The predominant pathway for "early" vision
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Vision starts in the eye - and is largely mapped 1:1 across space
(retinotopy)
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Many output cells from the retina, i.e., retinal ganglion cells, have a
V2 receptive field
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Visual information travels from retina to thalamus to cortex
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Wandell, Dumoulin, Brewer (Neuron 2007)
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Cortex synthesizes orientation preference from V? receptive fields
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Continuous coding variables, like orientation, in primate vision, are
mapped
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The representation of continuous coding variables can be imaged
across cortex
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These features are mapped across visual cortex in primates and cats, as seen by intrinsic optical imaging
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Nearby neurons have similar receptive field (but note discontinuities at spirals)
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Figure 9. Angle map resulting from vectonal addition of eight single-condition iso-orientation maps. A, A picture of the imaged region taken in green light to emphasize the vascular
pattern. B, Anglc map showing the orientation preference for every region of the imaged cortex. For computing the local orientations we took the activity maps obtained with different
oricntations and added them vectorially on a pixel-by-pixel basis. The angle of the resulting vector is then color-coded according to the scheme at the bottom of the figure: yellow stands
for sites responding best to moving gratings of horizontal orientation, regions preferring moving gratings of vertical orientation are coded in blue, and so on. Salient in this map are pinwheel-
like structures around orientation centers (arrowheads). Each stimulus was averaged 48 times. No smoothing algorithms were applied. Scale bar, | mm,

Grinvald, Lieke, Frostig, Gilbert, Wiesel (Nature 1986)



Clarification of maps
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Nearby neurons with similar receptive field have significant "noise" correlations

Figure 3. Correlograms obtained from
two cell pairs. A, The cell pair had sim-
ilar receptive properties: The first cell
had an orientation preference of 120°,
directional preference to the right and
an ocular dominance group of 2, the

second cell had identical orientation and -
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Just a reminder - A mouse is not a monkey, and vice versa
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Ohki, Chung, Ch’'ng, Kara, Reid (Nature 2005)



A conundrum is that the width of tuning is independent of the
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Cortical interactions, as opposed to solely feedforward features,
define the tuning width
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Beyond vision, normalization of input signals is seen in other
systems, e.g., the coding of touch by the vibrissa system of rodents
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Chen-Bee, Zhou, Jacobs, Lim, Frostig (Frontiers of Neural Circuits 2012)



In vivo multi-whisker functional
representation (n=10)
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Figure 13.9

Evolution of the neuronal activity in response to a change in the stimulus orientation from an initial value
6, =0° to ©, = 60°. The change occurs at ¢ = 0. (A) Afferent mechanism with uniform inhibition. Pa-
rameters: Jo = —15.5, C = 1.1, e = 0.5. Times (units of zo): 0, 0.5, 1, 2, 6 (lines 1-5, respectively). (B)
Virtual rotation in the marginal phase. The activity profile is moving toward 6,. Parameters: Jo = —17.2,
J, =112, & = 0.05, C = 2. Times (left to right): 0 to 357 each 5.



Bumps of activity in the heading direction system in rodent
thalamus
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Internally organized mechanisms of the head direction sense
Nature Neuroscience 2015
Adrien Peyrache, Marie M Lacroix, Peter C Petersen & Gyorgy Buzsaki



Bumps of activity in the landmark heading system in the fly
ellipsoid body of the central complex thalamus
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WTA Ring attractor Ring attractor

Ring attractor

Global model (uniform inhibition) | ocal model
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