explain the results of the
finger tapping experiment.

24. Find conditions for when the pronk is stable. Prove that the walk exists
as a solution to equation (9.45) if and only if Hb(x) = Hc(x). Show that
under these assumptions the pace, trot, and bound all exist as phase-locked
solutions. Find conditions such that the walk is asymptotically stable. Prove
that if the trot is asymptotically stable, then so is the pace. Prove that it is
possible for the bound to be stable, but the trot and pace could be unstable.
Find conditions such that the walk is stable and the trot/pace is unstable and
vice versa. (Hint: you will have a 4 × 4 matrix, but it will have a great deal
of symmetry so you should be able to explicitly write down the eigenvalues
since the eigenvectors will be chosen from the 4th roots of unity.)

25. Make a model consisting of two sets of the excitatory-inhibitory pair (9.46)
and couple them with all four types of coupling (one at a time), E-¿E, E-¿I,
etc and start with a variety of initial conditions. Describe all the stable states
and compare this to the predictions you would get from figure 9.16.

26. Consider the anisotropic chain for j = 1, . . . , N :

θ′j = ω +Ha(θj+1 − θj) +Hb(θj−1 − θj).

Suppose that the end conditions are either periodic θ0 = θN and θN+1 = θN

or reflecting, θ0 = θ1 and θN+1 = θN . Prove that the synchronous solution is
asymptotically stable if and only if H ′

a(0) > 0 and H ′
d(0) > 0.

27. Consider the same chain as in the previous problem with periodic bound-
ary conditions. Show that there is a wave-like solution of the form, θj =
Ωt+ 2πj/N , determine Ω and also the stability of this solution. (This leads
to a tridiagonal matrix, whose eigenvalues are pretty easy to compute.) If
synchrony (previous problem) is stable, then you should be able to prove that
this traveling wave is also stable if N is sufficiently large.

28. Show that a 4 × 4 network of nearest neighbor phase oscillators has the fol-
lowing phase-locked pattern and compute the unknown quantity 0 < ξ < π/2.
Prove that this solution is also asymptotically stable using theorem ???.

0 ξ π/2 − ξ π/2
−ξ 0 π/2 π/2 + ξ

3π/2 + ξ 3π/2 π π − ξ
3π/2 3π/2 − ξ π + ξ π

29. Show that the only terms contributing to instability of the asynchronous state
for the all-all coupled oscillator model with noise and no heterogeneity are the
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odd parts of H(φ). Equation (9.60) should provide the crucial clues. Compute
the critical values of K for each n.

30. (Two-cluster states.) Suppose that there areN all-all oscillators with identical
frequencies and no noise:

θ′j = ω +
1

N

N
∑

k=1

H(θk − θj).

Let us look for a solution such that the first m oscillators are synchronized
and the remaining N −m oscillators have a phase difference φ with respect
to the first group. As long as m < N and φ 6= 0, this is called a two-cluster
state. Let p = m/N . Show that a two cluster state exists if and only if

Ω = ω + pH(0) + (1 − p)H(φ)

Ω = ω + pH(−φ) + (1 − p)H(0).

Here Ω is the unknown ensemble frequency. You can parametrize this using
p as:

p =
H(φ) −H(0)

H(φ) +H(−φ) − 2H(0)
.

Show that there is always a solution to this for φ = π and p = 1/2. This
is a balanced cluster state with half of the oscillators in antiphase with the
others. If H is an odd function, show that p can be anything and φ = π (since
H(π) = H(0) = 0). Stability of the general clustered state is a more difficult
problem, but with some decent linear algebra skills, you should be able to do
it. The stability matrix has a nice simple block form.

31. Derive equation (9.65) from (9.64)

32. Derive the equation in the text for Q(ν) when W (x) = exp(−|x|/σ)/(2σ) and
α(t) = β exp(−βt) Plot the wave speed as a function of the ratio, VT /Vdrive.

33. Suppose that W (x) ≥ 0 and A(t) ≥ 0, A(0) = 0 and both functions are
integrable over [0,∞). Consider the expression:

Q(η) =

∫ ∞

0

W (y)A(y/ν) dy.

Prove that Q(0) = 0 and Q(∞) = 0. What happens if you relax the assump-
tion that A(0) = 0? If W (y) > 0 and A(t) > 0 except at t = 0 where it
vanishes, prove Q(ν) > 0 for 0 < ν <∞.

34. Suppose that α(t) = β exp(−β(t − τd)) where τd is a delay (fixed and space-
independent). Analyze the existence and stability of the one spike waves in
this case. (See Golomb & Ermentrout, 2000).
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35. Suppose that there is a delay due to the conduction velocity so that it depends
on distance. Justify the expression below for S(x, t) below and analyze the
existence of traveling waves in this case when there is an exponential weight
W (x) = exp(−|x|/σ)/(2σ) and α(t) = exp(−βt).

S(x, t) =

∫ ∞

−∞

W (x− y)α(t− T (y) − |x− y|/c) dy

where c > 0 is the conduction velocity.

36. (Instability of the slow wave.) In this exercise, you prove that the slow wave
is unstable by showing that there is a real positive root to the Evans function:

E(λ) =

∫ ∞

0

W (y)A′(y/ν)[1 − e−λy] dy.

Consulting figure 9.22, it is clear that for the slow wave, Q′(νslow) > 0. We
suppose that W (x) is monotone decreasing for x > 0, differentiable, and that
A(t) > 0 for t > 0.

(a) Clearly E(0) = 0. As λ→ ∞,

E(λ) →
∫ ∞

0

W (y)A′(y/ν) dy ≡ E∞.

By integrating E∞ by parts, conclude that E∞ > 0.

(b) Differentiate Q(ν) with respect to ν and differentiate E(λ) with respect
to λ. Show that the sign of E′(0) is the opposite of Q′(ν).

(c) Use the previous two parts of this exercise to show that at ν = νslow,
E(λ) < 0 for small positive λ and E(λ) > 0 for large λ. Thus conclude
that there is a real positive value of λ such that E(λ) = 0 and that the
slow wave is unstable.
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Chapter 10

Networks

10.1 Introduction

In this chapter, we discuss a very different approach to studying networks of neurons
than that presented in the previous chapter. In the previous chapter, we assumed
that each cell is an intrinsic oscillator, the coupling is weak and details of the spikes
are not important. By assuming weak coupling, we were able to exploit powerful
analytic techniques such as the phase response curve and the method of averaging.
In this chapter, we do not assume, in general, weak coupling or the cells are intrinsic
oscillators. The main mathematical tool used in this chapter is geometric singular
perturbation theory. Here, we assume that the model has multiple time-scales so
we can dissect the full system of equations into fast and slow subsystems. As we
shall see, this will allow us to reduce the complexity of the full model to a lower-
dimensional system of equations; these will be equations for the slow variables.
We have, in fact, introduced this approach in earlier chapters when we discussed
bursting oscillations and certain aspects of the Morris-Lecar model.

Complex population firing patterns, similar to those described in this and sub-
sequent chapters, are believed to play a critical role in many brain functions. For
example, oscillatory behavior has been observed in many systems; it has been impli-
cated in sensory processing, the generation of sleep rhythms, Parkinsonian tremor
and motor activity. The spatiotemporal structure of spiking activity can be very
complicated. For example, neurons may fire action potentials in a synchronous or
partially synchronous manner, or the spiking of different neurons may be uncorre-
lated. The activity may propagate through the population in a wave-lake manner
or may remain localized.

We note that population rhythms arise through interactions between three
network components. These are: (1) the intrinsic properties of cells within the
network; (2) the synaptic properties of connections between neurons; and (3) the
topology of network connectivity. Each of these may depend on numerous param-
eters and the first two usually involve multiple time-scales. We have described
intrinsic properties of cells in the preceding chapters. A cell’s dynamics depends

243
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primarily on its channel gating variables. These may activate or inactivate on dis-
parate time-scales and a single cell may exhibit a variety of firing patterns including
continuous spiking, bursting oscillations or even chaotic dynamics. As described in
Chapter ??, there are several classes of synapses. Synapses may be chemical or
electrical and chemical synapses may be excitatory or inhibitory. Different types
of excitatory or inhibitory synapses have distinct properties that determine how
one cell influences another. Finally, we note that there are many possible classes
of network architectures. The connectivity may be sparse or dense; that is, each
cell may communicate with a small number or a large number of other cells. The
connectivity may be random or it may be highly structured. We also note that a
given neuronal system may include many different types of cells with different types
of synaptic connections.

A goal of this chapter is to consider reduced two-variable neuron models and
classify the types of activity patterns that emerge. We also wish to understand how
the activity depends on the types of cells and synapses in the network, as well as
the network architecture. One traditional view is that excitatory synapses always
tend to promote synchronous activity in which different cells fire spikes at the same
time. Inhibitory synapses, on the other hand, are thought to promote out-of-phase
behavior. This traditional view is, in fact, often true. However, simple examples
demonstrate that it may not always be the case. The network behavior may depend
not only on whether the synapses are excitatory or inhibitory, but on the rates at
which the synapses turn on or turn off. The dynamics also depends on how synaptic
properties interact with intrinsic properties of cells within the network.

10.2 Mathematical Models for Neuronal Networks

Recall that a network consists of three components. These are: (1) the individual
cells within the network; (2) the synaptic connections between cells; and (3) the
network architecture. We now describe how each of these components is modeled
for the analysis presented in this chapter. We also describe different categories of
cells, synapses and network architectures.

Individual Cells

Throughout this chapter, we consider a general two-variable neuron model of
the form

dv

dt
= f(v, w)

dw

dt
= ǫg(v, w). (10.1)

We have seen several examples of models that can be written in this form. This
includes the Morris-Lecar equations. We write the equations in a rather general
form to emphasize that the analysis does not depend on the specific forms of the
equations.

In (10.1), v is the membrane potential of the cell, w is a channel gating variable
and ǫ is a small positive parameter. Hence, w represents a channel state variable that



i i

i

i

i

i

10.2. Mathematical Models for Neuronal Networks 245

either activates or inactivates on a time-scale slower than the other processes. The
main mathematical technique used throughout this chapter is geometric singular
perturbation theory.

We need to make some assumptions on the nonlinear functions f and g. We
assume that the v-nullcline {f = 0} defines a cubic-shaped curve and the w-nullcline
{g = 0} is a monotone increasing curve. Moreover, f > 0 (f < 0) below (above)
the v-nullcline and g > 0 (< 0) below (above) the w nullcline. Note that these
assumptions are satisfied by the Morris-Lecar model for a robust range of parameter
values.

We would like to understand how firing properties of individual cells influence
network behavior. For this reason, it would be useful to somehow classify the firing
properties of cells. One simple way to do this is that the cells may be oscillatory
or excitable; that is, a cell may or may not fire intrinsically without any synaptic
input. Recall that this depends on whether (10.1) has a fixed point that lies along
the middle or left branches of the cubic shaped v-nullcline.

If (10.1) is oscillatory, then there are several possible ways to classify the
dynamics. One is in terms of the frequency of oscillations. Another is in terms of
the duty-cycle. This is defined to be the ratio of the time the cell spends in the active
phase over the time it spends in the silent phase. We sometimes interpret oscillations
with a long duty cycle as corresponding to bursting activity and oscillations with a
short duty cycle as corresponding to a spiking neuron.

In the following sections, we will demonstrate that the frequency or duty cycle
of a cell may have a significant influence on network behavior. In particular, it may
be crucially important in determining whether neurons synchronize or not.

Synaptic Connections

We model the synaptic current as described in Chapter ??. Most of the dis-
cussion will be concerned with chemical synapses. In this case, the synaptic current
can be written as:

Isyn = gsyns(Vpost − vsyn) (10.2)

where gsyn is a constant maximal conductance, Vpost is the membrane potential of
the post-synaptic cell and vsyn is the synaptic reversal potential. The dependent
variable s represents the fraction of open channels and, as in (??), depends on the
presynaptic membrane potential. We will usually assume that s satisfies a first
order equation of the form:

ds

dt
= α(1 − s)H∞(Vpre − VT ) − βs. (10.3)

Here, α and β represent the rates at which the synapse turns on and turns off,
respectively. Recall that different types of synapses may turn on or turn off at very
different rates. For example, GABAB synapses are slow to activate and slow to
turn off, compared with GABAA and AMPA synapses. We assume that H∞ is a
smooth approximation of the Heaviside step function (or actually is the Heaviside
step function) and VT is some threshold.
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The model of a pair of mutually coupled neurons is then:

dvi

dt
= f(vi, wi) − gsynsj(vi − vsyn)

dwi

dt
= ǫg(vi, wi) (10.4)

dsi

dt
= α(1 − si)H∞(vi − VT ) − βsi

Here i and j are 1 or 2 with i 6= j. We are assuming that the cells are identical so
that the nonlinear functions f and g do not depend on the particular cell. Later,
we consider networks with heterogeneities.

Note that the coupling between the cells is through the synaptic variables
sj . In particular, suppose that cell 1 is the pre-synaptic cell. When cell 1 fires a
spike, its membrane potential v1 crosses the threshold VT . The synaptic variable s1
then activates at a rate that depends on both α and β and this then changes the
membrane potential of the cell 2, the post-synaptic cell. When cell 1 is silent, so
that v1 < VT , then s1 decays at the rate β.

We wish to classify different types of synapses in order to study how synaptic
interactions influence network behavior. A traditional way to classify synapses is
whether they are excitatory or inhibitory. This depends primarily on the synaptic
reversal potential vsyn. For example, the reversal potential of the AMPA receptor is
VAMPA = 0 mV . This is greater than the post-synaptic cell’s resting potential, so
the AMPA synapse is excitatory. The principal inhibitory synapses involve the neu-
rotransmitter GABA. Recall that the reversal potential of GABAA varies between
−81 and − 60mV ; this is usually less than the cell’s resting potential. However,
there are examples of cells in which the GABAA reversal potential is very near or
even above rest and GABAA synapses may be excitatory.

We can further classify synapses depending on the rates at which they activate
or deactivate. For example, GABAA synapses are often refereed to as fast-inhibitory
synapses, while GABAB synapses are referred to as slow-inhibitory synapses. As
discussed above, the rates at which the synapses turns on or off depend on the
parameters α and β.

We will also classify synapses as being direct or indirect. The synapses we
have considered so far are direct synapses since they are activated as soon as a
membrane crosses the threshold. To more fully represent the range of synapse
dynamics observed biologically, it will sometimes be necessary to consider more
complicated connections. These will be referred to as indirect synapses, and they
are modeled by introducing a new independent variable xi for each cell in the
network. To model indirect synapses, we replace the third equation in (10.4) with
following the equations for each (xi, si):

dxi

dt
= ǫαx(1 − xi)H∞(vi − VT ) − ǫβxxi

dsi

dt
= α(1 − si)H(xi − θx) − βsi. (10.5)

The constants αx and βx are assumed to be independent of ǫ. The variable x
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corresponds to a secondary process that is activated when transmitters bind to the
postsynaptic cell. The effect of the indirect synapses is to introduce a delay from
the time one cell jumps up until the time the other cell feels the synaptic input.
For example, if the first cell jumps up, a secondary process is turned on when v1
crosses the threshold VT . The synapse s1 does not turn on until x1 crosses some
threshold θx; this takes a finite amount of (slow) time since x1 evolves on the slow
time scales, like the wi.

Network Architecture

There are many possibilities for network architecture. For example, the archi-
tecture may be global or local, dense or sparse, random or structured. In general, we
model an arbitrary network as:

dvi

dt
= fi(vi, wi) − gi

syn(
∑

Wijsj)(vi − vi
syn)

dwi

dt
= ǫgi(vi, wi) (10.6)

dsi

dt
= αi(1 − si)H∞(vi) − βisi

Here we are assuming that the cells are heterogeneous so that the nonlinear functions
f and g may depend on the cell i. Moreover, the reversal potential vsyn, as well
as the rates at which the synapses turn on and turn off, depends on the cell, so
some of the cells may be excitatory while some of the cells may be inhibitory. The
sum in (10.6) is over all presynaptic cells and the constants Wij represent synaptic
weights. They can viewed as the probability that there is a connection from cell j
to cell i.

It is sometimes convenient to consider the limiting equations as the number
of cells in the network becomes unbounded. We assume that the cells lie in some
domain D and v(x, t) represents the membrane potential of the cell at position x ∈ D
at time t. We now assume that the cells are homogeneous; it is straightforward to
generalize this to heterogeneous networks. Then, after an appropriate rescaling,
(10.6) becomes

∂v

∂t
= f(v(x, t), w(x, t)) − gsyn(v(x, t) − vsyn)

∫

y∈D

W (x, y)s(y, t)dx

∂w

∂t
= ǫg(v(x, t), w(x, t)) (10.7)

∂s

∂t
= α(1 − s(x, t))H∞(v(x, t) − VT ) − βs(x, t).

10.3 Examples of Firing Patterns

We now describe some of the firing patterns that can arise in a network of the
form (10.6). In the following examples, each cell is modeled by the Morris-Lecar
equations. We begin by considering a network with just two mutually coupled cells.
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Figure 10.1. Solutions of a network of two mutually coupled Morris-Lecar
neurons with excitatory coupling. A) Synchronous solution. The membrane poten-
tials are equal so only one is shown. B) Anti-phase behavior. The solutions shown
in A) and B) are for the same parameter values but different initial conditions.
Hence, the system is bistable.

The model can then be written as:

dVi

dt
= I − Iion(Vi, wi) − gsynsj(Vi − vsyn)

dwi

dt
= (w∞(Vi) − wi)/τw(Vi)

dsi

dt
= α(1 − si)H∞(Vi − VT ) − βsi (10.8)

where i and j are 1 or 2 and i 6= j.
Figure 10.1 shows two solutions of (10.8) in which vsyn = .5. In this case the

synapses are excitatory. A stable synchronous solution is shown in Figure 10.1A.
Here, (v1(t), w1(t)) = (v2(t), w2(t)) for all t. Figure 10.1B shows a solution with
anti-phase behavior. This solution is stable; moreover, the synchronous solution is
also stable. Hence, for this choice of parameters, the system is bistable.

Figure 10.2 shows solutions of (10.8) in which vsyn = −.5 so that the synapses
are inhibitory. The other parameters are ??=??. We note that for these parameter
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Figure 10.2. Solutions of a network of two mutually coupled Morris-Lecar
neurons with inhibitory coupling. A) Each cell fires due to post-inhibitory rebound.
B) An almost-synchronous solution. C) A suppressed solution. D) The cells take
turns firing three spikes while the other cell is silent.

values, a single cell, without any input, is excitable; that is, it does not generate
oscillations. Therefore a network of two cells, which by themselves are silent, can
generate oscillatory behavior with inhibitory synaptic coupling. In Figure 10.2A,
the cells take turns firing. The mechanism underlying this rhythm is post-inhibitory
rebound (PIR). As one cell spikes, it sends inhibition to the other cell, thereby
hyperpolaring the silent cell’s membrane potential. When the active cell stops
firing, it releases the silent cell from inhibition so that the silent cell rebounds and
generates an action potential. Mechanisms underlying PIR will be described later.

Figure 10.2B shows a solution in which one of the cells fire shortly after the
other; there is then a delay until the first cell fires again. This is sometimes referred
to as an almost synchronous solution. We note, in fact, that an inhibitory network
can generate a stable synchronous solution. In Figure 10.2C, one of the cells fires
periodically and the other cell never generates an action potential. This is sometimes
referred to as a suppressed solution. Finally, Figure 10.2D illustrates a more exotic
solution in which one cell generates three spikes while the other cell is silent and
then the roles of the cells are reversed. All of the solutions shown in Figure 10.2
are stable.
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C e l l n u m b e r C e l l n u m b e r

t i m eA )
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B )

Figure 10.3. Firing patterns in inhibitory network. A) and B) show
examples of clustering. Wave-like is shown in C) and dynamic clustering in D).

We next describe firing patterns in larger networks with inhibitory connec-
tions. An example of clustering is shown in Figure 10.3 A and B. Here, the network
of four breaks up into different groups or clusters; cells within each cluster are syn-
chronized but different clusters fire out-of-phase. We note that these two solutions
correspond to the same network with the same parameter values. The only differ-
ence between the solutions is the initial conditions. Figure 10.3 C shows a solution
in which the four cells take turns firing in a wave-like manner. Waves may arise
in both excitatory and inhibitory networks. Figure 10.3 D shows an example of
dynamic clustering. Here there are seven cells in the network ad different groups
of cells take turns firing. However, membership of the groups change so that two
different cells may fire together during the one episode but not fire together during
later episodes.

10.4 Singular Construction of the Action Potential

The main mathematical tool that will be used throughout this chapter to analyze
neuronal networks is geometric singular perturbation theory. Here one exploits
the fact that neuronal systems typically involve separate processes that evolve on
much different time-scales. For example, the membrane potential may jump-up or
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jump-down on a much faster time-scale than some ionic gating or synaptic variable.
By exploiting this discrepancy in time-scales, one can often reduce a complicated
neuronal system to a lower-dimensional system of equations, one that is easier to
analyze and implement numerically. We have, in fact, already seen examples of
this method when we considered traveling wave solutions and bursting oscillations.
Recall, for example, that for parabolic bursting, we reduced the full four-dimensional
system to equations for just the two slow variables. Similar methods will be used
to study networks of coupled cells.

In this section, we consider a single neuron modeled by (10.1). By considering a
single neuron, we are able to illustrate important features of the geometric singular
perturbation method with a rather simple example. We note that (10.1) is an
example of a relaxation oscillator. The Morris-Lecar equations will be used for all
of the numerics. The analysis, however, is quite general and does not depend on
details of the equations. In what follows, we refer to the v-nullcline as ‘the cubic’ and
the minimum and maximum of the cubic as the left- and right knee, respectively.

Assume that the cubic intersects the w-nullcline at a single point that lies
along its middle branch. This fixed point is unstable and there exists a stable peri-
odic orbit. The periodic solution is shown in Figure 10.4A and its projection onto
the phase-plane is shown in Figure 10.4B. Using geometric singular perturbation
methods, we will give a rather explicit description of this periodic solution, in the
limit ǫ→ 0.
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Figure 10.4. Periodic solution of the Morris-Lecar equations correspond-
ing to an action potential. The projection of this solution onto the (v, w)-phase
plane is shown in B).

We dissect the periodic orbit into four pieces; these are referred to as: (i) the
silent phase, (ii) the jump up, (iii) the active phase and (iv) the jump-down. Note
that during the silent and active phases, the solution lies close to the left and right
branches of the cubic, while the jump-up and jump-down occur when the trajectory
reaches the left and right knees. In order to obtain a more detailed description of
each piece, we consider two time-scales: a fast time-scale corresponding to the
original variable t and a slow time-scale defined as τ = ǫt. The fast time-scale is
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used to describe the evolution of the solution during the jumps up and down, while
the slow time-scale is used to describe evolution during the silent and active phases.

First consider the slow time-scale. If we let τ = ǫt and then set ǫ = 0, then
(10.1) becomes:

0 = f(v, w)
dw

dτ
= g(v, w). (10.9)

The first equation in (10.9) states that singular periodic orbit lies along the left and
right branches of the cubic during the silent and active phases, respectively. The
second equation determines the time evolution along these branches. This evolution
can be written as a scalar equation for the single (slow) variable w. Suppose that
the left and right branches can be written as v = ΦL(w) for w > wL and v = ΦR(w)
for w < wR, respectively. Here, wL and wR represent the positions of the left and
right knees. Then (10.9) can be written as

dw

dτ
= w(Φα(w), w) ≡ Λα(w) (10.10)

where α = L or R.
Now consider the jumps up and down. These take place on the fast time-scale.

Let ǫ = 0 in (10.1) to obtain the reduced system:

dv

dt
= f(v, w)

dw

dt
= 0. (10.11)

The second equation in (10.11) implies that w is constant during the jumps. During
the jump-up, w = wL and v is a solution of (10.11) that approaches the left knee
as t → −∞ and approaches the right branch of the cubic as t → +∞. During the
jump-down, w = wR and v is a solution of (10.11) that approaches the right knee
as t→ −∞ and approaches the left branch of the cubic as t→ +∞.

An important feature of geometric singular perturbation theory is that it gives
a systematic way to reduce complicated models to lower dimensional systems of
equations. In the example illustrated here, the full model (10.1) is two-dimensional,
while each piece of the singular periodic solution corresponds to a solution of a single
differential equation: the jumps up and down satisfy the fast equation (10.11), while
the silent and active phases correspond to solutions of the slow equation (10.9).
We have therefore reduced the original two-dimensional model to four first-order
equations. This may not seem like such a big deal, since two-dimensional systems
can be easily analyzed using phase-plane methods; however, for larger cell models
or networks of cells, such a reduction may be crucially important when analyzing
the dynamics.

We conclude this section by considering how the geometric singular perturba-
tion approach can be used to analyze the response of a neuron to a time-varying
injected current. This analysis will be very useful when we consider networks of
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cells. It will illustrate, with a simple example, how a neuron may respond to exci-
tatory or inhibitory input.

Consider the system

dv

dt
= f(v, w) + I(t)

dw

dt
= ǫg(v, w). (10.12)

We assume that when I(t) = 0, the system is excitable; that is, the v- and w-
nullclines intersect at a stable fixed point along the left branch of the cubic. We
further assume that there exist I0 and Ton < Toff such that

I(t) =

{

I0 if Ton < t < Toff

0 otherwise
(10.13)

We consider two cases: either I0 > 0, in which case the injected current is said
to be depolarizing, or I0 < 0 and the injected current is hyperpolarizing. Figure 10.5
illustrates the neuron’s response when (top) I0 = .1 and (bottom) I0 = −.1. In the
depolarizing case, the neuron fires an action potential immediately after the injected
current is turned on. The cell then returns to rest. In the hyperpolarizing case,
the neuron’s membrane potential approaches a more negative steady state until the
current is turned off, at which time the neuron fires a single action potential. This
last response is an example of post-inhibitory rebound.

The geometric approach is very useful in understanding these responses. As
before, we construct singular solutions in which ǫ is formally set equal to zero. The
singular solutions lies along the left or right branches of some cubic-shaped nullcline
during the silent and active phases, as shown in Figure 10.6. The cubics depend on
the value of I(t). We denote the cubic corresponding to I = 0 as C and the cubic
corresponding to I0 as C0. Note that if I0 > 0, then C0 lies ‘above’ C, while if
I0 < 0, then C0 lies ‘below’ C.

Consider the depolarizing case I0 > 0. This is illustrated in Figure 10.6 (left).
For t < Ton, I(t) = 0 and the solution lies at the fixed point p0 along the left branch
of C. When t = Ton, I(t) changes to I0 > 0 and the cubic switches from C to C0.
If the left knee of C0 lies above p0, then the cell jumps up to the right branch of
C0; this corresponds to the firing of an action potential. If the w-nullcline intersects
C0 along its left branch, then the cell approaches the stable fixed point along the
left branch of C0 until the input is turned off. It is possible that the w-nullcline
intersects C0 along its middle branch. In this case, the cell continues to oscillate,
firing action potentials, until the input is turned off at t = Toff . The number of
action potentials depends on the size of Toff − Ton. If the w-nullcline intersects C0

along its right branch, then the cell will approach this fixed point until the input is
turned off at t = Toff and then return to rest.

Next consider the hyperpolarizing case I0 < 0, shown in Figure 10.6 (right).
In this case, C0 lies below C and the w-nullcline intersects C0 at a point denoted by
p1. At t = Ton, the solution jumps to the left branch of C0 and then evolves along
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Figure 10.5. Response of a model neuron to applied current. Current is
applied at time t = 50 and turned off at t = 100. In the top figure, the current
is depolarizing (I0 = .1), while in the bottom figure the current is hyperpolarizing
(I0 = −.1) and the neuron exhibits post-inhibitory rebound.
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Figure 10.6. Phase space representation of the response of a model neuron
to applied current. Current is applied at time t = Ton and turned off at t = Toff .
(Left) Depolarizing current. The cell jumps up as soon as the current is turned on.
(Right) Hyperplorizing current. The cell jumps to the left branch of C0 when the
current is turned on and jumps up to the active phase due to post-inhibitory rebound
when the current is turned off.
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this branch approaching p1 for Ton < t < Toff . When t = Toff , I(t) switches back
to 0 and the cell now seeks the left or right branch of C. If, at this time, the cell
lies below the left knee of C, then the cell jumps up to the active phase giving rise
to post-inhibitory rebound.

Note that in order to generate post-inhibitory rebound, the hyperpolarizing
input must be sufficiently large and last sufficiently long. I0 must be sufficiently
negative so that p1 lies below the left knee of C. Moreover, Toff − Ton must be
sufficiently large; the cell needs enough time to evolve along the left branch of C0

so that it lies below the left knee of C when the input is turned off.

10.5 Excitatory Synapses

Throughout this section, we consider excitatory synapses. We find conditions for
when excitatory networks exhibit stable synchronous oscillations. Later we will find
conditions for when excitatory connections lead to stable out-of-phase behavior. As
we shall see, the network behavior depends crucially on whether the individual cells
have thick or thin spikes; that is, whether they have long or short duty cycles.

We use geometric singular perturbation methods to analyze solutions. As
before, we formally set ǫ = 0 and construct singular solutions. The singular tra-
jectory corresponding to each cell lies along either the left or right branch of the
cubic shaped v-nullcline during the silent or active phase. The jumps up and down
between the silent and active phases occur when a singular trajectory reaches the
left or right knee of some cubic. There are now a family of cubic-shaped nullclines,
depending on the total synaptic input.

It will be convenient to introduce some notation that will be used throughout
the remainder of the chapter. Let Φ(v, w, s) ≡ f(v, w) − gsyns(v − vsyn). Then the
right hand side of the first equation in (10.4) is Φ(vi, wi, sj). If gsyn is not too large,
then each Cs ≡ {Φ(v, w, s) = 0} defines a cubic-shaped curve. We express the left
branch of Cs as {v = ΦL(w, s)} and the right branch of Cs as {v = ΦR(w, s)}.

We assume that H∞(v) = H(v− VT ) where H is the Heaviside step function.
That is, H∞(v) = 0 if v < VT and H∞(v) = 1 if v > VT . It follows that if the
presynaptic membrane potential Vpre satisfies Vpre > VT , then we can rewrite (10.3)
as

ds

dt
= (α + β)(

α

α+ β
− s) (10.14)

In this case,

s → α

α+ β
≡ sA

at the rate α + β. While a cell receives synaptic input, it lies along the cubic CsA
.

We will often write CA instead of CsA
. We denote the positions of the left and right

knees of C0 as w = wL and w = wR, respectively, and the positions of the left and
right knees of CA as w = wA

L and w = wA
R, respectively.
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10.5.1 Synchrony in a Network of Two Mutually Coupled
Neurons

In this section, we describe when excitatory networks exhibit stable, synchronous
solutions. We begin by considering a simple network of two mutually coupled cells.
We assume throughout this section that each cell, without any coupling, is oscilla-
tory.

It is straightforward to show that there exists of the synchronous solution.
This is because along a synchronous solution, (v1, w1, s1) = (v2, w2, s2) ≡ (v, w, s)
satisfy the reduced system

dv

dt
= f(v, w) − gsyns(v − vsyn)

dw

dt
= ǫg(v, w)

ds

dt
= α(1 − s)H∞(v) − βs.

The singular trajectory consists of four pieces and is shown in Figure 10.7 (left).
During the silent phase s = 0 and (v, w) lies along the left branch of C0. Dur-
ing the active phase, s = sA and (v, w) lies along the right branch of the cubic
CA. The jumps between these two phases occur at the left and right knees of the
corresponding cubics. A similar construction holds if the synapses are inhibitory.

We next consider the stability of the synchronous solution to small perturba-
tions. We begin with both cells close to each other in the silent phase with cell 1
at the left knee of C0 ready to jump up. We follow the cells around in phase space
until one of the cells returns to the left knee of C0. We wish to show that the cells
are closer to each other after this cycle than they were initially.

V

C
A

C
O

W

V

C
A

C
O

W

Figure 10.7. Synchronous singular trajectories corresponding to A) exci-
tatory synapses and B) inhibitory synapses.

The singular solution consists of four pieces. The first piece begins when cell 1
jumps up. When v1(t) crosses VT , s1(t) → sA. This raises the cubic corresponding
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to cell 2 from C0 to CA. If w2(0) − w1(0) is sufficiently small, corresponding to a
sufficiently small perturbation, then cell 2 lies below the left knee of CA. The fast
equations then force cell 2 to also jump up to the active phase, as shown in Figure
10.8. Note that this piece takes place on the fast time scale. Hence, on the slow
time scale, both cells jump up together at precisely the same time.

During the second piece of the singular solution, both oscillators lie in the
active phase along the right branch of CA. Note that the ordering in which the
oscillators track along the left and right branches has been reversed. While in the
silent phase, cell 1 was ahead of cell 2. In the active phase, cell 2 leads the way.
The oscillators remain on the right branch of CA until cell 2 reaches the right knee
of CA.

The oscillators then jump down to the silent phase. Cell 2 is the first to jump
down. When v2(t) crosses VT , s2 switches from sA to 0 on the fast time scale. This
lowers the cubic corresponding to cell 1 from CA to C0. If, at this time, cell 1 lies
above the right knee of CA, then cell 1 must jump down to the silent phase. This
will certainly be the case if the cells are initially close enough to each other.

During the final piece of the singular solution, both oscillators move down the
left branch of C0 until cell 1 reaches the left knee. This completes one full cycle.

To prove that the synchronous solution is stable, we must show that the cells
are closer to each other after this cycle; that is, there is compression in the distance
between the cells. There are actually several ways to demonstrate this compression;
these correspond to different ways to define what is meant by the ‘distance’ between
the cells. Here we consider a Euclidean metric. Sommers and Kopell gave an
alternative stability proof using a time metric. They referred to the mechanism
by which one cell fires, and thereby raises the cubic of the other cell such that it
also fires, as Fast Threshold Modulation. We will use a time metric in later sections
when we discuss other types of solutions of (10.8).

By the Euclidean distance between the cells, we mean the following. Suppose
that both cells lie along the same branch of the same cubic and the coordinates of
cell i are (vi, wi). Then the distance between the cells is defined as simply |w1−w2|.
We wish to demonstrate that this distance decreases along the solutions described
above. Since the singular solution consists of four pieces, we need to consider four
cases. Note, however, that during the jump up and the jump down, the Euclidean
distance does not change. This is because the jumps are horizontal so the values of
wi do not change. If there is compression, therefore, it must take place as the cells
evolve along the left and right branches of the cubics in the silent and active phases.
We now show that this is indeed the case if we make some very mild assumptions
on the nonlinearities f and g.

The first step in the analysis is to reduce the full model to equations for just
the slow variables w1 and w2. We introduce the slow time scale τ = ǫt and then let
ǫ = 0 in (10.4). This leads to the equations

0 = f(vi, wi) − gsynsj(vi vsyn)

dwi

dτ
= g(vi, wi) (10.15)

0 = α(1 − si)H∞(vj) − βsi.
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Figure 10.8. Fast Threshold Modulation.

The first equation in (10.15) states that each (vi, wi) lies on the cubic-shaped null-
cline determined by sj . Let

GL(w, s) = g(ΦL(w, s), w) and GR(w, s) = g(ΦR(w, s), w)

where ΦL and ΦR were defined earlier. Then the second equation in (10.15) can be
written as

dwi

dτ
= Gρ(wi, sj) (10.16)

where ρ = L if cell i is silent and ρ = R if cell i is active. Note that the third
equation in (10.15) implies that either si = 0 or si = sA depending on whether the
presynaptic cell is silent or active.

We now return to the stability analysis of the synchronous solution. We
demonstrate that the Euclidean distance between the cells decreases as both cells
evolve in either the silent or the active phases. Here we consider the silent phase;
the analysis for the active phase is similar.

Suppose that when τ = 0, both cells lie in the silent phase. Hence, each (vi, wi)
lies on the left branch of C0. We assume, for convenience, that w2(0) > w1(0). We
need to prove that w2(τ) −w1(τ) decreases as long as the cells remain in the silent
phase. Now each wi(τ) satisfies (10.16) with ρ = L and sj = 0. Hence,

wi(τ) = wi(0) +

∫ τ

0

GL(wi(ξ), 0)dξ

and, using the Mean Value Theorem,

w2(τ) − w1(τ) = w2(0) − w1(0)

+

∫ τ

0

GL(w2(ξ), 0) −GL(w1(ξ), 0) dξ

= w2(0) − w1(0) (10.17)

+

∫ τ

0

∂GL

∂w
(w∗, 0)(w2(ξ) − w1(ξ))dξ
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for some w∗. Now GL(w, 0) = g(ΦL(w, 0), w). Hence,

∂GL

∂w
= gv

∂ΦL

∂w
(w, 0) + gw.

Note that

∂g

∂v
≥ 0 and

∂g

∂w
≤ 0 (10.18)

near the synchronous solution. This follows from our assumption that g > 0 (< 0)
below (above) the w-nullcline. We now make the additional assumption that there
is a strict inequality in (10.18). We further note that ΦL

∂w (w, 0) < 0. This is because
v = ΦL(w, 0) defines the left branch of the cubic C0 which has negative slope. It
follows that ∂GL

∂w < 0 and therefore,

w2(τ) − w1(τ) < w2(0) − w1(0).

This gives the desired compression. We note that if there exists γ > 0 such that
∂GL

∂w < −γ along the left branch, then Gronwall’s inequality can be used to show
that w2(τ) − w1(τ) decreases at an exponential rate.

We remark that this analysis generalizes to arbitrarily large networks of ho-
mogeneous cells with excitatory synaptic coupling. Suppose that initially all of the
cells are in the silent phase and are sufficiently close to each other. When one cell,
say cell 1, jumps up, then those cells that receive excitatory input from cell 1 will
be induced to jump up as long as they lie below the left knees of the cubics cor-
responding the excitatory input. These cells will then induce other cells to jump
up and so forth. In this way, all of the cells will fire at the same time (on the slow
time-scale). There are, in fact, subtleties in the jumping-down process. A detailed
analysis of synchronous behavior in larger networks with excitatory synapses can
be found in [??].

10.6 Post-Inhibitory Rebound

10.6.1 Two Mutually Coupled Cells

We now consider two mutually coupled cells with inhibitory synapses. Figure 10.2
shows that this network can exhibit a wide variety of activity patterns. In this
section, we consider the pattern shown in Figure 10.2A in which the cells take turns
firing due to post-inhibitory rebound. In general, an oscillating network with two
cells in antiphase is known as a “half-center” oscillator. This type of behavior is
found in many applications including networks governing locomotion or other motor
patterns.

The antiphase solution shown in Figure 10.2A exists and is stable only if
certain conditions on the nonlinearities and parameters are satisfied. In particular,
the coupling strength gsyn must be sufficiently strong and the duty cycle must be
sufficiently long. Recall that by the duty cycle, we mean the ratio of the times a
cell spends in the active and silent phases.
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We assume throughout this section that the w-nullcline intersects the left
branches of both C0 and CA. We denote these points as p0 and pA. In particular,
individual cells, without any coupling, are excitable. We also note that the resting
state (v1, w1) = (v2, w2) = p0 is a stable solution of the coupled network. Hence, if
the system exhibits stable oscillations, as shown in Figure 10.2, then the system is
bistable.

There does exist a synchronous solution with (v1, w1, s1) = (v2, w2, s2); how-
ever, this solution is unstable. The singular trajectory corresponding to the syn-
chronous solution is shown in Figure 10.7 (right). During the silent phase, it lies
along the left branch of C0 and during the active phase, it lies along the right branch
of CA. A proof that the synchronous solution is unstable is given in [?].
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Figure 10.9. Post-Inhibitory Rebound.

We now step through the construction of the singular solution corresponding
to the solution shown in Figure 10.2A. We begin with cell 1 at the right knee of C0

ready to jump down. We further assume that cell 2 is silent and lies along the left
branch of CA below the left knee of C0. When cell 1 jumps down, s1 → 0. Since
(v2, w2) lies below the left knee of C0, cell 2 exhibits post-inhibitory rebound and
approaches the right branch of C0.

Cell 2 then moves up the right branch of C0 and cell 1 moves down the left
branch of CA towards pA. Eventually, cell 2 reaches the right knee of C0 and jumps
down. If at this time, cell 1 lies below the left knee of C0, then it jumps up due to
post-inhibitory rebound. The roles of cell 1 and cell 2 are now reversed. The cells
continue to take turns firing when they are released from inhibition.

The preceding construction requires several assumptions. Firstly, the coupling
strength gsyn needs to be sufficiently large. In particular, the fixed point pA must
lie below the left knee of C0. The duty cycle must also be sufficiently large. The
active cell must spend enough time in the active phase so that the silent cell can
evolve along the left branch of CA to below the left knee of C0. We note that if either
gsyn or the duty cycle is too small, then the only stable solution will be the resting
state (v1, w1) = (v2, w2) = p0. This last statement depends on our assumption that
both cells are excitable.

Wang and Rinzel distinguish between “escape” and release” in producing out-
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of-phase oscillations. In the preceding construction, we assumed that both cells are
excitable for all levels of synaptic input. Then the silent cell can only jump up to
the active phase once the active cell jumps down and releases the silent cell from
inhibition. This is referred to as the release mechanism. To describe the escape
mechanism, suppose that each cell is oscillatory for some fixed levels of synaptic
input. Then the inactive cell may reach a left knee of its cubic and escape the silent
phase. When the silent cell jumps up, it inhibits the active cell. This lowers the
cubic of the active cell, so it may be forced to jump down before reaching a right
knee.

Another mechanism for generating antiphase oscillations is to relax the re-
striction that the synaptic threshold lies between the active and silent branches. If
the synaptic threshold lies along one of the branches, then the synaptic input given
from one cell to the other changes as the cell traverses along its branch, not during
its jump between branches. As shown in [?], this may have a large effect on the
wave-form and frequency of the resulting oscillation.

V
T

C
A

C
O

W

V V
T

C
A

C
O

W

V

Figure 10.10. A) Cellular and B) synaptic escape mechanisms.

10.6.2 Clustering

We now consider larger networks with inhibitory synapses. By a clustered solution
we mean one in which the population of cells breaks up into distinct groups or clus-
ters. Cells within each cluster fire in synchrony; while cells in different clusters fire
out-of-phase. The basic mechanism underlying clustering is simply post-inhibitory
rebound. Examples of clustered solutions are shown in Figure 10.3. There are for a
network with four cells and all-to-all coupling. The solution shown in Figure 10.3A
consists of two clusters with two cells within each cluster. The existence of this
solution is equivalent to the antiphase solution for a two-cell network described in
the previous section. We note that there are subtleties associated with proving the
stability of this two-clustered solution. One must demonstrate that cells within
each cluster are stable with respect to perturbations along with proving that the
different clusters remain separated. Discussion of these issues can be found in [ ].
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Other types of clustered solutions are possible. For the solution shown in
Figure 10.3B, there are two clusters; however, one of the clusters consists of three
cells, while the other cluster has only one cell. The projection of this solution
onto the (v, w)-phase plane is shown in Figure ??B. This is very similar to the
clustered solution described above; however, note that now the clusters live on
different nullclines in phase space. This is because the amount of inhibition that
the cells receive depends on the number of cells within the active cluster.

Figure 10.3C shows a solution in which all the cells fire out-of-phase with each
other. This can be viewed as a as a 4-cluster solution. When one of the cells jumps
down, another is released from inhibition. The cells then take turns firing. Note
that the existence of such a solution depends on the relative times the cells spend
in the silent and active phase. The active phase cannot be too long or the network
will exhibit a 2-clustered solution. In order to obtain the 4-clustered state, the time
in the active phase must be roughly one-third the time the cell spends in the silent
phase.

These considerations easily carry over to larger networks. There may exist
a 2-clustered solution in which the entire networks breaks up into two groups and
the two groups take turns jumping up when the other group releases them from
inhibition. The existence of such a solution clearly requires certain assumptions on
the length of the active phase and the strength of synaptic coupling. One can also
easily obtain activity with more than two clusters under certain conditions. Which
type of clustered solution the network exhibits depends on the duty cycle along with
the strength of coupling. A more detailed analysis can be found in [??].

10.6.3 Dynamic Clustering

Dynamic clustering differs from clustering in that the membership of the active
groups may change. That is, two different cells may fire together during the same
episode, but fire separately during subsequent episodes. An example of such a
solution is shown in Figure 10.3D. Note that cell 1 sometimes fires with cell 2, but
sometimes it does not. In this section, we will explain a simple mechanism for the
generation of dynamic clustering. The mechanism depends on both post-inhibitory
rebound and network architecture. We will explain the mechanism with a rather
simple example; however, this generalizes in a straightforward manner to larger
networks. A complete analysis of this type of solution is given in [ ].

The example network consists of seven cells and the network architecture
is shown in Figure 10.11. All connections are assumed to be inhibitory. Two
different responses, for the same parameter values, are shown in the middle panel
of the Figure. Each response consists of episodes in which some subset of the
cells fire in near synchrony. These subsets change from one episode to the next;
moreover, two different cells may belong to the same subset for one episode but
belong to different subsets during other episodes. After a transient period the
response becomes periodic. For example, consider the solution shown in A) of the
middle panel. The cells which fire during the third episode are cells 2, 3 and 7.
These are precisely the same cells which fire during the eighth episode. This subset
of cells continues to fire together every fifth cycle. We say that this solution has a
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periodic attractor consisting of 5 episodes (or simply, the period is 5). Note that the
solution shown in the second panel has the same periodic attractor, although the
initial response is different. These two panels demonstrate that two responses may
have different initial transients but approach the same periodic attractor. There
may be many periodic attractors, however, with different transients and different
attractors.

Figure 10.11. An example of dynamic clustering and reduction to discrete
dynamics.

We next describe an algorithm which will allow us to determine how the
network responds to initial conditions and analyze properties of the periodic attrac-
tors. If we know which subset of cells fire during one episode, then the algorithm
determines which subset of cells fire during the next episode. In order to derive
the algorithm, we need two assumptions. The first is that if a cell fires during an
episode, then every cell that receives input from that cell and which does not fire
during that episode must fire during the next episode. The second assumption is
that no E-cell can fire in two subsequent episodes.

Consider the solution shown in the B) of middle panel in Figure 10.11. The
cells which fire during the first episode are 1, 3 and 7. Because of the two assump-
tions, these induce the cells 4, 5 and 6 to fire during the second episode. Continuing
in this way, we can determine which cells fire during each subsequent episode.

Note that if the number of cells as N (in this example N = 7), then those
cells which fire during an episode represents a subset of PN ≡ {1, ...., N}. Let SN

denote the set of subsets of P . The algorithm represents a map Φ from SN to
itself. For the example shown in the second panel of Figure 1B, we represent the
cells which fire during the first and second episodes by indices {1, 3, 7} and {4, 5, 6},
respectively. Hence, Φ({1, 3, 7}) = {4, 5, 6}. Iterating Φ, we obtain an orbit of sub-
sets; these correspond to those cells that fire during successive episodes. The orbits
corresponding to the three solutions illustrated in Figure ??B are shown in Figure
??. Note that each orbit consists of two components: there is an initial transient
until the orbit returns to a subset that it has already visited. The orbit must then
repeat itself. We remark that every orbit must eventually become periodic; this is
because there are only a finite number of subsets of PN .
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Figure 10.12. Discrete graph of dynamics associated with the network
shown in Figure 10.3.

By considering every subset of PN , one obtains a directed graph. This graph
has 2N nodes. Hence, even for the seemingly simple example shown in Figure 1A,
there are 128 nodes and the directed graph is quite complicated. The entire graph
is shown in Figure 10.12. Examining this directed graph, we find that the model
exhibits seven periodic attractors. The periods of the attractors are either 2 or 5.
Attractors with period 5 generate dynamic clustering.

Further details and analysis of this algorithm can be found in [?], where precise
conditions are given for when the differential equations model can be rigorously
reduced to discrete dynamics.

10.7 Thin Spikes

We have, so far, found conditions for when excitatory coupling leads to synchrony
and inhibitory coupling leads to antiphase oscillations. The existence and stability
of these patterns depend on various assumptions. For example, in order generate
antiphase behavior with inhibitory synapses, we required that the active phase, and
therefore the duty cycle, is sufficiently long. Note that a cell with a long duty cycle
can be viewed as a bursting oscillator; the active phase represents the envelope of
spiking activity. In this section, we consider what happens if the duty cycle is short.
We also assume that each cell, without coupling, is oscillatory. We may, therefore,
think of the cell as exhibiting single, periodic spikes instead of bursts. We find
conditions for when excitatory coupling leads to stable antiphase behavior. The
analysis also demonstrates when the antiphase solution is unstable for inhibitory
coupling.

We will demonstrate that stable antiphase solutions exist if the synapses are
excitatory and both the coupling strength gsyn and the duty cycle are sufficiently
small. The antiphase solution will exist but be unstable if the synapses are in-
hibitory.
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10.7.1 Existence of Antiphase Oscillations

Throughout this section we consider two mutually coupled cells. In this subsection,
we find conditions for when there exists an antiphase solution. The stability of this
solution will be discussed in the next subsection.

Figure 10.1B shows an antiphase solution with excitatory synapses. The pro-
jection of this solution onto the (v, w) phase plane is shown in Figure 10.13A. We
now step through the various pieces of this trajectory. We start with both cells are
in the silent phase with cell 1 at the left knee of C0 ready to jump up. Suppose that
w2(0) = w∗. When cell 1 jumps up, s1 → sA. If w∗ > wA

L , so that cell 2 lies above
the left knee of CA, then cell 2 approaches the left branch of CA. Cell 1 then moves
up the right branch of C0 and cell 2 moves down the left branch of CA. If the active
phase is sufficiently brief, then cell 1 reaches the right branch of C0 and jumps down
before cell 2 reaches the left knee of CA. Suppose that this happens when τ = TA.
(Here we are considering the slow time-scale.) After cell 1 jumps down, both cells
evolve along the left branch of C0 until cell 2 reaches the left knee of C0. Suppose
that this happens when τ = T0. If w1(T0) = w∗, then the roles of cell 1 and cell 2
are reversed and this completes one-half of a complete antiphase cycle.
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Figure 10.13. Singular construction of antiphase solution. A) Cell 1 is
shown in red and cell 2 in green. B) The auxiliary function w0(τ) needed in the
existence proof.

We prove the existence and stability of an antiphase solution by constructing a
one-dimensional map, which we denote as π. The definition of π is simply π(w∗) =
w1(T0) where w∗ and T0 are defined above. Clearly, a stable fixed point of π
corresponds to a stable antiphase solution. Note that in order to define π(w∗) we
need that cell 1 jumps up to the active phase and then jumps back to the silent
phase before cell 2 is able to jump up. This requires a number of assumptions. In
particular, the duty cycle cannot be too long, gsyn cannot be too big and (w∗−wL)
cannot be too small. We now derive precise conditions for when π is well defined
and has a stable fixed point.

As was done in the preceding section, we reduce the analysis to equations for
just the slow variables w1 and w2. Each of these variables satisfies (10.16) where
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ρ = L or R if cell i is silent or active, and sj = 0 or sA if the presynaptic cell is
silent or active. In particular, if both cells are silent then each wi satisfies

dwi

dτ
= GL(wi, 0). (10.19)

If cell i is silent and cell j is active, then

dwi

dτ
= GL(wi, sA) (10.20)

and

dwj

dτ
= GR(wj , 0). (10.21)

Let TA denote the duration of the active phase. More precisely, this is the time
needed for a solution of (10.21) starting at wL to reach wR.

We will need to consider the distance between the cells and determine how
the distance changes as trajectories evolve in phase space. Here we use a time
metric. For now, we only consider the case when both cells are silent; that is,
(v1(0), w1(0)) and (v2(0), w2(0)) lie along the left branch of C0. Suppose that
w1(0) < w2(0). Then the time metric ρL(w1(0), w2(0)) is defined to be the time it
takes for the solution of (10.19) starting at w2(0) to reach w1(0). Note that this
metric is time invariant in the following sense: Suppose that wi(τ), i = 1, 2, are
solutions of (10.19). Then

ρL(w1(τ), w2(τ)) = ρL(w1(0), w2(0))

for all τ > 0, as long as the cells remain on the left branch of C0. The proof of this
statement is left as an exercise.

Note that π is not defined for all w∗ ∈ (wL, wR). We need that cell 1 jumps
up and down before cell 2 jumps up. This will be true if TA is sufficiently small and
w∗ − wL is sufficiently large. We assume, for the moment, that this is true. Once
we characterize w∗, we will demonstrate that it is indeed in the domain of π.

We now find conditions for π to have a fixed point. Since

wL < w2(TA) < w∗ < wR

it follows that

ρL(wL, wR) = ρL(wL, w2(TA)) + ρL(w2(TA), w∗) + ρL(w∗, wR).

Let TS = ρL(wL, wR) be the length of the silent phase. If w∗ is a fixed point of π,
then w2(T0) = wL, w1(T0) = w∗ and w1(TA) = wR. Hence,

TS = ρL(w2(T0), w2(TA)) + ρL(w2(TA), w∗) + ρL(w1(T0), w1(TA))

= (T0 − TA) + ρL(w2(TA), w2(0)) + (T0 − TA) (10.22)

= 2(T0 − TA) + ρL(w2(TA), w2(0))
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We view (10.22) as an equation for T1 ≡ T0 − TA. To do this, we first define
an auxiliary function w0(τ). Suppose that w0(0) = wR, w0(τ) satisfies (10.19) for
0 < τ < T1, and satisfies (10.20) for T1 < τ < T1+TA. See Figure 10.13B. Note that
if w1(τ) and w2(τ) correspond to an antiphase solution, then w0(τ) = w1(τ + TA)
for 0 < τ < T1 and w0(τ) = w2(τ − T1) for T1 < τ < T0. Hence, we can rewrite
(10.22) as

TS = 2T1 + ρL(w0(T1 + TA), w0(T1)). (10.23)

This is an equation for T1. Once we solve for T1, then w∗ = w0(T1) is the desired
fixed point of π. Note that the last term in (10.23) → 0 as TA → 0. Hence, in this
limit, the solution of (10.22) is T1 = 1

2TS. It follows that (10.23) has a solution,
and there exists a fixed point of π, if the duration of the active phase is sufficiently
small.

It remains to prove that the fixed point w∗ lies in the domain of π. Recall that
cell 1 must jump up and jump down before cell 2 jumps up. Choose ωD > wA

L so
that the time it takes a solution of (10.20) starting at ωD to reach wA

L is TA. Then
cell 1 will jump up and jump down before cell 2 jumps up if if w∗ > ωD. This will
be the case if

ρL(wL, w∗) > ρL(wL, ωD). (10.24)

We show that this is true if the coupling strength gsyn and the duration of the
active phase TA are sufficiently small. Note that the right hand side of (10.24) can
be written as

ρL(wL, ω) = ρL(wL, w
A
L ) + ρL(wA

L , ω).

Since wA
L → wL as gsyn → 0 and ωD → wA

L as TA → 0, it follows that the right
hand side of (10.24) is as small as we please if gsyn and TA are small. On the other
hand, the left hand side of (10.24) can be rewritten as

ρL(wL, w∗) = ρL(wL, wR) − ρL(w∗, wR)

= TS − T1

→ 1

2
TS (10.25)

as TA → 0. Hence, (10.24) is satisfied if gsyn and TA are sufficiently small. This
completes the proof that π has a fixed point corresponding to an antiphase solution.

10.7.2 Stability of Antiphase Oscillations

We now consider the stability of the fixed point w∗. To prove the stability, we
must show that |π′(q0)| < 1. We demonstrate that this is the case if the synapses
are excitatory and some rather natural assumptions on the nonlinearities f and g
are satisfied. The analysis also demonstrates that the fixed point is unstable if the
synapses are inhibitory.
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We begin by describing another way to geometrically visualize the antiphase
solution. Consider the projection of the solution onto the (w1, w2) slow phase plane
as shown in Figure ??. Note that the solution lies within the rectangular region:

R = {(w1, w2) : wL ≤ w1 ≤ wR, wL ≤ w2 ≤ wR}.

Denote the left, right, top and bottom sides of R as RL,RR,RT and RB , respec-
tively. These correspond to positions where one of the cells reaches a left or right
knee of C0; that is, where cell 1 jumps up, cell 2 jumps up, cell 2 jumps down and
cell 1 jumps down, respectively.
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Figure 10.14. A) Projection of the antiphase solution onto the slow
(w1, w2) phase plane. B) The one-dimensional map.

We now view π as a map defined on RL and denote this new map as Π. That
is, suppose we start at a point (wL, w∗) ∈ RL. Then cell 1 is ready to jump up and
cell 2 is silent. We follow the trajectory until it reaches RL again. If the position
of cell 2 at this time is w0, we let Π(w∗) = w0. Since here we are considering a full
cycle, and in the definition of π we only considered one-half of a cycle, it follows that
Π(w∗) = π2(w∗). It suffices to show that |Π′(q0)| < 1. We will, in fact, demonstrate
that |Π′(w∗)| < 1 for each w∗ such that Π(w∗) is well defined.

Since the antiphase solution consists of four pieces, we can decompose Π into
four pieces. We write Π(w∗) = (Π4 ◦ Π3 ◦ Π2 ◦ Π1)(w∗) where each Πk is a flow
defined map from one side of R to another. Then

Π′(w∗) = Π′
4Π

′
3Π

′
2Π

′
1(w∗) (10.26)

Note that |Π′
2| = |Π′

4| = 1. This follows because the time metric ρL is time-invariant
and each of these maps correspond to when both cells are silent and lie along the
left branch of C0. We leave the details as an exercise. We must, therefore, prove
that |Π′

1| < 1 and |Π′
3| < 1. Here we consider |Π′

1| since the other inequality is
similar. Note that Π1 corresponds to when cell 1 is active and cell 2 is silent. Hence
w1 satisfies (10.21) and w2 satisfies (10.20).
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In order to calculate the derivative of Π1, we write it as a difference quotient:

Π′
1(a) = limb→a

ρL(Π1(a),Π1(b))

ρL(a, b)
(10.27)

Here, we are assuming that a < b. We now need a formula for ρL in terms of the
nonlinearities f and g. Recall that ρL(a, b) is the time for a solution of (10.19)
starting at w = b to reach w = a. Hence,

ρL(a, b) =

∫ a

b

1

GL(w, 0)
dw. (10.28)

This formula is not convenient to work with because w2 does not satisfy (10.19);
it satisfies (10.20) instead. For this reason, we define a new time-metric ρA(a, b)
to be the time it takes a solution of (10.20) starting at w = b to reach w = a.
Changing variables in (10.28), we find that if w2(τ, b) is the solution of (10.20) with
w2(0, b) = b, then

ρL(a, b) =

∫ ρA(a,b)

0

GL(w2(τ, b), sA)

GL(w2(τ, b), 0)
dτ (10.29)

Since this holds for all a and b such that wA
L < a < b < wR, we also have that

ρL(Π1(a),Π1(b)) =

∫ ρA(Π1(a),Π1(b))

0

GL(w2(τ,Π1(b)), sA)

GL(w2(τ,Π1(b)), 0)
dτ (10.30)

We now insert these expressions into (10.27) and use L’ Hopital’s rule to conclude
that

Π′
1(a) =

(

GL(Π1(a), sA)

GL(Π1(a), 0)

)(

GL(a, 0)

GL(a, sA)

)

. (10.31)

We show that if the synapses are excitatory, then GL(w,sA)
GL(w,0) is an increasing function

of w; that is

∂

∂w

(

GL(w, sA)

GL(w, 0)

)

> 0. (10.32)

Note that Π1(a) < a. This is because w2(τ) decreases while in the silent phase.
This together with (10.31) implies that |Π′

1(a)| < 1 and the antiphase solution is

stable. A similar analysis shows that if the synapses are inhibitory, then GL(w,sA)
GL(w,0)

is a decreasing function of w; hence, the antiphase solution is unstable.
Let ∆(w, s) = GL(w, s) −GL(w, 0). Then

∂

∂w

(

GL(w, sA)

GL(w, 0)

)

=
GL(w, 0)∆w(w, sA) −GLw(w, 0)∆(w, sA)

GL
2
w(w, 0)

.

We derive conditions on the nonlinear functions f and g so that

GL < 0, GLw < 0, ∆ > 0 and ∆w < 0.
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To do this, we need to express each of these inequalities in terms of f and g and
their derivatives.

Recall that GL(w, s) = g(ΦL(w, s), w) where v = ΦL(w, s) represents the left
branch of C0. In particular, f(ΦL(w, s), w) − gsyns(v − vsyn) = 0. Suppose that
g(v, w) can be written in the usual form g(v, w) = (h∞(v) −w)/τw(v). To simplify
the analysis, we assume that τw(v) = τw is constant while the cell is in the silent
phase. For convenience, we assume that τw = 1.

Clearly, GL(w, 0) < 0; that is, w decreases in the silent phase. Moreover,

∂GL

∂w
=
∂g

∂v

∂ΦL

∂w
+
∂g

∂w
= h′∞(v)

∂ΦL

∂w
− 1 < 0.

if h′∞(v) > 0 and the left branch of the cubic C0 has negative slope. It is not hard
to give precise conditions on the nonlinear function f for when this last statement
is true.

We next consider ∆ and ∆w. Note that

∆(w, sA) =

∫ sA

0

∂GL

∂s
(w, γ)dγ and ∆w(w, sA) =

∫ sA

0

∂2GL

∂w∂s
(w, γ)dγ.

Now
∂GL

∂s
=
∂g

∂v

∂ΦL

∂s
= h′∞(v)

∂ΦL

∂s
> 0

if h′∞(v) > 0 and the cubics ’increase’ as s increases; that is, if s1 > s2 then the
cubic corresponding to s1 lies above the cubic corresponding to s2. Again, it is not
hard to derive precise conditions on f so that this is the case. Finally, note that

∂2GL

∂w∂s
= h′′∞(v)

∂ΦL

∂w

∂ΦL

∂s
+ h′∞(v)

∂2ΦL

∂w∂s
.

We assume that h′∞(v) > 0 and h′′∞(v) > 0; this is true for most neuronal models in-
cluding the Morris-Lecar equations. We have already seen that ∂ΦL

∂w < 0 and ∂ΦL

∂s >

0. Hence, it remains to find conditions on f so that ∂2ΦL

∂w∂s < 0. We leave this as an
exercise.

10.8 Almost-Synchronous Solutions

In this section, we consider the almost-synchronous solution shown in Figure 10.2B.
Note that one of the cells fires shortly after the other and there is then a delay until
the cells fire again. Here we assume that the coupling is inhibitory and the cells,
without any coupling, are oscillatory. We also assume that the duty cycle is small.
In this case, we will demonstrate that the almost-synchronous solution exists and
is stable. Note that results from the previous section demonstrate that both the
synchronous and the antiphase solution exist but are unstable. Here, we consider a
network consisting of two mutually coupled cells. The analysis carries over to larger
networks.
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10.8.1 Almost-Synchrony in a Network of Two-Mutually
Coupled Cells

Figure 10.15 shows the projection of the almost-synchronous solution onto the (v, w)
phase plane. We now step through this solution as it evolves in phase space. This
description leads to a one-dimensional map, a fixed point of which corresponds to
the almost-synchronous solution.
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Figure 10.15. Singular construction of the almost-synchronous solution.
Cell 1 is shown in red and cell 2 in green.

We start with both cells in the silent phase with cell 1 at the left knee ready
to jump up. When cell 1 jumps up, cell 2 approaches the left branch of CA. Then
cell 1 moves up the right branch of C0 and cell 2 moves down the left branch of CA.
We assume that the active phase is sufficiently short so that cell 1 reaches the right
knee of CA and jumps down before cell 2 reaches the left knee of C0. Note that this
assumption is not necessary if the w-nullcline intersects the left branch of CA at
some point pA. We further assume that w2(0) − w1(0) is sufficiently small so that
when cell 1 jumps down, cell 2 lies below the left knee of C0. Then cell 2 exhibits
post-inhibitory rebound. Suppose that cell 1 jumps down at time τ = TA.

Cell 2 then moves up the right branch of C0 and cell 1 moves down the left
branch of CA. If the active phase is sufficiently small, then cell 2 jumps down before
cell 1 can jump back up. Suppose that this happens at time τ = T1. We assume
that w1(T1) > wL so that cell 1 does not rebound at this time. This will be the
case if the active phase is short enough.

Finally, both cells move down the left branch of C0 until cell 1 reaches the left
knee. Suppose that this happens at time T2. If w2(T2) = w2(0), then we have con-
structed an almost-synchronous periodic solution. We define the one-dimensional
map π(w2(0)) = w2(T2). We now derive conditions for when this map is well-defined
and has a stable fixed point.

We first consider the domain of π. In order for π to be well-defined, three
conditions need to be satisfied: (1) cell 2 cannot jump up before cell 1 jumps down;
(2) cell 2 must rebound when cell 1 does jump down; and (3) cell 1 cannot rebound
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when cell 2 jumps down. We consider the time-metrics ρL and ρA defined in the
preceding section.

Note that condition (1) must be satisfied if the the w-nullcline intersects the
left branch of CA. If this is not the case, then condition (1) will be satisfied if
w2(0) > wL and TA < ρA(wA

L , wL). We next choose ω > wL so that ρA(wL, ω) =
TA. If wL < w2(0) < ω, then w2(TA) < wL and condition (2) is satisfied. Finally,
condition (3) is satisfied if we assume that TA < ρA(wL, wR).

We now show that π has a stable fixed point. A fixed point satisfies π(w2(T2)) =
w2(0); that is, ρL(wL, w2(0)) = ρL(wL, w2(T2)). Now cell 1 and cell 2 both lie on
the left branch of C0 for T1 < τ < T2. Since ρL is time-invariant, it follows that

ρL(wL, w2(T2)) = ρL(w1(T2), w2(T2)) = ρL(w1(T1), w2(T1))

= ρL(w1(T1), wR).

Hence, it suffices to show that

ρL(wL, w2(0)) = ρL(w1(T1), wR). (10.33)

To do this we consider two limiting cases: w2(0) = wL and w2(0) = ω. In each
of these limiting cases, we assume that cell 2 rebounds once cell 1 jumps down. If
w2(0) = wL, then ρL(wL, w2(0)) = 0. Clearly, ρL(w1(T1), wR) > 0. Hence,

ρL(wL, w2(0)) < ρL(w1(T1), wR).

We will prove that if w2(0) = ω then ρL(wL, w2(0)) > ρL(w1(T1), wR). It then fol-
lows that there must exist w2(0) ∈ (wL, ω) such that (10.33) is satisfied. Moreover,
this fixed point is stable.

So assume that w2(0) = ω. Then ρA(wL, w2(0)) = ρA(wL, ω) = TA and
cell 2 jumps up at w2(TA) = wL. Moreover, cell 2 lies in the active phase for
TA < τ < T1 with w2(TA) = wL and w2(T1) = wR. Recall that TA is the time it
takes for a solution of (10.21) to go from wL to wR. Hence, T1 − TA = TA. Since
w1(TA) = wR, it follows that

ρA(w1(T1), wR) = ρA(w1(T1), w1(TA)) = T1 − TA = TA

Therefore,
ρA(wL, w2(0)) = ρA(w1(T1), wR) = TA.

Using (10.29), we find that if w(τ, b) is the solution of (10.21) with w(0, b) = b, then

ρL(wL, ω) =

∫ TA

0

GL(w(τ, ω), sA)

GL(w(τ, ω), 0)
dτ

and

ρL(w1(T1), wR) =

∫ TA

0

GL(w(τ, wR), sA)

GL(w(τ, wR), 0)
dτ.

Finally, recall that GL(w,sA)
GL(w,0) is a decreasing function of w. Moreover, ω < wR and,

therefore, w(τ, ω) < w(τ, wR) for each τ ∈ (0, TA). It follows that if w2(0) = ω,
then ρL(wL, w2(0)) > ρL(w1(T1), wR)). This then completes the proof.
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10.9 Slow Inhibitory Synapses

Recall that different types of synapses may turn on or turn off at very different
rates. For example, GABAB synapses are slow to activate and slow to turn off
compared with GABAA synapses. The rates at which the synapses turn on or turn
off may have a profound affect on the network behavior. For example, the solutions
shown in Figures 10.2C and 10.2D were generated by choosing the rate at which
the inhibitory synapse turns off to be small.

Note that α and β determine the rates at which the synapse turns on and
turns off. We have, so far, considered fast synapses. By this we mean that α and β
are O(1) with respect to ǫ. When a cell either jumps up or jumps down, the
corresponding synaptic variable either approaches sA or approaches 0 on the fast
time-scale. In this section, we consider slow synapses; that is, either α or β (or
both) are O(ǫ). We will use fast/slow geometric analysis to construct singular
trajectories corresponding to synchronous and antiphase solutions, as well as the
solutions shown in Figures 10.2C and 10.2D.

10.9.1 Fast/Slow Decomposition

The first step in the analysis is to decompose the full network (10.4) into fast and
slow equations. Here we assume that α = O(1) with respect to ǫ and β = ǫK where
K does not depend on ǫ. Hence, the synapses activate on the fast time-scale and
turn off on the slow time-scale.

We derive slow subsystems valid when the cells lie in either the silent or the
active phase. There are several cases to consider and we only discuss two of these
in detail. First suppose that both cells are silent. Then each vi < VT and H∞(vi −
VT ) = 0. Hence, after letting τ = ǫt and setting ǫ = 0, (10.4) becomes

0 = f(vi, wi) − sjgsyn(vi − vsyn)

dwi

dτ
= g(vi, wi) (10.34)

dsi

dτ
= −Ksi.

This system can be simplified as follows. We write the left branch of Cs as v =
ΦL(w, s) and let GL(w, s) = g(ΦL(w, s), s). Each (wi, sj) then satisfies the system

dw

dτ
= GL(w, s)

ds

dτ
= −Ks. (10.35)

These equations determine the evolution of the slow equations while in the silent
phase. The equations are well defined as long as each (vi, wi) lies along the left
branch of the cubic determined by sj . Note that the left knee of the cubic Cs

depends on s; we denote the position of this left knee as wL(s). This defines a
jump-up curve w = wL(s) as shown in Figure 10.16. The cells remain in the silent
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phase and each (wi, sj) satisfies (10.35) as long as wi > wL(sj). If wi(τ) = wL(sj),
then cell i jumps up to the active phase.

Now suppose that cell i is active and cell j is silent. Then si activates on the
fast time-scale, while sj decays on the slow time scale; that is, si is a fast-variable,
while sj is a slow variable. The slow equations for cell j are (10.34), while the slow
equations for cell i are

0 = f(vi, wi) − gsynsj(vi − vsyn)

ẇi = g(vi, wi) (10.36)

1 ≡ si.

We reduce these systems to equations for just the slow variables as before. Denote
the right branch of Cs by v = ΦR(w, s) and let GR(w, s) = g(ΦR(w, s), s). Then
(wj , sj) satisfies the reduced equations

ẇj = GR(wj , si)

ṡj = −Ksj (10.37)

while wi satisfies the scalar equation

ẇi = GL(wi, 1). (10.38)

These equation are well defined as long as cell i lies on the right branch of the cubic
determined by sj and cell j is on the left branch of the cubic determined by si.
Cell i jumps down if (vi, wi) reaches the right knee of the cubic Csj

. We denote the
position of this knee as w = wR(sj).

10.9.2 Antiphase and Suppressed Solution

In this section, we construct singular trajectories corresponding to antiphase and
suppressed solutions of (10.4). We assume throughout that the synapses are in-
hibitory and decay on the slow time-scale. Throughout the analysis, we consider
the projection of the solution onto the (w, s) slow phase plane. As we shall see, the
existence of a particular type of solution depends on the relative size of the rate at
which the synapse decays and the rate at which the cells evolve during the silent
phase.

The projection of an antiphase solution onto the (w, s) phase plane is shown
in Figure 10.16. We step through the evolution of this solution starting at the time
when both cells lie in the silent phase and cell 1 has just jumped down from the active
phase. This implies that the inhibition s1 felt by cell 2 satisfies s1(0) = 1. Both
cells then evolve in the silent phase; each (wi, sj) satisfies (10.35). This continues
until cell 2 reaches the jump-up curve w = wL(s). Suppose that this occurs at time
τ = τ1. At this time, the inhibition s1 felt by cell 1 jumps up to the line s ≡ 1. Cell
2 then evolves in the active phase; we illustrate the projection of cell 2’s trajectory
during the active phase with a dotted curve in Figure ??. Note that s1(τ) still
satisfies the second equation in (10.37); hence, it keeps decreasing while cell 2 is
active. During this time, cell 1 lies in the silent phase with s1 = 1. This continues



i i

i

i

i

i

10.9. Slow Inhibitory Synapses 275
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Figure 10.16. Geometric construction of an antiphase solution for slow
synapses.

until cell 2 reaches the jump-down curve w = wR(s). We denote this time as τ2.
Cell 2 then jumps down and this completes one-half of a complete cycle. For this
to be an antiphase solution, we must have that w1(τ2) = w2(0) and s2(τ2) = s1(0).

We next consider the so-called suppressed solutions shown in Figure 10.2C.
In such rhythms, one cell remains quiet while the other oscillates. Here we assume
that a single cell, without coupling, is oscillatory. Moreover, the cells are excitable
for sufficiently high levels of inhibition. That is, the w-nullcline intersects C0 along
it’s middle branch but intersects the left branch of Cs for some s ∈ (0, 1].

Suppressed solutions arise if the rate at which the synapse turns off is suffi-
ciently slower than the rate at which the cells evolve in the silent phase. The reason
for this is easy to understand: if the inhibition decays slowly enough, the leading
cell can recover and fire again before the inhibition from its previous active phase
wears off enough to allow the other cell to fire. This type of solution cannot exist if
the cells are excitable rather than oscillatory, since there is no input from the quiet
cell to drive the active one. On the other hand, suppressed solutions only arise if
the cells are excitable for some fixed levels of inhibition; i.e. some s ∈ (0, 1]. If this
is not the case, then the w−coordinate of the suppressed cell must keep decreasing
until that cell eventually reaches the jump-up curve and fires.

If the synaptic inhibition decays at a rate comparable to the recovery of the
cell, complex hybrid solutions can occur, in which one cell is suppressed for several
cycles, while the other fires, and then fires while the other is suppressed. An example
is shown in Figure 10.2D. In this example, each cell is excitable when uncoupled
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but is oscillatory for intermediate higher levels of inhibition. small, A cell can fire a
number of times while the other cell is suppressed. The inhibition of the firing cell
must eventually wear off, such that that cell can no longer fire. This then allows
the inhibition of the suppressed cell to wear off to the level from which it can fire.
The roles of the two cells are then reversed.

10.9.3 Synchronous Oscillations With Slow Inhibitory Synapses

It may be surprising that networks with only inhibitory synapses can generate
stable synchronous oscillations; however, this has indeed been demonstrated, both
numerically and analytically, in several studies. Here we describe some rigorous
results given in [tbk].

We first construct the singular synchronous solution. We begin with both cells
at the right knee of the right branch of C1. From this point, the cells jump down to
the silent phase. While in the silent phase, the slow variables evolve according to
(10.35). The cells can only leave the silent phase once they reach a left knee of one
of the left branches. If the cells are able to reach such a point, then they will jump
up to the active phase and return to the starting point. Hence, the existence of the
synchronous solution depends on whether the cells can reach one of the jump-up
points while in the silent phase.

If the cells are oscillatory, then the synchronous trajectory must reach one of
the jump-up points. This is demonstrated in [tbk] where it is also shown that a
synchronous solution can exist even though both cells, without any coupling, are
excitable. This will be the case if the rate K of decay of inhibition is small enough
and the cells are oscillatory for some fixed values of s ∈ (0, 1); if the cells are excitable
for all s ∈ [0, 1], then the only stable solution is the quiescent resting state. Exit from
the silent phase is not possible if K is too large, since then the inhibition decays
quickly and the system behaves in the slow regime like the uncoupled excitable
system with s = 0.

We next consider the stability of the synchronous solution. It turns out that
the synchronous solution will always be unstable for the simple model of synaptic
dynamics given in (10.3); that is, if the synapse turns on instantaneously with
respect to the slow time-scale. However, if we introduce a slow delay in the response
of the synapse, then it is possible for the synchronous solution to be stable. To model
the delay, we introduce a new variable, denoted by x, in the model given in (10.3).
That is, we replace (10.3) with the equations:

dx

dt
= αx(1 − x)H(Vpre − VT ) − βxx

ds

dt
= α(1 − s)H(x − θx) − βs (10.39)

where H is the Heaviside step function. Note that the variable x represents the
delay in synaptic response. When the presynaptic potential vi crosses threshold
VT , it immediately activates x. Then the postsynaptic variable sj , j 6= i must wait
until x crosses some threshold θx before it turns on. We refer to the original model
(10.3) as a direct synapse and the new model (10.39)) as an indirect synapse. We



i i

i

i

i

i

10.9. Slow Inhibitory Synapses 277

now demonstrate that the synchronous solution is unstable if the synapse is direct.
We then give conditions for when the synchronous solution is stable if the synapse
is indirect.

The reason why the synchronous solution is not stable when the synapses are
direct is because with direct synapses, when one cell jumps, the other cell begins
to feel inhibition as soon as the first cell’s membrane potential crosses threshold.
This instantly moves the second cell away from its threshold by an amount that
stays bounded away from zero no matter how close to the first cell the second cell
starts. Thus, infinitesimally small perturbations are magnified, at this stage of the
dynamics, to finite size, and the synchronous solution cannot be stable.

We next consider indirect synapses and describe a Theorem proved in [tbk]
which shows that the synchronous solution can be stable in some parameter ranges.
This result implies that there are two combinations of parameters that govern the
stability. Furthermore, only one of those two combinations controls stability in any
one parameter regime.

For this result, it is necessary to make some further assumptions on the non-
linearities and parameters. It will be necessary to assume that

fw < 0, gv > 0, and gw < 0 (10.40)

near the v−nullcline. For the Theorem stated below, we also assume that f(v, w)
is given by

f(v, w) = f1(v) − gcw(v − vR)

where gc > 0 and vR ≤ vsyn represent a maximal conductance and reversal po-
tential, respectively. Note that this holds for the Morris-Lecar equations. The
analytical framework we develop, however, also applies to more general nonlinear-
ities which satisfy (10.40). Some technical assumptions are also required on the
nonlinear function g(v, w). We need to assume that gv is not too large near the
right branches of the cubics Cs, for example.

We assume that the parameters αx and βx are sufficiently large, and αx

αx+βx
>

θx. This guarantees that each xi can cross its threshold in order to turn on the
inhibition. Precise conditions on how large αx and βx must be are given in [tbk].

We also need to introduce some notation. Let a− be defined as the minimum
of −∂g/∂w over the synchronous solution in the silent phase. Note from (10.40)
that a− > 0. Let (w∗, s∗) = (wL(s∗), s∗) be the point where the synchronous
solution meets the jump-up curve, and let λ = w′

L(s∗) be the reciprocal slope of
the jump-up curve at this point in (w, s)-space. Finally, let a+ denote the value of
g(v, w) evaluated on the right hand branch of C0 at the point where the synchronous
solution jumps up. The main result in [tbk] is then the following.

Theorem: Assume that the nonlinear functions and parameters satisfy the as-
sumptions stated above. If β = ǫK with K < a− and Ks∗ < a+/|λ|, then the
synchronous solution is asymptotically stable.

We note that the first condition in the Theorem is consistent with the nu-
merical simulations of [wangrinz], who obtained synchronized solutions when the
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synapses recovered at a rate slower than the rate at which the neurons recovered in
their refractory period.

To interpret the second condition in the Theorem note that Ks∗ is the rate
of change of s at the point at which the synchronous solution jumps, while a+

is the rate of change of w on the right hand branch right after the jump. Since
λ = dwL/ds, multiplication by |λ| transforms changes in s to changes to w. One
may think of |λ| as giving a relationship between the time constants of inhibitory
decay and recovery of the individual cells; a larger |λ| (corresponding to a flatter
jump-up curve) means that a fixed increment of decay of inhibition (∆s) has a
larger effect on the amount of recovery that a cell must undergo before reaching it
(inhibition-dependent) threshold for activation.

10.10 Propagating waves

We now consider propagating activity patterns. These may arise in both excita-
tory and inhibitory (as well as excitatory-inhibitory) networks and there have been
numerous theoretical studies of mechanisms underlying both the existence and sta-
bility of this phenomenon. Wave-like activity has been observed experimentally in
several brain regions.

Here we will consider conductance-based model of the region of the brain
called the thalamus. At its simplest, the network consists of two layers of neurons,
the thalamocortical cells (TC) and the reticular nucleus cells (RE). These nuclei
have been shown to play a key role in the generation of sleep rhythms. Each neuron
is modeled with single compartment, conductance based model that includes the
usual potassium and sodium channels for spike generation, as well as a low threshold
T-type calcium channel. This last channel allows the cells to produce rebound
excitation. Details of the model can be found in [ ].

The phaseplane for an individual cell is shown in Figure 10.17A. Note that if
a cell receives inhibitory input, then this raises the V−nullcline. If the cell receives
inhibition for some period of time then the equilibrium moves toward the new fixed
point. If the inhibition is rapidly removed, the V−nullcline falls back to the original
position (s = 0) which leaves (V, h) above hmax. This causes the voltage to jump to
the right branch of the nullcline (a rebound spike), before returning to rest. If the
two layer network of these cells is wired up as in Figure 10.17B, then under some
circumstance, the result is a wave of activity across the network. Such a wave is
shown in Figure 10.17C. This is not a smooth wave; rather we call this a lurching
wave. Here is what happens. A group of TC cells fires. This excites RE cells
nearby causing them to fire. They inhibit the TC cells including those surrounding
the original population of firing cells. The fresh population is inhibited and when
the inhibition wears off, they fire as a group.

We now attempt to explain this and find a formula for the size of the groups
that fire as well as the time it takes for them to fire. In order to do this, we will
simplify a bit and consider a single layer of cells with inhibitory coupling. Thus,
when a group of cells fires, it inhibits a neighboring group. After the inhibition wears
off, the next group fires and so on. (In the next section, we will look at the transition
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Figure 10.17. Thalamic network model. (A) Phaseplane showing the h-
nullcline (dashed) and V -nullcline at rest (s = 0). Several important values of h
are shown. The approximate singular trajectory of a lurching wave is drawn in thick
lines. (B) The architecture of the full model. (C) A simulation of a lurching wave.
Grey scale depicts voltage; white=-40mV and black=-90mV. (D) The function F (φ)
from equation (10.44 with hmax = .7, hmin(φ) = .2+ .5φ, hr(φ) = .5+φ, τR/τL = .2

from smooth waves to lurchers through a different set of simplified models.) To
analyze this model, we use singular perturbation. The present exposition will be
a drastic approximation to a fuller analysis of the model which can be found in
Terman et al. The equations of interest are

ǫ
∂V

∂t
= f(V, h) − g

∫ ∞

−∞

W (x− y)s(y, t) dy(V − Vin) (10.41)

∂h

∂t
= (h∞(V ) − h)/τ(V ) (10.42)

ǫ
∂s

∂t
= αH(V − VT )(1 − s) − βs. (10.43)

f(V, h) is all the intrinsic currents of the cell. We suppose that the interaction
kernel, W (x) is a square and without generality, assume it is zero outside of x =
(−1/2, 1/2). We assume that τ(V ) takes on two values, τR when V is on the right
branch of the V−nullcline and τL when V on the left branch. The parameter ǫ is
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small indicating that the dynamics is governed by the calcium recovery variable, h.
(We should really start with ǫ multiplying the right-hand side of the h equation and
then rescale time. In the interest of brevity, we have already done this.) By letting
ǫ → 0, we analyze the singular trajectory and compute the properties of the wave.
Figure 10.17A shows the singular trajectory of a group of cells. Suppose that φ is
the size of the group of cells that is turned on. This inhibits a neighboring group,
which are all at rest, h0. As long as the first group remains on the right-branch of
the V−nullcline, the second group crawls up the left branch of V−nullcline toward
hr(φ) the resting state. When the first group reaches the bottom of the inhibited
(s = φ) V−nullcline, the inhibition disappears. All cells that are above hmax will
jump to the right branch, starting the cycle again. With this simple description
of the wave, we can derive formulas for the time between jumps and the size of
group that jumps. Suppose the group that jumps is on x ∈ (−φ, 0). This means
that all the synaptic variables, s(x, t), in the group are at their equilibrium values,
a ≡ α/(α+ β). Thus

Stot(x) ≡
∫ ∞

−∞

W (x− y)s(y, t) dy = a

∫ 0

−φ

W (x− y) dy.

We assume that φ is smaller than the synaptic footprint, so that Stot(x) = aφ for
x ∈ (0, φ). For the time in which this group of cells in on the right branch of the
V−nullcline, All cells in (−φ, φ) feel the same common inhibition parametrized by
φ and the see the V−nullcline labeled s = φ in the figure. At the up-jump, all
the cells roughly jump horizontally with h = hmax, the maximum of the s = 0
V−nullcline. They remain on the right branch until they reach hmin(φ) where they
jump back. For V on the right branch, h∞(V ) = 0, so the time it takes is

T = τR ln
hmax

hmin(φ)
.

In the meantime, the group of cells at x ∈ (0, φ) is feeling the inhibition, so,starting
from rest, they are heading toward the upper equilibrium point at hr(φ). During
this period h satisfies

τL
dh

dt
= h∞(VL(h)) − h, h(0) = h0,

where VL(h) is the value of the voltage on the s = φ V−nullcline. We approximate
h∞(VL(h)) as hr(φ) so that we can solve for h in this time period:

h(x, t) = hr(φ) + (h0 − hr(φ))e−t/τL .

When the inhibition wears off at t = T only the cells above hmax will make the
jump. Thus, for self-consistency, we must have

h(φ, T ) = hmax

or:

hmax = hr(φ) + (h0 − hr(φ))

(

hmin(φ)

hmax

)τR/τL

≡ F (φ). (10.44)
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Thus, we reduce the problem to a single equation for φ. F (0) = h0 < hmax so that
for small φ, F (φ) < hmax. If the synaptic coupling g is large enough and τR/τL is
also large, then F (φ) will be larger than hmax for φ in some range. Indeed, the
function F (φ) is parabolic in shape (see figure 10.17, so there will either e two roots
or no roots to this equation. Having found φ we can then plug it back to get T
and thus get the speed of the lurching wave. In Terman, et al, a more correct and
precise analysis is presented and compares very closely to the solutions obtained by
numerically simulating the full model.

10.11 Bibliography

Half-centered oscillations, in which two mutually coupled cells can generate an-
tiphase oscillations, was first described by Brown [7]. Another early paper that
recognized the importance of postinhibitory rebound was that of Perkel and Mul-
loney [37].

The geometric singular perturbation approach decribed here began with pa-
pers by Kopell and Somers [33], who introduced the phrase “fast threshold modu-
lations” and Terman and Wang [51]. Reviews of this and subsequent work can be
found in Rubin and Terman [?] and Kopell and Ermentrout [32]..

Many papers have addressed the issue of when excitation or inhibition leads
to synchrony or antiphase oscillations. Early papers are those of Van-Vreeswijk,
Abbott and Ermentrout [53], Gerstner, van Hemmen and Cowen [18], and Wang
and Rinzel [54]. Our approach follows most closely Wang and Rinzel’s paper who
recognized the importance of slow inhibitory dynamics in synchronizing the neuronal
oscillations.

The issues described in this chapter are motivated by several neuronal systems,
including thalamocortical sleep rhythms, olfaction and rhythmic behavior in the
basal ganglia. References include [47, 11, 19, 44, 34, 6].

10.12 Exercises

1. Consider a system of the form (10.1). Assume that the system is oscillatory.
Moreover, g(v, w) = 0 along the left branch of the cubic-shaped v-nullcline
and g(v, w) = 1 along the right branch of this cubic. Finally, assume that the
left and right knees of the cubic are at wL < wR, respectively. Compute the
period of the singular periodic solution, with respect to the slow time-scale.

2. Construct a network of two mutually coupled cells with excitatory synapses
that exhibits both a stable synchronous solution and a stable antiphase solu-
tion.

3. Construct a network of two mutually coupled cells with inhibitory synapses
that exhibits antiphase (PIR) behavior and, by adjusting a single parameter,
an almost synchronous solution. By adjusting another parameter, the network
should exhibit a suppressed solution.
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4. Construct a network of four mutually coupled cells that exhibits (for different
values of parameters): a) synchronous behavior; b) a two-clustered solution in
which there are two clusters with two cells in each cluster; c) a two-clustered
solution in which there are three cells in one cluster and only one cell in the
other cluster; c) a three-clustered solution in which there are two cells in
one cluster and only one cell in the other two clusters; d) a four-clustered
solution in which the cells take turns firing and the phase between the firings
is constant; e) an almost-synchronous solution in which the cells take turns
firing; the phase between the ’trailing cell’ and the ’leading cell’ is longer than
the phase difference between other cells; e) a suppressed solution in which one
cell fires periodically but the other cells are suppressed; f) a solution in which
two of the cells fire in antiphase and the other two cells are suppressed.

5. Consider the synchronous solution with excitatory coupling. How does the
frequency depend on the parameters I and gsynǫ? Compute these curves
using XPPAUT. Justify your answer using the singular constructions.

6. Give a detailed construction of the singular solutions corresponding to an-
tiphase solutions arising from post-inhibitory rebound for the following cases:
A) cellular escape; B) synaptic escape; and C) synaptic release.

7. Consider the antiphase solutions arising from post-inhibitory rebound. How
does the frequency and duty cycle depend on the parameters I, gsyn and ǫ?
You should consider separate cases: the cellular escape and release mecha-
nisms and the synaptic escape and release mechanisms. Justify your answers
using the singular constructions.

8. Use Gronwall’s inequality to justify the last statement of Section 2.3.

9. In Section ??, we constructed the singular antiphase solution for excitatory
synapses when the cells have a short duty cycle. Do the same thing for
inhibitory synapses. Show that this solution is unstable.

10. Prove that as cells move along the same left or right branch of a cubic, the
time metric between the cells is invariant.

11. Prove that Π′
2 = Π′

4 = 1 where Π2 and Π4 were defined in the Section ??.

12. Let ΦL(w, s) be as in Section ??. Find conditions on f(v, w) so that ∂2ΦL

∂w∂s < 0.
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Chapter 11

Noise.

Neurons live in a noisy environment. That is, they are subjected to many sources of
noise. For example, we treat ion channels deterministically, but in reality, opening
and closing is a probablistic event. Similarly, there is spontaneous release of neu-
rotransmitter which leads to random bombardment of small depolarizations and
hyperpolarizations. In vivo, there is increasing evidence that cortical neurons live
in a high conductance state due to the asynchronous firing of the cells which are
presynaptic to them. Noise in neural and other excitable systems has been the sub-
ject of research since the early 60’s. There are a number of good books and reviews
about the subject. We single out the extensive review by Lindner et al (2004) and
the book by Tuckwell.

Our goal in this chapter is to look at several aspects of the role of noise in
neural models. Most of the analysis that we do will be on scalar models for the
firing of action potentials, such as the integrate-and-fire. However, we also look at
more general ionic models and stochastic channel dynamics. Since few textbooks
in theoretical neuroscience address the issue of noise, we felt that a few words on
the subject were warranted. There is no way to introduce a comprehensive theory
of stochastic differential equations in the allotted space so we refer the reader to a
number of good texts; notably Gardiner (1987) and the first five chapters of Kloeden
and Platen(1995). The main point of the analysis in this chapter is to see the effects
of noise on the subthreshold properties of neurons. This will allow us to develop
heuristics for the firing rates of neurons in networks later on in the book.

Since the treatment of noise in this chapter is somewhat informal, we will not
describe the beautiful mathematical constructions such as the Ito integral. Our
main interest is the Langevin equation:

dX = A(X, t)dt+B(X, t)dW (t). (11.1)

HereX ∈ Rn, A : Rn×R→ Rn, B is an n×nmatrix of functions, Bjk : Rn×R→ R,
andW (t) is a vector of independent Wiener processes. (A Wiener process is formally
defined below.) To get a feeling for this, it is helpful to solve this numerically:

X(n+ 1) = X(n) + hA(X(n), tn) +B(X(n), tn)
√
hN̂(0, 1) (11.2)
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Figure 11.1. Noisy neurons. (A) Integrate-and-fire model dV = (I −
V )dt + σdW (t) with I = 0.75 and σ = 0.1. This numerical solution was computed
using (11.2) with h = 0.01. Vertical lines represent times at which the model crosses
V = 1 and is reset to 0. (B) Noise allows a subthreshold stimulus to be encoded.
(C) Noisy ML model with class II parameters, I = 85 and unit variance noise in
the voltage component. (D) Distribution of crossings of w = 0.3.

where h is the discretization time step and N̂(0, 1) is a vector of normally distributed
independent random numbers with unit variance. (We will explain the strange

√
h

scaling below; you will just have to trust us on this for now.)
What does noise do to neurons? One of the main effects is that it allows them

to fire in the presence of subthreshold inputs. That is, if a current is applied that
will not cause the deterministic model to fire, the addition of zero mean noise can
induce the neuron to fire. Figure 11.1A shows a simulation of the integrate and fire
model with additive noise:

dV = (I − V )dt+ σdWt

which is simulated with the simple scheme:

Vn+1 = Vn + h(I − Vn) + σ
√
hN̂(0, 1).

In this figure, the threshold is V = 1 but I = 0.75 so that in the deterministic
model (σ = 0), V will never fire. The addition of noise allows the model to fire
occasionally. In fact, with sufficient noise, the neuron is able to sample stimulus
and, over many trials, reconstruct it as in Figure 11.1B.

Figure 11.1C shows the effects of noise on the ML model with class II param-
eters. With I = 85, there is only a stable fixed point to the noiseless dynamics.
Noise allows the neuron to spike with some regularity. How does one detect a spike
in a stochastically driven model? Because the voltage itself is the driven variable,
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then mathematically, the trajectory will not be differentiable so that theoretically it
could cross a fixed value arbitrarily many times in a given time interval. This is not
an issue with the integrate-and-fire model since as soon as it crosses threshold, the
voltage is reset far away from threshold. In a simulation, we have access to all of the
variables; in particular, the potassium gate. Figure 11.1C shows that crossing levels
of w is a very reliable indicator of a spike. Thus, we collect all the times at which
w = 0.3 is crossed from below. The interspike intervals (ISIs) are the times between
spikes. Figure 11.1D shows a histogram of the distribution for these times. The
distribution shows a sharp peak at about 100 msec and a broader, smaller peak at
about 175 msec. In exercises 1-3 you are asked to look at these distributions more
carefully.

The goal of this chapter is to provide some theoretical analysis of the results
shown in figure 11.1. To set this up, we next provide a rather terse review of the
theory of stochastic differential equations.

11.1 Stochastic differential equations.

Our main interest in this chapter is equation (11.1). Almost everything that can
be done with this both practically and analytically concerns the scalar case where
X is one-dimensional. The more general theory goes through as expected but the
equations that we get are not easily solved either numerically or analytically. Thus,
we start with the scalar equation. We can rewrite (11.1) as

x(t) = x(t0) +

∫ t

t0

a(x(s), s) ds+

∫ t

t0

b(x(s), s)dW (s).

The first integral is the standard integral that you are probably familiar with, but
the second integral is a stochastic integral. Let us briefly discuss some differences
in the interpretation since this will come up when we introduce the Fokker-Planck
equation.

11.1.1 The Wiener process.

We suppose thatW (t) is a Wiener process. This is just the limiting case of a random
walk as the steps and the time between steps gets smaller such that (∆x)2/∆t tends
to the finite limit of 1. That is, W (t) is a simple diffusion process satisfying:

1. W (0) = 0

2. The probability distribution of W (t) is Gaussian; that is, the density function
satisfies

∂p(x, t)

∂t
=
σ2

2

∂2p(x, t)

∂x2
, p(x, 0) = δ(x).

3. For any finite collection of times t1 < t2 < . . . < tn, the random variables
W (tj) −W (tj−1) are independent.

4. E[W (t)] = 0 and E[(W (t) −W (s))2] = σ2(t− s) for all 0 ≤ s ≤ t.
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5. W (t) is a continuous process.

where E[U ] is the expected value of the random process U . As we pointed out in
the introduction of this chapter, you can simulate a standard Wiener process by the
iteration:

W (t+ h) = W (t) +
√
hN(0, 1) (11.3)

where N(0, 1) is a normally distributed random variable with zero mean and unit
variance. Figure 11.2 shows an example of such a simulation. Property (4) is
illustrated in panel A; the mean is zero and the variance grows linearly in time.
Panel B shows that the distribution is a Gaussian and a solution to the diffusion
equation:

p(x, t) =
1√
2πt

e−x2/(2t).

11.1.2 Stochastic integrals.

We now come to the main issue in stochastic calculus, the interpretation of an
integral:

I =

∫ t

t0

G(s)dW (s) (11.4)

where G(t) is a piecewise continuous function. As with usual integration, we divide
the interval [t0, t] into finitely many points and write the partial sums

Sn =
n
∑

j=1

G(τj)[W (tj) −W (tj−1)]

where we choose tj−1 ≤ τj ≤ tj . In Riemann integration, it doesn’t matter where
we take τj . However, for stochasic integration, the choice of τj matters (Gardiner, p
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84.) For mathematical manipulation of the stochastic integrals, it turns out that one
should take τj = tj−1. In this case, the resulting integral is called the Ito integral.
The Ito calculus allows one to prove many rigorous results about stochastic integrals
and also allows one to evaluate the integrals. An alternative choice of τj = (tj−1 +
tj)/2 results in the Stratonovich integral and regular Stratonovich calculus. There
is a relationship between the two integrals in the context of stochastic differential
equations and there is a formula relating one to the other. The only reason we
bring these technical issues up is that when we define the Fokker-Planck equations
for (11.1), the choice of Ito versus Sratonovich matters. As far as neural modeling is
concerned, some people prefer the Stratonovich calculus since it is the appropriate
model is we assume that the “noise” has correlations and we take the limit as the
correlation time goes to zero. We cannot emphasise enough the point that if B is
constant in (11.1), then the two are exactly the same.

11.1.3 Change of variables: Ito’s formula.

Later on (when we discuss the theta model), we will need to make a change of
variables. In ordinary calculus, changing variables is a simple application of the
chain rule. However, in the stochastic calculus, certain higher order terms are
important. From equation (11.3), it follows that:

E[(W (t+ h) −W (t))2] = hE[N(0, 1)2] = h,

since N(0, 1) is a normal random variable with unit variance. Thus, we formally
find

E[dW (t)2] = dt.

Now suppose that x satisfies

dx = a(x, t)dt + b(x, t)dW (t).

Let y = f(x) where f is twice differentiable. What differential equation does the
new variable y satisfy (Gardiner,p 95) ?

dy = f(x+ dx) − f(x)

= f ′(x)dx +
1

2
f ′′(x)dx2 + . . .

= f ′(x)[a(x, t)dt + b(x, t)dW (t)] +
1

2
f ′′(x)b2(x, t)(dW (t))2 + . . .

= [f ′(x)a(x, t) +
1

2
f ′′(x)b2(x, t)]dt+ f ′(x)b(x, t)dW (t) + . . . .

Unlike the standard chain rule, there is an additional term f ′′(x)b2(x, t)/2 which
appears in the determinsitic part of the equation for y. We call the equation:

df [x(t)] = {f ′[x(t)]a(x(t), t) +
1

2
f ′′[x(t)]b2(x(t), t)}dt + f ′[x(t)]b(x(t), t)dW (t)

(11.5)
Ito’s formula. There is an obvious multi-dimensional analogue of this equation.
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11.1.4 Fokker-Planck Equation – General Considerations.

The Fokker-Planck equation (FPE) is the fundamental method that we have for
studying stochastic differential equations. There is a cost to this in terms of prac-
ticality. The FPE is a diffusion equation on Rn so that instead of solving an
n−dimensional stochastic differential equation (SDE), one has to solve a partial-
differential equation. For the scalar case, the trade-off is not too bad and we can
learn a lot from the analysis and simulation of the FPE. Beyond the scalar case, we
have to say that it is probably more efficient to simulate the SDE.

Let us start with a general continuous scalar random process. Let P (x, t)
be the probability that a random variable, X = x at time t. We will assume that
the new state of the system depends only on the current state. (This is called the
Markov property and such a process is called a Markov process.) Let M(x′, x, t)dt
denote the rate at which the process whose state is X = x′ at time t jumps to x at
time t+ dt. Then

∂P

∂t
=

∫

[M(x′, x, t)P (x′, t) −M(x, x′, t)P (x, t)] dx′. (11.6)

This is the Master equation and simply says that the rate of change of P is just the
difference between the rate at which X goes from x′ to x times the probability that
one is in state x′ and the rate at which the process leaves state x for some other
state time the probability in state x. If X takes on discrete values then the integral
is replaced by a sum. Let Q(y, x, t) = M(x, x+ y) be the rate of making a jump of
size y from the point x. Equation (11.6) can be written as:

∂P

∂t
=

∫

[Q(y, x− y, t)P (x− y, t) −Q(y, x, t)P (x, t)] dy.

The third order Kramers-Moyal expansion is an approximation in which we expand
in y to second order:

∂P

∂t
=

∫

dy[−y ∂Q(y, x, t)P (x, t)

∂x
+ (y2/2)

∂2Q(y, x, t)P (x, t)

∂x2
. (11.7)

Letting

α1(x, t) =

∫

dyyQ(y, x, t), α2(x, t) =

∫

dyy2Q(y, x, t)

we get an approximate PDE:

∂P

∂t
= −∂α1(x, t)P

∂x
+

1

2

∂2α2(x, t)P

∂x2
.

Note that α1 is the mean jump size and α2 is the variance. By assuming a diffusion
process, all odd moments (y3, y5, etc) vanish and the higher even moments turn
out to be expressible in terms of the second moment. Thus, for a diffusive process,
the Kramer’s-Moyal expansion is exact.

Let us return to the discretization of the scalar SDE:

x(t + h) = x(t) + ha(x, t) +
√
hb(x, t)N(0, 1).
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We can view this as a jump process in steps of h. The mean jump size is ha(x, t)
and the variance is hb2(x, t). Since the mean and variance in the Master equation
are defined in terms of the rate per unit time, we divide by h and obtain the Fokker-
Planck equation for the scalar Langevin equation (11.1)

∂P

∂t
= −∂a(x, t)P

∂x
+

1

2

∂2

∂x2

(

b(x, t)2P
)

. (11.8)

This equation can be more rigorously derived (see Gardiner), but, the present ex-
pansion provides the intuition behind it. The general n-dimensional FP equation
for (11.1) is:

∂P (X, t)

∂t
= −

n
∑

i=1

∂Ai(X, t)P (X, t)

∂xi
+

1

2

n
∑

i,j=1

∂2

∂xi∂xj

(

B(X, t)BT (X, t)P (X, t)
)

.

(11.9)
In general, this PDE is intractable and numerical solutions must be computed.
Since it is a PDE, it may be impractical to actually solve this and instead, the best
to approach is to run the stochastic equation many times and take averages. Below,
we introduce a method for obtaining equations for the moments; in particular, the
mean and the variance in the small noise case.

Derivation from Ito’s formula.

Here we derive the FPE using Ito’s formula and taking averages. This derivation
is adapted from Rudolph & Destexhe (NC 2003). We only derive the scalar model
version. Consider the stochastic differential equation:

dx = f(x, t)dt+ g(x, t)dW.

Let y = h(x) be a transformation where h is arbitrary but twice differentiable.
From Ito’s formula,

dh(x) = h′(x)f(x, t)dt + h′′(x)g2(x, t)/2dt+ h′(x)gdW.

Here primes mean differentiation with respect to x. Taking the expectation of this,
we obtain:

d

dt
E[h(x)] = E[h′(x)f(x, t)] +E[h′′(x)g2(x, t)/2].

Let ρ(x, t) be the probability distribution for the variable x. Note that

E[U(x, t)] =

∫

U(x, t)ρ(x, t)dx.

The integral is over the domain of x, often the real line, but not always. Using the
definition of the expectation, we find:

d

dt

∫

h(x)ρ(x, t) dx =

∫

[h′(x)f(x, t) + h′′(x)g2(x, t)/2]ρ(x, t) dx.
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If we integrate the right hand side by parts, we obtain:

d

dt

∫

h(x)ρ(x, t) dx =

∫

[−(f(x, tρ(x, t))′ + (g2(x, t)/2ρ(x, t))′′]h(x) dx.

Since this must hold for any function h(x), we must have:

∂ρ

∂t
=

∂

∂x

(

−f(x, t)ρ(x, t) +
1

2

∂

∂x
[g2(x, t)ρ(x, t)]

)

.

This is the Fokker-Planck equation.

11.1.5 Scalar with constant noise

Here we are interested in the equation:

dx = f(x, t)dt+ σdW (t) (11.10)

where W (t) is the standard Wiener process. We are interested in the distribution
of x as well as various rates such as how quickly x leaves a region. We can integrate
(11.10) to obtain

x(t) = x(0) +

∫ t

0

f(x(s), s) dt+ σ

∫ t

0

dW (t).

We start with the Fokker-Planck equation for this process. By assuming additive
noise, we avoid issues about the interpretation of the stochastic integral. For a
full discussion of this topic, see Gardiner (1995). From (11.8), the forward Fokker-
Planck equation for (11.10) is:

∂P (x, t)

∂t
= −∂f(x, t)P (x, t)

∂x
+
σ2

2

∂2P (x, t)

∂x2
. (11.11)

This can also be written as a conservation law for probability:

∂P (x, t)

∂t
+
∂J(x, t)

∂x
= 0,

where J(x, t) is the probability current (in dimensions of dx/dt):

J(x, t) = f(x, t)P (x, t) − σ2

2

∂P (x, t)

∂x
.

The current J consists of two parts: an active transport term f(x, t)P (x, t) and a
diffusive term (σ2/2)∂P/∂x. The probability current is similar to the current that
we saw earlier in our models of the cable equation. Unlike the axon equations,
however, here we have drift or transport terms f(x, t) which actively direct the
probability flow according to the spatial location. Consider an interval [a, b]. The
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change in probability in the interval must equal inward current minus the outward
current. Thus, we have

∂

∂t

∫ b

a

P (x, t) dx = J(a, x) − J(b, x) = −
∫ b

a

∂

∂x
J(x, t) dx.

Since the interval is arbitrary, we obtain the standard continuity equations:

∂P (x, t)

∂t
= −∂J(x, t)

∂x
.

We note that this simple continuity equation assumes infinitesimal jumps (in order
to write this as a partial differential equation), but as we will encounter below,
there may be large jumps so that the corresponding conservation equations must
be amended.

In order to solve the Fokker-Planck PDE, we need boundary and initial con-
ditions. If we choose positive initial data, then the maximum principle for the
diffusion equation guarantees that P (x, t) ≥ 0. Furthermore, if

∫

Ω

P (x, 0) dx = 1

then
∫

Ω

P (x, t) dx = 1

from conservation of probability. (Here Ω is the domain of x.) There are numerous
possible boundary conditions which are physically reasonable. If the domain is the
real line, then obviously we want P (x, t) → 0 as |x| → ∞. In some examples the
domain will be periodic so that P (a, t) = P (b, t) and J(a, t) = J(b, t).

We discuss two particularly important boundary conditions. If P (x, t) = 0 at
a boundary point, a, we say that the boundary is absorbing. A particle reaching
the boundary is absorbed. In this case, we lose conservation of probability. So,
if this condition occurs, then it is necessary to add other terms to the continuity
equations or have the flux out of that end point appear somewhere else to keep the
total probability at 1. (In the scalar neuron models, described below, this condition
occurs at the “spike” of the cell.) If J(x, t) = 0 at a boundary point, a, we say
it is a reflecting boundary. A particle reaching the boundary cannot cross it (the
current is zero) so that it bounces back.

Often one is only interested in stationary distributions (f(x, t) is independent
of t, for example). Then we obtain

σ2

2
P ′′ − (fP )′ = 0,

where P ′ is the derivative with respect to x. This is an ODE and can be integrated
once:

−σ
2

2
P ′(x) + f(x)P (x) = J. (11.12)
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J is just a constant of integration; the current described above. Suppose the domain
is the real line. Then P (±∞) = P ′(±∞) = 0 since P must be integrable. Thus,
J = 0 and we can solve for the steady state:

P (x) = K exp
2F (x)

σ2
(11.13)

where F ′(x) = f(x) and K is a normalization constant so that
∫

P (x) = 1. The
function −F (x) is called the potential for this process and local peaks in the proba-
bility correspond to minima of the potential. Consider, as an example, f(x) = −x.
Then

P (x) =
1

σ
√
π
e−(x/σ)2 .

If the domain is not infinite, then, J may be nonzero. However, if one of the
boundaries is reflecting, then J = 0 which means that the other boundary must
also be reflecting unless there are additional terms in the continuity equation such
as jumps. Suppose the domain is (a, b). In general, with J 6= 0, we can still solve
the steady state. Let

Ψ(x) = exp

(

(2/σ2)

∫ x

a

f(y)dy

)

.

Then we integrate (11.12) to obtain:

P (x) = Ψ(x)[P (a) − 2J

σ2

∫ x

a

dy/Ψ(y)].

Suppose, for example, the boundary conditions are periodic. Then we require
P (a) = P (b). Then, we obtain

J = P (a)
[Ψ(b) − 1]σ2

2Ψ(b)
∫ b

a dy/Ψ(y)
. (11.14)

P (a) is found by the normalization condition,
∫ b

a
P (x) = 1.

11.1.6 First passage times

Consider the equation (11.10). We now ask the following question: what is the
distribution of exit times from the domain [a, b] for the stochastic process? Suppose
that x(0) = x. Let p(x′, t|x, 0) be the probability that the process defined by (11.10)
is at x′ at time t given it started at x at time 0. Define

G(x, t) ≡
∫ b

a

dx′p(x′, t|x, 0).

G(x, t) is the probability that x is still in the interval [a, b] at time t. Thus, if T is
the time that x leaves the interval, then G(x, t) = Prob(T ≥ t). Why do we care
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about this function? Below, when we discuss scalar models like the integrate-and-
fire, we will be interested when the voltage crosses the threshold. These crossing
times correspond to “spikes” and their distribution is the ISI distribution. Gardiner
shows that G(x, t) satisfies the backward FP equation:

∂G(x, t)

∂t
= f(x, t)

∂G(x, t)

∂x
+
σ2

2

∂2G(x, t)

∂x2
. (11.15)

What are the initial and boundary conditions? Clearly G(x, 0) = 1 if a < x < b.
The boundary conditions depend on the nature of the problem. We will often take
absorbing conditions at x = b.

For many problems, we are interested in the mean exit time, T (x), defined as
the expected time to leave the interval given a starting value at x. Suppose that f
is independent of time. The definition of G(x, t) implies that

G(x, t) =

∫ ∞

t

ρ(x, t′) dt′ (11.16)

where ρ(x, t)dt is the probability that x exits the domain in the interval (t, t+ dt).
The mean first passage time is thus

< T > (x) =

∫ ∞

0

tρ(x, t).

Integration by parts (exercise ??) shows that

< T > (x) =

∫ ∞

0

G(x, t) dt.

In the same exercise you show that equation (11.15) implies that < T > satisfies
the simple ODE:

−1 = f(x) < T >′ +
σ2

2
< T >′′ . (11.17)

Finally, a closed form solution is provided in the exercise, although, the integrals
cannot generally be evaluated except numerically. In addition to the mean first
passage time, one is often interested in higher moments such as the variance, <
T 2 >. The nth moment, Tn satisfies a simple second order equation like (11.17)
depending only on the previous moments (exercise ?). Since the first passage time
is realted to the firing rate of a noisy neuron, spike statistics can be found from the
solution to the moment equations. For example the coefficient of variation (CV) is
a measure of the irregularity of a process and is defined as the ratio of the standard
deviation to the mean. The standard deviation of the firing rate is just

σ =
√

E[(T − E[T ])2] =
√

E[T 2] − E[T ]2

so that the CV is

CVT =
√

E[(T/E[T ])2] − 1.
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Simple derivation of the first passage time.

Larry Abbott (personal communication) provides a very simple derivation of the
first passage time. As above, we let T (x) denote the mean first passage. On a given
trial, x moves from x to x + ∆x in time ∆t. Then on average, < T (x + ∆x) >=
T (x) − ∆t. (Note that ∆x is a random variable but T (x), x,∆t are not.) From
equation (11.10), we note that

∆x = f(x)∆t+ σ
√

∆tξ

where ξ is a normally distributed random variable with zero mean and unit variance.
Thus, the mean of ∆x is f(x)∆t. The mean of (∆x)2 is

< ∆x2 >=
〈

[f(x)∆t+ σ
√

∆tξ]2
〉

= [f(x)∆t]2 + σ2∆t = σ2∆t+O((∆t)2).

Now, expand T (x+ ∆x), in small ∆x, to get:

T (x+ ∆x) ≈ T (x) + ∆xT ′(x) +
1

2
(∆x)2T ′′(x) + . . . .

Taking the mean, using the above fact that < (∆x)2 >= σ2∆t + O((∆t)2), and
dividing by ∆t we get:

σ2

2
T ′′(x) + f(x)T ′(x) = −1

as ∆t→ 0.

Some comments on the utility of first passage times.

First passage time methods are an elegant tool for determining various questions
like the firing rate of a neuron in the presence of noise. However, it is crucial that
one be able to actually determine what the crossing threshold is for the model. In
one-dimensional neurons, this is very clear – we set a point at which the cell is said
to fire and that is that. (Technically, we apply an absorbing boundary condition at
the spike, P (Vspike, t) = 0.) However, consider model that actually does produce
spikes like the Morris-Lecar model, for example. The phase-space is no longer an
interval on the line with a well-defined boundary. Rather, the domain is the whole
plane. Given this, what do we mean when we say a neuron produces a spike?
We could, for example, look for a peak in the membrane potential and call that a
spike. This is what neuroscientists do when they attempt to detect spikes from the
extra- or intracellular recordings of a neurons. However, with additive white noise
stimuli, the voltage can cross a set threshold arbitrarily many times in any given
interval so that a peak will not make any sense. There are two ways around this
difficulty. One way is to use colored noise, that is, noise which has been low-pass
filtered so that the right hand sides of the voltage equation are continuous. In this
case, the peak of the voltage is well defined so that we can, at least, run reasonable
stochastic simulations. Using colored noise presents a more realistic scenario for
the environment of a neuron, but the analysis of this process is far more difficult as



i i

i

i

i

i

11.2. Firing rates of scalar neuron models. 295

we no longer obatin simple ODEs. Another way around the problem (which is not
available to an experimentalist) is to consider crossing of one of the other variables
in the ODE. For example, in the Morris-Lecar, we could say that a spike is emitted
if w(t) crosses some set value, w̄. This was done in the Monte-Carlo simulation in
figure 11.1C. Analytically (but, rather impractically), we could write down the full
Fokker-Plank equations on a large enough domain and compute the flux through
some region in the domain of the model and call this the firing rate. For example,
if the model is planar, dV = f(V,w)dt + σdW , dw = g(V,w)dt, then we solve the
appropriate Fokker-Plank equation:

Pt =
σ2

2
PV V − [f(V,w)P ]V − [g(V,w)P ]w

on a large rectangle (large enough to ignore the boundaries, since the real problem
is actually defined on the whole plane). Suppose that we obtain the stationary
distribution, P (V,w). We can say that a spike has fired if, e.g., w crosses some
proscribed value, w̄, while V lies in some specified interval. The total flux is the
firing rate:

F =

∫ V2

V1

Jw(V, w̄)dV

where, Jw(V,w) = g(V,w)P (V,w).
In sum, from a practical view point, most of the noise calculations that are

done for neuron models make sense only for simple one-dimensional dynamics. Once
we get to biophysical models, it is best to just simulate them as in figure 11.1C.

11.2 Firing rates of scalar neuron models.

We now turn to the applications to scalar neuron models of the methods we outlined
above. Most scalar neuron models (such as the integrate-and-fire) have a reset
condition when the voltages reaches a particular value, Vspike. Often, this particular
value is the maximum value that the potential can take, thus, the probability of
finding the neuron at this value vanishes – there is an absorbing boundary condition.
However, the probability current out of that point (which represents the neuron’s
firing rate) is “re-injected” at the reset potential, Vreset so that the total probability
is conserved. We begin with a generic scalar model with additive white noise:

dV = f(V, t)dt+ σdW (t) (11.18)

with the stipulation that when V (t) reaches Vspike from below, to is reset to Vreset.
If f(V, t) = −aV + I, then we have the leaky integrate and fire model while if
f(V, t) = aV 2 + I, we have the quadratic integrate and fire model. To obtain the
mean firing rate, we can either solve the steady-state Fokker-Planck equation (11.11)
or the mean first-passage time equation (11.17). We can also use the backward
equation (11.15) to obtain interspike-interval histograms for these scalar models.
In the rest of this section, we apply the above theory. Unfortunately, the resulting
integrals are basically impossible to explicitly evaluate. On the other hand, the fact
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that the steady-state Fokker-Planck equation and the first passage time equation
are ordinary differential equations allows us to find smooth numerical solutions as
parameters vary.

11.2.1 The Fokker-Planck equation.

The probability density for (11.18) subject to reset can be formally written as:

∂P (V, t)

∂t
= − ∂

∂V
J(V, t) + δ(V − Vreset)J(Vspike, t) (11.19)

where

J(V, t) = f(V, t)P (V, t) − σ2

2

∂P (V, t)

∂V
. (11.20)

This equation is defined on the interval −∞ < V < Vspike. The boundary conditions
are P (−∞, t) = 0 and P (Vspike) = 0. The latter condition is absorbing. However,
probability is conserved due to the delta-function term appearing in (11.19). Indeed,
the reader can integrate this equation over the interval on which it is defined and
see that

∂

∂t

∫ Vspike

−∞

P (V, t) dV = 0.

Stationary solutions satisfy

0 = − d

dV
J(V ) + δ(V − Vreset)J(Vspike).

We integrate this with respect to V to obtain:

J0 = −J(V ) + J(Vspike)H(V − Vreset),

where H(V ) is the Heaviside step function. Since P (V ) and its derivatives must
vanish at V = −∞, we conclude that J0 = 0. Since P (Vspike = 0) equation (11.20)
implies that at steady-state:

J(Vspike) = −σ
2

2

dP (Vspike

dV
≡ ν.

The firing rate of the neuron is just J(Vspike, t). Thus, we have the simple first-order
linear differential equation:

J(V ) ≡ f(V )P (V ) − σ2

2

dP (V )

dV
= νH(V − Vreset).

We let P±(V ) denote the solutions to this equation for V < Vreset and for V >
Vreset. Then, with normalization we have:

f(V )P−(V ) − σ2

2
P ′
−(V ) = 0 −∞ < V < Vreset

f(V )P+(V ) − σ2

2
P ′

+(V ) = ν Vreset < V < Vspike
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P−(−∞) = 0

P−(Vreset) = P+(Vreset)

P+(Vspike) = 0
∫ Vreset

−∞

P−(V ) dV +

∫ Vspike

Vreset

P+(V ) dV = 1.

The solution to the stationary state depends on a single constant ν and this constant
is determined by the normalization. Define F (x) as F ′(x) = f(x). After a bit of
simple manipulation, we find:

ν−1 =
2

σ2

∫ Vreset

−∞

e
2F (x)

σ2 dx

∫ Vspike

Vreset

e
−2F (y)

σ2 dy (11.21)

+
2

σ2

∫ Vspike

Vreset

e
2F (x)

σ2

∫ Vspike

x

e
−2F (y)

σ2 dy dx

=
2

σ2

∫ Vspike

−∞

e
2F (x)

σ2

∫ Vspike

max(x,Vreset)

e
−2F (y)

σ2 dy dx.

This equation and three dollars will get you a small cup of coffee at Starbucks.
We can simplify this equation for some particular cases although the evaluation of
the resulting expressions is still nontrivial. We note that the flux is always positive
because of the absorbing boundary at V = Vspike. The reason for this is that the flux
is proportional to −∂V P (V ) at Vspike. Since P is positive and vanishes at Vspike,
its derivative at Vspike must be negative.

Constant drift.

Suppose that f(V ) = I; there is no dependence on the potential. Then we leave it
as an exercise to the reader to show that the expression (11.21) is independent of σ
and the firing rate is just

ν =
I

Vspike − Vreset
.

Leaky integrate and fire.

For the leaky integrate and fire, f(x) = I − x, so that F (x) = Ix− x2/2. Fourcaud
and Brunel (2002) provide the most compact form for the firing rate of the leaky-
integrate-and fire model:

ν−1 =
√
π

∫

Vspike−I

σ

Vreset−I

σ

es2

(1 + erf(s)) ds, (11.22)

where

erf(x) =
1√
π

∫ x

−x

e−s2

ds.

In spite of the simple form, this is not a simple function to compute. Indeed,
evaluating the integral numerically requires dealing with the very large exp(x2) and
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the very small 1 + erf(x). In figure 11.3, we plot some representative firing curves
for the LIF (and other models) by solving an appropriate boundary value problem.
We can, however, do some asymptotic analysis is the cases of either large I or large
σ. We leave all of this, including the derivation of (11.22) as exercises to the reader.

Quadratic integrate-and-fire.

In the quadratic integrate and fire model, f(V ) = V 2 + I, Vspike = +∞ and
Vreset = −∞. With some simple rescaling of the resulting integral, we arrive at a
formula first derived by Lindner and Longtin:

ν−1 =

(

18

σ2

)1/3 ∫ ∞

−∞

dx e−ax−x3

∫ x

−∞

dyeay+y3

, (11.23)

where

a =

(

12

σ4

)1/3

.

Sigeti and Horsthemke (1989) evaluated this integral exactly for the case in which
I = 0 (at the saddle-node) and obtain

ν(I = 0) = [Γ(1/3)]−2

(

3σ

2

)1/3

= 0.1595 . . . σ2/3.

Not surprisingly, for I > 0 and small noise, ν ∼
√
I/π, the deterministic firing rate.

More interestingly, for I < 0 (the resting neuron), noise induced firing occurs and
the rate is given by

ν =

√

|I|
π

exp

[

−8|I|3/2

3σ2

]

for σ2 ≪ |I|3/2. (See Lindner and Longtin, 2004).

Ring models.

In the exercises of chapters ? and ?, we introduced ring models defined on the unit
circle:

dV

dt
= f(V ) + I

where f(V ) is continuous and 2π-periodic. We can consider the noisy version of
this:

dV = (f(V ) + I)dt+ σdW (t). (11.24)

The stationary distribution, P (V ) must also be periodic, so that it must satisfy

J = (f(V ) + I)P (V ) − σ2

2

dP

dV
.

The constant J is the current and is also the firing rate of the neuron. Unlike the
integrate-and-fire models, there is no reset condition so the current is equal at every
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point. In particular, if I is large enough, then f(V )+I is positive so that in absence
of noise, we have

J−1 =

∫ 2π

0

dV

f(V ) + I
.

More generally, we can apply equation (11.14) where

Ψ(x) = exp

(

(2/σ2)

∫ x

0

(f(y) + I)dy

)

.

We remark that, unlike integrate-and-fire type models, the current can be
either positive or negative. (For I large and negative the oscillator runs couter-
clockwise.) Thus, one has to be careful with the interpretation of ring models as
neural oscillators. One special case of a ring model was analyzed by Ritt:

dθ = [1 − cos θ + (1 + cos θ)(I − σ

2
sin θ)]dt+ σ(1 + cos θ)dW (t).

Here firing occurs when θ = π. This model is equivalent to the QIF under the
transformation V → tan(θ/2). Unlike the ring models with simple additive noise,
(11.24), the noise is state-dependent and vanishes at θ = π. Evaluation of the right-
hand side at θ = π shows that the current is always positive. Without the singular
noise, we cannot guarantee that the current will always be positive in general ring
models.

11.2.2 First passage times.

The Fokker-Planck equation gives us more than just the firing rate – it also pro-
vides the distribution of the potentials. However, it is rare that one would need
this information. (Although, in a very clever paper, Rudolphe et al show that by
measuring the distribution of the noisy subthreshold potential in a neuron, it is
possible to extract estimates of the mean and variance of excitatory and inhibitory
conductances. See exercise ???.) Instead, the interspike interval distribution, the
mean firing rate and the variance of the firing rate are much more useful. In section
** we developed equations for the mean time to reach a given point as well as the
evolution of those times. We have

dV = f(V ) + σdW (t)

with V (0) = Vreset and we want to determine the distribution of times at which
V (t) = Vspike. The domain of interest is −∞ < V < Vspike. The average time
between spikes is just the epected time it takes to go from Vreset to Vspike and
the inter-spike interval histogram (ISI) is just the probability density function for
the exit times given that the starting point is Vreset. From equation (11.16), the
quantity ρ(Vreset, t) is this probability density function and is just the derivative of
the solution to the backward equation (11.15). Because there is no reset involved,
it is often the case that the mean first passage time solution results in a simpler,
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more compact, expression for the firing rate in contrast to equation (11.21). From
equation (11.17), the mean first passage time equation is

σ2

2
T ′′(V ) + f(V )T ′ = −1 (11.25)

with appropriate boundary conditions. Recall that T (V ) is the expected time to exit
some prescribed boundary given that at t = 0 the voltage is V . If we are working
with an integrate-and-fire type model where there is a spike at Vspike and a reset
to Vreset, then one of the boundary conditions is T (Vspike) = 0. Gardiner (p 139)
shows that the other desired condition is that T ′(V ) → 0 as V → −∞. However,
this does not imply that the T (V ) itself remain bounded. Equation (11.25) is just a
first order equation in T ′(V ). We can use asymptotics to examine the large negative
V behavior. If f(V ) = KV p + . . . where the remaining terms are lower order in V
and p > 0, then clearly, we must have that

T ′(V ) = − 1

KV p
+ . . .

as V → ∞. If, as in the case of the leaky integrate-and-fire model, p = 1, then
T ′(V ) does go to zero as V → −∞ but, T (V ) diverges. The intuition behind
the divergence of T is that with the LIF, solutions to the deterministic problem
are exponentials which remain finite for all time – a solution with V (0) arbitrarily
large and negative reaches firing at a time proportional to log(|V (0)| which can be
arbitrarily large. In contrast, the quadratic integrate and fire model has p = 2 and
thus T (V ) converges as V → ∞ since the quadratic equation V ′ = a+ bV 2 “blows
up” in finite time.

With the condition T (Vspike = 0 and T ′(−∞) = 0, the solution to (11.25) is:

T (V ) =
2

σ2

∫ Vspike

V

e
−2F (x)

σ2

∫ x

−∞

e
2F (y)

σ2 dy dx. (11.26)

where F (x) =
∫

f(x)dx. (See exercise ???). Analogous expressions for periodic
boundary conditions can be found for ring models as long as the current is nonzero.
The current vanishes if and only if the average of f(V ) over the domain is zero.
Equation (11.26) allows us (up to actually evaluating the integrals) to compute
the FI curve in the presence of noise. By definition, T (Vreset) is the mean time
to fire a spike so the firing rate is just 1/T (Vreset). We can either numerically
evaluate the double integral, numerically solve the boundary value problem (11.25),
or numerically solve the Fokker-Planck equation (11.19). We find that the solution
to the BVP seems to be the simplest choice.

Since we will use the noisy FI curves later in the book, we illustrate them
in Figure 11.3 for two levels of noise. Both the solutions to the BVP and the
Monte-Carlo simulations are shown. (For the Monte-Carlo simulations, we solve
the equations for a time interval of 2000 and count the number of spikes.) The
main differences between the smaller and large noise cases is that the FI curve is
more linear with larger noise. This is a classic result: noise linearizes the response.
In all cases, the deterministic model is smeared by the noise resulting in a smoother
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Figure 11.3. F-I curves for the leaky (spike is at 1 and reset at 0) and
quadratic (spike is at 10 and reset at -1) integrate and fire models. Solutions to the
BVP are shown in black and Monte-Carlo simulations are shown in red. (A,B) LIF
with σ = 0.25 (A) and σ = 1.0 (B). QIF with σ = 0.25 (C) and σ = 1 (D).

sigmoidal curve. The firing rate curves will be useful for network models, thus, we
will attempt to create easily computed approximations of them. Suppose that F (I)
is the deterministic FI curve when there is zero noise. We will approximate the
noisy FI curve by the composition of F (I) with a a function M(I, p) which has the
following properties. M(I, p) is positive, monotone, and asymptotically approaches
I for large I, independent of p. As p → 0+, M(I, p) → [I]+, the positive part of I.
Several choices come to mind:

M1(I, p) =
I

1 − exp(−I/p) (11.27)

M2(I, p) = p log(1 + exp(I/p))

M3(I, p) =
1

2

[

x(1 + erf(I/p)) +
p√
π

exp(−(I/p)2)

]

.

The last function is the convolution of a gaussian with the positive part of I. Thus
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we approximate the noisy FI curve by

ν(I) = F (Mj(I, p))

where p is chosen to best fit the true FI curve. We find that the third choice
provides a pretty good fit with the FI curves in figure 11.3. The parameter p is
roughly linearly proportional to the noise, σ.

Other statistics.

There are other statistics besides the mean firing rate which may be useful. For
example, one might desire to compute the variance, σ2 and thus the standard devi-
ation, σ. A much-used characteristic of the “noisiness” of a neuron is the coefficient
of variation (CV), which is σ/T. Recall that the variance is just

σ2 =
〈

(T− < T >)2
〉

=< T 2 > − < T >2 .

Exercise ** shows the second moment T2(V ) obeys a simple second order ODE:

σ2

2
T ′′

2 (V ) + f(V )T ′
2 = −T (V )

where T (V ) is the already determined mean first passage time. The boundary
conditions are the same as for T (V ).

Aside: Solving the BVP.

Ideally, we would like to numerically solve (11.25) on the interval (−∞, Vspike),
however,this obviously impossible. Thus we solve the problem on the interval
(−A, Vspike) where we pick A large enough. We will use AUTO to do this since
it is very efficient and works better than simple shooting. Our estimates above indi-
cate that T (V ) = O(V −p) where p = 1 for the LIF and p = 2 for the QIF. Thus, we
expect we will have to make A larger for the LIF in order to better approximate a
reflecting boundary condition T ′(−A) = 0. Since our asymptotics actually provide
an estimate for T ′(−A) for large A, we use the boundary condition T ′(−A) = KA−p

for better accuracy.

11.2.3 Interspike intervals

Recall that the backward equation, (11.15) provides a solution to G(V, t) which is
the probability that no spike has fired up to time t given that the initial voltage is
at V. Each time there is a spike, V is reset to Vreset. Thus, if T is the time to spike
after resetting, G(Vreset , t) = Prob{T > t}. The interspike interval (ISI) histogram
is the probability of a spike in a given interval of size ∆t. This means that in limit
as ∆t→ 0, we have

G(Vreset, t) =

∫ ∞

t

ISI(s) ds.



i i

i

i

i

i

11.2. Firing rates of scalar neuron models. 303

So the ISI is found by solving the backward equation and computing the negative
t−derivative of G(V, t) at V = Vreset. To obtain the ISI distribution for an integrate
and fire model, we must solve the backward equation (11.15):

∂G(V, t)

∂t
= f(V )

∂G(V, t)

∂V
+
σ2

2

∂2G(V, t)

∂V 2

along with the boundary and initial conditionsG(V, 0) = 1 for V < Vspike, G(Vspike, t) =
0. Additionally, as with the mean first passage time, we require that GV (V, t) → 0
as V → −∞. In general, we cannot write down a useable closed form solution for
the backward equation (except when f(V ) = I, a constant – the so-called perfect
integrator; Mandelbrot ??) so we must resort to numerical approximations. We
solve a discretized version of the backward equation on an interval (−A, Vspike)
where A is chosen large enough. Figure 11.4 shows some comparisons between
the Monte Carlo simulations of equation (11.18) and the solutions to (11.15). We
show both the LIF and the QIF models for subthreshold currents/high noise and
suprathreshold currents/low noise.

11.2.4 Colored noise.

The sources for noise in neurons are manifold and include both channel noise (see
below) as well as synaptic noise which comes about from the constant bombardment
of other cells within the same milieu. Our model for white noise is simple and has
the advantage of being tractable at least in so far as providing some simple scalar
PDEs for the probability density and firing rates. While the formulae are not exactly
useful, they are easy to numerically evaluate as are the PDEs which result. The
white noise model is a somewhat crude approximation for synaptic noise especially
if the time constants of the synapses are not real short. Thus, some researchers
replace white noise by the following model:

τdz = −zdt+
√
τdW. (11.28)

Here τ > 0 approximates the decay properties of the synapses. This SDE is called
an Ornstein-Uhlenbeck (OU) process and has an exact solution; the stationary
distribution is Gaussian. Unlike the white noise case which is uncorrelated in time,
OU noise has an autocorrelation function which decays exponentially like exp(−t/τ).
A natural question to ask is how this can affect the responses of neurons to stimuli,
e.g. the FI curve. Lindner (2004) computes statistics for the interspike intervals of a
perfect integrator (dV/dt = I) when there is colored noise. Brunel and Sergi (1998)
and Brunel and Latham (2003) compute the FI curve for the noisy LIF and QIF
models respectively with this kind of colored noise in the limits of small and large
τ as well as a uniformly valid approximation over all ranges of τ. The calculations
are heroic, but the bottom line is that the effect of colored noise has only a small
effect on the steady-state firing rate. For example, if the applied current to the QIF
is 0.5 and σ = 0.5, then the firing rate varies from 21.5 Hz to 23 Hz for all values
of τ. We should point out that colored noise does have a rather important effect on
the behavior of these models when periodic stimuli are added (see the next section
as well as the last project in this section.)
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Figure 11.4. Interspike interval distributions for noisy scalar models.
Monte Carlo simulations are dashed and solid lines are solutions to (11.15). Monte
Carlo simulations are 50000 ISIs from an Euler simulation of (11.18). the PDE
is solved by the method of lines on a finite interval divided into 200 bins. (A,B)
Leaky integrate and fire, f(V ) = I − V . PDE is solved on the interval (-4,1) with
V = 1 absorbing and V = 0 as the reset value. (C,D) Quadratic integrate and fire,
f(V ) = I + V 2. PDE is solved on the interval (-5,5) with V = 5 absorbing and
V = −1 as the reset value. Currents and noise are indicated in the figure.

11.2.5 Nonconstant inputs & filtering properties.

So far, we have considered situations in which the inputs to the noisy model are
constant. However, real inputs to neurons change in time, so we would like to
ask what can be said about the time-dependent firing rate. Figure 11.1B shows
that one advantage of noise is that it allows subthreshold inputs to be recovered
and a complex stimulus can be accurately encoded in the rates. Contrast this to
a noise free model in which the neuron will not fire at all over a large range of
inputs. The analysis of the output from a nonautonomous model is considerably
more difficult than the stationary distribution. However, either Monte Carlo or
numerical solutions to the FP equation provide a good way to study the dynamics
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noisy neurons to stimuli. Figure 11.5 shows the response of the leaky integrgate and
fire model (LIF) to aperiodic and periodic stimuli. Brunel et al (2001) and Lindner
and Schimasky-Geier (2001) provide a formula for the response to weak periodic
stimuli which involves various special functions and is well beyond the scope of this
book. We point out two conclusions of their work: (i) with white noise the system
behaves as a low pass filter whose magnitude decreases as 1/

√
ω and the response

lags the input by about 45◦ in phase; (ii) with colored noise (eg dx = −x/τ + dW )
the lag disappears.

In the example shown in figure 11.5A, the stimulus is encoded with almost no
lag even though the noise is white. One approximation for slowly varying stimuli
is to treat them statically and use the steady-state FI curve. We compute the FI
curve for the level of noise in the model (σ = 0.4) and fit this to a smooth function,
F (I) as in (11.27) so that we can approximate the time-dependent firing rate as

ν(t) = F (I(t))

where we use

F (I) = 0.16 log(1 + exp((I − .51)/0.16)).

The red and green curves in figure 11.5A show that the static approximation works
quite well. Similarly, to periodic stimuli shown in figure 11.5B,C, the static re-
sponse is also very close to the numerically computed response. However, at high
frequencies as shown in 11.5D, there is a substantial diminution in the amplitude
and there is a clear lag. Thus, we introduce a slightly more complicated model for
the firing rate:

τ
dν

dt
= −ν + F (I(t)). (11.29)

The results for τ = 0.2 are shown in the black curves – this model provides a much
better fit. In fig 11.5B,C, we also show the results from the dynamic model; they
are nearly identical to the static model since the frequency is very low compared to
τ. We chose τ in an ad hoc manner and expect that its choice would depend on the
amount of noise as well as other aspects of the particular neural model.In one of
the exercises/projects below, we illustrate that the situation is not so simple with
a noisy conductance-based model. Nevertheless, equation (11.29) is the simplest
dynamic model for the responses of neurons to time-varying stimuli and we will use
equations like this to model populations of coupled neurons later in the book.

11.3 Weak noise and moment expansions

Rodriguez and Tuckwell (1998) heve developed a clever approximation for analyzing
neural models (and any other models) in the presence of small noise. The idea of
these methods is to assume that the probability distributions are Gaussian, centered
at the mean values, X̄j = E[Xj ], with covariances Kij = E[(Xi − X̄i)(Xj − X̄j)].
(Note, that E[x] is the expectation of the process x. Then one does an expansion
and derives equations for the means and covariances. We briefly outline the idea
and then apply it to a simple polynomial neural model. Rodriguez and Tuckwell



i i

i

i

i

i

306 Chapter 11. Noise.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

20 25 30 35 40 45 50

0

0.2

0.4

0.6

0.8

1

1.2

20 20.2 20.4 20.6 20.8 21 21.2 21.4 21.6 21.8 22
0

0.2

0.4

0.6

0.8

1

1.2

20 22 24 26 28 30

time time

timetime

F(t) F(t)

F(t)F(t)

P=0.5

P=20

P=5

A B

C D

Figure 11.5. Response of a noisy LIF model to non-constant stimuli. LIF
model has I = 0.75, Vspike = 1, Vreset = 0, σ = 0.4. (A) A non-periodic stimulus.
Blue curve shows the stimulus. Lower curves show the response of the FP equation
(red) and the instantaneous firing rate (green) predicted by the steady-state FI curve.
(B-D) Periodic stimuli at different periods (denoted by P in the figures). Blue curve
shows the stimulus and red the solution to the FP equation. The instant response
is shown in green and the solution to the simple dynamic model (see text) is shown
in black (τ = 0.2.)

consider the case of general multiplicative noise. In order to simplify the description
here, we restrict the method to additive noise. We start with

dXj = fj(X, t)dt+
∑

k

gjkdWk(t). (11.30)

The Wj(t) are standard Wiener processes (zero mean, independent, delta corre-
lated). Of the n2 quantities, Kij , n of them are variances, Vi = Kii, and, the
n(n− 1)/2 remaining are the distinct covariances between the n variables. Taking
the mean of equation (11.30), we immediately find

dX̄j

dt
= E[fj(X, t)]. (11.31)
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We note that E[dW ] = 0 so this is an exact equation for the mean. Unfortunately,
we need to approximate the right-hand side in order to get a closed system, of
equations, since X is a random variable which we do not know except through
(11.30). Similarly, the covariances satisfy

dKij

dt
= E

[

(Xi − X̄i)fj(X, t) + (Xj − X̄j)fi(X, t) +
∑

k

gikgjk.

]

(11.32)

This equation is obtained by differentiating the quantity

(Xi − X̄i)(Xj − X̄j)

with respect to t, taking expectations and using (11.31). We also use the fact that

E[(Xi − X̄i)E[fj(X, t)]] = 0

sinceE[fj(X, t)] is deterministic and (Xi−X̄i) has zero mean. Equations (11.31,11.32)
are exact, but of course involve stochastic quantities whose values are not known.
(Note that we can also obtain the moment equations by applying Ito’s formula to
the quantities (Xi − X̄i)(Xj − X̄j) and then taking expectations of the resulting
differential equation.)

If we make the assumption that the distributions are concentrated near the
means and the third and higher moments are small relative to the second moment,
we can approximate the right-hand sides of these equations. If G(x1, . . . , xn) is a
function of n variables, then

E[G(X, t)] ≈ G(m, t) +
1

2

n
∑

l=1

n
∑

p=1

{

∂2G(m, t)

∂xl∂xp
Clp,

}

(11.33)

where m is the approximation to X̄,and Clp is the approximation to Klp. Applying
(11.33) to (11.31), we get:

dmj

dt
= fj(m, t) +

1

2

n
∑

l=1

n
∑

p=1

∂2fj(m, t)

∂xl∂xp
Clp (11.34)

We now have an approximate equation for the means. Note that if we ignore the
covariances, we correctly recover the noise free dynamics. The correction term in
(11.34) makes intuitive sense since it depends on the sensitivity of the functions fj

on the variables. The approximation for Clpis more difficult to obtain, but can be
derived in steps. We replace X̄j by its approximation, mj , to obtain:

E[(Xi −mi)fj(X, t)] ≈
1

2

n
∑

l,p=1

∂2

∂xl∂xp
[(xi −mi)fj(m, t)]Clp.

This partial derivative is just:

δil
∂fj

∂xp
+ δip

∂fj

∂xl
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where δjkis 0 unless j = k,wherein it is 1. We obtain a similar approximation for
E[(Xj −mj)fi(X, t) which now leads to our approximation for the covariances:

dCij

dt
=

n
∑

l=1

(

∂fi

∂xl
Clj +

∂fj

∂xl
Cil + gilglj .equation

)

(11.35)

It is instructive to apply this to a simple planar model with noise only in the
first variable:

dV = f(V, U)dt+ σdW, dU = g(V, U)dt,

such as the Morris-Lecar equations. Let v, u be the approximate means of the two
equations and let w, y, z be, respectively, the variance of V, the variance of U, and
the covariance between V, U. Then from (11.34,11.35) we get the following equations

v′ = f(v, u) +
1

2
(fvvw + fuuy + 2fvuz)

u′ = g(v, u) +
1

2
(gvvw + guuy + 2gvuz)

w′ = σ2 + 2fvw + 2fuz (11.36)

y′ = 2gvz + 2guy

z′ = (fv + gu)z + fuy + gvw.

Here fv means the derivative of f with respect to v,etc. With no noise, σ = 0,the
solution, (v(t), u(t), 0, 0, 0) is an invariant solution, so we can ask if it is a stable
invariant solution. It turns out as you will show in an exercise below, that if (ū, v̄)
is a stable fixed point of

u′ = f(u, v) and v′ = g(u, v)

then (ū, v̄, 0, 0, 0) is also a stable fixed point of (11.36) when σ = 0. Thus, for small
values of σ, the fixed point still exists, is stable, and the covariances are finite.
However, if there are periodic orbits to the (u, v) system, then the covariances grow
linearly in time for any positive σ. Thus, the moment equations do not admit any
bounded periodic solutions if there is noise. They are only valid for a finite amount
of time.

The use of the moment equations is limited mainly to fixed points. However,
we can use them to see how stability and existence of fixed points changes as a
function of the noise. Figure 11.6 shows an application of equation (11.36) to the
Morris-Lecar model when the dynamics are Class I and II. Consider the noise-free
case first. When there is a Hopf bifurcation for the noiseless system, the moment
equations have a zero eigenvalue (exercise ??). Thus, in the computer analysis of
the full moment equations, there appears to be a branch point. Solutions along the
branch point can often correspond to negative values of w which is not physically
possible. Thus, they should be ignored. The same “feature” occurs at the fold point
for the class II example (figure 11.6B). When there is a small amount of noise, the
loss of a stable fixed point occurs at lower values of the current as is intuitively
expected. What is surprising is that the branch of solutions for the noiseless system
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Figure 11.6. Bifurcation diagram for Morris-Lecar moment expansion for
(A) Class II and (B) class I excitability as the current varies at zero noise and with
large noise (σ2 = 2). In each case, the addition of noise shifts the loss of the stable
fixed point to a lower value of I.

disappears at a fold point in the noisy system (figure 11.6A). The fold for Class I is
shifted to the left in the presence of noise. In exercise ???, you show that this will
be generically the case.

As you will see in exercise *, these equations are of limited utility since they
generically grow without bound when there are limit cycles to the deterministic
equations. However, it has been noted that if higher order terms are kept in the
moment equations (that is beyond the simple linear dependences), then it is pos-
sible to keep solutions bounded even away from stable fixed points. (See Tanabe
and Pakdaman (2001) PRE 63:031911). The key point is that in the Gaussian
approximation, all moments can be expressed in terms of the variances. For ex-
ample E[x4] = 3E[x2]. For equations with polynomial right-hand sides, then all
the expressions like E[f(X)] can be expressed in terms of only the means and the
variances with a finite number of terms. (For nonpolynomial systems, one can ap-
proximate f by a finite number of Taylor series terms.) Exercise * below takes the
reader through a planar system and applies it to a variant of the Fitzhugh-Nagumo
equations.

11.4 Poisson processes.

Many of the processes which occur at the molecular level in neuroscience are event-
related and random. For example, the opening of a single channel is a single event
and is random. The release of transmitter from an excited axon is also stochastic.
The usual assumption that is made about these processes is that they are Poisson:

1. The number of events in non-overlapping intervals of time are independent
for all intervals;

2. The probability of exactly one even occurring in an interval ∆t is P = r∆t
where r is the rate of events and ∆t is sufficiently small;

3. The probability of more than one event occurring in a sufficiently small interval
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is zero.

11.4.1 Basic statistics

Consider the interarrival times, that is the times between events. Since the num-
ber of events in any non-overlapping interval is independent, the intervals between
events are also independent. Let the events occur at time t1, t2, . . . and let I1 = t1,
and Ik = tk − tk−1 for k > 1 be the interarrival times. That these are all dependent
means that the process has no memory of what has already happened. (This has
the following unfortunate consequence: if you have been waiting at the bus stop
for a half an hour, then your expected waiting time for the next bus is exactly the
same as the fellow who has just arrived at the bus stop!). Formally this means:

P (I > t+ s|I > s) = P (I > t)

for all s, t ≥ 0. Bayes theorem says:

P (x|y) =
P (x, y)

P (y)
.

But, because the Poisson process “forgets” everything that happens, the joint prob-
ability, P (I > t + s, I > s) = P (I > t + s). Combining these two equations, we
obtain:

P (I > t+ s)

P (I > s)
= P (I > t)

so that
P (I > t+ s) = P (I > t)P (I > s).

Let G(t) = P (I > t+ s). Note that G(0) = 1. It is straightforward to show that the
only solution to the functional equation G(t+ s) = G(t)G(s), G(0) = 1 is

G(t) = e−rt.

Let F (t) = 1 − G(t) = P (I ≤ t) be the cumulative probability. Then the density
function is the derivative of the distribution funtion, f(t) = re−rt. For this rea-
son, we say that the intervals of a constant rate Poisson process are exponentially
distributed. The mean inter-event interval is

E[I] =

∫ ∞

0

tf(t) dt =
1

r
.

The second moment is

E[I2] =
2

r2

thus the variance (σ2 = E[(I − E[i])2]) is 1/r2. The coefficient of variation or
CV is defined as σ/E[I] and this a 1 for Poisson process. The inter-spike interval
distributions for cortical neurons have a CV close to one (Softky and Koch, 1993).

Given we have the density function for the interval arrival times, we can now
determine the density of the kth arrival time. Let’s approach this inductively. The
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probability that the second event occurs at time t is the probability that the first
event occurs at time s < t and that the interspike interval is t − s. The first
probability is F (s) = 1 − exp(−rs) and the second is f(t− s). Thus

F2(t) ≡ P (2ndevent < t) =

∫ t

0

(1 − e−rs)re−r(t−s) ds.

The density of the second event (k = 2) distribution is the derivative of this and is
just the convolution of the density function with itself:

f2(t) =

∫ t

0

f(s)f(t− s) ds.

Evaluating this integral, we find

f2(t) = (rt)re−rt.

Inductively, we find that the density of the kth event is the so-called gamma distri-
bution:

fk(t) = (rt)k−1re−rt/(k − 1)!.

Finally, we can use this result to determine the distribution for the number of events
in a given interval T . Let NT denote the number of arrivals by time T . Then clearly
Nt ≥ k when the kth arrival time is less than or equal to T. That is

P (NT ≥ k) =

∫ T

0

fk(s) ds.

This integral can be readily evaluated to yield:

P (NT ≥ k) = 1 − e−rT
k
∑

j=0

(rT )j/j!.

Thus the density function for k spikes is

P (NT = k) =
(rT )k

k!
e−rT .

This is called the Poisson distribution. Themth moment for the Poisson distribution
is found by evaluating the sum:

E[Nm] =

∞
∑

j=1

km (rT )k

k!
e−rT . (11.37)

This is not an easy task to do directly. Instead, it is easier to use a clever trick
called the moment generating function. Consider the sum:

H(s) = e−rT
∞
∑

k=0

(rT )k

k!
esk. (11.38)
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The mth derivitive of H(s) with respect to s evaluated at s = 0 is precisely equation
(11.37). The sum is (11.38) can be rewritten as

H(s) = e−rT
∞
∑

k=0

(rT es)k

k!
= e−rT exp rT es.

We thus find that E[N ] = rT , E[N2] = rT + (rT )2 and the variance is rT. The
ratio of the varaince in the number of events with the mean is called the Fano factor
and for a Poisson process is exactly 1.

11.4.2 Channel simulations

. The easiest way to simulate an exponential waiting time with a constant rate r
is to draw random numbers from the exponential distribution. That is, let In =
− log(Xn)/r where Xn are uniformly distributed numbers in the interval (0,1).
This is the key to the so-called Gillespie algorithm which is used to model chemical
kinetics. For example the opening and closing of channels is a simple random
process:

C ⇀↽ O

between the closed and open states. Let α, β be the respective rates for going from
closed to open and vice versa. Let N denote the total number of channels and o the
number of open channels. Since the channels are independnet, the rate of making a
closed to open transition is r1 = α(N − o) and the rate of making an open to closed
transition is r2 = βo. The rate of any event occurring is thus r = r1 + r2. So we can
choose a time to the next event as

tnew = −log[X1]/r

where X1 is uniform in (0, 1). Now we have to pick which event occurred. We choose
another random number, X2 uniformly distributed between 0 and r. If X2 < r1
then the first reaction (closed to open) occurs and otherwise the second reaction
(open to closed) occurs. In the former case o is incremented and in the latter o
is decremented. The total fraction of channels open is just o/N. Chow and White
applied this idea to study the effects of a finite number of channels in the Hodgkin-
Huxley equations. We proceed here with a simpler model, the Morris-Lecar since all
of the channel equations are simple open/close events. Unlike the reduced Morris-
Lecar model in which we let the calcium channel equal its equilibrium value m∞(V ),
we must retain the temporal dynamics of the channel for a stochastic model. We
have four possible events: (i) calcium channel opens, (ii) calcium channel closes,
(iii) potassium channel opens, and (iv) potassium channel closes. The rates are
dependent on the voltage which satisfies:

Cm
dV

dt
= I − gl(V − El) − (gK/Nw)W (V − EK) − gCa(M/Nm)(V − ECa)

where W,M are the total number of open potassium and calcium channels. We
divide this by the number of each type of channel since maximal conductances
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should be defined as conductance per channel. Thus the total maximal conductance
possible will be indepenendt of the numbers of channels. This voltage equation is
linear in V for any fixed W,M. Between events, both W,M will be constant, so that
we can write down the solution to the voltage equation exactly. We can rewrite the
V equation as :

dV

dt
= (V∞ − V )g

where V∞ and g are functions of the parameters and W,M . Suppose the voltage
was V0 at the end of the last event. The next event comes at a time tnew later.
Thus the voltage at the beginning of the next event is

V (tnew) = V∞ + (V0 − V∞)e−gtnew .

We use this new voltage to update the transition rates and calculate the next event.
The only numerical approximation we make is holding the rates constant between
events. Chow and White (1996) address some of these numerical issues. Figure
11.7 shows a simulation of the Morris-Lecar model with 100 potassium and calcium
channels and a subthreshold current. The noise due to the fluctuations in channels
is enough to cause the neuron to fire sporadically.

Computation of the channel openings and closing as in the above algorithm can
be laborious in more complex models or if the number of channels is large. (With
a large number, N , of channels, events occur very frequently so that advancing
even a small amount of time can take thousands of steps – indeed the time step is
O(1/N)) Thus, there are a number of approximations which are often made. The
most straightforward is to add noise to the deterministic channel models. That is,
solve:

dx = [a(1 − x) + bx]dt+ σxdW (t). (11.39)

The key question is the choice for σx. Greg Smith ( chapt 11, Computational Cell
Biology) suggests the following approximation:

σ2
x =

a(1 − x) + bx

N
(11.40)

where N is the number of channels. This has the right behavior for large N ; from
the law of large numbers, we expect the standard deviation to scale as 1/

√
N.

Fox and Lu (1994) make this approximation rigorous by (i) producing a Master
equation for the channels, (ii) approximating this by a Fokker-Planck equationm
and finally (iii) writing down the corresponsing Langevin equation. They make one
more simplification of equation (11.40) by replacing x with x∞ = a/(a+b) and thus
obtain

σ2
x =

1

N

ab

a+ b

which is independent of x. Figures 11.7 C,D show the result of a simulation of
the Morris-Lecar model using the approximation (11.40). One issue that must be
dealt with in using these approximations is that the variable x can fall out of the
valid range (0, 1), thus it is necessary cap x when it leaves the interval. Finally,
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Figure 11.7. Stochastic simulation of the Morris-Lecar model with 100
potassium and 100 calcium channels. I = 80µA/cm2 injected is subthreshold for
repetitive firing. (A) Time seris of the voltage (B) projection onto the (V,W ) plane
showing stochastic limit cycle. (C,D) Langevin approximations to the channel dy-
namics.

we can ask whether the behavior of these noisy versions of the Morris-Lecar model
differ substantially from the model with voltage noise only. A comparison of figures
11.7C,D with figure 11.1C would lead one to suspect that there is little difference
between the figures. We would expect the difference in this physically derived model
for stochasticity from the ad hoc additive-noise model to become important only
when there are very few channels.

11.4.3 Stochastic spike models: beyond Poisson.

Rather than generating spikes with a nosiy deterministic model (such as described
above) or with a fully deterministic model, sometimes it is desireable to create a
completely stochastic model for the spike times. For example, one could simulate
the spike times of a neuron with a purely Poisson process. However, biological
neurons rarely have perfectly exponential interspike interval (ISI) histograms (see
for example figure 11.1D). One reason for this is that once a neuron fires, the
probability of a spike occurring again is very low due to refractoriness – there is
history to the firing pattern. We now derive distributions for such history-dependent
models. Let f(t) denote the ISI density function (this is the ISI histogram when
defined in discrete time intervals). The probability of a spike occurring before t is

F (t) =
∫ t

0
f(s) ds. The probability that no spike has occurred up to time t is thus
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1−F (t). Now, we introduce a notion of history-dependence. Let h(t)∆t denote the
probability that a spike occurs in the interval [t, t + ∆t] but not not at any time
before. Let W be the random spike time. Then, formally:

h(t)∆t = P [t ≤W ≤ t+ ∆t|W ≥ t].

For a pure Poisson process, h(t) = r the spike rate since the probability of the spike
occurring is independent of the previous history. The probability of a spike between
t and t+ ∆t is just f(t)∆t and the probability of no spike before t is 1−F (t), thus
we have:

h(t) =
f(t)

1 − F (t)
= − d

dt
log(1 − F (t))

where we use the fact that F ′(t) = f(t). Given h(t) we can solve this differential
equation for to find

F (t) = 1 − exp

(

−
∫ t

0

h(s) ds

)

. (11.41)

The density fucnton F ′(t) is

f(t) = h(t) exp

(

−
∫ t

0

h(s) ds

)

. (11.42)

As a first example, suppose that h(t) = r so there is no history dependence. Then we
recover the usual exponential function, f(t) = re−rt. Suppose that when the neuron
fires, the rate is set ot zero and recovers exponentially. Then h(t) = r[1−exp(−t/τ)]
and we get a density function shown in figure 11.8A. In this example, the baseline
frequency is 40 Hz and τ = 50 msec. Note the peak in the ISI histogram at about
50 msec. The mean ISI is 74 msec and the CV is about 0.66. Figure 11.8B plots the
CV for this model at three different baseline frequencies over 6 orders of magnitude
refractory period. Obviously, as τ → 0 the process approaches a pure Poisson
process. Some more examples are provided as exercises.

Chapter 5 in the book by Gerstner and Kistler provides many examples of
stochastic neural models. In particular, thy have a very readabl;e discussion of
statistics of these generalized point processes such as the spike time autocorrelation
function and the spectral power. The interested reader should consult this book as
it is beyond the scope of the present text. Softky WR, Koch C. The highly irregular
firing of cortical cells is inconsistent with temporal integration of random EPSPs.
J Neurosci. 1993 Jan;13(1):334-50.

B. Lindner and L. Schimansky-Geier Transmission of noise coded versus ad-
ditive signals through a neuronal ensemble, Phys. Rev. Lett., 86, 2934 (2001)

N Brunel and S Sergi (1998), Firing frequency of leaky integrate-and-fire neu-
rons with synaptic currents dynamics, J. Theor. Biol., 195, 87-95

Firing rate of the noisy quadratic integrate-and-fire neuron. N. Brunel and
P.E. Latham Neural Comput. 15:2281-2306 (2003) B. Lindner Interspike interval
statistics for neurons driven by colored noise, Phys. Rev. E 69, 022901 (2004)

Brunel , N., & Hakim , V. (1999) . Fast global oscillations in networks of
integrate - and- fire neurons with low firing rates . Neural Computation, 11, 1621
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Figure 11.8. Poisson process with a relative refractory period. r(t) =
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1671. Chow, C. C. and J. A. White (1996). ”Spontaneous action potentials due to
channel fluctuations.” Biophysical Journal 71: 3013-3021. Gillespie, D. T. (1977).
”Exact stochastic simulation of coupled chemical reactions.” J. Physical Chemistry
81(25): 2340-2361.

Ronald F. Fox and Yan-nan Lu , (1994) Emergent collective behavior in large
numbers of globally coupled independently stochastic ion channels, PRE 49, 3421-
3431

11.5 Projects

1. Develop computer code to solve the FP equation for the ML model. In par-
ticular, compute the noisy FI curve as follows.

(a) Solve the steady state:

0 = −∂v(f(v, w, I)P (v, w)) − ∂w(g(v, w)P (v, w)) + (σ2/2)∂vvP (v, w).

The domain is the plane, but if you choose a large rectangle, D ≡
(vmin, vmax) × (wmin, wmax), this should be sufficient. You should use
reflecting boundaries, J(∂D) = 0.

(b) For each I, define the firing rate as

f = −
∫ vmax

vmin

J(v, wth) dv,

where we choose wth as in the Monte Carlo simulations. The reason
we don’t choose a voltage threshold is that the noise is in the voltage
variable and since we are using a Brownian motion, V can cross any
specific point infinitely many times in any interval of time. Thus, we use
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a section which is transverse to the flow in the recovery variable as this
is a continuous process.

Compare the result to Monte Carlo simulations.

2. Consider the stochastic differential equation corresponding to the Izhikevich
model (normal form for the Takens-Bogdonov bifurcation with finite reset):

dV = (I + V 2 − z)dt+ σdW, dz = a(bV − z) (11.43)

with the reset condition that if V (t−) = 1 then V (t+) = c and z(t+) =
z(t−) + d. Explain why the probability density satisfies:

∂P

∂t
= − ∂

∂V
(fP ) − ∂

∂z
(gP ) +

σ2

2

∂2P

∂V 2
+ J [δ(V − c) + P (V, z − d) − P (V, z)]

where

J = −
∫ ∞

−∞

dz
σ2

2

∂P (V, z)

∂V
|V =1

and f = I + V 2 − z, g = a(bV − z). This PDE is defined on the domain
(V, z) = (−∞, 1) × (−∞,∞). The stationary distribution will give you the
firing rate, J. Try to develop an expansion for the stationary distribution
for small a, d. This will be a fast-slow system. Tuckwell et al (2003) have
developed expansions for the Fitzhugh-Nagumo equation that may be of use.
Here is a suggested attack on the problem. For small a, d, z does not change
very much, so we can hold z constant. If z is fixed, suppose that one can obtain
the steady state firing rate, J as well as the density function, P (V ; z, I). Then
z formally satisfies:

z′ = dν + a(b < V > −z) ≡ G(z)

where ν is the firing rate of the cell and < V > is the average potential.
Note that both ν and < V > depend on z. Find a fixed point, G(z∗) = 0
and substitute back into P (V ; z, I) to obtain the stationary density at steady
state. One can continue this expansion to higher order to get the variance of
z as well. We suspect that methods related to the moment expansions in this
chapter could be of use for the z dynamics.

Another interesting phenomena to explore is the ISI distribution for this
model. For example, choose I = 0.05, σ + .015, a = 0.03, b = 1, c = 0.2, d = 0
and perform a Monte Carlo simulation. You will see that there is a bimodal
ISI. (See exercise ?? below for some comments on bimodal ISIs). Is it possible
to get a bimodal ISI distribution in the limit as a gets small but b remains
finite?

3. Set some parameters for the Morris-Lecar model with noise. A good choice is
to add a modest amount of noise (say, σ = 2 and I = 35) in the Class I regime.
First, numerically compute the FI curve for a range of applied currents. Now
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add a small periodic term as in section ?? and compute the spike-time his-
togram (STH). (That is, present the periodic stimulus, say, 10000 times and
count the number of spikes [crossings of w = 0.3] in each bin of say, 2 msec.
From this, you get the number of spikes per millisecond which is the firing
rate.) Compare the STH to a model for the firing rate as in section **:

u(t) = L[f(I(t))]

where L is some simple linear filter and f is the steady-state firing rate. Can
you come up with a simplified firing rate model for the ML system based on
these ideas? Repeat the Monte Carlo simulations above, but replace the white
noise with the following noise:

τdz = −zdt+
√
τdW

for different values of τ . You should find that the lag between the stimulus
and the firing rate disappears for τ roughly of the order of 10 msec.

11.6 Exercises

1. Compute the ISI distribution for the ML model with type II dynamics and
I = 95 which is in the oscillatory regime. Use noise of amplitude 1, i.e.
V ′ = f(V,w)+σξ(t), w′ = g(V,w), where σ = 1. Show that the bimodality of
the ISI is lost. Change I to 85 and set σ = 2 and then to 0.5. Compare the ISI
histograms for these with that in figure 11.1D. Based on these computations
can you offer an explanation for the bimodality of the distribution?

2. Compute the ISI distribution for the ML model with type I dynamics, unit
noise and I = 30. Change the amount of noise. Is the distribution always
unimodal?

3. Research problem? Consider the scalar neuron model:

V ′ = f(V ) + σξ(t)

where ξ is the usual noise. Let V = Vreset be the reset voltage and let Vspike

be the voltage for a spike. Can the ISI distribution of this model ever be
bimodal?

4. Suppose that f(x) has zero mean on the interval (a, b). Show that J = 0 for
the FP equation (11.12) with periodic boundary conditions.

5. Consider the simple model on the circle:

dx = (I − cos(x))dt + σdW.

Write down the steady state for the FP equation and numerically compute
the flux, J . This is the FI curve.
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6. First passage time. Show that

< T n >=

∫ ∞

0

tn−1G(x, t) dt.

Use the fact that G(x, t) satisfies

Gt(x, t) = f(x)Gx(x, t) + (σ2/2)Gxx(x, t)

when f is independent of time, to show that the moments, Tn ≡< T n >
satisfy

−nTn−1 = f(x)T ′
n + (σ2)/2T ′′

n .

Suppose that the domain is (−∞, b) and the condition at x = b is absorbing
(T (b) = 0.) Show that,T (x), the first moment is given by

T (x) =
2

σ2

∫ b

x

dy

∫ y

−∞

dze
(2/σ2)

∫

z

y
f(s) ds

.

7. Provide a complete analysis of the firing rate for the piece-wise linear ring
model:

dV = (I + abs(V − π))dt+ σdW.

Start with a Monte-Carlo simulation on the circle [0, 2π) and compute the
firing rate as a function of I for several values of σ. Fix the noise and the
current I and compute the ISI histogram. Write a closed for expression for
the firing rate. Numerically solve the first-passage time equation and use this
to compute the ISI histogram. Compare it to the Monte-Carlo simulation.

8. Show that ν−1 from equation (11.21) is the same as T (Vreset) in equation
(11.26). From this, derive the simple expression for the firing rate of the
integrate-and-fire model (11.22).

9. For large negative arguments

√
πes2

(1 + erf(x)) ∼ 1

s
+O(s−3).

Use this to obtain the firing rate for the LIF model when I is large. Is this
the same as the noiseless value?

10. Provide an approximation to the firing rate of the LIF (equation (11.22)) when
1 ≪ σ, the large noise case. The approximation should be valid up to order
1 in σ−1. (Hint: use Taylor’s theorem since both of the limits of the integral
will be small.)

11. Do the necessary rescaling to obtain (11.23).
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12. Starting with equation (11.25) with f(V ) = |V |p + I where p > 1 find a
rescaling analogous to that done (11.22) in (11.23) to reduce the dependence
of the firing rate on noise and current to one parameter and two equations for
I > 0 and I < 0. When I = 0 show:

ν = Kσ2 p−1
p+1 ,

where K is some p−dependent constant. Note that for p = 2 you recover
Sigeti and Horsthemke’s result without doing much of anything!

13. (Estimating conductances.) Rudolph and Destexhe (several papers) describe
a method for estimating the conductances of excitatory and inhibitory inputs
into a neuron by measuring the distribution of the subthreshold voltages.
They derive a system of stochastic differential equations and then reduce this
to a Fokker-Planck equations for which they can find the stationary distri-
bution. Their method has some flaws (see Lindner and Longtin), but some
of the basic ideas still hold. In this exercise, we will use some very simple
approximations to perform the estimates. Consider the following SDE:

CdV/dt = I − gL(V − EL) + ge(t)(Ve − V (t)) + gi(t)(Vi − V (t))

where ge,i(t) are stochastic conductances of the excitatory and inhibitory
neurons. Rudolph et al, assume that these conductances obey a first order
stochastic differential equation. Here, instead, we assume that they are of the
form:

ge,i(t) = ḡe,i + σe,i
dWe,i

dt

where We,i(t) are wiener processes. The problem, now is that that the noise
appears multiplicatively in the voltage equation. Let us avoid this by making
a rather crude approximation. Replace V (t) in the conductance terms by V̄ ,
the mean voltage in absence of the fluctuations. Then we obtain

CdV = [I−gL(V−EL)−ḡe(V−Ve)−ḡi(V−Vt)]dt+σe[V̄−Ve]dWe(t)+σi[V̄−Vi].

Now, the noise terms are constant; however, V̄ depends on ḡe,i. Proceed as
follows: (i) Compute V̄ , the mean potential as a function of ḡe,i and I. (ii)
Using two different values of I, find ḡe,i in terms of the mean voltage (exper-
imentally observed) and the other known parameters, VL, gL, I, Ve,i. (iii) Use
the fact that the sum of two independent wiener processes with amplitude
a, b is a wiener process with amplitude

√
a2 + b2 to find the stationary distri-

bution of the voltages at the two different currents. This will be a Gaussian
with mean V̄ and variance σ2. Express σ2 in terms of the known parameters,
the already determined ḡe,i and the unknowns, σe,i. Since σ is experimentally
observable for each applied current, I, solve for σe,i in terms of known and
experimentally observable quantities using 2 applied currents.

14. Colored noise. Consider the rescaled voltage driven by colored noise:

dv

dt
= −βv + y, τdy = −ydt+

√
2DdW.
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Verify that the Fokker-Planck equation for this is:

Pt = [(βv − y)P ]v + [yP/τ +DPy/τ
2]y

where the domain is the plane. Amazingly enough, a steady state for this
equation can be found exactly! Show that

P (v, y) = N exp(Av2 +Bvy + Cy2)

where N is a normalization constant and A,B,C are unknown constants.
Find these constants in terms of β, τ,D. (It will help a great deal to use a
symbolic package like Maple.)

15. (Analysis of moment equations.) In this exercise, we will examine certain
aspects of the moment equations.

(a) As you will show next in this exercise, the only situation in which there is
a bounded solution to the moment equations is near a stable fixed point,
we will first explore the effects of noise near a fold bifurcation. Consider
the following system:

x′ = x2 + a+ v

v′ = 2xv + σ2

Find all the stable fixed points and the curve of fold points in the two
parameters a, σ2. In particular, show that the effect of noise is to make
the bifurcation occur at lower values of a. Turn this into an integrate
and fire model by assuming that when x reaches some large number,
say,10, it is reset to a large negative number, say, -10 and the variance is
reset to 0. Numerically find the FI curve for different values of σ. Show
that it is always concave down so that it does not look like the FI curve
computed from the Fokker-Plank equation. Finally, prove that v(t) is
always nonnegative in this model.

(b) We now consider the general moment equations (11.34) and (11.35) when
the noise is zero, that is gij = 0. The covariance equations are redundant
since Cij = Cji is enforced. However, it is much more convenient to work
with the full n2 equations rather than the n(n+ 1)/2 independent ones.
Clearly, Cij = 0 is invariant and the first moments obey the deterministic
dynamics. We now look at the stability of these equations around some
deterministic solution, (m,C) = (m0(t), 0). Let A(t) = aij(t) be the
linearization of the deterministic system about m0(t). That is

aij(t) =
∂fi

∂xj

evaluated along the solution m0(t). The linearization of the full (m,C)
system about (m0, 0) is an n+n2−dimensional square matrix. However,
the lower left n2 × n2 block is all zeros, so that the linearized system
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is block triangular. Stability is determined solely by looking at the two
blocks: the n × n upper block which is the matrix A(t) and the lower
right n2 × n2 block which is formed from equation (11.35). Note that
the coefficients multiplying Cij are entries of the matrix A(t), so that the
lower block is very closely related to the upper block. The linearization
of equation (11.35) can be rewritten as

C′
ij =

n
∑

l=1

(ail(t)Clj + ajl(t)Cil) . (11.44)

Suppose that u(t), v(t) are two solutions to y′ = A(t)y. u(t), v(t) are
vectors with components, ui(t), vi(t), i = 1, . . . , n. Prove that Cij =
ui(t)vj(t) solves equation (11.44). Thus, if A is constant, then the
solutions, u(t), v(t) are exponentials, say ūeλt, v̄eνt where ū, v̄ are con-
stant vectors. This means that the solutions to (11.44) are also exponen-
tials with exponet, λ + ν, Thus, the eigenvalues associated with (11.44)
are just sums of the eigenvalues associated with A. From this, you can
conclude that the full moment expansion near an asymptotically stable
fixed point of the deterministic system is also asymptotically stable.

What about periodic orbits? Suppose that the deterministic system has
a stable periodic solution, m0(t). Then the system y′ = A(t)y has a
periodic solution, m′

0(t). This means that the equation (11.44) also has a
periodic solution where we take u(t) = v(t) = m0(t). All other solutions
to y′ = A(t)y decay and similarly do those of (11.44). But the existence
of a periodic solution to (11.44) is bad since as soon as gij is non-zero,
the solutions to (11.44) will grow. Prove this. That is suppose we have
the system Z ′ = B(t)Z where B(t) is a periodic matrix. Suppose that
there is a unique periodic solution, Z0(t) and all of the other linearly
independent solutions to Z ′ = A(t)Z exponentially decay as t→ ∞. Let
P be a constant vector. Show that solutions to

Z ′ = B(t)Z + P

will grow in time unless P is chosen very carefully. (This is a tricky
problem related to the Fredholm alternative).

16. Solve the functional equation G(0) = 1 and G(t + s) = G(t)G(s) for all t, s.
Assume that G(t) is continuously differentiable. (Hint: take s small and derive
a differential equation for G(t).)

17. Compute the CV for spike production in the ML model with Class I and
Class II excitability parameters in both the sub and supra-threshold regimes
of current with a fixed strength of additive white noise.

18. Simulate a Poisson process with an absolute refractory period. That is, let
rmax be the maximal rate. Each time a spike occurs, the rate is set to 0
and after τ msec it returns to rmax. Compute the CV for this process. Write
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down the ISI histogram using equation (11.42) and use this to ompute the CV
exactly.

19. Create a function h(t) such that the density function f(t) has power law
behavior for large t, that is f(t) ∼ 1/tm as t→ ∞. Compute the CV for this.
Note that m must be larger than 2 in order to compute the CV. Show that
the CV is always larger than 1 for this process.
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Chapter 12

Firing rate models.

One of the most common ways to model large networks of neurons is to use a sim-
plification called a firing rate model. Rather than track the spiking of every neuron,
instead, one tracks the averaged behavior of the spike rates of groups of neurons
within the circuit. These models are also called population models since they can
represent whole populations of neurons rather than single cells. In this book, we
will call them rate models although their physical meaning may not be the actual
firing rate of a neuron. In general, there will be some invertible relationship between
the firing rate of the neuron and the variable at hand. We derive the individual
model equation in several different ways, some of the derivations are rigorous and
are directly related to some biophysical model and other derivations are ad hoc. Af-
ter deriving the rate models, we apply them to a number of interesting phenomena
including working memory, hallucinations, binocular rivalry, optical illusions, and
traveling waves. We also describe a number of theorems about asymptotic states as
well as some of the now classical work on attractor networks. Much of this chapter
is based on a lengthy review article by one of the authors (GBE), but some new
material is also included related to recent work by Omurtag, Knight, and Cai.

There are many reasons to use firing rate models. First of all, there is the ob-
vious issue of computational efficiency. Modeling a network of thousands of individ-
ual conductance based neurons can tax even the fastest computers. For this reason,
many large scale simulations use simple spiking models like the integrate-and-fire
model. Alternatively, firing rate models are used. In many experimental prepara-
tions, what is measured is not the intracellular potential of neurons but instead the
probability of firing. This type of recording is done with an extracellular electrode
and thus spikes can be detected but the other aspects of the cell are unknown.
Hence, to better compare with experiments, it makes sense to consider the firing
rate instead of the potential. Field potential recordings, electroencephalograms
(EEGs) and functional magnetic resonance imaging (FMRI) presumably represent
large populations of neurons. Thus, a model at this scale may be better posed in
terms of population equations.

Rate models are among the oldest forms of modeling of the brain and the

325
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V (t)iV (t)j

u (t)j
u (t)i

Figure 12.1. Schematic of a pair of neurons synaptically coupled.

nervous system going back to Rashevsky in the late 1930’s. Jack Cowan has written
a very comprehensive history of the early days of neural network research and the
reader is advised to look some of this up.

Rate models are essentially the underlying “biology” in the very popular and
useful theory of neural networks. For example, the “connectionist” models devel-
oped under the Parallel Distributed Processing (PDP) program by McClelland and
Rumelhart and the “back propagation” models are all connected to the wet nervous
system (albeit, occasionally rather tenuously) via rate models. Massively recurrent
attractor networks, perceptrons, hidden layer models, Adaptive Resonance Theory
(and its descendents) are all essentially rate models. We will spend little time in
this chapter on the more machine-like and abstract ideas of neural network theory
and instead focus on the connection of rate models to biophysics and the usefulness
of these networks in modeling biological phenomena.

12.1 A number of derivations.

12.1.1 Heuristic derivation.

We start with a very simple somewhat abstract derivation that was advocated
in early work of Cowan and later Ermentrout and Cowan. Figure 12.1 shows a
schematic for a pair of neurons with a synapse from one to the other. The mea-
surable output is the firing rate, ui(t), which depends in a nonlinear way on the
somatic potential, Vi(t) :

ui(t) = Fi(Vi(t)).

Now, the reader might recall that most of our biophysical models produced firing
rates as a function of the applied current, so she may be puzzled at the use of
voltage as a driver for the output of the cell. We justify this by assuming that
the current flowing into the axon hillock (which is the site of action potentials)
is proportional to the voltage drop between the soma and the resting potential of
the hillock compartment. Thus, the somatic potential is passively converted to an
axon hillock current via Ohm’s law that I = V/Rm where Rm is the membrane
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resistance. Each time that a presynaptic cell fires a spike, a postsynaptic potential
(PSP) appears at the soma. The size of this potential, as well as the sign, depends
on the nature of the synapse, the position on the dendrite and so on. We define
Φij(t) to be the PSP appearing on postsynaptic cell i due to a single spike from
presynaptic cell j. Let t1, t2 , . . . , tm be the firing times of the presynaptic cell. By
assuming linear summation of the PSPs, the total potential received at the soma is

Gij(t) =
∑

l

Φij(t− tl).

The firing rate uj(t) determines the instantaneous number of spikes that a neuron
fires in an infinitesimal time interval. That is, we can think of uj(t)dt as the
probability of a spike occurring in the time interval (t, t+ dt). Thus the above sum
can be rewritten as

Gij(t) =

∫ t

t0

Φij(t− s)uj(s− τij) ds

where τij is the possible axonal delay in the spike arising at j arriving at i. If the
effects of each cell linearly sum, then we can close this model resulting in an integral
equation for either Vi or ui

Vi(t) =
∑

j

Gij(t) =
∑

j

∫ t

t0

Φij(t− s)Fj(Vj(s− τij)) (12.1)

ui(t) = Fi





∑

j

∫ t

t0

Φij(t− s)uj(s− τij) ds



 . (12.2)

Both of these rather formidable equations can be greatly simplified once we discuss
the PSP function Φij(t). To do this, let us consider a passive membrane with a time
constant τm and into which a presynaptic current is injected:

τm
dΦ

dt
+ Φ = RmI(t).

For simplicity, suppose that I(t) is an alpha function of the form:

I(t) = exp(−t/τd) − exp(−t/τr).

Here τd is the decay of the synaptic current and τr is the rise time of the current.
Assuming that Φ(0) = 0, we can solve this simple differential equation to obtain
the postsynaptic voltage response:

Φ(t) =
τd

τd − τm

(

e−t/τd − e−t/τm

)

− τr
τr − τm

(

e−t/τr − e−t/τm

)

. (12.3)

This response depends on three parameters, the postsynaptic time constant and the
presynaptic rise and decay times. One could make this response function far more
complex by including dendritic filtering properties and so on as long as it remains
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linear. (If the response is nonlinear then we cannot simply sum the inputs from
different neurons, nor can we even sum the individual PSPs to form the integral.)

The Volterra integral equations (12.1,12.2) are not simple to analyze so that
one generally attempts to convert them into differential or differential-delay equa-
tions. For Φ(t) represented as a finite sum of exponentials, we can always invert
the integral equation to form a set of differential equations. To see this, consider
first the simple integral equation:

x(t) =

∫ t

t0

e−(t−s)/τy(s− r) ds

where r is the possible delay. Differentiate x with respect to t to obtain:

dx

dt
= y(t− r) − 1

τ

∫ t

t0

e−(t−s)/τy(s− r) ds = y(t− r) − x(t)/τ.

Thus, we see that x(t) satisfies:

dx

dt
+ x/τ = y(t− r).

If Φ(t) is the sum of several exponentials, then we can break the Volterra integral
equation into a set of differential equations using the above identity.

This approach is not entirely satisfactory since for each connection Φij(t) we
need (in the present case) three differential equations. If the network of interest con-
sists of a homogeneous population of neurons, that is, their synaptic time constants
are the same and they have the same membrane time constant, then we can write
Φij(t) = wijΦ(t) where wij represent the magnitudes of the connections. Suppose
the delays, τij are the same for all cells, say, τij = r. Then the voltage equation
(12.1) now becomes:

(LVi)(t) =
∑

j

wijFj(Vj(t− r)) (12.4)

where L is a linear homogeneous differential operator. Equation (12.4) is essentially
the classical model for a neural network. We can similarly reduce equation (12.2)
to a set of differential equations. Let

zi(t) =

∫ t

t0

Φ(t− s)ui(s− r) ds.

Thus
(Lzi)(t) = ui(t− r) = Fi(

∑

j

wijzj(t− r)). (12.5)

This is not quite the same as an equation for the firing rate, ui(t), but this variable
is obtained easily from zi(t) by differentiation. Pinto et al call zi(t) the synaptic
drive.

This drastically simplifies the simulation and analysis of single populations of
differential equations but we are still stuck with difficulties when we have, say, an
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excitatory and an inhibitory population. Key to the reduction was the idea that
Φij(t) = wijΦ(t). However, if we examine equation (12.1) carefully, we see that we
can make a less restrictive assumption that Φij(t) = wijΦi(t) for then we obtain:

(LiVi)(t) =
∑

j

wijFj(Vj(t− r)).

Similarly, examining equation (12.2), if we assume that Φij(t) = wijΦj(t), then we
obtain

(Lizi)(t) = Fi(
∑

j

wijzj(t− r)).

Rather than a system of N2 differential equations for a network of N neurons, we
just have N differential equations. Thus, we now want to examine more closely
what these two assumptions entail.

Suppose that Φij = wijΦi(t). This means that the response of neuron i to any
inputs depends (up to a scalar constant which could be negative or positive) only
on the properties of the postsynaptic cell. This assumption is valid if the shape and
temporal properties of the presynaptic currents are the same no matter what type
is the presynaptic cell. This kind of model would fail to distinguish between, say,
a slow NMDA current and a fast AMPA current or even between the fast AMPA
and somewhat slower GABA currents. However, looking at equation (12.3), we
see that if τm ≫ {τd, τr} then Φ(t) ≈ exp(−t/τm)/τm which is independent of the
presynaptic time scales. That being the case, our system of differential equations
is first order:

τm,i
dVi(t)

dt
+ Vi(t) =

∑

j

wijFj(Vj(t− r)). (12.6)

Equation (12.6) is commonly used as a model neural network and within the scope
of our derivation, the time scale associated with each element in the network is that
of the membrane time constant.

Now, suppose that Φij = wijΦj(t). This means that the shape of the PSP de-
pends only on the presynaptic cell. To us, this is a more reasonable assumption since
we can distinguish different types of synapses (and, below, allow us to incorporate
synaptic depression and potentiation). Suppose that the rise time of the synapse
and the membrane time constant of the postsynaptic cell are small compared to the
decay of the synapse. Then Φj(t) ≈ exp(−t/τd)/τd and, as above, we derive the
following equation for the synaptic drive:

τd
dzi(t)

dt
+ zi(t) = Fi(

∑

j

wijzj(t− r)). (12.7)

This model is also a very popular version for neural networks. In this case, the
temporal dynamics are dominated by the synaptic decay, τd.

Equations (12.6,12.7) are often regarded as equivalent, but in the present
derivation, they are not. Rather, they represent two distinct assumptions about
the dominant time scales.
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Before discussing the forms of the firing rate functions, Fi, we turn to a deriva-
tion based on the theory of averaging and some assumptions about the types of
bifurcation in the conductance-based models.

12.1.2 Derivation from averaging.

(This section is somewhat rough-going; the reader may want to skip to
the end.) Consider the following conductance-based network:

C
dVi

dt
+ Ii(Vi, . . .) = −

∑

j

gijsj(Vi − Vsyn,j) (12.8)

τsyn
dsi

dt
+ si = Ri(Vi, si). (12.9)

Here, Ii represents all the nonlinear conductances which lead to action potentials.
To simplify the derivation, we have assumed that a synapse from cell j produces
the same conductance change regardless of the post-synaptic target. This is not an
unreasonable assumption. Weakening this assumption results in more differential
equations just as the more general assumptions in the previous section. Suppose
that τsyn ≫ 1. This means that the synapses are slow. (Synapses which rise rapidly
but decay slowly provide a different limit which we explore later in this book.) If
the synapses are slow, then si(t) will change very slowly relative to the dynamics
of the membrane thus we can treat si as constant. For ease in exposition, we will
suppose that all the neurons are excitatory which means that Vsyn,j = Ve. Let
Gi =

∑

j gijsj . Since sj are roughly constant, so is Gi so we can treat it as a
parameter. Equation (12.8) is now isolated from the rest of the population because
Gi is just a constant. We can compute the bifurcation diagram of the membrane
potential obtaining:

Vi(t) = V̄i(t;Gi).

We will assume only two types of behavior: stable fixed points or limit cycles. In
the latter case, we assume that the period is Ti(Gi). We now return to the synaptic
equations (12.9) but substitute V̄i(t;Gi) for Vi since the potential changes at a faster
time scale than the synapses. Thus (12.9) becomes:

dsi

dt
=

1

τsyn
(−si +Ri(V̄i(t;Gi), si)).

If V̄i is a stable fixed point, then the si equation is straightforward since the right-
hand side is independent of t. However, if V̄i is periodic, then we are still safe since
we can apply the averaging theorem and obtain:

dsi

dt
=

1

τsyn
(−si +

〈

Ri(V̄i(t;Gi), si))
〉

where

〈

Ri(V̄i(t;Gi), si))
〉

=
1

Ti(Gi)

∫ Ti(Gi)

0

Ri(V̄i(t;Gi), si) dt ≡ Qi(Gi, si).
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Thus, since all the quantities involved depend on Gi, we have reduced this con-
ductance based model to a system of first order equations for the synaptic gates,
si:

τsyn
dsi

dt
+ si = Qi(

∑

j

gijsj , si). (12.10)

We now explore (12.10), specifically Q(G, s), in more detail. In chapter **, we
modeled synapses as:

ds

dt
= α(V )(1 − s) − βs

in much the same way as we model channels. Factoring out the β = 1/τsyn, we see
that R(V, s) = α(V )τsyn(1− s). The function α(V ) is zero except when the neuron
spikes. Let us suppose that the width of a spike is independent of the firing rate of
the neuron so that

∫ T

0

α(V̄ (t))τsyn dt = γ,

where γ is a constant essentially independent of T , the period. Let us define

F (G) ≡ 1

T (G)

as the firing rate of the conductance based model given synaptic conductance G.
Then, with these approximations

Qi(Gi, si) ≡
1

Ti(Gi)

∫ Ti(Gi)

0

Ri(V̄i(t;Gi), si) dt = µiFi(Gi)(1 − si).

Putting all these terms together, equation (12.10) can now be written as

τi
dsi

dt
= µiFi(

∑

j

gijsj)(1 − si) − si. (12.11)

With the exception of the 1 − s term, equation (12.11) is the same as equation
(12.7). This makes sense, for in both cases, the time scale is the synaptic decay.
Here, the variable si(t) is the fraction of open synaptic channels, while in equation
(12.7), zi(t) was called the synaptic drive.

If there are different types of synapses, say, excitatory and inhibitory, the
synaptic current is

Isyn = Gex(V − Vex) +Gin(V − Vin)

and the period, T is a function of two variables, Gex, Gin. This may seem to be a
problem since it is not clear how T should depend on the two conductances; we’d
like it to be additive or some simple functional. If the conductance based neuron is
operating near a saddle-node bifurcation, then we know that

F (Isyn) ≈ K
√

Isyn − I∗
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where I∗ is the critical current at which the saddle-node appears. Let V ∗ be the
potential at the saddle-node. Then (at least near the saddle-node)

Isyn = Gex(V ∗ − Vex) +Gin(V ∗ −Vin)

so that the firing rate is an additive function of the inhibitory and excitatory con-
ductances.

The big advantage of deriving firing rate models from conductance-based mod-
els using averaging is that it is simple to incorporate slow currents such as spike-
frequency adaptation and also short-term synaptic plasticity. We will introduce
some of these models later and others will be provided as exercises.

12.1.3 Populations of neurons.

The derivations above were motivated by considering a single conductance-based
neuron and then from this deriving a model for the firing rate. However, the main
role of firing rate models is not to mimic single cells, but rather, to examine large
numbers of neurons in some “average” fashion. We can draw the analogy between
intra- and extracellular recordings in physiology. Intracellular recording enables
one to track the membrane potential of a single neuron. Extracellular recordings,
such as the local field potential represent the responses of many neurons. Sharp
electrodes (also extracellular) can resolve spikes of individual neurons. However,
these spiking events are probabilistic, so that experimentalists repeat the same
stimulus over many trials to obtain a poststimulus time histogram (PSTH). The
PSTH has units in spikes per unit time (often millisecond) so that it is effectively
a rate. The intuition behind the PSTH is that it is assumed to be true that if we
were able to record simultaneously from 100 nearby locations, we would get the
same result as from recording from one location 100 times. In order for this to
be reasonable, we have to assume that the neurons fire largely independently of
each other. Once this assumption is made, then we see that the firing rate of the
population is exactly the same as that of an individual neuron and the equations
derived in the above section can thus be interpreted as the population firing rate.
However, in the derivation from averaging, the firing rate function is deterministic.
Thus, if every cell were identical, then they would all fire in perfect concert. Thus,
we need to account for differences between neurons when we treat populations.
One way to do this is to include the effects of noise. In chapter NOISE, we saw
that extrinsic noise can smooth the firing rate as a function of the input current.
Thus, for example, we could replace a firing rate function F =

√
I by a smoothed

version of this which has a nonzero firing rate even for subthreshold inputs (I < 0).
Another way to smooth the firing rate function is to assume heterogeneity. For
example, suppose that the firing rate is F (I − I∗) for I > I∗ and zero otherwise as
would be the case for a SNIC bifurcation. If the threshold values I∗ are taken from
some distribution, Q(I), then we can write an “average” firing rate function:

FQ(I) =

∫

Q(I∗)F (I − I∗) dI∗. (12.12)
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We will leave it as an exercise to the reader to explore specific forms for the averaged
firing rate.

Let us give a quick derivation of a typical firing rate or population model.
Consider N identical neurons which receive (possibly random inputs) and between
which there are recurrent connections. We will assume, for simplicity, that all the
neurons are excitatory (multiple types of neurons are easily generalizable) and the
the connections are all identical as are the inputs, the strengths of which are scaled
by 1/N. Each neuron undergoes dynamics:

C
dVi

dt
= −Iion,i + ḡsi(Vi − Esyn)

where ḡsi is the conductance felt by each neuron. Since all inputs are excitatory and
we assume that the recurrent synapses have dynamics similar to the input synapses,
we have:

(Lsi)(t) = JT

∑

k

δ(t− tTk ) +
∑

j,k

Jijδ(t− tjk)

where L is a linear differential operator which governs the synapse. Alternatively,
we could generalize this and write:

si(t) =

∫ t

t0

α(t− t′)



JT

∑

k

δ(t′ − tTk ) +
∑

j,k

Jijδ(t
′ − tjk)



 dt′. (12.13)

Here tTk are the spike times from the inputs and tjk are the spike times of the jth

cell in the network.
Key to the notion of population models is the fact that we assume that the

neurons are firing independently of each other within the network. Is this a good
assumption? If there is a great deal of extrinsic independent noise, then it is likely
that there are few correlations between neighboring neurons. A given population
of interest often receives inputs from an earlier processing stage. (For example,
layer 4 in the cortex receives inputs from the thalamus.) If the incoming action
potentials come from randomly chosen subsets of the input layer, then we expect
that spiking within the output layer would be uncorrelated. However, it turns out
that this seemingly obvious assumption is not true. In recent experiments, Reyes
et al examined the following scenario. Starting with N independent Poisson trains
of spikes, a subset of m ≪ N was selected and injected into a neuron. The spike
times of this neuron were recorded. A different set of m spikes was selected and
the experiment was repeated until there were N new spike trains. These formed
the basis for a repeat of the first set of experiments; N new spike trains were col-
lected from these spike trains and so on. By layer 10 (ten iterations), there was
considerable synchrony between the spike trains so that it was no longer reasonable
to assume independence. The reason for this is that even though each trial shared
only a few inputs, this was enough to become amplified over multiple layers leading
to synchrony. Thus, the assumption of independence is at best an approximation
and, at worst, wrong. In the Reyes experiment, there was no recurrent coupling
between cells within a layer. Recurrent connections can either increase or decrease
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the synchrony, depending on the nature of the coupling. Indeed, we say in chapter
OSCILLATOR that synaptic time scales, intrinsic currents, and the sign of the cou-
pling can all have dramatic effects on the synchronization between coupled neurons.
Since the only theory that has been done on the issue of asynchrony is for very sim-
ple models (leaky integrate and fire, quadratic integrate and fire), little more can
be said about the assumption of independence for recurrently connected neurons.

There is one last issue that we want to discuss before moving on to applications
of firing rate models. This is the issue of time constants. Figure * in chapter NOISE
showed that a noisy integrate and fire model with high noise could follow a stimulus
rather robustly if we added a small time constant to the dynamics. Specifically, let
I(t) be a time varying input and let F (I) be the noisy firing rate as a function of
the constant input (cf equations (12.19) or (12.20)). Then the firing rate for a time
varying stimulus is

τf
df

dt
= −f + F (I(t)).

The parameter τf is ad hoc and chosen to be small. It is not related an membrane
or synaptic time constants but depends on all of these as well as the characteristics
of the noise (see Fourcaud & Brunell, 2002). With low noise, then the instantaneous
firing rate can be very complicated. In project (*) below, we suggest a way to look
at these dynamics.

12.2 Population density methods.

Gerstner and Kistler provide a quick derivation for firing rate models of whole
populations of neurons. McLaughlin, Shelley, and others at NYU have also derived
such models. The equations which result are similar to those that we derived for
globally coupled oscillators in chapter [OSCIL] Basically in all the derivations, the
authors start with simple models for neurons such as the leaky integrate and fire
model and from these derive an equation for the distribution of the potential. The
flux of the potential across threshold is the firing rate of the cells. In general,
the equations which result from these derivations are difficult to solve and often
require special numerical methods. That said, there are still much faster to solve
than the full network of spiking neurons. We will eschew a detailed study of the
differences between the various derivations and sketch a fairly general equation
based on the work of Gerstner and Kistler which to us is the most transparent
derivation. Thus, this section is closely related to Chapter 6.2 in Gertner and
Kistler. We will approach it slightly more generally so that the resulting model is
not tied to the specific form of the LIF. The idea is to consider a one-dimensional
neural model with some reset conditions.

We will write:
dvi

dt
= f(vi) + g(vi)Ii(t)

where f is the spiking dynamics and g is the response to inputs. Ii is all the synaptic
currents coming into the cell. If the model requires reset, then we have a conditions
that when vi = θ, then vi is reset to vr < θ. For example, the LIF model has
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f(v) = −v/τ and g(v) = R/τ where R is the membrane resistance. We define

∫ u+∆u

u

p(u, t) du = lim
N→∞

(

#cells with u < vi(t) ≤ u+ ∆u

N

)

.

The function p(u, t) is the membrane potential density. We have the following
normalization:

∫ θ

−∞

p(u, t) du = 1.

This says that the probability is conserved. The firing rate or population activity,
A(t) is defined as the flux of cells across threshold:

A(t) = J(θ, t).

We will define this flux shortly. Neurons which cross the threshold reappear at the
reset value, vr so that this must be added to the evolution equations in the form of
a source terms A(t)δ(v − vr). We remark that these discontinuities will disappear
if we use a model such as the theta model instead of the LIF since the “threshold”
at π is just part of the full cycle. We assume that all neurons receive the same
external input, Iext(t) and that there is random background input. Excitatory and
inhibitory synaptic inputs are allowed as well. Synapses of type k occur at a rate
νk(t). These could be from external sources or from within the network if it is
recurrent. In order to avoid adding an additional equation, we will assume that the
synaptic inputs are in the form of delta functions. Consider the single cell:

dv

dt
= f(v) + g(v)wδ(t − t∗)

where t∗ is the time of the input and w is the amplitude. If v is the value right
before t∗, then v + wg(v) ≡ G(v, w) is the value of the potential right after the
input. In order for the derivation we provide below to be valid, we will assume that
the function G(v, w) is invertible with respect to v. In exercise *, below, you are
invited to show that for small w the inverse of G is:

H(v, w) ≡ G−1(v, w) = v − g(v)w + g′(v)g(v)w2 +O(w3). (12.14)

We note that if g(v) is constant then the inverse is exact. For the theta model,
g(v) = 1 + cos v where v = π is the spike. Cai et al consider g(v) = (vs − v) where
vs is the synaptic reversal potential. An exact inverse can be found in this case.

With these asides out of the way, we continue the derivation. Each synapse
of type k has an amplitude of wk and occurs at a rate νk(t). The dynamics satisfy

∂p(v, t)

∂t
= − ∂

∂v
((f(v) + g(v)Iext(t))p(v, t)) (12.15)

+
∑

k

νk(t)[p(H(v, wk), t)Hv(v, wk) − p(v, t)] +A(t)δ(v − vr).

The first term in the right-hand-side is just the drift due to the uncoupled dynamics
of each neuron. The last term is the reinjection of cells which cross through the
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threshold for spiking. The middle term is the gain of cells which were at H(v, wk)
and jumped to v due to the synaptic input as well as the loss of those which jump
from v to G(v, wk). The strange term Hv multiplying the probability arises because
we want to conserve total probability. Note that it is bounded becauseG is invertible
and thus monotone. We remark that p(v, t) = 0 for v > θ. Right away, we can see
that there is troub (??) lurking about if you are interested in simulation. Equation
(12.15) is a functional partial differential equation because of the term H appearing
as an argument of the density p. The firing rate is determined from the flux across
threshold. To determine this, we rewrite (12.15) as a continuity equation. Note
that

νk[p(H(v, wk), t)Hv(v, wk) − p(v, t)] = − ∂

∂v
νk

∫ v

H(v,wk)

p(u, t) du.

Thus for any v, equation (12.15) can be written as

∂p

∂t
= −∂J

∂v
+A(t)δ(v − vr)

where

J(v, t) = [f(v) + g(v)Iext(t)]p(v, t) +
∑

k

∫ v

H(v,wk)

p(u, t) du.

Note that J(v, t) = 0 for v > θ. If wk is small, then we can expand this equation in
a Taylor series to obtain the diffusion approximation. From equation (12.14),

∫ v

H(v,wk)

p(u, t) du ≈
∫ v

v−wkg(v)+w2
k
g′(v)g(v)

p(u, t) du.

Applying the fundamental theorem of calculus, this integral is approximately:

wkg(v)p(v, t) −
1

2
[w2

kg(v)
2p(v, t)]v.

With this approximation the diffusive approximation for the population density
equation is

∂p(v, t)

∂t
= A(t)δ(v − vr) −

∂JD(v, t)

∂v
(12.16)

where

JD(v, t) = [f(v) + g(v)(Iext(t) +
∑

k

wkνk(t))]p(v, t) (12.17)

− 1

2

∂

∂v

(

∑

k

νk(t)w2
kg(v)

2p(v, t)

)

.

Since these are just PDEs, they are amenable to numerical solution. If the inputs
νk(t) are external, then we can define

σ2(t) =
∑

k

νk(t)w2
k
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and
r(t) = Iext(t) +

∑

k

νk(t)wk.

If everything is stationary, then

JD(v, t) = [f(v) + g(v)r]p(v, t) − σ2

2

∂g(v)p(v, t)

∂v

where r and σ2 are constant. Solving the steady state equations is identical to the
single noisy integrate and fire model we studied in chapter [NOISE].

If we are using a discontinuous neural model, such as the LIF, then we have
p(θ, t) = 0 and firing rate, A(t) is given by:

A(t) = JD(θ, t) = −1

2

∂

∂v

(

∑

k

νk(t)w2
kg(v)

2p(v, t)

)

|v=θ.

However, if we instead use a continuous model on the circle such as the theta
model, then the equations are considerably simpler. The term A(t)δ(v − vr) no
longer appears since the natural flow of the dynamics takes v through π and the
domain of the model is [0, 2π). In this case, we get

A(t) = JD(π, t) = f(π)p(π, t)

since, for the theta model, g(π) = 0. For time dependent inputs to the theta model
(or other ring models), we can solve the full equations by writing p(x, t) in a finite
Fourier series and then writing differential equations for the coefficients. See project
6 in the oscillator chapter.

Because the PDEs that result from these models can be quite difficult to solve
(when the noise is low), we will generally use simple ODE forms of population
models.

12.3 The Wilson Cowan equations.

One of the most influential models in the neural network literature is the one de-
veloped by Hugh Wilson and Jack Cowan in the early ’70s. The original equations
have the following form:

τe
dE

dt
= −E + (1 − reE)Fe(αeeE − αieI + Te(t)) (12.18)

τi
dI

dt
= −I + (1 − riI)Fi(αeiE − αiiI + Ti(t))

where Tj is the input from the thalamus and re, ri represent the refractory fraction
of the neurons available to fire. The term (1 − reE) is an approximation of

1 −
∫ t

t−re

E(s) ds
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which represents the fraction of neurons available to fire given that they have an
absolute refractory period of re. In a recent paper, Curtu and Ermentrout analyzed
the behavior of the original integro-differential equations for a single excitatory
population. The extra pro-multiplicative factor (1− reE) does not make too much
of a difference in the analysis of the equations so we will generally set re = ri = 0.
We first consider a single scalar model for one recurrent population of neurons.
Then we turn to the pair and we will look at mutually excitatory, inhibitory, and
mixed populations. The last case is the WC equations.

A note on the gain functions.

What should one use for a gain function, F (u)? The traditional form for this is the
logistic function, F (u) = 1/(1+ exp(−β(u−uT ))), which we have also encountered
in our study of voltage-gated conductances. With the use of a logistic function,
we interpret the function F as a probability of firing rather that an actual firing
rate. Another similar choice for F is F (u) = 1 + erf(u) where erf(u) is the error
function (integral of a Gaussian). Pinto et al use this model to study the mean field
approximation for a model of cortex.

If we regard F as an actual firing rate of a single cell, then we could use an
approximation for a neuron which undergoes a saddle-node bifurcation to periodic
firing; namely:

F (u) = A
√

max(u− uT )

where uT is the minimal current needed to induce firing. This gain function is
continuous, but not differentiable and so will lead to problems when it comes time
to numerically analyze models. In the presence of noise, we saw in Chapter NOISE
that the function is smoothed out. The following two variants of the above are good
approximations to the noisy firing rate:

F (u) = A
√

(u− uT )/(1 − exp(−(u− uT )/β)) (12.19)

F (u) = A
√

β log[1 + exp((u− uT )/β)]. (12.20)

Here, β is a measure of the “noise”; as β → 0, both these functions approach a pure
square-root model. There are two more functions which are commonly encountered:

(i) the step function for which the neuron either is not firing at all or is firing
at the maximal rate. This turns out to be the easiest to analyze and we will
return to it when we get to networks.

(ii) the piecewise linear function

F (u) = max(u− uT , 0).

Linearity makes it possible to also analyze this function.

For the most part, there is little to recommend for the piecewise linear function
other than it can be analyzed. The main objection we have for this function is
that the firing rate can become infinite in recurrent networks. The step function
and the logistic function which both saturate do not suffer from this problem. The
square-root model is sublinear for large inputs so that it, too, does not “run away.”
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12.3.1 Scalar recurrent model.

As a warmup problem, we consider the simple recurrent neural network model:

du

dt
= −u+ F (αu+ β)

where β is the input and α is the strength of the connections. We leave as an exercise
the analysis of this scalar model. We will assume that F (u) ≥ 0, F ′(u) > 0 so that
the firing rate is a monotonic function. If the connections are inhibitory, α < 0,
then there is a unique asymptotically stable equilibrium point. If the connections
are excitatory, then the situation is more interesting. In many firing rate functions,
the derivative F ′(u) has a single maximum (that is F has a single inflection point).
If this is the case, then you should be able to show that there are at most three
fixed points to the scalar neural network. In general, if the nonlinear gain function
F (u) has 2m+ 1 inflection points and aside from these F ′′(u) is nonzero, then it is
possible for the recurrent excitatory neural network to have 2m+ 3 fixed points of
which m+ 1 are stable.

To analyze bifurcations in a scalar firing rate model, we consider the current
to be a parameter and ask when there is a saddle-node bifurcation. The condition
is straightforward:

−1 + αF ′(αu+ β) = 0. (12.21)

Since F ′(u) has a single maximum, if α is sufficiently large, we can choose u so
that equation (12.21) has two roots. Given such a u, say, ū, we plug this into the
equilibrium condition and solve for β:

ū = F (αū + β).

Since F is invertible we can solve for β. If α is chosen to be precisely the reciprocal
of the maximum of F ′, then the two saddle-node roots of equation (12.21) merge
at a codimension two cusp point. For more complex functions F with multiple
inflection points, is is possible to have even higher codimension bifurcations such as
the “butterfly catastrophe” (see Cowan & Ermentrout, 1978).

12.3.2 Two neuron networks.

We dispense with networks for which the interactions between the cells are the
same, excitatory or inhibitory. The following theorem allows us to concentrate on
fixed points alone:

Theorem. Consider the planar system:

x′ = f(x, y)

y′ = g(x, y)

such that fygx > 0 for all (x, y). Then there are no limit cycles.

With some hints, we leave the proof of this to the reader. We note that this
bears a resemblance to Bendixon’s negative criterion which states that if fx + gy is
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of fixed sign in a region, R, then there will be no limit cycles contained wholly in
R.

An obvious consequence of this is that for the two population neural model

τ1u
′
1 = −u1 + F1(w11u1 + w12u2) (12.22)

τ2u
′
2 = −u2 + F2(w21u1 + w22u2)

if F ′
j(u) > 0 and w12w21 > 0, then there are no limit cycles and just fixed points.

Thus, the entire phase portrait can be worked out by looking at the intersections
of the nullclines. We will suppose that Fj are saturating nonlinearities with a
maximum of 1 and minimum of 0 without loss of generality. We also assume that
they are monotonic and have a single inflection point. Let Gj be the inverse of
Fj . Gj(x) have vertical asymptotes at x = 0 and x = 1 and are monotonically
increasing. The u1 nullcline has the form:

u2 = (G1(u1) − w11u1)/w12 ≡ H1(u1).

If w11 < 0, then H1 is a monotonic function much like G1. However, if w11 > 0,
then if the self-connection is large enough, the function H1 has a cubic shape.
Similar considerations hold for the u2 nullcline: if w22 > 0, it can have a “cubic”
shape. Figure 12.2A,B shows several different possibilities. We can freely shift
the u1 nullcline up and down by varying the inputs and the u2 nullcline left and
right as well. Up to nine fixed points are possible or as few as one. Bifurcations
are generically saddle-nodes (although below, we consider an important symmetric
situation which results in a pitchfork). Consider the case when both nullclines are
“cubic.” Thus, we can define the outer and middle branches of the cubic. Any
fixed point which occurs on the intersection of two outer branches is a stable node.
Any occurring on two inner branches is an unstable node. The rest are saddle
points. We leave this as an exercise to the interested reader. Saddle points are
important since their stable manifolds form separatrices dividing the plane into the
domains of attraction for multiple stable fixed points. Figure 12.2C shows such an
example. There are two states to this mutually excitatory network, one where both
populations are firing at a low rate and one at a high rate.

Before turning to the excitatory-inhibitory networks which show the rich-
est dynamics, we consider an important example that will appear throughout this
chapter and plays a fundamental role in later sections. Many cognitive and other
processes require making a choice between two or more competing sensory inputs.
Suppose you have a trusty musket and on your left is a charging lion and on your
right a charging pug. To which do you attend? There, the choice is rather obvious.
However, suppose instead of the lion, you are confronted by another pug. Then,
most likely, unless you like dogs or are afraid of them, you will ignore them. In-
stead, if you are being charged by two lions, it is likely you will select one of them
at random (if one is a bit closer, then there will be a strong bias) and stick with it.

Figure 12.3A shows a model for competition between two neural pools, labeled
1 and 2. Each receives an input and inhibits the other pool. Since this example
illustrates many of the mathematical concepts we will encounter later, we will sketch
most of the details. We write I1 = I(1+a) and I2 = I(1−a) where a is an asymmetry
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Figure 12.2. Nullcline configurations for mutually excitatory/inhibitory
networks (A) mutual excitation, (B) mutual inhibition, (C) mutual excitation with
weak self-connections.
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parameter and I is the total input. When a = 0, the input is unbiased and does not
favor either unit (think of the two charging pugs). The extreme asymmetry case
(lion versus pug) would have a = ±1. We will restrict our analysis to a = 0 and
leave the a 6= 0 case for numerical analysis. The equations for this figure are

u′1 = −u1 + F (I − wu2) (12.23)

u′2 = −u2 + F (I − wu1).

We will assume that F is a monotone increasing positive function with F ′(x) → 0
as x → ∞ and we assume that F is bounded as well. The weight w ≥ 0. Because
of the symmetry, one solution to this equation is homogeneous, u1 = u2 = ū and

ū = F (I − wū).

We leave as an exercise, the proof that there is a unique homogeneous equilibrium
point, that it is positive, and that it is a monotonically increasing function of I and
decreasing function of w. Let c = F ′(I − wū) > 0 be the derivative of F at the
equilibrium value. The linearization of equation (12.23) is

v′1 = −v1 − cwv2

v′2 = −v2 − cwv1.

This is a simple 2 × 2 matrix, A, but rather than immediately writing down the
eigenvalues, we step aside for a moment to discuss matrices of a special form, so-
called circulant matrices.

ASIDE. Let a0, . . . , an−1 be fixed numbers (real or complex) and consider the
matrix, A formed as follows:

A =











a0 a1 . . . an−1

an−1 a0 . . . an−2

...
...

. . .
...

a1 a1 . . . a0











.

Such a matrix is called a circulant matrix and the eigenvectors and eigenvalues are
easy to write down. Let zk = exp(2πik/n) for k = 0, . . . , n−1. Let ~vk be the column
vector whose jth entry is zj−1

k . Then ~vk is an eigenvector for A and the eigenvalue
is

λk =

n−1
∑

j=0

ajz
j
k.

For example, if n = 2, then the eigenvectors are (1, 1)T and (1,−1)T with eigenvalues
a0 + a1 and a0 − a1 respectively. END ASIDE

Since the linearization, A is a circulant matrix, the eigenvectors and eigenval-
ues are {(1, 1),−1 − cw} and {(1,−1),−1 + cw}. The first of these eigenvalues is
always negative; thus any homogeneous perturbation (along the eigenvector, (1, 1))
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decay to zero. However, if w is large enough, then −1 + cw can become positive for
a range of inputs I which means that asymmetric perturbations (along the eigen-
vector, (1,−1)) will grow in time. At a critical value of the input, say, I0, the
asymmetric eigenvalue will be zero and we expect a bifurcation to occur. Since this
problem has symmetry, the bifurcation at a zero eigenvalue will not be the generic
fold, but rather a pitchfork bifurcation. This is typical in systems in which there is
a circulant matrix involved (that is there is a symmetry.) Since the growth will be
along the asymmetric eigenvector, the bifurcation solutions will have a form:

(u1, u2) = (ū+ r, ū− r)

where |r| is the amplitude of the solution. r can be either positive or negative
corresponding to u1 “winning” or u2 “winning.” Figure 12.3B shows the phase-
plane and nullclines for equation (12.23) where F (u) = 1/(1+exp(−(u−1))), w = 5,
and I is a parameter. At low inputs, both units fire equally at the same value. For
intermediate values of the inputs, the homogeneous fixed point is unstable and there
are two stable fixed points corresponding to one of the two units “winning.” The
saddle point (grey circle) has a stable manifold (blue arrows) which separates the
phase-plane into two regions; those in the upper left tend to the u2-dominant fixed
point and those in the lower right to the u1-dominant fixed point. Thus, without
any input bias, the final outcome of the competition depends on any initial activity
of the two units. At high inputs, then once again, the homogeneous solution is the
only solution and both units fire at high rates. Figure 12.3C shows the bifurcation
diagram for the symmetric input case. For I between the two arrows, one or the
other population of neurons is dominant. If there is a slight bias in the inputs,
then as the input increases, the favored population will always win (Figure 12.3D)
but with a strong enough perturbation, it is possible to switch to the less favored
population for a limited range of inputs. This figure shows what is called an isola, a
small island of solutions. The arrows denote a pair of fold bifurcations. As the bias
disappears, the isola grows and merges with the main branch of solutions to become
figure 12.3C. As the bias, a increases, the isola shrinks to a point and disappears.

This example illustrates the basic concept underlying symmetry-breaking in-
stabilities and bifurcations and pattern formation. The symmetric solution loses
stability due to the negative interactions and results in new solutions which are no
longer so symmetric.

12.3.3 Excitatory-inhibitory pairs.

We turn our attention to two population models in which one population is excita-
tory and the other inhibitory:

τ1u
′
1 = −u1 + F (w11u1 − w12u2 + I1) (12.24)

τ2u
′
2 = −u2 + F (w21u1 − w22u2 + I2). (12.25)

u1 (u2) is the excitatory (inhibitory) population. It is possible to do a fairly com-
prehensive local bifurcation analysis of this system if the inputs are the main pa-
rameters. Borisyuk and Kirillov (1992) provide such an analysis when F (u) =
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1/(1 + exp(−u)); Hoppensteadt and Izhikevich perform a similar analysis. Choos-
ing this F has the advantage of allowing us to note that

dF

du
= F (1 − F ).

Let
G(y) = ln

y

1 − y

be the inverse of F (u). At an equilibrium point, we can solve for Ij :

Ij = G(uj) − wj1u1 + wj2u2. (12.26)

Let Bj = wj1u1−wj2u2 + Ij be the total input into each population. The lineariza-
tion matrix has the form

A =

(

−1 + w11F
′(B1) −w21F

′(B1)
w12F

′(B2)/τ (−1 − w22F
′(B2))/τ

)

.

We can rewrite F ′(Bj) = uj(1− uj) using the fact that at equilibrium, F (Bj) = uj

and that F ′ = F (1−F ).There are two types of bifurcations of interest for this model:
Hopf and saddle-node bifurcations. Saddle-nodes can be visualized by examining
intersections of the nullclines. For the WC network, there can be up to 5 different
fixed points. Hopf bifurcations can be easily found using the identities above. Recall
that a necessary condition for there to be imaginary eigenvalues for A is that the
trace of A vanishes:

Tr ≡ −1 + w11u1(1 − u1) − 1/τ − w22u2(1 − u2)/τ = 0.

Clearly, since 0 < uj < 1, the trace is always negative unless w11 > 4, so that
there must be sufficient recurrent excitation. We solve the above equation for u1 =
U±

1 (u2); there are two roots since it is quadratic. Plugging u1 as a function of u2

into equations (12.26), we can parameterize I1, I2 by the single number, u2. Letting
u2 range between 0 and 1 for each of the two branches, U±

1 (u2), we get curves
of Hopf points. This same method is not useful for the curve of folds (where the
determinant vanishes) since the determinant is a quartic function of u1, u2 and so
not readily solvable.

The easiest way to compute diagrams is through numerical methods. Figure
12.4 shows the behavior of this network for a fixed set of weights and time constant.
As the excitatory input increases, the rest state increases until it loses stability at a
Hopf bifurcation. Since increasing I1 lifts the u1−nullcline up, we can see the effect
by looking at Figure 12.4C. At negative inputs, the excitatory nullcline intersects at
a point where the slope of the nullcline is negative and thus the fixed point is stable.
As input increases, the intersection moves to the middle branch and for sufficient
input, becomes unstable. This leads to a Hopf bifurcation and limit cycle. Note that
as the input increases, the excitatory nullcline gets closer and closer to the upper
part of the inhibitory nullcline so that the period of the limit cycle increases. For
sufficient input, there is an intersection of the nullclines at high values of excitation
and inhibition
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Figure 12.4. Sample bifurcation diagram for an excitatory and inhibitory
population. Parameters are w11 = 12, w12 = 10, w21 = 16, w22 = 4, τ = 2. (A)
Behavior of u1 as I1 increases, I2 = −4. (B) Two parameter diagram as a function
of the inputs, I1, I2. Green circle indicate Takens-Bogdanov points. (C) Phaseplane
for I2 = −4, I1 = 0.

Up-down states.

Recent experiments (Shu et al 2003) in prefrontal cortical slices show that local
recurrent networks of excitatory and inhibitory neurons are able to produce epochs
of sustained firing both spontaneously and through stimulation. These two states
(firing and quiescent) are observed in extracellular and intracellular recordings of
neurons. Figure 12.5A shows an example of a recording from a cortical slice prepara-
tion with inhibition and excitation intact. The network undergoes bouts of sustained
activity lasting up to 4 seconds followed by quiescence. Intracellular recordings of a
pyramidal cell in the network show that during the bouts of activity, the membrane
potential is depolarized (“up state”) compared to that during the quiescent period
(“down state”). Stimuli allow one to switch from the down to the up state and vice
versa. Importantly, depolarizing stimuli can switch the network from the up to the
down. Furthermore, when the network is in the down state, very strong stimuli
cause a brief bout of activity immediately followed by a return to the down state.
These two properties allow us to make some good guesses as to what the local dy-
namics must be. Figure 12.5B shows a simulation of equations (12.24,12.25) when
there is colored noise added to the inputs. The noise is needed to effect spontaneous
switching between states. Holcman and Tsodyks (2006) have recently proposed a
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model for this phenomena using recurrent excitation and synaptic depression and
no inhibition. Here we suggest a very simple explanation for the properties of up
and down states using a combination of excitation and inhibition. Figure 12.5C
shows the phase-plane in the absence of noise for the simulation shown in B. As
one would expect, there are two stable fixed points corresponding to the up and
down states in the network. Separating these states is a saddle-point whose stable
manifold acts as a threshold. In bistable systems such as that shown in figure 12.3B,
the stable manifold is such that only negative perturbations of the state (1,0) can
take it to state (0,1). Thus, in the up-down model, the stable manifold must be
curved since strong depolarizing inputs can also cause a switch from up to down.
Figure 12.5C shows that the stable manifold of the saddle point curves around so
that if a stimulus takes the excitatory population beyond about 0.4, then there will
be an immediate return to the down state. Modest stimuli will take the system
from the down to the up and vice versa. Other properties of the up/down states
follow immediately. For example, a depolarizing shock in the up state can take the
system to the down state. Shu et al observe that there is a delay before going to the
down state which is dependent on the amplitude of the stimulus. As can be seen
in the figure, a stimulus which is close to the stable manifold but slightly beyond
the right-hand branch will take much longer to go to the down state than will a
stronger stimulus. Strong stimuli during the down state can induce a brief period
of activation followed by a return to the down state as well. Adding a small amount
of noise to the model equations can cause spontaneous transitions between up and
down states much as is seen in figure 12.5A. Because the upper state is closer to
instability and has complex eigenvalues, this could explain the fact that the upper
state is much noisier than the lower state. Indeed, in a recent paper ( Volgushev et
al 2006), the authors use the large standard deviation of the “up state” as a means
of automatically determining when neurons are in the up state.

2: Volgushev M, Chauvette S, Mukovski M, Timofeev I. Related Articles,
Links Abstract Precise long-range synchronization of activity and silence in neocor-
tical neurons during slow-wave sleep. J Neurosci. 2006 May 24;26(21):5665-72.

Holcman D, Tsodyks The emergence of Up and Down states in cortical net-
works. PLoS Comput Biol. 2006 Mar;2(3):e23. Epub 2006 Mar 24.

Whisker barrels.

Everyone who has ever had the pleasure of playing with a rat knows that the rat has
several rows of whiskers which it uses to feel the world around it. Indeed, the usual
white lab rats, that are popular with neuroscientists, are virtually blind and use their
whiskers to navigate in their environment. Rats’ whiskers are almost as sensitive
as human fingers in discriminating textures. Each whisker projects (through the
brainstem and then the thalamus) to a well defined aggregate of neurons in layer
4 of the cortex in the somatosensory area. These discrete areas are called barrels
(see Figure 12.6A,B) and consist of a mixture of excitatory (70%) and inhibitory
(30%) neurons which are recurrently connected. Thus, the local circuitry of the
barrel is a perfect example of an excitatory-inhibitory network. Inputs to the barrel
come from other layers of cortex and from the thalamus. In this example, we
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Figure 12.5. Modeling up and down states in cortex. (A) Experimen-
tal data from Shu et al showing (a) extracellular (upper curve) and intracellular
(lower curve) recordings over about 10 seconds; (b) shows evoked states via ex-
ternal stimuli, (B) Simulation of up/down states in a noisy Wilson-Cowan model
showing spontaneous switching. (C) Phaseplane explanation of the balanced bistable
state. (Parameters are τ1 = 5, τ2 = 3, w11 = 16, w21 = 24, w12 = 10, w22 = 6,
I1 = −3.7, I2 = −6.7. Colored noise is added to the inputs.)

restrict our attention to the local recurrent interactions and the thalamic inputs
as shown in Figure 12.6C. Dan Simons and his collaborators have shown that the
barrel circuit is exquisitely sensitive to the timing of the inputs from the thalamus.
That is, the barrels respond strongly to rapidly increasing inputs and weakly to
slow inputs. Figure 12.6D shows a typical example. The left hand response is very
large compared to the right-hand one and the corresponding thalamic inputs show
a rapid onset versus a more gradual onset. Pinto et al reduced a large scale spiking
model due to Kyriazi & Simons to a network which should be familiar to the reader
by now:

τe
du

dt
= −u+ Fe(weeu− wiev + wteT (t))

τi
dv

dt
= −v + Fi(weiu− wiiv + wtiT (t)).

The thalamic input, T (t) consists of a constant background activity plus a triangle
lasting 15 msec. The height of the triangle is constant, but the onset slope can
be varied. The question is whether the network responds differently to different
slopes of input. The input drives both the inhibition and the excitation which is
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Figure 12.6. Whisker barrel system of the rat. (A) Rat face (B) layer
4 cortex in the whisker area of the rat showing discrete barrels corresponding to
individual whiskers. The C3 barrel is circled. (C) Local circuitry within a barrel
showing strongly recurrent excitatory and inhibitory network along with thalamic
input. (D) Population response of excitatory cells to experimental movement of a
whisker. Thalamic response is also shown.

crucial. Intuitively, if the slope is too small, then the inhibition can catch up and
suppress the excitation. This provides what the experimentalists call a “window of
opportunity” for the barrel cells to produce a response.

Figure 12.7A shows that in absence of inputs, the barrel network has a stable
rest state. A perturbation in the excitatory direction past the right (middle) branch
of the excitatory nullcline will be greatly amplified before returning to rest (an
example of an excitable system). However, in the barrels, inputs come into both
the excitatory and the inhibitory cells so that it is not clear what type of response
occurs. Two responses are shown in the phase-plane and in the accompanying plot in
Figure 12.7B corresponding to triangle inputs which have a width of 15 milliseconds
and identical amplitude, The only difference is that they reach the peak amplitude
at 1.6 and 3.2 milliseconds, respectively. By rising more quickly, the excitatory cells
have a chance to react before the inhibition is engaged. The result is a significantly
larger response for the fast rising inputs compared to the slower ones.
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Figure 12.7. Simulation of the barrel network. (A) Phaseplane for the
barrel network at rest with two responses superimposed corresponding to input peaks
at 1.6 and 3.2 msecs. (B) Firing rate of the excitatory population for the two inputs
in (A) along with the inputs themselves (dashed). (Fe(x) = 5.12/(1 + exp(−(x −
15)/4.16)), Fi(x) = 11.61/(1 + exp(−(x − 15)/3.94), wee = 42, wie = 24.6, wei =
42, wii = 18, τe = 5, τi = 15, wte = 53.43, wti = 68.4.)

12.3.4 Generalizations of firing rate models.

Various bells and whistles can be added to firing rate models in order to match
their architecture with a more biologically realistic one. For example, many cortical
neurons are endowed with spike-frequency adaptation which occurs at a much slower
time scale than inhibition and is dependent only on the local neuron rather than
on other neurons. Another example is short-term synaptic plasticity such as the
depression or facilitation of synapses. Adaptation can be introduced as an activity
dependent negative feedback. For example, a single excitatory population with
adaptation can be written as:

τ
du

dt
= F (au− cz) (12.27)

τz
dz

dt
= R(u, z)− z

where R(u, z) is the activation of adaptation by excitation. There are several differ-
ent possible models of this. The simplest is that R(u, z) = u. This linear adaptation
allows for various interesting dynamics. If we recall that F is actually the firing rate,
then a more realistic model would be R(u, z) = αF and if there was saturation (as
would be the case if the adaptation was based on the conductance of some channel)
then,

R(u, z) = αF (1 − z).

This assures that the adaptation can never exceed 1. The reader should explore
this model on her own choosing, for example, τz ≫ τ.

Synaptic depression (or facilitation) is more interesting as its effects are mul-
tiplicative. Let us recall the model for short-term depression of a synapse (8.13)
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from the chapter on synapses:

dd

dt
=

1 − d

τd
−





∑

j

δ(t− tj)



 add.

where tj are the spike times of the presynaptic neuron. ad is the degree of depression
and τd is the recovery rate back to full strength. If we average this model over many
repetitions of the same process, then the spike times are replaced by the firing rate
of the presynaptic cell; thus, in terms of the firing rate, the model for synaptic
depression is:

dd

dt
=

1 − d

τd
− adFd.

We remark that several authors replace F in the above equation by u which is often
also called the firing rate. Depending on the interpretation and derivation of the
firing rate, either can be correct. If the firing rate models are derived from synaptic
dynamics, then F is the firing rate, but if we are approximating a noisy model
neurons response to inputs, then u is the approximation of the firing rate.

We illustrate extended firing rate models by looking at two examples.

Binocular rivalry.

When a person looks at two different objects in each of his eyes, such as vertical
stripes in the left and horizontal in the right, then he does not perceive a mixture,
but rather, he sees only one or the other. After a second or two the dominant
percept disappears and the other object becomes dominant. Then there is another
switch and so on. The switching is random, but there is a peak in the switching time
histogram so that many models assume that the switching is governed by oscillatory
dynamics. We will start with the competitive model, equation (12.23), but add the
additional adaptation:

u′1 = −u1 + F (I − wu2 − gz1) (12.28)

z′1 = (u1 − z1)/τ

u′2 = −u2 + F (I − wu1 − gz2)

z′2 = (u2 − z2)/τ.

Here u1 represents the right eye pattern and u2 the left eye pattern. If the degree
of adaptation, g is small enough, then we expect that the behavior should be like
that of equation (12.23); for large enough w; as I increases there will be a pitchfork
bifurcation from the homogeneous state to a state when one or the other “wins.”
Because of symmetry, either left or right can win. As in the competitive model,
there will be a homogeneous rest state, (u1, z1, u2, z2) = (ū, ū, ū, ū). The stability of
this state is found by studying the eigenvalues of a 4 × 4 matrix:

M =









−1 −cg −cw 0
1/τ −1/τ 0 0
−cw 0 −1 −cg

0 0 1/τ −1/τ









=

(

A B
B A

)
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where A,B are 2 × 2 matrices and c = F ′(I − (w + g)ū). Just like the competition
model, the structure of M has symmetry so that we can reduce the computation
of the eigenvalues to those of two 2 × 2 matrices, C+ = A + B and C− = A − B.
These two correspond to eigenvectors of the form, (x, y, x, y) and (x, y,−x,−y).
The former represents symmetric perturbations of the steady state and the latter,
asymmetric. Consider, first, symmetric perturbations:

C+ =

(

−1 − cw −cg
1/τ −1/τ

)

.

Since C+ has a negative trace (recall that F ′ > 0 so that c is positive and w, g are
non-negative) and a positive determinant all eigenvalues of C+ have negative real
parts. The asymmetric perturbations are more interesting:

C− =

(

−1 + cw −cg
1/τ −1/τ

)

.

If we treat c as a parameter (this is related to the intensity of the stimulus and, of
course, the shape of F ), then the determinant vanishes when w > g and c = c0 ≡
1/(w − g) and the trace vanishes when c = cH ≡ 1/w(1 + 1/τ). Thus, if g is close
to w and τ is large, the trace will become positive at smaller inputs than it takes
to make the determinant negative. That is, there will be a Hopf bifurcation as the
input increases when the time constant of adaptation is large and the strength of
adaptation is also sufficiently large. In contrast, with weak or very fast adaptation,
the network will maintain its winner-take-all behavior. This simple mechanism
provides a means by which there will be periodic switching of the dominance of
the two percepts. While this is a somewhat naive model, it is able to explain some
aspects of rivalry and, in fact, make some testable predictions (Wilson et al, 2001).
We will leave the full numerical exploration of this model as an exercise to the
reader.

Wilson HR, Blake R, Lee SH. Dynamics of traveling waves in visual perception.
Nature. 2001 Aug 30;412(6850):907-10.

Synaptic depression and oscillations.

Many neuronal networks show spontaneous oscillations during development; it is
believed that the activity may help strengthen connections between neurons which
are important later in the animals life. A striking example of this is spontaneous
episodes of activity in the spinal cord of embryonic chickens. Isolated spinal cord
preparations produce bursts of activity every 2-30 minutes and within these bouts
of activity, produce 0.1-2 Hz oscillations. Tabak et al (2000) suggest that the
mechanism underlying this is recurrent excitatory connections coupled to synaptic
depression with two different time scales. The slow scale depression accounts for
the long inter-burst interval and the faster depression for the oscillations within a
burst. Here, we will be concerned only with the higher frequency oscillations. Let
u(t) denote the firing rate of the population and d(t) the efficacy of the synapse.
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Then the equations are:

u′ = −u+ f(wdu) (12.29)

τd′ = 1 − d− αud.

Our model for d is slightly different from the one in Tabak et al, but the nullclines
are qualitatively similar. In the Tabak et al paper, they use:

f(x) = 1/(1 + exp(−(x− θ)/k))

with k = 0.05 and θ = 0.18. By choosing w = 1, α = 5, and τ = 5, it is possible
to get sustained oscillations. We leave a complete analysis of this to the reader. A
related model and phenomena is found in a paper of Tsodyks et al

Tabak J, Senn W, O’Donovan MJ, Rinzel J. Modeling of spontaneous activ-
ity in developing spinal cord using activity-dependent depression in an excitatory
network. J Neurosci. 2000 Apr 15;20(8):3041-56.

12.4 Projects.

1. Consider a pair of neurons (excitatory and inhibitory) coupled as:

ue(t) = Fe(weeΦee ∗ ue(t) − weiΦei(t) ∗ ui(t))

ui(t) = Fi(wieΦie ∗ ue(t) − wiiΦii(t) ∗ ui(t))

where Φjk(t) = exp(−t/τij)/τij and U(t) ∗ V (t) =
∫ t

0
U(t− s)V (s)ds. If τij is

independent of i or independent of j, then these can be converted to a apir of
first order differential equations. However, if all τij are different, then these
integral equations can be converted into 4 first order differential equations.
Write down these four equations. Is there any behavior (eg limit cycles) that
occurs for the four equation model which would not occur for the two-equation
model when τij is independent of i or j? For example, can you prove that a
fixed point for the four variable model is asymptotically stable if it is stable
for the two variable model?

2. Consider a noisy integrate and fire model, V ′ = −V + I, for which the current
makes a step from I1 to I2. Using the Fokker-Planck equation, examine the
temporal dynamics on the firing rate for this transition in the low and high
noise regimes (σ = 0.4, 1). In the low noise case, the approach to the steady
state rate f is a damped oscillation. For different steps in the current estimate
both the damping and the oscillation rate. The figure below illustrates an
example of a step and a fit to a damped oscillation. Use this to suggest a
linear model for the firing rate:

u′′ + 2au′ + (a2 + f2)(u − f) = 0

where f is the instantaneous firing rate. It may be necessary to also include
the derivative of f in the calculation. You will find that for slowly varying
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stimuli, this does not do any better than the simple ad hoc first order equation,
τfu

′ = f − u.
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3. Based on the previous exercise, the temporal dynamics of the response of a
neuron depends on the steady state firing rate. Consider the same equation
as in the previous exercise, but f now depends on u as:

f = F (wu − uth)

where F is a nonlinear function as explored in this chapter. Do the dynamics
of the scalar recurrent network exhibit anything new? Show that even this
second order model cannot produce limit cycle oscillations.

4. Explore the effects of changing the temporal dynamics of inhibition on the
barrel network. For example, quantify how that “window of opportunity”
depends on the time constant of the inhibitory response.

5. In Volgushev et al (2006), the authors look at the propagation of down to up
and up to down transitions in cortex by recording over a 12 mm spatial area in
the cat cortex during sleep. Adapt the population model for up-down states
to an array of, say, nearest neighbor coupled populations and add independent
noise to each population sufficient to induce spontaneous switching. Do you
see any evidence for propagation of states, eg, if one group of cells switches
from down to up, does this switch propagate across the network. Explore
different levels of noise and different degrees of coupling. In order to couple
two networks, you should look at a model of the form:

τeu
′
j + uj = Fe(weeūj − wiev̄j)

where
ūj = (1 − c)uj + (c/2)[uj+1 + uj−1]

and c ≥ 0 is the degree of coupling. Similar equations for the inhibitory
population, vj should be written as well with a possibly different coupling
strength. Use parameters as in figure 12.5.

12.5 Exercises.

1. Derive equation (12.3).
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2. We can write (12.3) as

Φ(t) = Ae−at +Be−bt + Ce−ct

where a, b, c are positive numbers. Show that A,B,C are such that Φ(0) =
Φ′(0) = 0. (Note the first part is by definition. Use the definition of Φ(t) to
prove the second part.) Now that you have done that, suppose:

x(t) =

∫ t

0

Φ(t− s)y(s) ds.

What third order differential equation does x(t) satisfy?

3. Consider the scalar neural network:

u′′ + (a+ b)u′ + abu = F (u)

where a, b are positive. Prove that there can be no limit cycle solutions.
Suppose F (0) = 0. What types of bifurcations are possible?

4. In exercise 2 you show that the general Φ(t) leads to a third order differential
equation. Consider the scalar neural network:

[(d/dt+ a)(d/dt+ b)(d/dt+ c)]u = F (αu).

Suppose that F ′ > 0 and a, b, c are positive. For α < 0 show that there exists
a unique fixed point and show that a Hopf bifurcation is possible as one of the
parameters varies. (Hint: Think about the Routh-Hurwitz criteria.) If α > 0
show there cannot be a Hopf bifurcation. We conjecture that there can be no
periodic solutions if α > 0, but have no proof.

5. Derive equation (12.14)

6. Consider the delayed excitatory network:

ut + u = F (αu(t− τ))

where we have set τm = 1 without loss of generality. Assume that F ′(u) > 0
and α > 0. Prove that there exists at least one fixed point and prove that
there can never be a Hopf bifurcation no matter what the delay.

7. Consider the delayed inhibitory network:

ut + u = F (−αu(t− τ))

where F (u) ≥ 0, F ′(u) > 0 and α > 0. Prove that there is a unique fixed point
(see the next exercise) and that there can be a Hopf bifurcation. Simulate this
network using F (u) = 1/(1 + exp(−(u+ I)) where I is input to the network.
Use α = 8 and I = 1 and treat τ as a parameter.
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8. Suppose that G(u) ≥ 0 and G′(u) < 0 for all u. Prove that there is a unique
root fixed point to

ut + u = G(u)

and that it is asymptotically stable.

9. Consider equation (12.12). (a) If F (I) =
√
I − I∗ for I > I∗ and is zero

otherwise, compute FQ(I) when I∗ is taken from a uniform distribution
Imin ≤ I∗ ≤ Imax. (b) If F (I − I∗) = max(I − I∗, 0) and I∗ is taken from a
Gaussian distribution with mean Ī and standard deviation σ, compute FQ(I).
(c) Repeat (b) for F (I − I∗) = 1 for I > I∗ and 0 otherwise.

10. Compute the firing rate function for the integrate and fire model based on the
conductance of the synapse. That is, suppose that V satisfies:

C
dV

dt
= −gL(V − EL) − g(V − Esyn)

where EL < VT < Esyn is the threshold to spike and upon spiking, V is reset
to Er < VT . Compute the firing rate as a function of the synaptic conductance,
g. What happens as g → ∞? Can you do some asymptotics of this to get
a simple formula for large conductances? Plot the F − g curve for C = 1,
gL = .05, EL = −65, Er = −70, ET = −50 and Esyn = 0.

11. Consider a recurrent scalar network with the threshold linear firing rate:

du

dt
= −u+ [au− uT ]+.

Show that is a > 1, then sufficiently large initial conditions grow exponentially.
For a fixed positive value of uT and a > 1, find the critical value of u0 such
that if u(0) > u0, u(t) grows exponentially without bound.

12. Suppose that F (u) ≥ 0, F ′(u) > 0 and F ′′(u) has a single zero. Assume that
F and its derivatives are continuous on R. Prove that there are at most three
fixed points to the neural network equation u′ = −u+ F (u).

13. (Hard.) Suppose that F ′(u) ≥ 0 and F (u) has k inflection points. Show that
there can be up to k + 2 fixed points to u = F (u). (Hint: use the previous
exercise and proceed inductively.)

14. Find the saddle nodes and the cusp bifurcation for the scalar model with
F (u) = 1/(1 + exp(−u)). (Note that F ′ = F (1 − F ).)

15. Prove that if fygx > 0 in the plane, there are no limit cycles to x′ = f(x, y),
y′ = g(x, y). Here is a brief hint to get you started. In order for there to be
a limit cycle, x′(t) must change sign. Suppose, first that fy > 0 and gx > 0.
(The other case follows similarly.) Suppose that x′(t) is positive and then
vanishes at t = t1. We cannot have y′(t1) = 0 since then we would be at a
fixed point. Thus either y′(t1) > 0 or y′(t1) < 0. Suppose the first case. Then
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x′′(t1) = fyy
′(t1) > 0 so that for t > t1 x

′(t) > 0 so that x′ does not change
sign. Continue to argue in this manner for all the other cases. You will need
to use the fact that gy > 0 for this.

16. Prove that if F ′(u) > 0, F (u) > 0, F (−∞) = 0, then there is a unique solution
to

u = F (I − wu)

for all I and w > 0. Prove that u is a monotonically increasing function of I
and that u > 0. Prove that u is a monotonically decreasing function of w.

17. In the mutual interaction model (12.23), what happens if the interaction is
positive (that is, −w is positive)? Show that asymmetric perturbations are
always stable.

18. (Disinhibition and epilepsy). One model for epilepsy is that it arises when the
inhibition is partially blocked. Consider the WC model:

u′1 = −u1 + F (12u1 − 12u2 − 3)

3u′2 = −u3 + F (18u1 − 4u2 − 5)

Show through simulation that there is a unique stable equilibrium. Now,
suppose that a drug such as bicuculline is applied which has the effect of
reducing the inhibitory strength. Incorporate a parameter p to the model
multiplying the strength of inhibition (don’t forget the inhibitory-inhibitory
connection) such that when p = 1 the inhibition is at full strength and at
p = 0 it is completely blocked. Compute the bifurcation diagram for the
model as p decreases and show that there can be a Hopf bifurcation and for
severely reduced inhibition a completely active state.

19. Consider the binocular rivalry model described by equation (12.28) with w =
5, g = 1, τ = 20 and F (x) = 1/(1 + exp(−(x − 2))). Compute the bifurcation
diagram of this model as a function of the parameter I. Now set g = 0.25 and
compute the diagram again. Note that there is no Hopf bifurcation and there
is only the pitchfork. Set g = 0.5 and compute as much as you can of the
bifurcation diagram. Find the curve of branch points and Hopf points as a
function of the two parameters, g and I.

12.6 Some methods for delay equations.

Delay equations do not commonly appear in the curricula of most dynamics courses
so that we review a number of well-known results mostly from the classic text by
Bellman and Cooke. Here we focus on systems with only one delay and only consider
the linear stability theory around equilibria for delay equations. We start with a
simple scalar example:

dx

dt
= f(x(t), x(t − τ))
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and let x̄ be a fixed point, f(x̄, x̄) = 0. The linearized equation has the form:

dy

dt
= ay(t) + by(t− τ).

Here a, b are the derivatives of f with respect to the first and second arguments
evaluated at the fixed point. As with ordinary differential equations, we look for
solutions of the form y(t) = exp(λt) leading to:

λ = a+ be−λτ .

There are infinitely many roots to this equation; if any of them has a positive real
part, then we say the fixed point is unstable. If all roots have negative real parts,
then the fixed point is linearly asymptotically stable. For general systems with one
delay, if the delay appears only in one variable, then, the characteristic equation
will take the form:

M(λ) ≡ P (λ) +Q(λ)e−λτ = 0.

Thus, for many commonly encountered problems, the stability of fixed points relies
on solving the polynomial-exponential characteristic equation. Before state some
theorems about stability, we consider a more general question; can a delay destabi-
lize a fixed point which, in absence of delay, was stable? Stability can be lost via a
zero eigenvalue or through complex conjugate eigenvalues. In the former case, one
must have P (0) + Q(0) = 0 which is clearly independent of the delay. Thus, we
focus on determining if it is possible for a delay to cause M(λ) to have imaginary
eigenvalues. If this happens, then:

Γ(ω) ≡ P (iω)

Q(iω)
= e−iωτ .

The left hand side of this expression traces out a curve in the complex plane (see
figure 12.8) and the right hand side traces out the unit circle. Suppose that when
Γ(0) lies outside the unit circle and as ω varies it never crosses the circle (case 1).
Then, there will be no delay τ which can change the stability, since the two curves
never intersect. If Γ(0) is inside the unit circle and never leaves it, then, again, no
stability change can occur. However, if the two curves intersect (case 2), then we
can always choose τ so that they intersect at the same value of ω. Thus, we can
destabilize the equilibrium by changing the delay. Since the critical eigenvalue is
iω, we expect to get a bifurcation to periodic orbits, although the proof of this is
much more difficult than that of the ODE case. As an example, consider the above
scalar problem.

Γ(ω) =
iω − a

b
.

This traces a vertical line in the complex plane. If |a/b| < 1, then Γ(ω) will cross
the unit circle and there will be delay-induced instability. Note that in order for the
fixed point to be stable in absence of a delay, we have, a+ b < 0. For delay-induced
instability, the magnitude of b must be larger than a, so these two inequalities imply
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case 1case 2

Figure 12.8. Stability plots for delay equations.

that b is negative and sufficiently large. We have thus shown a classic result that
delayed negative feedback can induce oscillations.

We conclude with a theorem from Bellman and Cooke giving general results
for scalar delay equations. We rewrite the characteristic equation as

eλτP (λ) +Q(λ) = 0

and let z = λτ. Since τ > 0, if z has a positive real part, then so does λ. The
following theorem provides necessary and sufficient conditions for stability of the
scalar delay equations, which can be written as H(z) = τaez + bτ − zez = 0.

Theorem (Bellman & Cooke, p444). All roots of pez + q− zez have negative
real parts if and only if

(a). p < 1, and

(b). p < −q <
√

r21 + p2

where r1 is a root of r = p tan r such that 0 < r < π. If p = 0, we take r1 = π/2.
Using this theorem as well as the easy graphical method above, you should

have no trouble solving the problems for delay equations.
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Chapter 13

Spatially distributed
networks.

13.1 Introduction.

In the previous chapters, we have focused generally on single neurons, small popu-
lations of neurons and the occasional array of neurons. With the advent of multi-
electrode recording, intrinsic imaging, calcium imaging, and even functional mag-
netic resonance imaging (FMRI), it is becoming possible to explore spatio-temporal
patterns of neural activity. This leads to a wealth of interesting fodder for the
mathematically inclined and it is the goal of this chapter to provide some examples
of this type of analysis. In Chapter *, we looked at the propagation of action po-
tentials down an axon; this is modeled as a partial differential equation. By looking
for traveling waves, we were able to reduce the equations to a set of ODEs. When
neurons are coupled together with chemical synapses, the natural form of coupling
is not through partial derivatives with respect to space, but rather through nonlocal
spatial interactions such as integral equations. As with the PDEs, it is possible to
look for specific forms of solution (such as traveling waves or stationary patterns),
but the resulting simplified equations do not reduce to ODEs. Thus, new tech-
niques must be developed for solving these equations and (if desired) proving their
existence and stability.

This chapter begins with a few words on unstructured networks such as ran-
dom networks and Hopfield networks. Such networks are amenable to various types
of analysis and are popular among theoretical physicists due to their similarity to
spin glasses. On the other hand, it is difficult to access their behavior experimen-
tally since they do not produce coherent activity that is easily visualized, measured,
or quantified.

We then turn to models for spatially structured networks where the connec-
tivity between neurons depends on their distance from each other. We focus our
attention on populations of firing rate models for which the theory is much more
developed. We discuss an important existence theorem for traveling fronts and then
use this to analyze traveling pulses in networks. We discuss the classic work of Shun-
ichi Amari and the relationship between localized stationary activity and working
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360 Chapter 13. Spatially distributed networks.

memory. The Amari model sets the stage for stability analysis when there are de-
lays and other sorts of temporal dynamics. We then turn to so-called ring models
for the emergence of tuning curves in the visual system. Finally, we conclude with
a bifurcation theory analysis of pattern formation applied to visual hallucinations.

13.2 Unstructured networks.

In this section, we review some general results on “neural networks” or artificial
networks. These include some feed-forward models such as those used in the so-
called back propagation literature and Hopfield and related attractor networks. We
also state and prove the very general Cohen-Grossberg theorem. Specifically, we
are interested in networks of the two general forms:

τj
duj

dt
+ uj = Fj

(

∑

k

wjkuk

)

(13.1)

τj
dVj

dt
+ Vj =

∑

k

wjkFk(Vk). (13.2)

The first of these is the so-called “firing rate “ formulation, while the second is the
voltage formulation. Cowan & Sharp review the history of neural networks and
provide a guide to the main results.

13.2.1 McCulloch-Pitts.

McCulloch-Pitts (MC) models consist of “neurons” which have two states, 0 and 1.
The next state of neuron i is determined by the quantity:

µi = H





∑

j

wijNj − θi





where H is the step function and wij , θi are real numbers. It is important that
wii = 0 for otherwise, there may be ambiguity in the value of µi. Updating can be
done either synchronously (like a discrete dynamical system) or it could be done
asynchronously. In the latter case, an index, k is randomly chosen and the neuron,
k is assigned the value µk according to the above quantity. In order for this network
to do something useful, it is necessary to make appropriate choices for the weights.
There are a number of learning algorithms which set the weights in such a way
as to produce a desired output for a given input. We point the reader to, for
example, Parallel Distributed Processes (McLelland and Rumelhart) as a classic
text on learning algorithms for feed-forward networks.

13.2.2 Hopfield’s model.

As with the McCulloch-Pitts model, we will consider now a network of asyn-
chronously updated two-state neurons. It is convenient to set their states to be
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−1, 1 instead of 0, 1. Thus, consider a network of the form:

Si(t+ 1) = sgn





∑

j

wijSj − θj



 ,

where sgn(x) is +1 for non-negative x and −1 for x < 0. If we update asyn-
chronously, then wii should be zero. To see why, suppose we want to figure out
S given:

S = sgn(S − 1/2).

Clearly, we could choose S = 1 or S = −1 and satisfy this constraint. Thus, we will
assume that wii = 0. Furthermore, for simplicity, let us assume that θi = 0. Hopfield
noticed that if wij = wji then this dynamical system has an energy function:

U = −1

2

∑

ij

wijSiSj .

To see that this is an energy function, let S′
k be a new state of the system. The

change in energy, U ′ − U is

−1

2
(S′

k − Sk)





∑

j

Sjwkj +
∑

i

Siwik



 .

However, since wij = wji, the energy difference is:

∆U = −(S′
k − Sk)

∑

j

wkjSj = −(S′
k − Sk)S′

k.

The last equality comes from the fact that S′
k =

∑

j wkjSj . If S
′
k = 1, then ∆U ≤ 0

(with equality only if S′
k = Sk) and if S′

k = −1, then ∆U is also less than or
equal to 0. Thus, the energy U will decrease until a minimum is reached and the
dynamics always converges to an equilibrium. Note the importance of the symmetry
assumption. If wij 6= wji, then there is no guarantee that there will be convergence
to steady state.

The ideas of Hopfield can be extended to continuous neural networks as long
as there are symmetric connections between the weights. Hopfield proved such a
result shortly after his discrete model came out (1984). At roughly the same time,
Michael Cohen and Steve Grossberg proved a more general result. We now discuss
the two different models. First consider the continuous network in the “voltage”
formulation:

Ci
dVi

dt
=
∑

j

wijfj(Vj) − Vi/Ri + Ii (13.3)

where the functions fj(Vj) ≡ Uj represent the firing rate at the axon hillock of a
neuron with somatic potential Vj (see previous chapter). We assume that wij = wji

and that fj is monotone increasing function. Hopfield forms the following function:

E = −1

2

∑

i,j

wijUiUj +
∑

i

1

Ri

∫ Ui

0

f−1
i (U)dU +

∑

i

IiUi. (13.4)
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In exercise ** below, you are asked to show the following:

dE

dt
= −

∑

i

dUi

dt





∑

j

wijUj −
Vi

Ri
+ Ii



 . (13.5)

Note that the term in the parenthesis is just the dynamics of the individual neuron,
that is, CidVi/dt. Thus,

dE

dt
= −

∑

i

Ci
dUi

dt

dVi

dt

= −
∑

i

Ci(f
−1
i )′(Vi)(dVi/dt)

2.

As long as fi are monotone increasing, then dE/dt ≤ 0. Thus, solutions to (13.3)
will converge to an equilibrium point.

Cohen and Grossberg (1983) studied the following class of models:

dxi

dt
= ai(xi)



bi(xi) −
N
∑

j=1

cijdj(xj)



 (13.6)

where

1. cji = cij ;

2. ai(xi) ≥ 0;

3. d′i(xi) ≥ 0.

Suppose, for example, that ai = 1/τi, bi = Ii − xi, and cij = −wij . Then (13.6)
becomes

τi
dxi

dt
= Ii − xi +

N
∑

j=1

wijdj(xj).

which is identical to (13.3) after multiplication by Ri. Thus, the Cohen-Grossberg
equations cover the Hopfield model. Consider the following function:

E = −
∑

i

∫ xi

bi(y)d
′
i(y) dy +

1

2

∑

j,k

cjkdj(xj)dk(xk). (13.7)

Then,

dE

dt
= −

∑

i

ai(xi)d
′
i(xi)



bi(xi) −
∑

j

cijdj(xj)





2

. (13.8)

From the assumptions (2,3), this is non-positive. This derivative vanishes only when
ai = 0, d′i = 0 or the terms in the parentheses vanish.
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13.2.3 Designing memories.

Given that the unstructured networks we have described so far all converge to fixed
points, we can ask some questions about how to design the weights of the network
in such a way that they converge to a desired pattern. Many theoreticians (and
experimentalists) think of Hopfield networks as a kind of association cortex where
memories are stored in the weights and the resulting steady state patterns are the
activities which are retrieved from the memory. That is, a memory is a vector of
activities or potentials which should be one of the stable fixed points of the network
(13.1) or (13.2). If initial data are close to this vector, then the network dynamics
should converge to it. Thus, the network is able to perform pattern completion
from partial information. Suppose the network has “stored” two memories. Then
we want it to be able to retrieve these when initial conditions or inputs are biased
towards one or the other. Our question in this section is: “How do we choose
the weights to get a series of specified vectors as stable equilibria for the neural
network?”

Consider an N -neuron network which should converge to a single memory
specified by a vector ξ. We take as the weight matrix, the outer product:

wij = ξiξj/N.

Clearly, wij = wji. The dynamics satisfy:

dVi

dt
= −Vi + ξi(1/N)

N
∑

j=1

ξjF (Vj).

Let U = (1/N)
∑

j ξjF (Vj). Then

V ′
i = −Vi + ξiU.

The steady state for this is just Vi = Uξi. Finally, we see that U must satisfy:

U = (1/N)
N
∑

j=1

ξjF (ξjU).

Thus, if this nonlinear equation for U has a solution, then there will be a steady state
which is just proportional to the memory, ξ, where the constant of proportionality
is U. Exercise ** asks you to explore the emergence of a stable memory when
F (V ) = tanh(bV ) and ξ is a vector of -1 and 1.

Now consider the case of 2 memories, ξ1,2 and weights,

wij = (ξ1i ξ
1
j + ξ2i ξ

2
j )/N.

Let

Um = (1/N)
∑

j

ξm
j F (Vj)
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for m = 1, 2. Notice that the vector V must satisfy:

V ′ = −V + ξ1U1 + ξ2U2.

Suppose the memory vectors are linear independent (a reasonable assumption). Any
component of the vector V orthogonal to ξ1,2 decays exponentially, so that all the
dynamics is along the directions corresponding to ξ1,2. Thus, we can write

V (t) = r1(t)ξ
1 + r2(t)ξ

2

and study the dynamics of r1,2(t). Clearly, we must have:

ξ1(r′1 + r1 − U1) + ξ2(r′2 + r2 − U2) = 0.

Since ξ1,2 are linearly independent, we must have

r′1 = −r1 + (1/N)
∑

j

ξ1jF (r1ξ
1
j + r2ξ

2
j ) (13.9)

r′2 = −r2 + (1/N)
∑

j

ξ2jF (r1ξ
1
j + r2ξ

2
j )

With this choice of weights, we have reduced this N−dimensional dynamical system
to a two-dimensional system. If there is a fixed point for this system where r1 ≫ r2,
then V (t) will be dominated by ξ1, so that the first memory is recalled. In the
perfect case, equilibria should be proportional to (1, 0) or (0, 1) implying that there
is no mixing of the memories. Exercise ** explores the dynamics of a two-memory
model. In in addition, we choose an odd function for F and take the ξ’s from the set
{−1, 1}, then it is possible to show that the recall will be perfect if the two memories
are orthogonal. In general the “contamination” is related to the dot product of the
two memories. If the elements in the memories are ±1, then < ξm, ξm >= N.
Consider < ξ1, ξ2 > . If the two memories are independent and randomly chosen
from ±1, then this dot product is just the result of a random walk of N steps of size
±1. The expected value is 0 and the standard deviation is

√
N. Thus, the relative

contamination between the memories scales like
√
N/N = 1/

√
N. For large N the

contamination is small.

13.3 Waves

We saw in chapter * that a brain slice preparation is able to generate traveling
waves of activity in experiments as well as in networks of biophysically-based and
simple spiking neurons. In this section, we return to model for neural waves in the
context of firing rate models. The mathematical theory developed in chapter **
presumed that the wave of activity consisted of but a single spike traveling wave.
In figure 13.1 we show two examples of traveling waves in brain slices. Figure
13.1e shows that typically there are multiple spikes per wave. Other preparations
show similar behavior – the single spike assumption was to make the mathematical
analysis of the spiking models easier and to make a closed form solution possible for
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e)d)

Figure 13.1. Two examples of propagation in slices (a-c) a cortical layer
2/3 slice. A multiple electrode array is placed into the slice in which inhibition is
blocked. Local shocking produces an event which propagates along the slice with a
characteristic speed. (d,e) Similar experiment in the ferret thalamus showing the
propagation of sleep spindles.(a-c from Pinto et al 2006; d,e from Kim et al, 1995.)

Figure 13.2. Space-time plots for the simulation of a network of 200
neurons coupled with an exponentially decaying weight function. Time goes down
and spatial position is across. Colored according to the synaptic gate, s. (A) Traub
model with synaptic decay of 3 msec; (B) Traub model with synaptic decay of 10
msec; (C) Firing rate model derived from the biophysical model.

the integrate-and-fire model. In many of the brain slice experiments, the inhibition
is blocked so that all that remains is an excitatory population of cells. It should
be clear to the reader that the existence of propagation of activity across a slice
is not surprising given the large amount of recurrent excitation. Thus, a natural
question is how does the activity terminate? In all experimental preparations,
the propagating burst of activity stops after a few spikes. Pinto et al recently
addressed this question experimentally and suggested several plausible mechanism
for the termination of spiking in recurrent networks when the inhibition is blocked.
Before turning to the modeling of wave termination, we begin with a simulation
and analysis of the propagation of a front of activity.
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13.3.1 Wavefronts

In chapter (oscillators) we saw that it was possible to produce a single-spike traveling
wave by “preventing” the cell from producing a spike after it has already spiked. In
practice, this is very hard to do without a very strong negative feedback term which
prevents the neuron from spiking again. Indeed, if we consider a biophysical model
like the Traub model with excitatory synapses which are (i) strong enough to excite
neighboring cells and (ii) have realistic decay times (2-3 msec), then the recurrent
excitation causes the neurons to fire again after they spike due to neighboring cells
firing.

We thus connect a network of biophysically based neurons with synaptic cou-
pling. The synaptic current is given by

Isyn(x, t) =

(

gsyn

∫ ∞

−∞

J(x− y)s(y, t) dt

)

(V (x, t) − Vsyn). (13.10)

s(x, t) satisfies a differential equation of the form:

τsyn
∂s

∂t
= −s+ f(V )h(s). (13.11)

The function f(V ) is zero unless the voltage is above some threshold (see Chapter
*synapse*). If the synapses are saturating, then h(s) = 1 − s (e.g. for NMDA
synapses, cf chapt synapse), otherwise, h(s) = 1. Figure 13.2A shows a simulation
of 200 neurons which in then absence of synaptic inputs have a unique stable rest
state when the synaptic time constant, τsyn = 3msec. Figure 13.2B shows the
same simulation with a time constant of 10 msec. Shown is the synaptic gating
variable, s(x, t) for saturating synapses. There appears to be a wave front with a
constant velocity initiated by the first spike (more evident in A) with a series of
spikes occurring in the wake of the wave apparently persisting forever. This kind of
persistence is not biologically realistic; activity eventually terminates and the slice
returns to rest as is seen in Figure 13.1. In the next section, we discuss various slow
processes which act to terminate the wave front activity. We remark that, at the
slower time scale, s(x, t) is nearly constant while at the fast time scale the large
variations of s can clearly be seen. The slower time scale simulation suggests that
we use the reduction techniques of Chapter *firing rate* to consider a simpler scalar
firing rate model.

Consider

τsyn
∂s(x, t)

∂t
= −s(x, t) + F (Irev

∫ ∞

−∞

J(x− y)s(y, t))h(s(x, t)). (13.12)

The function F (I) is the average of f(V (t)) when the single neuron is provided with
a constant current I. For example, at low currents, when the neuron is not firing,
F (I) = 0. Figure 13.2C shows a simulation of equation (13.12) when F is chosen to
match the Traub model simulated in the other two panels and τsyn = 10msec. What
is apparent in this picture is that there is a constant velocity wave front joining two
stable rest states. Without loss of generality, we assume that the integral of J(x)
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is 1 and, since this is an excitatory network, we suppose that J(x) ≥ 0. As in the
simulations, we suppose that J(x) is symmetric and monotonically decreasing for
x > 0. Let

g(s) = −s+ F (Irevs)h(s).

We suppose that g(s) has three roots, a < b < c with g′(a) < 0, g′(c) < 0, and
g′(b) > 0. That is, g(s) is our favorite: cubic-shaped. (The reader may ask if
everything in biology is cubic shaped – the short answer is pretty much, yes!) The
simulation of the scalar network suggests that there is a traveling wave solution to
equation (13.12) with constant velocity, ν, that is a function, s(x, t) = S(ξ) where
ξ = x − νt, S(−∞) = c and S(∞) = a. Since any wave is translation invariant,
we set the origin so that S(0) = b. With this assumption, we find that S(ξ) must
satisfy the integro-differential equation:

−ντsyn
dS

dξ
= −S + h(S)F (IrevJ(ξ) ∗ S(ξ)) (13.13)

Here J(x) ∗ s(x) is the spatial convolution over the real line of the function J(x)
with s(x). Ermentrout and McLeod proved the existence of such a traveling wave
when h(s) = 1. Chen generalized this proof to cover the case h(s) = 1 − s, a fact
which was exploited in a paper by Chen et al for a related model. We briefly sketch
the idea of the proof as the method has been used by many other authors to prove
existence theorems for nonlocal equations.

Parameterize the functions J(x) and F (s) by functions Jp(x) and Fp(s) where
0 ≤ p ≤ 1, F1(s) = F (s) and J1(x) = J(x). Each Fp has a corresponding gp that has
three roots with the properties above. Each Jp(x) has the same properties as J1(x),
that is, it is symmetric, integrates to 1, non-negative, and monotone decreasing for
x > 0. Choose J0(x) = (1/2) exp(−|x|) and F0(x) so that

∫ c0

a0

g0(u) du = 0.

Then, it turns out (see exercise **), that there is a function S0(ξ) satisfying equation
(13.13) with ν = 0 and satisfying the conditions at ±∞. Using this basic solution,
Ermentrout & McLeod apply the implicit function theorem by Linearizing equation
(13.13) about S0(ξ). They obtain a linear operator, L0, and prove that this operator
has a simple zero eigenvalue (corresponding to the translation invariance of the
traveling wave). Thus, for small values of the parameter p, they have to solve:

L0φ(ξ) = r0(ξ; ν0).

In general, since L has a one-dimensional nullspace, there is no hope for solving
this. However, the velocity ν is not likely to remain at 0 as the function Fp changes,
so that a judicious choice of ν will put r0(ξ; ν) in the range of L0 so that it is
possible to find a traveling wave solution for p sufficiently close to 0. The solution
can be continued, say up to p = p∗. If p∗ = 1, then the desired wave front has been
found. Otherwise, repeat the method using Sp∗(ξ) as the base solution. There are,
of course, many technical details, but this is the essence of the proof. If F (I) in
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Figure 13.3. Waves in a slice preparation and simulations. (A) Experi-
mental waves show spatial distribution of potential in an evoked wave. Inset shows
the intracellular potential of a single cell as the wave passes through. (B) Simula-
tion of the Traub model with an additional slow potassium current which terminates
spikes. (C) Single cell potential as the wave passes through. (D) Plot of the synaptic
gate against the slow potassium gate.

equation (13.12) is chosen to be the Heaviside step function, then an exact expres-
sion can be found for the traveling wave solution. (This is exercise ***.) We remark
that the velocity of the waves is an increasing function of the parameter Irev if the
function F is monotone increasing.

13.3.2 Pulses.

Wavefronts are almost never seen in experiments. Instead, pulses are commonly
observed in which each neuron involved in the activity produces a number of spikes
before returning to rest. Figure 13.3 shows an example of an experiment in which
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the slice is imaged simultaneously with an intracellular recording of a neuron. The
neuron produces a finite number of spikes before returning to rest. What termi-
nates the activity remains an active area of research (Pinto et al 2006). In Figure
13.3B-D, we depict a simulation of the same model which produced Figure 13.2
but with the addition of a slow outward current which becomes active only when
the neuron is firing. (It is much like the high-threshold adaptation described in
Chapter ???). This slow current gradually builds up enough to terminate the firing
and thus the wavefront is turned into a wave pulse. Here eight spikes are produced
in each neuron as the wave progresses through the one-dimensional domain. Figure
13.3D shows a phase-plane of the synapse at a particular location versus the slow
outward gate. Other mechanisms could also be responsible for the termination of
the wave. For example, synaptic depression of the excitatory synapses, or inacti-
vation of the sodium channels (depolarization block). Figure 13.3A is suggestive of
either spike adaptation (the interspike interval increases over the duration of the
pulse) or depolarization block (the size of the spikes is smallest at the peak of the
underlying depolarization). In the subsequent analysis, here, we will assume that
the mechanism is adaptation; the slow accumulation of an outward current.

We now describe a simple model for the pulse and sketch how it can be ana-
lyzed. We first note that the recovery process, the slow potassium current, is slow
compared to the other currents in the model. In absence of this recovery variable,
the model produces a front. If we turn off the slow outward current, the velocity of
the front is faster than with the adaptation, but only by about 25%. This suggests
an approach like we used to construct action-potentials in Chapter * where we ex-
ploited the time-scale differences between the upstroke of the action potential and
the recovery variables. We start with a general model for a network with slow pro-
cesses. As in our firing rate model for the fronts, we start with two “slow” currents
added to the voltage equations: synaptic and adaptation:

Islow(x, t) = −gsynstotal(x, t)(Vsyn − V (x, t)) − gzz(x, t)(Vz − V (x, t))

where the synapses satisfy equation (13.11) and z satisfies

τz
dz

dt
= −z + fz(V )(1 − z).

Here, fz(V ) is zero unless the neuron is depolarized sufficiently and τz is the time
constant of the slow recovery process. As in the previous section, we will treat the
synapses as if they were slow enough to be considered constant and, in addition,
suppose that the slow recovery variable, z, is also slow. The total current into a cell
is approximated by

Islow(x, t) ≈ Irevstotal(x, t) + Izz(x, t)

where Irev = gsyn(Vrest −Vsyn) > 0 and Iz = gz(Vrest −Vz) < 0. As in the previous
section, stotal is the total input at x from other cells. We now have a simplified
network model identical to equation (13.12) but with the additional slow recovery
process.

τsyn
∂s(x, t)

∂t
= −s(x, t) + αsν(x, t)h(s(x, t)) (13.14)
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Figure 13.4. Singular construction of th traveling pulse. (A) Simulation
of the network in equation (13.14- 13.15) showing four stages in the evolution of
the wave. Synaptic activity and adaptation are shown. (B) Phase plane of (A). (C)
“Fast” local dynamics showing bistability.

τz
∂z(x, t)

∂t
= −z(x, t) + αzν(x, t)(1 − z) (13.15)

ν(x, t) = F [IrevJ(x) ∗ s(x, t) + Izz(x, t)]. (13.16)

The firing rate of a neuron at position x is now a function of both the synaptic
activity and the degree of spike adaptation. We define ǫ = τsyn/τz ≪ 1 to be our
small parameter and use singular perturbation to find a traveling pulse solution,
(s(x, t), z(x, t)) = (S(ξ), Z(ξ) where ξ = x− ct and c is the velocity of the traveling
wave. Without loss of generality, we can set τsyn = 1. Letting U ′ denote the
derivative of U with respect to the moving coordinate ξ, we must solve:

−cS′ = −S + αsν(S,Z)(1 − S) ≡ f(S,Z) (13.17)

−cZ ′ = ǫ[−Z + αzν(S,Z)(1 − Z)] ≡ g(S,Z) −
ν(S,Z) = F (IrevJ(ξ) ∗ S(ξ) + IzZ(ξ)).

That is, we need to find (S(ξ), Z(ξ)) such that as ξ → ±∞, (S,Z) tend to the rest
state of the network. Notice that ξ < 0 corresponds to events which occur after the
pulse has passed through and ξ > 0 to those before the pulse.

Figure 13.4A shows the time course of the synaptic dynamics and the adapta-
tion at a spatial location in the middle of the one-dimensional medium. Since this
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plot shows the time course and ξ, the moving coordinate is proportional to −ct, the
dependent variables (S, z) increase to the left and decrease to the right in this pic-
ture. The behavior can be broken into four segments: (I) starting from rest, there
is an upstroke to the excited state; (II) there is a slow growth of the adaptation as
the excited neuron fires; (III) adaptation reaches a value which forces the synaptic
activity to make a fast downstroke to rest; (IV) a slow recovery of adaptation back
to rest. Since we assume ǫ is small on the upstroke and downstroke of the pulse, we
suppose that the adaptation is constant. On the initial upstroke, since the neuron
starts from rest, Z = zrest, the resting state of the adaptation. In this example,
zrest is essentially 0. At Z = zrest the S−dynamics is bistable. Figure 13.4C shows
the fast dynamics, F (S,Z) for Z = zrest, has three zeros with those labeled a,b
corresponding to the stable roots. The Ermentrout-McLeod theory for the scalar
neural network (or more precisely, the generalization by Chen) implies that there is
a unique traveling wavefront joining the two points a, b. This traveling front travels
at the velocity, c = c0 which is therefore the same velocity as the pulse. Once
the upjump has been made, the slow dynamics take over and we introduce a new
space-time scale: ξ = ǫη. In these coordinates equations (13.17) become:

ǫSη = f(S,Z)

Zη = g(S,Z)

and the convolution J(ξ) ∗ S(ξ) becomes:

R(η) =
1

ǫ

∫ ∞

−∞

J [(η − η′)/ǫ]S(η′) dη′.

We have assumed that J(x) is symmetric, peaked at x = 0, non-negative, and has
an integral of 1. Thus, the function J(x/ǫ)/ǫ tends to a Dirac delta function as
ǫ→ 0+. Our equations become:

0 = −S + αSF (IrecS + IzZ)(1 − S) ≡ f(S,Z)

Zη = −Z + αZF (IrecS + IzZ)(1 − Z).

Figure 13.4B shows the phase-plane for the local S,Z excitable system. The
S−nullcline is exactly the points where f(S,Z) = 0. For a range of Z (here, be-
tween 0.025 and 0.2) there are three roots, S to f(S,Z) = 0. Since the solution has
jumped to region II which corresponds to the large value of S, we take the largest
root, call it S+(Z), and plug this into the Z equation:

−c0
dZ

dη
= g(S+(Z), Z).

The phaseplane in figure 13.4B shows that along this curve dZ/dη > 0 so that Z(η)
grows for η decreasing. This is more easily seen in figure 13.4A in the region II.
At what point is there a jump made back to the left? In the case of the singular
action potential (chapt *) this jump occurred at a value of the recovery variable
(the equivalent of Z, here) such that the traveling “back” has the same velocity
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as the front. For the reaction-diffusion equations, such as the FitzHugh-Nagumo
equations, the existence of this jump point is guaranteed. However, there is no
guarantee that there will be a similar jump point for the integral equations. Indeed,
it appears that for our present wave model, the jump occurs when the recovery Z
reaches the maximum of the nullcline. Returning to the ξ coordinates, we have to
solve:

−cS′ = f(S,Zmax)

where f(S,Zmax) has only two fixed points: one corresponding to the point a in
figure 13.4C and the other, a degenerate point corresponding to the point c in the
same figure. The existence of a wave front for this problem was proven by Diekmann
(?) who showed that there are infinitely many velocities, c. Assuming that one of
these wave velocities is the same as c0, we can complete the down jump. The last
part of the construction is the return to rest along the left branch of the nullcline.
For our problem, S ≈ 0 so that Z satisfies

c0Zη = Z

so that
Z = Zmaxe

ǫξ/c0 .

Thus, as intuitively expected, once the wave passes by and there is no more neural
firing, the recovery variable, Z decays with a time course of 1/ǫ. An explicit solution
for a simplified version of this model can be found when the firing rate is a step
function. Exercise * takes you through the necessary steps.

13.4 Bumps.

Working memory refers to the short-term memory that is used for simple tasks
such as remembering a phone number as you walk from the phone-directory to
the telephone. It is memory which you do not need to permanently store and is
analogous to the storage in the RAM of a computer during some task as opposed to
keeping it on the disk drive. One of several theories of the mechanism for working
memory is that it represents a transient but metastable state of neuronal activity.
This theory is based on experiments first done over three decades ago by Joachim
Fuster. In these experiments, neurons in the prefrontal cortex of the monkey are
recorded while the monkey does a simple memory task. The monkey stares at a
fixation point on a video monitor. A brief spot of light (the stimulus) appears
somewhere in the surrounding area of the screen. Typically the stimulus lasts at
most a second and is then turned off. The monkey waits (for a period called the delay
period). A signal is given and the monkey must make an eye movement (saccade) to
the location of the stimulus. Thus, the monkey has to remember the position of the
stimulus for up to several seconds after it has been turned off. What Fuster (and
many subsequent experimentalists) found is that certain neurons would begin to fire
at a rate above background during the delay period and then return to background
levels after the monkey makes the saccade. This increased firing, which occurs in a
restricted spatial region, is believed to be the neuronal correlate of working memory.
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There are many other examples of this type of activity in the brain. Brody and his
colleagues found neurons in the prefrontal cortex of monkey which fired at a rate
that was proportional to the vibration frequency of a brief stimulus to the fingertip
during the delay period. That is, not only did the neurons firing during the memory
period, but they also coded for one of the stimulus properties.

Theoretically, these local regions of higher neural activity are regarded as sta-
tionary spatial patterns in a recurrent neural network. Wilson and Cowan (1973)
were among the first to try to define working memory in terms of the behavior of
firing rate models, mainly through simulations of a two layer neural network. In an
influential paper Amari (1977) created a simplified neural network that was analyt-
ically tractable and allowed him to find explicit solutions for stationary patterns as
well as to ascertain their stability. Since these papers, there have been hundreds of
theoretical and computational models for working memory. Most of the recent work
has focused on obtaining local increases in firing in spiking models such as integrate
and fire and more biophysical models. While the details differ, the principal for the
patterns remains identical to that of the Amari paper.

13.4.1 The Wilson-Cowan equations.

Unlike traveling waves, inhibition plays a major role in the production of spatially
localized stationary patterns. We will start our analysis with the following “synap-
tically” based neural network equations:

τe
∂ue(x, t)

∂t
= −ue(x, t) + Fe(

∫

Ω

Jee(x− y)ue(y, t)

− Jie(x− y)ui(y, t) dy + Ie(x, t)) (13.18)

τi
∂ui(x, t)

∂t
= −ui(x, t) + Fi(

∫

Ω

Jei(x− y)ue(y, t)

− Jii(x− y)ui(y, t) dy + Ii(x, t)). (13.19)

This is a two-layer network model where ue,i(x, t) represents the synaptic activity of
a population of excitatory and inhibitory neurons. The functions J(x) represent the
connectivity between the two populations; these are non-negative functions which,
in general, depend only on |x− y|, the distance between two areas. The domain of
the model, Ω, can be one or two-dimensional. While not strictly true, we will call
these the Wilson-Cowan equations. (The published Wilson-Cowan equations have a
term (1− reue) multiplying Se and a similar term for ui representing the refractory
period.) If we pick re,i = 1 then the WC equations are the same as those that we
derived from averaging, eg equation (13.14) in this chapter.

The Wilson-Cowan equations can be transformed into equations similar to
those analyzed by Amari in which the nonlinearities are placed inside the spatial
integration. We, instead, first make some simple assumptions about the inhibition
to reduce equations (13.18-13.19) to a scalar equation and then make the trans-
formation. Suppose that τi ≪ τe, that Fi is linear, and that Jii = 0. The most
unreasonable of these assumptions is that inhibition is faster than excitation. (If
we suppose that the excitation is dominated by the slow NMDA types of recep-
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Figure 13.5. (A) Composite interaction function; (B) “bump” solution;
(C) integral of J(x) showing allowable widths of the “bump”.

tors, then this is not a bad assumption.) The assumption on Jii is unnecessary but
simplifies the algebra. We set τi = 0 and solve for ui(x, t) :

ui(x, t) = Fi(

∫

Ω

Jei(x− y)ue(y, t) dy + Ii(x, t)).

The linearity assumption on Fi means that we can absorb the slope the intercept
of Fi into Jei and Ii. We substitute ui(x, t) into equation (13.18) to obtain:

τe
∂ue(x, t)

∂t
= −ue(x, t) + Fe(

∫

Ω

J(x− y)ue(y, t) + I(x, t))

where

J(x) = Jee(x) −
∫

Ω

Jei(x− y)Jie(y) dy

and

I(x, t) = Ie(x, t) −
∫

Ω

Jei(x− y)Ii(y, y) dy.

The spatial kernel, J(x), is a composite of the excitatory and the inhibitory interac-
tions. If we suppose, for example, that the connectivity is a Gaussian and that the
space constant (the decay of connectivity) for excitatory (inhibitory) connections is
σe (σi), then J(x) is comprised of the difference of two Gaussians, one with a space
constant of σe and the other with a space constant of σ =

√

σ2
e + σ2

i . If recurrent
excitation is strong, then J(x) will be positive near x = 0 and negative for larger val-
ues of x since σ > σe. Figure 13.5A shows a typical shape for J(x). Interactions like
this are called “Mexican hat interactions” since, in two spatial dimensions, the shape
of the interactions resembles a sombrero. We let v(x, t) = J(x) ∗ ue(x, t) + I(x, t)
so that v(x, t) satisfies:

τevt + v = J(x) ∗ F (v(x, t)) + Î(x, t) (13.20)

where
Î = τIt + I.

Equation (13.20) is the model that Amari analyzed in his famous 1977 paper when
F is the Heaviside step function.

We now suppose that F (v) = H(v − θ) is a step function and that there is
no input, I = Î = 0. The spatial domain, Ω, will be the real line. A “bump”
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is defined as a stationary solution to (13.20) which has a spatially localized peak
(Figure 13.5B. Such a solution satisfies:

v(x) =

∫ ∞

−∞

J(x − y)H(v(y) − θ) dy.

We construct a bump solution by supposing that v(x) > θ on an interval −r < x < r
and v(x) < θ outside this interval. (See Figure 13.5B.) From the definition of the
step function,

v(x) =

∫ r

−r

J(x− y) dy =

∫ x+r

x−r

J(y) dy = M(x+ r) −M(x− r)

where M(x) =
∫ x

0 J(y) dy. Continuity of v(x) at x = ±r implies that v(±r) = θ so
that we must have

θ = M(2r) = −M(−2r).

If J(y) is not symmetric, then we cannot satisfy both of these equations simulta-
neously and there will be no stationary bump. Instead, there will be motion of the
bump much like motion is induced with a transport term in diffusion equations.(See
exercise *) However, if J(y) is an even function, then M(y) is odd and both of these
equations reduce to the same equation, M(2r) = θ. We remind the reader that 2r
is exactly the width of the bump. Figure 13.5C shows that for a Mexican hat inter-
action as in figure 13.5A, there will be either one, two or no roots to this equation.
If the threshold, θ is larger than the maximum of M(x), Mmax then there are no
roots and no bumps. If the threshold lies between (M∞,Mmax), then there are two
roots and two different bumps. If M∞ > 0, then for 0 < θ < M∞, there is a single
root. Laing et al (2002) consider more general functions J(x) which have multiple
“wiggles” so that M(x) will oscillate; for example, J(x) = exp(−|x|) cosωx. This
means that there can many (even infinitely many) roots to M(2r) = θ and thus,
many different bump widths. We explore the stability below.

13.4.2 Stability

We derived the Amari model from the full Wilson-Cowan equations by assuming
that the inhibition was fast so that we could eliminate its dynamics from the equa-
tions. Thus, to properly analyze stability of the bump, we should consider the bump
with respect to the full set of equations (13.18-13.19). We will leave a variant of
this analysis as an exercise. For ease in exposition, we only examine stability with
respect to (13.20). Thus, we suppose that

v0(x) =

∫ x+r

x−r

J(y) dy

is a stationary solution and that r satisfies, M(2r) = θ. We formally linearize about
this solution resulting in the linear equation:

τewt + w =

∫ ∞

−∞

J(x− y)δ(v0(y) − θ) w(y, t)dy.
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Here, we use the fact that the derivative of the step function is the delta function.
Since the linear equation is autonomous, we can look for exponentially decaying
solutions, w(x, t) = exp(λt)φ(x) where φ(x) obeys the eigenvalue problem:

τeλφ(x) =

∫ ∞

−∞

J(x− y)δ(v0(y) − θ)φ(y) dy. (13.21)

Recall that the delta function satisfies:
∫ ∞

−∞

δ(x− a)φ(x) dx = φ(a)

for any smooth functions φ(x). Furthermore, any standard text (see eg Keener)
provides the following identity. Suppose f(0) = 0 and f ′(0) 6= 0. Then

∫ ∞

−∞

δ(f(x))φ(x) dx =
φ(0)

|f ′(0)| .

The argument inside the delta function in equation (13.21) vanishes at y = ±r so
that φ(x) must satisfy:

(τeλ+ 1)φ(x) =
J(x+ r)

|v′0(−r)|
φ(−r) +

J(x− r)

|v′0(r)|
.

Using the definition of v0(x), it is easy to compute that

v′0(x) = J(x+ r) − J(x− r),

so that |v′0(±r)| = |J(2r)−J(0)|. For the case illustrated in Figure 13.5, |v′0(±r)| =
J(0) − J(2r). We let z± = φ(±r) and setting x = ±r in the eigenvalue equation,
we must satisfy:

(τeλ+ 1)z− =
J(0)

J(0) − J(2r)
z− +

J(2r)

J(0) − J(2r)
z+

(τeλ+ 1)z+ =
J(2r)

J(0) − J(2r)
z− +

J(0)

J(0) − J(2r)
z+.

Miraculously, the stability reduces to the analysis of a 2 × 2 symmetric matrix.
Because the matrix has the form

A =

(

a b
b a

)

the eigenvalues are a+ b and a− b which, for our system translates to λ = 0 and

λ =
1

τe
− 1 +

J(0) + J(2r

J(0) − J(2r)
.

This eigenvalue is negative if and only if J(2r) < 0. Consulting Figure 13.5A,C, we
see that only the wider bump (corresponding to 2r = c) falls in the region where
J(2r) < 0. In conclusion, if θ is between M∞ and Mmax, then there are two bumps
and the wider one is stable. The narrow bump is unstable and for 0 < θ < M∞,
where there is only one bump; this bump is also unstable.
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13.4.3 More general stability.

We transformed the Wilson-Cowan equations and assumed that the inhibition was
fast and linear to derive the Amari model, (13.20). If we take a step back and
consider the dynamics of inhibition, then we can obtain some more interesting types
of instabilities. Consider the “dynamic” inhibition version of the Amari model where
we set the time constant of excitation to 1 and let τi be a parameter:

u′e(x, t) = −ue(x, t) + Jee(x) ∗H(ue − θ) − Jie(x) ∗ ui (13.22)

τiu
′
i(x, t) = −ui(x, t) + Jei(x) ∗H(ue − θ). (13.23)

Here the inhibition is linear and there is no inhibitory-inhibitory interaction. A
time-independent solution to these equations satisfies ue(x) = U(x), ui(x) = Jei(x)∗
H(U(x) − θ) where

U(x) = J(x) ∗H(U(x) − θ)

with
J(x) = Jee(x) − Jei(x) ∗ Jie(x).

Thus, stationary solutions to equations (13.22-13.23) satisfy the same equations as
the simple Amari model, so that there will be a bump. We will leave the analysis
of the stability of these bumps with respect to the full equations to the reader.

13.4.4 More general firing rates.

The construction of solutions to the Amari model (13.20) depended on the fact that
the nonlinearity was a Heaviside step function. Kishimoto & Amari used a fixed
point theorem to prove that there were bump solutions to a smooth version of the
equations. Specifically, consider

u(x) =

∫ ∞

−∞

J(x− y)F (u(y)) dy. (13.24)

Suppose that F (u) = 0 for u < θ1, F (u) = 1 for u > θ2 and F (u) = φ(u) for
θ1 < u < θ2 with φ(u) differentiable, monotonic and satisfying, φ(θ1) = 0, φ(θ2) = 1.
This implies that H(u − θ1) ≥ F (0) ≥ H(u − θ2). Assume that there are bump
solutions for H(u − θj), j = 1, 2. Then under fairly reasonable conditions on the
interaction functions, J(x), there is a bump solution for F (u).

Laing & Troy take a somewhat different approach. They choose interaction
functions, J(x), whose Fourier transforms are rational functions:

Ĵ(k) ≡
∫ ∞

−∞

J(x)e−ikx dx =
N(k2)

D(k2)
,

where N,D are polynomials. For example, the Fourier transform of

J(x) = (1 + b2) exp(−|x|)(b cos(bx) + sin(x))/(4b)

is

Ĵ(k) =
(b2 + 1)2

(1 + (k − b)2)(1 + (k + b)2)
.
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Formally taking the Fourier transform of equation (13.24), we get

û(k) = Ĵ(k) ˆF (u)(k).

Since Ĵ is a rational function, we unwrap it obtaining:

D(k2)û(k) = N(k2) ˆF (u)(k).

Since N,D are polynomials in k (in fact, even polynomials), we inverse transform
the equation to obtain an ordinary differential equation:

L1u(x) = L2F (u(x))

where Lj are linear differential operators. For example, in the example above, u
formally satisfies:

uxxxx + 2(b2 − 1)uxx + (1 + b2)2u = (1 + b2)2F (u). (13.25)

This is a 4th order differential equation. Suppose that F (0) = 0 and so u = 0 is a
rest state. Then a bump would be a solution to this PDE which is homoclinic to
u = 0. Ed Krisner proves the existence of homoclinic solutions to (13.25) using a
shooting argument. (See exercise ***).

13.4.5 Applications of bumps.

We have thus far regarded bumps as the neural equivalent of working memory and
the delayed response task. But, stationary patterns of neural might be relevant
in many other neural phenomena. Suppose that the “x” variable in our model
represents some other feature of the sensory world other than spatial location, for
example, angular preference. Cortical neurons associated with many sensory and
motor systems show increased firing rates when presented with oriented stimuli.
For example, neurons in the visual cortex show specificity for line segments that
depends on their angular orientation. Other visual cells are selective for the direction
of motion of a moving grating. In rats, cells in layer IV of the cortex respond to
movements of the whiskers; some of these cells are very specific about the direction
of movement. Figure 13.6 shows a cartoon of orientation preference for a visual
cortical neuron and directional preference for a neuron in the rat somatosensory
cortex. A number of researchers believe that the strength of these preferences for
certain features is a consequence of recurrent excitatory connections coupled with
strong inhibition.

When an oriented stimulus is presented, neurons show a tuning curve in which
their activity depends on the angle of the stimulus with a peak at the preferred angle.
Figure 13.6B,C shows two different ways to plot the degree of tuning. An untuned
neuron could produce a flat curve instead of B and a perfect circle instead of C. The
mechanism for this tuning sensitivity controversial, at least in the case of orientation
tuning in the visual cortex. The arguments are as to whether this localized activity
occurs due to feedforward wiring from the thalamus or that recurrent connections
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Figure 13.6. Orientation tuning in neurons. (A) Sample stimuli to the
visual system consist of oriented bars; (B) Firing rate of a visual cortex neuron as
a function of the stimulus angle; (C) “Polar plot” for a neuron in the somatosen-
sory cortex of the rat showing the strength (radial coordinates) of the response as a
function of the direction of the whisker.

and lateral inhibition lead to the amplification with the feedforward behavior only
biasing the results.

Consider a periodic version of the Amari model:

∂u(θ, t)

∂t
= −u(θ, t) +

∫ 2π

0

J(θ − θ′)F (u(θ′, t)) + S(θ, t) (13.26)

Here, u(θ, t) represents the activity of neurons responding to a stimulus moving in
the direction θ. (If we wish to consider orientated bars, then the domain is [0, π),
since there is no difference between a bar which is at 0 degrees and one which is at
180 degrees.) S(θ, t) is the possible bias due to the inputs to the cortex from the
thalamus. In the pure feedforward model, the recurrent connections J ∗F play very
little role and the activity is dominated by the inputs, S. In the recurrent model,
S is small and broadly tuned; the recurrent interactions amplify and sharpen the
tuning. Both arguments have experimental evidence to back them up. The Amari-
type analysis can be applied to the case where there is a step function nonlinearity
with no inputs. A time-independent input, S(θ), makes the analysis more difficult,
but is quite “doable”, particularly if there is a single local peak. (See Amari 1977
for the analysis on the real line.)

For a general nonlinearity, we can exploit the fact that the domain is periodic
an thus the function J is also periodic. Suppose, for example, that J(θ) = A +
B cos θ. If B > |A| then J(θ) has a Mexican-hat like shape. By approximating J(θ)
by only a few terms of its Fourier series (here only two), then we can reduce the
infinite-dimensional equation (13.26) to a finite dimensional one, since

K(θ, t) =

∫ 2π

0

(A+B cos(θ − θ′))F (u(θ′, t)) dθ′

can be expressed as

K(θ, t) = C0(t) + cos θC1(t) + sin θD1(t)

where

C0(t) = A

∫ 2π

0

F (u(θ′, t) dθ′
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C1(t) = B

∫ 2π

0

cos(θ′)F (u(θ′, t) dθ′

D1(t) = B

∫ 2π

0

sin(θ′)F (u(θ′, t) dθ′.

From this, equation (13.26) becomes

ut = −u+ C0(t) + C1(t) cos θ +D1(t) sin θ.

Thus, only the constant and first Fourier modes of u(x, t) are nontrivial; all other
modes decay to zero. This allows one to write

u(x, t) = c0(t) + c1(t) cos θ + d1(t) sin θ

and finally, to write:

c′0 = −c0 + C0

c′1 = −c1 + C1

d′1 = −d1 +D1.

This is a third order ODE. Furthermore, d1 = 0 is invariant (see exercises) since
we can always look for even solutions to this homogeneous translation-invariant set
of equations. Thus, equation (13.26), with a simple choice for a kernel, reduces
to a planar differential equation. Finally, if we include an inhomogeneity for the
equations, S(θ, t), and write

S(θ, t) = p0(t) + p1(t) cos θ + q1(t) sin θ + . . .

then we replace the three autonomous ODEs by

c′0 = −c0 + C0 + p0 (13.27)

c′1 = −c1 + C1 + p1

d′1 = −d1 +D1 + q1.

In the exercises, you explore various aspects of this model using the computer.
As a final example of models using bumps, we consider Zhang’s (1996) model

for head direction cells in the hippocampus. Head direction cells signal the head
direction of moving animals regardless of the location of the animal in the environ-
ment. They have tuning curves very much like those in Figure 13.6A. That is, they
show a strong preference for particular angles and are therefore often considered as
exemplars of bump attractors. Thus, the head direction system is often modeled as
a network of recurrently connected neurons and the peaked attractor represents the
current angle of the animals head. As the animal moves around in its environment,
its head angle will change relative to its body angle so that we expect the peak
of of the neural representation to move as well. As you perhaps explored in the
exercises on equation (13.27) it is possible to move a bump with external inputs,
but the analytic solution to this problem is not generally possible. An alternative
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method of shifting the bump is to vary the connection weights by biasing them in
one direction or the other. Specifically, Zhang supposes that the bump satisfies the
equation:

∂u(θ, t)

∂t
= −u(θ, t) +

∫ 2π

0

J(θ − θ′, t)F (u(θ′, t)) dθ′ (13.28)

where the weights, J(θ, t), are not constant in time and most importantly, not
symmetric. The reader may recall that in the Amari model, if the weights are not
symmetric, then it was impossible to find a stationary bump solution and instead
there is a moving solution. In exercise *, we created an asymmetric weight matrix
by shifting a symmetric matrix. Zhang finds a much easier way to make the weights
time-dependent and asymmetric. He supposes that

J(θ, t) = K(θ) + γ(t)K ′(θ) (13.29)

where K(θ) is a symmetric weight function that leads to stationary bumps and γ(t)
is an external signal which will serve to shift the bump. When γ(t) is nonzero, the
interaction, J, is not symmetric so we expect movement of the bump. Suppose that
U(θ) is a stationary solution to

U(θ) =

∫ 2π

0

K(θ − θ′)F (U(θ′)) dθ′.

Consider the time-dependent problem (13.28) with J(θ, t) as in (13.29). Let

φ(t) =

∫ t

0

γ(s) ds

be the integrated signal and let u0(θ, t) = U(θ + φ(t)). Then it is easy to see
(exercise **) that u0 exactly satisfies equation (13.28) with J as in (13.29). φ(t)
is the integrated phase shift of the bump due to the inputs. Thus, a brief negative
input will shift the bump counterclockwise, while a brief positive input will shift it
clockwise. No matter how fast the inputs vary, the bump will follow them exactly
(or at least there is a solution which can follow them – stability has not yet been
determined). We remark that models like this are called neural integrators since
they integrate the inputs and maintain them. Integrators are found in a variety of
neural systems ranging from the oculomotor plant in the goldfish (Tank Seung) to
the brain of an ant (Muller & Wehner,1988).

13.5 Spatial patterns - Hallucinations

Press on your eyeballs with the palms of your hands. After a few seconds, the
random light flashes that you see will become organized into faint flickering geo-
metric patterns. Better yet, stare a diffused strobe light flickering at roughly 20
Hz and your visual field will break up into similar geometric patterns. Even more
intense patterns arise upon the ingestion of various hallucinogenic drugs such as
lysergic acid diethylamide or mescaline. These simple geometric visual patterns
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Retina

Cortex

r

θ

Figure 13.7. The transformation from retinal to cortical coordinates (left)
and its effect on three of Kluver’s form constants. Most notably, bullseyes (star-
bursts) are transformed into horizontal (vertical) stripes.

(called phosphenes) are ubiquitous in their appearance and their forms seem to
be independent of any cultural influences. Kluver (1966) noted the relatively few
such patterns that subjects report during the early stages of drug intoxication and
classified the patterns into four types of form constants:

1. grating, lattice, fretwork, filigree, honeycomb, or chessboard;

2. cobwebs;

3. funnel, tunnel, cone, or vessel;

4. spiral.

Typically, during stroboscopic stimulation, human subjects report bullseyes (tunnel)
and starbursts (funnel/cone) which are examples of the third type of form constant,
whereas hallucinogens lead to more varied patterns such as honeycombs and spirals.

In 1979 Ermentrout and Cowan noticed that many of the form constants can
be transformed to periodic patterns on the plane through the mapping from the
retina to the visual cortex. Figure 13.7 shows the transformation. If we let r
denote the distance from the center of the fovea (in visual science, this is called the
eccentricity) and θ denote the angle around the retina, the transformation to the
cortex is well-approximated by the formula:

(r, θ) → λ(log(1 + r/r0),−
rθ

r + r0
).



i i

i

i

i

i

13.5. Spatial patterns - Hallucinations 383

The parameter, λ is called the magnification factor and r0 is an empirically defined
constant. For r ≫ r0, this mapping is just the complex logarithm, z = r exp(iθ) →
(log r, θ) with the angle reversed. Figure 13.7 shows that the form constants are
transformed into even simpler forms under this mapping. Spirals, for example,
become diagonal lines away from the fovea.

Ermentrout and Cowan suggested that the spatially periodic patterns arose
spontaneously in the visual cortex due to an instability of the resting activity. For
example, the hallucinogens are known to enhance cortical excitability by causing
the release of glutamate via activation of specific serotonin receptors. Flickering
light could interact resonantly with intrinsic oscillatory activity in cortex to in-
crease overall excitability. Thus, we will explore a simple spatial neural network as
some parameter is varied leading to a loss of stability of a uniform state. In order
to simplify the mathematical analysis, we will regard the visual cortex as a two-
dimensional sheet with periodic boundary conditions (in order to avoid boundary
effects and to make it possible to compute eigenfunctions as well as to avoid math-
ematical difficulties arising in the infinite plane). The general idea is that we will
start with a spatially homogeneous system and study the stability of the spatially
uniform state. As we change some parameters, the uniform state loses stability
to certain spatially varying modes which grow until the nonlinearities cause them
to saturate. We will not go through the complete analysis, but we will touch on
the main points which are (i) linear stability analysis and (ii) pattern selection.
For simplicity of exposition, we will analyze a scalar neural network with lateral
inhibitory connections much like figure 13.5A in two-spatial dimensions and with
a smooth nonlinearity. Let u(x, y, t) be the activity of a local region of cortex and
suppose that it satisfies

τ
∂u(x, y, t)

∂t
= −u(x, y, t) + J(x, y) ∗ F (u(x, y, t)) (13.30)

where

J(x, y) ∗ v(x, y) =

∫ L

0

∫ L

0

J((x − x′, y − y′)v(x′, y′) dx′ dy′.

Here, we will exploit two assumptions; the connections between cells are: (i) rota-
tionally symmetric and (ii) translationally invariant. Since our domain is periodic,
we assume that J(x ± L, y) = J(x, y ± L) = J(x, y) for all x, y ∈ [0, L). Rotational
symmetry means that interactions depend only on distance between neurons. To
construct such a J(x, y), we start with a function, w(x) which is even and satisfies

∫ ∞

−∞

w(x) dx = C <∞.

For example, w(x) could be like the lateral inhibitory kernel used in the Amari
model. Let

J(x, y) =
∞
∑

n=−∞

∞
∑

m=−∞

w(
√

((x+ nL)2 + (y +mL)2)).
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It is clear that J(x, y) is L−periodic in x, y. Furthermore, J depends only on the
distance from the origin of (x, y) so that it is rotationally invariant. The reader can
verify that J(x, y) is integrable on the square, Λ = [0, L) × [0, L). Henceforth, we
assume that L = 2π, since we can always rescale the spatial dimensions so that the
“cortex” is the unit square. The periodicity of J(x, y), as well as the translation
invariance, implies that

∫ 2π

0

∫ 2π

0

J(x− x′, y − y′) exp[i(kx′ + jy′)] dx′ dy′ = Ĵ(k2 + j2) exp[i(kx+ jy)]

for any integers (k, j) and

Ĵ(l2) =

∫ ∞

−∞

w(x′)e−ilx′

dx′.

This last equality is due to the rotational invariance of the function w(x) and the
definition of J.With these necessary preliminaries we turn to the analysis of equation
(13.30). We suppose that F (0) = 0 and F ′(0) = α > 0 is a parameter. Think of
this as the excitability of the network. For larger α, the network is more excited.
We also assume that F (u) is at least C3. Since F (0) = 0, then u(x, y, t) = 0 is a
solution to (13.30) and represents the background state of the cortex. To determine
stability, we linearize about u = 0 and obtain the linearized equation:

τ
∂v

∂t
= −v + αJ(x, y) ∗ v(x, y, t).

Since J preserves sine and cosines, the general solution to the linear problem is

v(x, y, t) = eλtei(kx+jy)

where the eigenvalue λ satisfies:

λ = −1 + α ˆJ(k2 + j2).

Note that λ depends only on α and l2 = j2 +k2. If α is small enough, then λ < 0 for
all (k, j). If we suppose that the interactions are like those in the Amari model (that
is, lateral-inhibitory or “Mexican hat”) such as shown in Figure 13.8A, the function
Ĵ(l) will look like Figure 13.8B. In the figure, we have plotted l as a continuous

variable, but in our square domain it takes on discrete values of the form
√

k2 + j2

where (k, j) are integers. The important point is that if the interactions are like
a Mexican hat, then the function Ĵ has a maximum value at some l = l∗ that is
bounded away from 0.

Suppose that we increase the excitability parameter, α. Then as soon as α
exceeds, 1/Ĵ(l∗) ≡ α∗, the rest state will be unstable and spatial perturbations of
the form exp i(kx+ jy) with k2 + j2 = (l∗)2 will grow at an exponential rate. Since
actual values of l are discrete, then there will generically be a small range of values
of α such that only modes exactly equal to l∗ will grow and all other modes will
decay. This phenomenon when a few spatial modes grow and the remainder decay
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J(l)^

l*x

w(x)

l

BA

Figure 13.8. (A) The lateral inhibitory kernel, w(x) and the corresponding
Fourier transform (B)

is the essence of what is called the Turing instability after Alan Turing’s ground
breaking paper on pattern formation in 1952. This simple mechanism underlies the
formation of spatial patterns in hundreds of other biological and physical examples.
(See Murray for dozens of applications in biology.) Of course, this simple analysis
is only the beginning. It is also necessary that we analyze what happens to the
full nonlinear problem when α is larger than α∗. The resulting nonlinear analysis
(called the normal form by mathematicians and mode or amplitude expansion by
physicists) tells us exactly what actual patterns arise. We will sketch this out in
the next few paragraphs.

The complexity of the patterns which arise as α increases beyond α∗ depends
on the value of l∗ since this determines how many values of (k, j) satisfy k2 + j2 =
(l∗)2. For example, suppose that l∗ = 7. The only pairs are (±7, 0) and (0,±7);
there are 4 of them. If l∗ = 5, then there are many more: (±5, 0), (0,±5),(±4,±3),
(±4,∓3), (±3,±4), and (±3,∓4). If l∗ =

√
2, then ±(1,−1) and ±(1, 1) are the

only four. For larger values of l∗ there can be arbitrarily many. For any given
l∗, we enumerate all the values of (jn, kn) such that j2n + k2

n = l∗2 and write the
corresponding functions of x, y as:

Φn(x, y) = ei(jnx+kny).

The idea of normal form methods is that we seek solutions to (13.30) when the
parameter, α is close to α∗ and thus the solutions are expected to lie close to the
homogeneous resting state. Hence, we suppose that α−α∗ = ǫ2p where ǫ is a small
positive amplitude parameter and p is a scaling factor. We seek solutions to (13.30)
of the form:

u(x, y, t) =
∑

n

ǫzn(η)Φn(x, y) + ǫ2w2 + . . .

where η = ǫ2t is a slow time scale and w2, w−3, . . . are orthogonal to Φn(x, y). The
complex functions zn are the so-called amplitude variables and describe the behavior
near the resting state in a subspace spanned by the nullspace of the linearized
equations. There is a straightforward, but somewhat tedious procedure to go trough
in order to get the equations for the zn, and the interested reader should consult
**??? In general, the resulting equations take the following form:

dzn

dη
= zn(bp+

∑

m

anmzmz̄m) (13.31)
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where anm, b are real coefficients whose values depend strongly on the details of
the model. We remark that in our example system, the loss of stability is at a
zero eigenvalue (which is the only possibility for a scalar model). However, in more
complex models, such as the full Wilson-Cowan equations, it is possible to lose
stability at an imaginary pair of eigenvalues. In this case, the coefficients in the
normal form equation (13.31) are complex. Here, for simplicity, we study only the
emergence of solutions at a zero eigenvalue. We can write zn = rn exp(iθn) and
then let Rn = r2n to reduce equation (13.31) to a Lotka-Volterra model:

R′
n = 2Rn(bp+

∑

m

anmRm)

and use this to determine the dynamics of the normal form. There is a great deal
of redundancy in the equations (13.31) since the pairs, (kn, jn) and (−kn,−jn) are
complex conjugates so that the corresponding z’s have the same values of r and R.
Thus, the conversion to r or R has the desirable effect of reducing the dimension
by half. Furthermore, the parameters, anm are not independent and are generally
related to each other. In particular, anm = amn. This last condition precludes any
complex dynamics such as oscillations and chaos.

Consider, for example, the case when there are just 4 elements in the nullspace,
say, (±7, 0) and (0,±7) which we identify as n = 1, 2, 3, 4.Then z2 = z̄1 and z4 = z̄3.
The amplitude equations are determined solely by R1 and R3:

R′
1 = 2R1(bp− aR1 − cR3) (13.32)

R′
3 = 2R3(bp− aR3 − cR1)

Note that in this case, ann = amm. We are only interested in solutions for which
Rn = r2n ≥ 0. We absorb b into p (so we set b = 1 without loss of generality).
There are four solutions: (0, 0), (p/a, 0), (0, p/a), and (p/(a+ c), p/(a+ c)). Before
continuing, we first interpret these solutions within the context of the patterns for
the full model, (13.30). Consider, the last solution. Recall that to lowest order
u(x, y, t) is a sum of the zn =

√
Rne

iθn so that for our particular choice of l∗ we
have

u(x, y) = 2
√

R1 cos 7x+ θ1 + 2
√

R3 cos 7y + θ3

where the θ’s are arbitrary phase-shifts (since we have periodic boundary condi-
tions). The four solutions to the normal form correspond respectively to (i) no pat-
tern, (ii) vertical stripes, (iii) horizontal stripes, (iv) checkerboards. Thus, in one
simple example, we can explain several of Kluver’s form constants for hallucinations:
bullseyes, pinwheels, and checkerboards. If instead, we had, eg, (6, 6), (6,−6), (−6, 6), (−6,−6)
as our unstable modes, then the three nonzero patterns for u(x, y) would be two di-
agonal striped patterns (corresponding to spiral form constants) and checkerboards.

We leave the analysis of the stability as an exercise for the reader, but we do
summarize it here. The solutions (p/a, 0), (0, p/a) are stable if and only if c > a > 0
while the solution (p/(a + c), p/(a + c)) is stable if and only if a > c > 0. Finally,
(0, 0) is stable if and only if p < 0.



i i

i

i

i

i

13.6. Exercises 387

13.6 Exercises

1. Consider the two cell network:

S1(n+ 1) = sgn(−S2(n))

S2(n+ 1) = sgn(S1(n))

Does this ever settle down? This shows that the symmetry of weights is
absolutely necessary for convergence.

2. Given the energy function (13.4), derive the derivative (13.5).

3. Consider equation (13.3), for 2 neurons. Let Ri = 1, Ci = 1,Ii = 0, fi(v) =
1/(1 + exp(−(v − 3)), and w21 = w12 = 6. Draw the phaseplane for this and
compute the energy function, E. Superimpose this on the phaseplane.

4. Derive equation (13.8) from equations (13.6) and (13.7).

5. Prove that the Destexhe (1994) shunting model:

dxi

dt
= −Aixi + (Bi − xi)[Ii + fi(xi)] − (xi + Ci)



Ji +

N
∑

j=1

Dijgj(xj)





converges to equilibria under the assumptions that Dij = Dji ≥ 0, Ai, Bi, Ci

are non-negative and g′j(xj) ≥ 0. (Hint, let yi = xi −Ci be a simple change of
variables and use the Cohen-Grossberg theorem.) Suppose, additionally, that
Ii, Ji, fi, gi are all positive. Prove that if xi(0) ∈ (−Ci, Bi) then xi(t) remains
in this interval.

6. Explore the following three variable model based on (13.6):

x′1 = x1(1 − x1 − 2x2 − x3/2)

x′2 = x2(1 − x2 − 2x3 − x1/2)

x′3 = x3(1 − x3 − 2x1 − x2/2).

This is of the form of the Cohen-Grossberg model but violates the symmetry
of interactions. Numerically solve this system and describe the behavior.

7. Consider the single memory network

V ′
i = −Vi + ξi(1/N)

N
∑

j=1

ξj tanh(bVj)

where ξj is either -1 or 1. Show that if b > 0 is too small, the only solution
to this is that Vi converge to 0. Prove that as b increases, there is a pitchfork
bifurcation and that Vi will converge to a fixed point proportional to the
vector ξ. Show that the “anti memory”, proportional to −ξ is also a stable
fixed point.
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8. Let F (V ) = tanh(bV ). Create two random memories of length 100 consisting
of -1 and 1. Numerically study the bifurcation as the gain, b increases for
equation (13.9). In the perfect recall case of memory 1, r2 = 0. For your
simulated example, how small is r2 as b increases? Suppose that the two
memories are orthogonal. Can you prove that the recall is perfect in this case?
(Exploit the fact that F is an odd function and that all the ξ components are
±1.)

9. Consider the equation:

S(x) = f(
1

2

∫ ∞

−∞

e−|x−y|S(y) dy).

Suppose that g(u)− u+ f(u) has three zeros, a < b < c, g′(a) < 0, g′(b) > 0,
g′(c) < 0 and that

∫ c

a

g(u)du = 0.

Prove that there is a bounded solution to this equation satisfying

S(−∞) = c S(+∞) = a.

Hint: Let

z(x) = (1/2)

∫ ∞

−∞

e−|x−y|S(y) dy.

Show that
z − zxx = S

by either using Fourier transforms or directly differentiating. Thus, transform
the integral equation to

z − zxx = f(z)

which is a second order integrable differential equation which has a solution,
z(−∞) = c and z(+∞) = a. Conclude that S also satisfies these conditions.

10. Consider:
−ντS′ = −S + αH [J(ξ) ∗ S(ξ) − θ](1 − S)

where H(u) is the step function. Suppose that

0 < θ <
α

2(1 + α)
.

Find the unique traveling wave solution joining the states S = 0 with S =
α/(1 + α).

11. Devise a model similar to equations (13.14) and (13.15) which use synaptic
depression as the slow recovery instead of adaptation. You should consult
chapter SYNAPSES in order to model the depression. Note that the degree
of depression should depend on the firing rate of the neuron, act as a multi-
plicative factor on the synaptic strength, and have its own dynamics. Draw
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some representative (s, d) phaseplanes for the local (spatially homogeneous)
case where d is the depression variable. Find conditions in which the lo-
cal dynamics admits oscillations. Compare your model and simulations with
Tsodyks et al (2000) See also Loebel & Tsodyks (2002).

12. Consider the traveling pulse equations for the analogue of equation (13.17)
with step function nonlinearities and no saturation of the synapse and adap-
tation variables:

−cS′ = −S + ν

−cτZ ′ = −Z + kν

ν = Heav(

∫ ∞

−∞

J(ξ − ξ′)S(ξ′) dξ′ −−bZ − θ)

Construct a traveling pulse for this equation using J(x) = exp(−|x|)/2. Here
is how to proceed. Let

U(ξ) =

∫ ∞

−∞

J(ξ − ξ′)S(ξ′) dξ′ −−bZ − θ.

Suppose that U(ξ) > 0 for 0 < ξ < a where a is the width of the pulse. Then
for ξ < 0 or ξ > a, we have

−cS′ = −S − cτZ ′ = −Z.

As ξ → ±∞, these must be bounded so the reader should verify that (S,Z) =
(0, 0) for ξ > a. For ξ < 0, the solutions are exponentials with unknown
constants. For 0 < ξ < a, U > 0 so that the step function is 1 in this region
and

−cS′ = −S + 1 − cτZ ′ = −Z + k.

Solutions should be continuous, so that at ξ = a, S(a) = Z(a) = 0 since (S,Z)
vanish for ξ > a. This gives a unique solution to (S,Z) in the region 0 < ξ < a.
Furthermore by continuity, this also provides values for the unknown constants
in the region ξ < 0. Now, you should have a solution for all of ξ which contains
two unknown constants, the velocity, c and the width, a. Since U(ξ) > 0 for
0 < ξ < a and U(ξ) < 0 for ξ < 0 and ξ > a, it must be the case (by continuity)
that U(0) = U(a) = 0. These two equations will yield the unknown constants,
a, c Unfortunately, you will probably not be able to solve for a, c explicitly
and must resort to a numerical solution. However, the problem has now been
reduced to two algebraic equations!

13. Construct spatially periodic solutions to the Amari model, equation (13.20)
satisfying v(x+ b) = v(x) and v(x) > θ for 0 < x < a < b. Can you determine
their stability?

14. In this exercise, you will create a numerical model for equations (13.22- (13.23)
and compare the bump with the solution you construct analytically. After
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this, do the next exercise to determine the stability of your bump solution.
For the simulations, choose Jee(x) = a exp(−(x/σe)

2)/(σesqrtπ), Jei(x) =
exp(−(x/σe)

2)/(σesqrtπ), and Jie(x) = exp(−(x/σi)
2)/(σisqrtπ). Choose

σe = 8, σi = 6 and a = 1.05, θ = .05, τi = .1. First, compute the width of
the bump by computing the composite interaction function, J(x) = Jee(x) −
Jie(x) ∗ Jei(x). (Note that ∗ means the convolution.) Next, simulate the
model by choosing a big enough domain and a suitable discretization. Show
that there is a bump that has the same width as the theory predicts. Proceed
to the next exercise!

15. Determine the stability of the stationary solution

(ue(x), ui(x)) = (U(x), Jei(x) ∗H(U(x) − θ))

with

U(x) = J(x) ∗H(U(x) − θ), J(x) = Jee(x) − Jei(x) ∗ Jie(x)

as a function of the time constant of inhibition in equations (13.22-13.23).
Linearize about the steady solution and use the properties of the Dirac delta
function to reduce the stability question to that of a four-dimensional matrix.

16. Suppose that J(x) is a Mexican-hat type interaction. That is:

(a) J(−x) = J(x);

(b) J(x) > 0 on (−a, a) with a > 0 and J(±a) = 0;

(c) J(x) is decreasing on (0, a];

(d) J(x) < 0 on (−∞,−a) ∪ (a,∞);

(e) J(x) is continuous with a finite integral;

(f) J(x) has a unique minimum on (0,∞) at a point, d > a and J(x) is
strictly increasing on (d,∞).

Can you construct a double “bump” solution for equation (13.20)? That is,
v(x) > θ in the union of two intervals, (r1, r2) ∪ (r3, r4)? The answer to this
may be: no - you have to figure it out. (Hint: consult SIAM J. Appl math
63:62-97,2002).

17. More fun with the Amari model Consider linear differential operator,

Lu ≡ amd
mu/dtm + am−1d

m−1u/dtm−1 + . . .+ a1du/dt+ u

and suppose that all the roots to the characteristic polynomial have negative
real parts (that is, p(x) = amx

m + . . . a1x + 1 has roots with negative real
parts.) Consider the generalized Amari model:

Lu(x, t) = J(x) ∗H(u(x, t) − θ).
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A time-independent solution satisfies:

U(x) = J(x) ∗H(U(x) − θ);

identical to the Amari model. Analyze the stability of the bump. For example,
if m = 1, this is the case we have done. In particular, for m = 2, show that
there is still a stable bump solution for all a1, a2 > 0. What happens when
m = 3? Can there be a loss of stability?

18. There are many variants to the Amari model incorporating adaptation and
dendritic interactions. Coombes and his collaborators have written many
papers on the analysis of these variants. In the spirit of Serge Lang’s book on
homology, pick any of Coombes’ papers and obtain the same stability criteria
without looking at his calculations. A good place to start is the review by
Coombes (2005)

19. Asymmetric weights.) Consider the Amari model:

ut = −u+W (x) ∗H(u(x, t) − θ)

where W (x) = J(x+ α) with J(x), the usual “Mexican hat” function. When
α is nonzero, W (x) is not symmetric so that there will be no stationary bump.
However, there may be a traveling bump. Let u(x, t) = U(x − ct) where c is
the velocity of the moving bump. Try to construct a moving bump where you
try to find c as a function of α. (Hint: Let a be the width of the bump. Then
you will have to solve:

−cU ′(y) = −U(y) + inta0W (y − y′)dy′

where y = x − ct is the moving coordinate. This linear equation has two
parameters, (c, a) plus a constant of integration. The condition that U(y) → 0
as y → ±∞ will determine the integration constant. The other two parameters
are determined by the conditions that U(0) = θ and U(a) = θ.)

20. The bump equation (13.25) contains only even derivatives so that there will
be even solutions to it. Thus, to prove the existence of a homoclinic, we need
to find a solution u(x) such that u(0) = α, u′′(0) = β, u′(0) = u′′′(0) = 0 and
u and its derivatives vanish as x → ∞. This problems is a two-dimensional
shooting problem since we have to find the two parameters (α, β) so that
the condition at ∞ holds. Two-dimensional shooting is very much more diffi-
cult, both numerically and analytically than one-dimensional (one parameter)
shooting. Thus, the proof would be much simpler if we could somehow reduce
it to a one-dimensional shooting problem. Show that if u(x) is a solution to
(13.25), then

(u′′′u′ − (u′′)2/2 + (b2 − 1)u′2 + (1 + b2)2Q(u) = E

where E is a constant and

Q(u) =

∫ u

0

v − F (v) dv.
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Use the boundary conditions at x = ∞ to compute E for the homoclinic and
then use this to find an expression for β in terms of α, thus effectively reducing
the existence to a one-dimensional shooting problem.

21. (Ring model). (A) Suppose that q1 = 0 in equation (13.27). Prove that d1 = 0
is invariant so that if you start with an even initial condition, the solution will
continue to be even. (B) Prove that a stable fixed point to (13.27) corresponds
to a stable solution to the full integral equation (13.26) for J(θ) = A+B cos θ.
(C) Use the computer to explore (13.27) when

J(θ) = A+B cos θ

and F (u) =
√

max(u− k, 0) choosing, A = 2 and B = 6. Vary the threshold
k and assume that the solutions are even functions of θ so that the model
reduces to a planar system. How many fixed points are there and what is
their stability when k = 1, k = 0.5? (D) One point of interest in these models
is the contrast dependence of the output relative to the inputs. Consider
(13.26) with S(θ, t) = a0 + a1 cos θ. The ratio of a1/a0 is called the contrast.
The output contrast is c1/c0 where the cj satisfy equation (13.27). Explore the
bifurcations and nature of the fixed points as the contrast of the inputs varies.
(E) Follow the moving bump. Suppose that a stimulus runs through feature
space in a periodic manner. That is, in the ring model, we drive (13.26)
with a stimulus S(θ, t) = a1 cos(θ − ωt). Derive the appropriate version of
(13.27) and then numerically study the behavior for A = 2, B = 6 k = 1
(with the same nonlinearity as in the other parts of this exercise) a1 = 0.1
and ω ∈ [0.02, 0.05]. Use two different initial conditions, c0 = 6 and c0 = 0
with the other variables set to 0. What is the behavior if you try to drive it
too fast.

22. (Zhang’s head direction model. Suppose that K(θ) is a symmetric weight
function and U(θ) is a stationary bump solution to

U(θ) =

∫ 2π

0

K(θ − θ′)F (U(θ′)) dθ′.

Show that

u(θ, t) = U(θ +

∫ t

0

γ(s) ds)

is a solution to

∂u(θ, t)

∂t
= −u(θ, t) +

∫ 2π

0

J(θ − θ′, t)F (u(θ′, t)) dθ′

where
J(θ) = K(θ) + γ(t)K ′(θ).

Simulate the Zhang model using the ring model of exercise * and your choice
of inputs γ(t).

23. Prove the stability results for equation (13.32).
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Chapter 14

Models

The models used in this book are presented below in the syntax of the authors
software.

14.1 Channels

Hodgkin-Huxley

# Hodgkin huxley equations

init v=-65 m=.05 h=0.6 n=.317

par i0=0

par vna=50 vk=-77 vl=-54.4 gna=120 gk=36 gl=0.3 c=1 phi=1

par ip=0 pon=50 poff=150

is(t)=ip*heav(t-pon)*heav(poff-t)

am(v)=phi*.1*(v+40)/(1-exp(-(v+40)/10))

bm(v)=phi*4*exp(-(v+65)/18)

ah(v)=phi*.07*exp(-(v+65)/20)

bh(v)=phi*1/(1+exp(-(v+35)/10))

an(v)=phi*.01*(v+55)/(1-exp(-(v+55)/10))

bn(v)=phi*.125*exp(-(v+65)/80)

v’=(I0+is(t) - gna*h*(v-vna)*m^3-gk*(v-vk)*n^4-gl*(v-vl)-gsyn*s*(v-vsyn))/c

m’=am(v)*(1-m)-bm(v)*m

h’=ah(v)*(1-h)-bh(v)*h

n’=an(v)*(1-n)-bn(v)*n

s’=sinf(v)*(1-s)-s/tausyn

# track the currents

sinf(v)=alpha/(1+exp(-v/vshp))

par alpha=2,vshp=5,tausyn=20,gsyn=0,vsyn=0

aux ina=gna*(v-vna)*h*m^3

aux ik=gk*(v-vk)*n^4

aux il=gl*(v-vl)

# track the stimulus

393
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aux stim=is(t)

@ bound=10000

done

HH equiv potentials

# hh.ode equivalent potentials

init v=-65 vm=-65,vn=-65,vh=-65

par i0, vna=50 vk=-77 vl=-54.4 gna=120 gk=36 gl=0.3 c=1 phi=1

par eps=.1

am(v)=phi*.1*(v+40)/(1-exp(-(v+40)/10))

bm(v)=phi*4*exp(-(v+65)/18)

ah(v)=phi*.07*exp(-(v+65)/20)

bh(v)=phi*1/(1+exp(-(v+35)/10))

an(v)=phi*.01*(v+55)/(1-exp(-(v+55)/10))

bn(v)=phi*.125*exp(-(v+65)/80)

minf(v)=am(v)/(am(v)+bm(v))

ninf(v)=an(v)/(an(v)+bn(v))

hinf(v)=ah(v)/(ah(v)+bh(v))

km(v)=am(v)+bm(v)

kn(v)=an(v)+bn(v)

kh(v)=ah(v)+bh(v)

mp(v)=(minf(v+eps)-minf(v-eps))/(2*eps)

np(v)=(ninf(v+eps)-ninf(v-eps))/(2*eps)

hp(v)=(hinf(v+eps)-hinf(v-eps))/(2*eps)

v’=(I0 - gna*hinf(vh)*(v-vna)*minf(vm)^3-gk*(v-vk)*ninf(vn)^4-gl*(v-vl))/c

vm’=km(v)*(minf(v)-minf(vm))/mp(vm)

vn’=kn(v)*(ninf(v)-ninf(vn))/np(vn)

vh’=kh(v)*(hinf(v)-hinf(vh))/hp(vh)

aux n=ninf(vn)

aux h=hinf(vh)

done

HH rinzel reduction

# reduced HH equations using the rinzel reduction and n

# as the variable

init v=-65 n=.4

par i0=0

par vna=50 vk=-77 vl=-54.4 gna=120 gk=36 gl=0.3 c=1 phi=1

par ip=0 pon=50 poff=150

is(t)=ip*heav(t-pon)*heav(poff-t)

am(v)=phi*.1*(v+40)/(1-exp(-(v+40)/10))

bm(v)=phi*4*exp(-(v+65)/18)

ah(v)=phi*.07*exp(-(v+65)/20)

bh(v)=phi*1/(1+exp(-(v+35)/10))

an(v)=phi*.01*(v+55)/(1-exp(-(v+55)/10))

bn(v)=phi*.125*exp(-(v+65)/80)
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v’=(I0+is(t) - gna*h*(v-vna)*m^3-gk*(v-vk)*n^4-gl*(v-vl))/c

m=am(v)/(am(v)+bm(v))

#h’=ah(v)*(1-h)-bh(v)*h

n’=an(v)*(1-n)-bn(v)*n

h=h0-n

par h0=.8

@ bound=10000

done

Morris-Lecar

# Morris-Lecar model Methods Chapter

dv/dt = ( I - gca*minf(V)*(V-Vca)-gk*w*(V-VK)-gl*(V-Vl)+s(t))/c

dw/dt = phi*(winf(V)-w)/tauw(V)

v(0)=-16

w(0)=0.014915

minf(v)=.5*(1+tanh((v-v1)/v2))

winf(v)=.5*(1+tanh((v-v3)/v4))

tauw(v)=1/cosh((v-v3)/(2*v4))

param vk=-84,vl=-60,vca=120

param i=0,gk=8,gl=2,c=20

param v1=-1.2,v2=18

# Uncomment the ones you like!!

par1-3 v3=2,v4=30,phi=.04,gca=4.4

set hopf {v3=2,v4=30,phi=.04,gca=4.4}

set snic {v3=12,v4=17.4,phi=.06666667,gca=4}

set homo {v3=12,v4=17.4,phi=.23,gca=4}

#par4-6 v3=12,v4=17.4,phi=.06666667,gca=4

#par7-8 v3=12,v4=17.4,phi=.23,gca=4

param s1=0,s2=0,t1=50,t2=55,t3=500,t4=550

# double pulse stimulus

s(t)=s1*heav(t-t1)*heav(t2-t)+s2*heav(t-t3)*heav(t4-t)

@ total=150,dt=.25,xlo=-75,xhi=75,ylo=-.25,yhi=.5,xp=v,yp=w

done

Butera-Smith

# butera and smith model using NaP

par cm=21,i=0

xinf(v,vt,sig)=1/(1+exp((v-vt)/sig))

taux(v,vt,sig,tau)=tau/cosh((v-vt)/(2*sig))

# leak

il=gl*(v-el)

par gl=2.8,el=-65

# fast sodium -- h=1-n

minf(v)=xinf(v,-34,-5)

ina=gna*minf(v)^3*(1-n)*(v-ena)
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par gna=28,ena=50

# delayed rectifier

ninf(v)=xinf(v,-29,-4)

taun(v)=taux(v,-29,-4,10)

ik=gk*n^4*(v-ek)

par gk=11.2,ek=-85

# NaP

mninf(v)=xinf(v,-40,-6)

hinf(v)=xinf(v,-48,6)

tauh(v)=taux(v,-48,6,taubar)

par gnap=2.8,taubar=10000

inap=gnap*mninf(v)*h*(v-ena)

v’ = (i-il-ina-ik-inap)/cm

n’=(ninf(v)-n)/taun(v)

h’=(hinf(v)-h)/tauh(v)

@ total=40000,dt=1,meth=cvode,maxstor=100000

@ tol=1e-8,atol=1e-8

@ xlo=0,xhi=40000,ylo=-80,yhi=20

done

Calcium-dependent inactivation

# L-type calcium current with calcium-dependent inactivation

# Poirazi P, Brannon T, Mel BW (2003a)

# Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell.

# Neuron 37:977-987

# adjusted beta slightly from .028 to .01

# from ModelDB

!faraday=96520

!rgas=8.3134

!temp=273.15+celsius

h=ki/(ki+ca)

xi=v*faraday*2/(rgas*1000*temp)

cfedrive=.002*faraday*xi*(ca-cao*exp(-xi))/(1-exp(-xi))

m=alpm(v)/(alpm(v)+betm(v))

ical=pcal*m*h*cfedrive

par ki=.001,celsius=25,cao=2,pcal=2,cainf=1e-4,taur=200

init ca=1e-4,v=-65

alpm(v) = 0.055*(-27.01 - v)/(exp((-27.01-v)/3.8) - 1)

betm(v) =0.94*exp((-63.01-v)/17)

# migliore model:

# alpm(v) = 15.69*(-1.0*v+81.5)/(exp((-1.0*v+81.5)/10.0)-1.0)

# betm(v) = 0.29*exp(-v/10.86)

v’=-gl*(v-el)-ical+i0

ca’=-ical*beta-(ca-cainf)/taur

par beta=.01,i0=0,el=-70,gl=.05
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aux ica=ical

@ total=1000,meth=qualrk,tol=1e-8,atol=1e-8,dt=.25

@ xp=v,yp=ca,xlo=-80,xhi=-10,ylo=0,yhi=2

done

T-type current with rebound

# cat-spike.ode

# i=+/-.25 for 25 msec or -2 for rebound + depolarized

# Huguenard and Mccormick T-type calcium kinetics

# using CFE with calcium fixed in concentration

# sodium and potassium channels added for spiking

#

i(t)=i0+i1*heav(t-ton)*heav(ton+tdur-t)

!faraday=96520

!rgas=8.3134

!temp=273.15+celsius

xi=v*faraday*2/(rgas*1000*temp)

cfedrive=.002*faraday*xi*(cai-cao*exp(-xi))/(1-exp(-xi))

m=minf(v)

par el=-65,celsius=25,cao=2,pcat=.15,cai=1e-4

par gna=8,gk=4,ena=55,ek=-90

minf(v)=1/(1+exp(-(v+59)/6.2))

hinf(v)=1/(1+exp((v+83)/4))

# tauh(v)=if(v<(-82))then(exp((v+469)/66.6))else(28 + exp(-(v+24)/10.5))

tauh(v)=22.7+.27/(exp((v+48)/4)+exp(-(v+407)/50))

i_cat=pcat*m*m*h*cfedrive

amna=.091*(v+38)/(1-exp(-(v+38)/5))

bmna=-.062*(v+38)/(1-exp((v+38)/5))

ahna=.016*exp((-55-v)/15)

bhna=2.07/(1+exp((17-v)/21))

mna=amna/(amna+bmna)

ank=.01*(-45-v)/(exp((-45-v)/5)-1)

bnk=.17*exp((-50-v)/40)

v’=-gl*(v-el)-i_cat+i(t)-gna*mna^3*hna*(v-ena)-gk*n^4*(v-ek)

h’=(hinf(v)-h)/tauh(v)

hna’=ahna*(1-hna)-bhna*hna

n’=ank*(1-n)-bnk*n

init h=.16,v=-76

par gl=.05,i0=0,i1=0,ton=100,tdur=25

aux icat=i_cat

@ meth=qualrk,dt=.25,total=500,atol=1e-8,rtol=1e-8

@ nmesh=100,xp=v,yp=h,xlo=-90,ylo=-.1,xhi=20,yhi=.8,bound=1000

done

Connor stevens

# constev.ode
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i(t)=i0+i1*heav(t-ton)

par i0,ga=47.7

par gtotal=67.7

!gk=gtotal-ga

init v=-65

par ek=-72 ena=55 ea=-75 el=-17

par gna=120 gl=0.3

par ms=-5.3 hs=-12 ns=-4.3

par ap=2 ton=100 i1=0

# Hodgkin-Huxley with shifts - 3.8 is temperature factor

am(V)=-.1*(V+35+ms)/(exp(-(V+35+ms)/10)-1)

bm(V)=4*exp(-(V+60+ms)/18)

minf(V)=am(V)/(am(V)+bm(V))

taum(V)=1/(3.8*(am(V)+bm(V)))

ah(V)=.07*exp(-(V+60+hs)/20)

bh(V)=1/(1+exp(-(V+30+hs)/10))

hinf(V)=ah(V)/(ah(V)+bh(V))

tauh(V)=1/(3.8*(ah(V)+bh(V)))

an(V)=-.01*(V+50+ns)/(exp(-(V+50+ns)/10)-1)

bn(V)=.125*exp(-(V+60+ns)/80)

ninf(V)=an(V)/(an(V)+bn(V))

# Taun is doubled

taun(V)=2/(3.8*(an(V)+bn(V)))

# now the A current

ainf(V)=(.0761*exp((V+94.22)/31.84)/(1+exp((V+1.17)/28.93)))^(.3333)

taua(V)=.3632+1.158/(1+exp((V+55.96)/20.12))

binf(V)=1/(1+exp((V+53.3)/14.54))^4

taub(V)=1.24+2.678/(1+exp((V+50)/16.027))

# Finally the equations...

v’=-gl*(v-el)-gna*(v-ena)*h*m*m*m-gk*(v-ek)*n*n*n*n-ga*(v-ea)*b*a*a*a+i(t)

M’=(minf(v)-m)/taum(v)

H’=(hinf(v)-h)/tauh(v)

N’=(ninf(v)-n)/taun(v)

A’=(ainf(v)-a)/taua(v)

B’=(binf(v)-b)/taub(v)

@ total=200,xhi=200,ylo=-70,yhi=20

done

Inward rectifier + potassium pump

# inward rectifier with potassium pump

v’=-gl*(v-el)-ikir

ek=90*log10(kout)

ikir=gk/(1+exp((v-vth)/vs))*(v-ek)

par gk=.8

par vth=-85,vs=5,el=-60,gl=0.05
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init v=-63

par beta=0.04,tau=1000

init kout=.1

kout’=(ikir*beta-(kout-.1))/tau

aux vk=ek

@ total=2000,meth=qualrk,dt=.5,tol=1e-8,atol=1e-8

done

Destexe & Pare model

# currents from destexhe and pare

# J. Neurophys 1999

# sodium

am(v)=-.32*(v-vt-13)/(exp(-(v-vt-13)/4)-1)

par i=0,gkm=2

# shifted to acct for threshold

num vt=-58,vs=-10

bm(v)=.28*(v-vt-40)/(exp((v-vt-40)/5)-1)

ah(v)=.128*exp(-(v-vt-vs-17)/18)

bh(v)=4/(1+exp(-(v-vt-vs-40)/5))

ina(v,m,h)=gna*m^3*h*(v-ena)

par gna=120,ena=55

# delayed rectifier

an(v)=-.032*(v-vt-15)/(exp(-(v-vt-15)/5)-1)

bn(v)=.5*exp(-(v-vt-10)/40)

ikdr(v,n)=gk*n^4*(v-ek)

par gk=100,ek=-85

# slow potassium current

akm(v)=.0001*(v+30)/(1-exp(-(v+30)/9))

bkm(v)=-.0001*(v+30)/(1-exp((v+30)/9))

ikm(v,m)=gkm*m*(v-ek)

#

v’=(I-gl*(v-el)-ikdr(v,n)-ina(v,m,h)-ikm(v,mk))/cm

m’=am(v)*(1-m)-bm(v)*m

h’=ah(v)*(1-h)-bh(v)*h

n’=an(v)*(1-n)-bn(v)*n

mk’=akm(v)*(1-mk)-bkm(v)*mk

init v=-73.87,m=0,h=1,n=.002,mk=.0075

# passive stuff

par gl=.019,el=-65,cm=1

# numerics stuff

@ total=1000,dt=.25,meth=qualrk,xhi=1000,maxstor=10000

@ bound=1000,ylo=-85,yhi=-50

done

Sag and inward rectifier
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# sag + inward rectifier

par i=0

par gl=.025,el=-70

# sag

# migliore tau0=46,vm=-80,b=23

# migliore vt=-81,k=8

# mccormick tau0=1000,vm=-80,b=13.5

#

ih=gh*(V-eh)*y

par gh=0.25,eh=-43

yinf(v)=1/(1+exp((v-vt)/k))

ty(v)=tau0/cosh((v-vm)/b)

par k=5.5,vt=-75

par tau0=1000,vm=-80,b=13.5

#

# kir

par ek=-85,gk=1

ikir=gk*minf(v)*(v-ek)

minf(v)=1/(1+exp((v-va)/vb))

par va=-80,vb=5

v’=i-gl*(v-el)-ih-ikir

y’=(yinf(v)-y)/ty(v)

init v=-68

init y=.24

@ total=1000,meth=qualrk,dt=.25

@ xp=v,yp=y,xlo=-90,xhi=-40,ylo=0,yhi=0.6

@ nmesh=100

done

CAN current

# can.ode

# spiking model plus CAN current

# sodium

am(v)=-.32*(v-vt-13)/(exp(-(v-vt-13)/4)-1)

num vt=-58,vs=-10

bm(v)=.28*(v-vt-40)/(exp((v-vt-40)/5)-1)

ah(v)=.128*exp(-(v-vt-vs-17)/18)

bh(v)=4/(1+exp(-(v-vt-vs-40)/5))

ina(v,m,h)=gna*m^3*h*(v-ena)

par gna=120,ena=55

# delayed rectifier

an(v)=-.032*(v-vt-15)/(exp(-(v-vt-15)/5)-1)

bn(v)=.5*exp(-(v-vt-10)/40)
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ikdr(v,n)=gk*n^4*(v-ek)

par gk=100,ek=-85

# voltage

v’=(I-gl*(v-el)-ikdr(v,n)-ina(v,m,h)-ican)/cm

m’=am(v)*(1-m)-bm(v)*m

h’=ah(v)*(1-h)-bh(v)*h

n’=an(v)*(1-n)-bn(v)*n

# can dynamics

par taumc=4000

ican=gcan*mc*(v-ecan)

par ecan=-20

par gcan=.05,alpha=.005

mc’=alpha*ca^2*(1-mc)-mc/taumc

# pulse function for calcium entry

puls(t)=heav(t)*heav(wid-t)

# here is the calcium

ca=puls(t-t1)+puls(t-t2)+puls(t-t3)

par t1=200,t2=700,t3=1200

par wid=50

# initial data

init v=-64.97,m=0.003,h=.991,n=.01,mc=0

# passive

par gl=.019,el=-65,cm=1,i=0

# keep track of calcium

aux stim=10*ca-100

# XPP stuff

@ total=2000,dt=.05,meth=rk4,xhi=2000,maxstor=100000

@ bound=1000,ylo=-100,yhi=20

@ nplot=2,yp2=stim

done

Calcium-dependent AHP

# ahp.ode

# uses very simple model of AHP with ca dynamics

# and high threshold Calc

# sodium

am(v)=-.32*(v-vt-13)/(exp(-(v-vt-13)/4)-1)

par i=0,gkm=2

# shifted to acct for threshold

num vt=-58,vs=-10

bm(v)=.28*(v-vt-40)/(exp((v-vt-40)/5)-1)

ah(v)=.128*exp(-(v-vt-vs-17)/18)

bh(v)=4/(1+exp(-(v-vt-vs-40)/5))

ina(v,m,h)=gna*m^3*h*(v-ena)

par gna=120,ena=55
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# delayed rectifier

an(v)=-.032*(v-vt-15)/(exp(-(v-vt-15)/5)-1)

bn(v)=.5*exp(-(v-vt-10)/40)

ikdr(v,n)=gk*n^4*(v-ek)

par gk=100,ek=-85

#

# l-type calcium

ica(v)=gca*(v-eca)/(1+exp(-(v-vlth)/kl))

par vlth=-5,kl=5,gca=.5,eca=120

mahp(ca)=ca^2/(kca^2+ca^2)

iahp(ca)=gahp*mahp(ca)*(v-ek)

par gam=1,tauca=300,kca=2,gahp=1

v’=(I-gl*(v-el)-ikdr(v,n)-ina(v,m,h)-ica(v)-iahp(ca))/cm

m’=am(v)*(1-m)-bm(v)*m

h’=ah(v)*(1-h)-bh(v)*h

n’=an(v)*(1-n)-bn(v)*n

ca’=-(gam*ica(v)+ca)/tauca

#

init v=-73.87,m=0,h=1,n=.002

# passive stuff

par gl=.019,el=-65,cm=1

aux mahpx=mahp(ca)

# numerics stuff

@ total=1000,dt=.25,meth=qualrk,xhi=1000,maxstor=10000

@ bound=1000,ylo=-85,yhi=-50

done

HH cable

# hhhcable.ode

init v[1..150]=-65 m[j]=.05 h[j]=0.6 n[j]=.317

par L=10,ri=100,d=.1

par vna=50 vk=-77 vl=-54.4 gna=120 gk=36 gl=0.3 c=1 phi=1

# two stimulus protocol

par ip1=0,ip2=0

par wid=2,t1=10,t2=50

# smooth step function

sheav(z)=1/(1+exp(-b*z))

par b=5

# local pulse

par xwid=5

lpul(t,x)=sheav(xwid-x)*sheav(t)*sheav(wid-t)

is(t,x)=ip1*lpul(t-t1,x)+ip2*lpul(t-t2,x)

am(v)=phi*.1*(v+40)/(1-exp(-(v+40)/10))

bm(v)=phi*4*exp(-(v+65)/18)

ah(v)=phi*.07*exp(-(v+65)/20)
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bh(v)=phi*1/(1+exp(-(v+35)/10))

an(v)=phi*.01*(v+55)/(1-exp(-(v+55)/10))

bn(v)=phi*.125*exp(-(v+65)/80)

# boundaries are zero flux

!dd=4*d*150*150/(ri*L*L)

v0=v1

v151=v150

%[1..150]

v[j]’=(is(t,[j]) - gna*h[j]*(v[j]-vna)*m[j]^3-gk*(v[j]-vk)*n[j]^4\

-gl*(v[j]-vl)+(dd)*(v[j+1]-2*v[j]+v[j-1]))/c

m[j]’=am(v[j])*(1-m[j])-bm(v[j])*m[j]

h[j]’=ah(v[j])*(1-h[j])-bh(v[j])*h[j]

n[j]’=an(v[j])*(1-n[j])-bn(v[j])*n[j]

%

aux stim1=is(t,1)

aux vp50=(is(t,50) - gna*h50*(v50-vna)*m50^3-gk*(v50-vk)*n50^4\

-gl*(v50-vl)+DD*(v51-2*v50 +v49))/c

@ bound=10000

@ meth=cvode,bandlo=4,bandup=4

@ tol=1e-10,atol=1e-10,dt=.05,total=80

done

noisy LIF without reset

# noisy LIF without reset

f(v)=I-V

wiener w

V’=f(V)+sig*w

init V=0

par I=0,sig=1

@ meth=euler,total=200

done

First passage BVP

# first passage set up to compute the firing times

# this is defined on an interval [0,1]

# and split up to get the interior value

#

par I=-1,sig=1,vreset=-1,vspike=10,a=10

b=(vreset+a)

c=(vspike-vreset)

# ok - here it is

# u is lower and w is upper interval

# s lies between 0 and 1

# u(s=0) = T(-A)

# u(s=1) = w(s=0)=T(V_reset)
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# w(s=1) = T(V_spike)

# gotta write it as a system

du/dt=up

dup/dt=-2*b*b/sig-2*f(-a+b*s)*up*b/sig

dw/dt=wp

dwp/dt=-2*c*c/sig-2*f(vreset+c*s)*wp*c/sig

ds/dt=1

# 5 equations - 5 boundary conds

# du/ds=0 at s=0

bndry up

# w=0 at s=1

bndry w’

# du/ds(1)=dw/ds(0)

bndry up’-wp

# u(1)=w(0)

bndry u’-w

# s=t

bndry s

# set up some numerics

@ total=1,dt=.005

# here is f, dont want to forget f

f(x)=x^2+I

done

QIFA period as BVP

# boundary value problem

# to find period of the QIFA model

v’=p*(v^2+i-u)

u’=p*a*(b*v-u)

p’=0

b v’-1

b v-c

b u-(u’+d)

par I=1

par c=-.25,a=.1,b=1,d=.5

init p=5.6488

init v=-.25,u=1.211

@ total=1,dt=.005

done

Golomb amitai

# Golomb amitai

# ionic currents

i_ion(v,h,n,z)=gl*(v-vl)+(gna*minf(v)^3*h+gnap*pinf(v))*(v-vna)+(gk*n^4+gz*z)*(v-vk)

minf(v)=1/(1+exp(-(v-thetam)/sigmam))
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pinf(v)=1/(1+exp(-(v-thetap)/sigmap))

GAMMAF(VV,theta,sigma)=1.0/(1.0+exp(-(VV-theta)/sigma))

v’=I-i_ion(v,h,n,z)-gsyn*s*(v-vsyn)

h’=phi*(GAMMAF(V,thetah,sigmah)-h)/(1.0+7.5*GAMMAF(V,t_tauh,-6.0))

n’=phi*(GAMMAF(V,thetan,sigman)-n)/(1.0+5.0*GAMMAF(V,t_taun,-15.0))

z’=(GAMMAF(V,thetaz,sigmaz)-z)/tauZs

s’=alpha*(1-s)/(1+exp(-(v-vsth)/vshp))-beta*s

# synaptic parameters

p gsyn=0.2

p vsth=-10,vshp=5,alpha=.6,beta=.015,vsyn=0

# kinetic parameters/shapes

p phi=2.7

p thetam=-30.0,sigmam=9.5,thetah=-53.0,sigmah=-7.0

p thetan=-30.0,sigman=10.0,thetap=-40.0,sigmap=5.0

p thetaz=-39.0,sigmaz=5.0,tauZs=75.0

# ionic parameters

p VNa=55.0,VK=-90.0,VL=-70.0,t_tauh=-40.5,t_taun=-27.0

p gNa=24.0,gK=3.0,gL=0.02,I=0.0

p gNaP=0.07,gZ=.1

# set gz=0 and gl=.09,vl=-85.5 to compensate

done

McCormick Huguenard - many channels

# the McCormick-Huguenard channel models -- Mix and match as you like

#

# UNITS: millivolts, milliseconds, nanofarads, nanoamps, microsiemens

# moles

# cell is 29000 micron^2 in area so capacitance is in nanofarads

# all conductances are in microsiemens and current is in nanofarads.

#

par I=0,c=.29

v’=(I -ina-ik-ileak-ik2-inap-it-iahp-im-ia-ic-il-ih+istep(t))/c

# the current is a step function with amplitude ip

istep(t)=ip*heav(t-t_on)*heav(t_off-t)

par ip=0.0,t_on=100,t_off=200

# passive leaks

par gkleak=.007,gnaleak=.0022

Ileak=gkleak*(v-ek)+gnaleak*(v-ena)

#

aux i_leak=ileak

# INA

par gna=0,Ena=45

Ina=gna*(v-ena)*mna^3*hna
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amna=.091*(v+38)/(1-exp(-(v+38)/5))

bmna=-.062*(v+38)/(1-exp((v+38)/5))

ahna=.016*exp((-55-v)/15)

bhna=2.07/(1+exp((17-v)/21))

mna’=amna*(1-mna)-bmna*mna

hna’=ahna*(1-hna)-bhna*hna

#

aux i_na=ina

# Delayed rectifier IK

par gk=0,Ek=-105

Ik=gk*(v-ek)*nk^4

ank=.01*(-45-v)/(exp((-45-v)/5)-1)

bnk=.17*exp((-50-v)/40)

nk’=ank*(1-nk)-bnk*nk

#

aux i_k=ik

# INap same tau as Na but diff activation

par gnap=0

inap=gnap*map^3*(v-ena)

map’=(1/(1+exp((-49-v)/5))-map)/(amna+bmna)

#

aux i_nap=inap

# ia A-type inactivating potassium current

#

ia=ga*(v-ek)*(.6*ha1*ma1^4+.4*ha2*ma2^4)

mainf1=1/(1+exp(-(v+60)/8.5))

mainf2=1/(1+exp(-(v+36)/20))

tma=(1/(exp((v+35.82)/19.69)+exp(-(v+79.69)/12.7))+.37)

ma1’=(mainf1-ma1)/tma

ma2’=(mainf2-ma2)/tma

hainf=1/(1+exp((v+78)/6))

tadef=1/(exp((v+46.05)/5)+exp(-(v+238.4)/37.45))

tah1=if(v<(-63))then(tadef)else(19)

tah2=if(v<(-73))then(tadef)else(60)

ha1’=(hainf-ha1)/tah1

ha2’=(hainf-ha2)/tah2

par ga=0

aux i_a=ia

#

# Ik2 slow potassium current

par gk2=0,fa=.4,fb=.6

Ik2=gk2*(v-ek)*mk2*(fa*hk2a+fb*hk2b)

minfk2=1/(1+exp(-(v+43)/17))^4

taumk2=1/(exp((v-80.98)/25.64)+exp(-(v+132)/17.953))+9.9

mk2’=(minfk2-mk2)/taumk2

hinfk2=1/(1+exp((v+58)/10.6))
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tauhk2a=1/(exp((v-1329)/200)+exp(-(v+129.7)/7.143))+120

tauhk2b=if((v+70)<0)then(8930)else(tauhk2a)

hk2a’=(hinfk2-hk2a)/tauhk2a

hk2b’=(hinfk2-hk2b)/tauhk2b

aux i_k2=ik2

#

# IT and calcium dynamics -- transient low threshold

# permeabilites in 10-6 cm^3/sec

#

par Cao=2e-3,temp=23.5,pt=0,camin=50e-9

number faraday=96485,rgas=8.3147,tabs0=273.15

# CFE stuff

xi=v*faraday*2/(rgas*(tabs0+temp)*1000)

# factor of 1000 for millivolts

cfestuff=2e-3*faraday*xi*(ca-cao*exp(-xi))/(1-exp(-xi))

IT=pt*ht*mt^2*cfestuff

mtinf=1/(1+exp(-(v+52)/7.4))

taumt=.44+.15/(exp((v+27)/10)+exp(-(v+102)/15))

htinf=1/(1+exp((v+80)/5))

tauht=22.7+.27/(exp((v+48)/4)+exp(-(v+407)/50))

mt’=(mtinf-mt)/taumt

ht’=(htinf-ht)/tauht

# il L-type noninactivating calcium current -- high threshold

par pl=0

il=pl*ml^2*cfestuff

aml=1.6/(1+exp(-.072*(V+5)))

bml=.02*(v-1.31)/(exp((v-1.31)/5.36)-1)

ml’=aml*(1-ml)-bml*ml

aux i_l=il

# calcium concentration

par depth=.1,beta=1,area=29000

ca’=-.00518*(it+il)/(area*depth)-beta*(ca-camin)

ca(0)=50e-9

aux i_t=it

# ic calcium and voltage dependent fast potassium current

ic=gc*(v-ek)*mc

ac=250000*ca*exp(v/24)

bc=.1*exp(-v/24)

mc’=ac*(1-mc)-bc*mc

par gc=0

aux i_c=ic

# ih Sag current -- voltage inactivated inward current

ih=gh*(V-eh)*y

yinf=1/(1+exp((v+75)/5.5))

ty=3900/(exp(-7.68-.086*v)+exp(5.04+.0701*v))

y’=(yinf-y)/ty
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par gh=0,eh=-43

# im Muscarinic slow voltage gated potassium current

im=gm*(v-ek)*mm

mminf=1/(1+exp(-(v+35)/10))

taumm=taumm_max/(3.3*(exp((v+35)/20)+exp(-(v+35)/20)))

mm’=(mminf-mm)/taumm

par gm=0,taumm_max=1000

aux i_m=im

# Iahp Calcium dependent potassium current

Iahp=gahp*(v-ek)*mahp^2

par gahp=0,bet_ahp=.001,al_ahp=1.2e9

mahp’=al_ahp*ca*ca*(1-mahp)-bet_ahp*mahp

aux i_ahp=iahp

aux cfe=cfestuff

# set up for 1/2 sec simulation in .5 msec increments

@ total=500,dt=.5,meth=qualrk,atoler=1e-4,toler=1e-5,bound=1000

@ xhi=500,ylo=-100,yhi=50

init v=-70,hna=0.5

done

Traub fast dynamics with two types of SFA

itrb(v,m,h,n)=gna*h*m^3*(v-ena)+(gk*n^4)*(v-ek)+gl*(v-el)

v’=-(itrb(v,m,h,n) -i+i_ca+i_ahp+i_m)/c

m’=am(v)*(1-m)-bm(v)*m

n’=an(v)*(1-n)-bn(v)*n

h’=ah(v)*(1-h)-bh(v)*h

w’=(winf(v)-w)/tw(v)

s’=alphas*(1-s)/(1+exp(-(v-vthr)/vsshp))-betas*s

# calcium

mlinf=1/(1+exp(-(v-vlth)/vshp))

i_ca=gca*mlinf*(v-eca)

ca’=(-alpha*i_ca-ca/tauca)

# k-ca

i_ahp=gahp*(ca/(ca+kd))*(v-ek)

i_m=gm*w*(v-ek)

#

#

am(v)=.32*(54+v)/(1-exp(-(v+54)/4))

bm(v)=.28*(v+27)/(exp((v+27)/5)-1)

ah(v)=.128*exp(-(50+v)/18)

bh(v)=4/(1+exp(-(v+27)/5))

an(v)=.032*(v+52)/(1-exp(-(v+52)/5))

bn(v)=.5*exp(-(57+v)/40)

#

TW(vs)=tauw/(3.3*EXP((vs-vwt)/20.0)+EXP(-(vs-vwt)/20.0))
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WINF(vs)=1.0/(1.0+EXP(-(vs-vwt)/10.0))

#

init v=42.68904,m=.9935,n=.4645,h=.47785,w=.268,s=.2917,ca=.294

par ek=-100,ena=50,el=-67,eca=120

par gl=.2,gk=80,gna=100,gm=0

par c=1,i=0

par gahp=0,gca=1,kd=1,alpha=.002,tauca=80,phi=4

par vshp=2.5,vlth=-25,vsshp=2,vthr=-10

# reyes set vlth=-5,vsshp=10

par betas=.1,alphas=2

par vwt=-35,tauw=100

aux iahp=i_ahp

aux im=i_m

@ meth=qualrk,dt=.1,tol=1e-5,total=25.01,xlo=0,xhi=25,ylo=-85,yhi=50

@ bounds=1000000

done

Wang-Buszaki nearest neighbor chain

# wang buszaki fsu

p i0=0.5,ip=0,ton=20,toff=60

p phi=5.0

p gL=0.1

p EL=-65.0

p gNa=35.0

p ENa=55.0

p gK=9.0

p EK=-90.0

p gsyn=0.02,esyn=-80

#

table wr wbfreq.tab

i(x)=i0+i1*wr(x)

par i1=0.0035

v0=v1

v51=v50

s0=s1

s51=s50

V[1..50]’=-gL*(V[j]-EL)-gNa*(Minf(v[j])^3)*h[j]*(V[j]-ENa)-\

gK*(n[j]^4)*(V[j]-EK)+i([j])+gsyn*(esyn-v[j])*(s[j-1]+s[j+1])

h[1..50]’=phi*(alphah(v[j])*(1-h[j])-betah(v[j])*h[j])

n[1..50]’=phi*(alphan(v[j])*(1-n[j])-betan(v[j])*n[j])

s[1..50]’=ai(v[j])*(1-s[j])-s[j]/taui

#

ai(v)=ai0/(1+exp(-(v-vst)/vss))

par ai0=4,taui=6,vst=0,vss=5

#
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alpham(v) = 0.1*(V+35.0)/(1.0-exp(-(V+35.0)/10.0))

betam(v) = 4.0*exp(-(V+60.0)/18.0)

Minf(v) = alpham(v)/(alpham(v)+betam(v))

#

alphah(v) = 0.07*exp(-(V+58.0)/20.0)

betah(v) = 1.0/(1.0+exp(-(V+28.0)/10.0))

#

alphan(v) = 0.01*(V+34.0)/(1.0-exp(-(V+34.0)/10.00))

betan(v) = 0.125*exp(-(V+44.0)/80.0)

#

#

V[1..50](0)=-64

h[1..50](0)=0.78

n[1..50](0)=0.09

#

@ XP=T

@ YP=V

@ TOTAL=200

@ DT=0.2,bound=10000

@ METH=qualrk

@ TOLER=0.00001

@ XLO=0.0, XHI=30.0, YLO=-90.0, YHI=30.0

done

Amari model - with inhibition

# Amari model with dynamic inhibition

# play with taui

par sige=8,sigi=6

table je % 51 -25 25 exp(-(t/sige)^2)/(sige*sqrt(pi))

table ji % 51 -25 25 exp(-(t/sigi)^2)/(sigi*sqrt(pi))

hue[0..150]=heav(ue[j]-thr)

special ke=conv(even,151,25,je,hue0)

special ki=conv(even,151,25,ji,ui0)

ue[0..150]’=-ue[j]+ae*ke([j])-ki([j])

ui[0..150]’=(-ui[j]+ke([j]))/taui

par taui=.1

par thr=.05,ae=1.05

ue[50..75](0)=1

ui[50..75](0)=1

@ dt=.005,nout=20,total=50

done

Hansel-Sompolinski model

# simple ring model dynamics

# u’ = -u + J* F(u)
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# J = A + B cos(x-y)

#

par a=2,b=6

table cs % 100 0 99 cos(2*pi*t/100)

table sn % 100 0 99 sin(2*pi*t/100)

f(u)=sqrt(max(u-thr,0))

fu[0..99]=f(c0+c1*cs([j])+d1*sn([j]))

c0’=-c0+a*sum(0,99)of(shift(fu0,i’))*.01+p0

c1’=-c1+b*sum(0,99)of(shift(fu0,i’)*cs(i’))*.01+p1*cos(w*t)

d1’=-d1+b*sum(0,99)of(shift(fu0,i’)*sn(i’))*.01+p1*sin(w*t)

par thr=1

par p0=0,p1=0,w=0

done
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