
Phys 178: HW2

guessous

February 2024

Due midnight on Feb. 14th (no exceptions this time!). Please justify all of your answers and submit to 
Gradescope. Make sure you select the correct question for each part of your submission. If you have any 
questions, please email Ghita Guessous (gguessou@ucsd.edu).

• All physics students (graduate and undergrad) are required to do both Problems.

• Undergraduate biology students are required to do Problems 1.1 and 2 but are encouraged to attempt
the rest

1 Ring Attractor Model

In this question, we investigate the phase diagram of the ring attractor model discussed in class.

dr(ϕ, t)

dt
= −r(ϕ, t) + [W0r0(t) +W1r1(t) cos(ϕ− ψ(t))− θ]+, (1)

where r0(t), r1(t) and ψ(t) are from the Fourier series of r(ϕ, t),

r(ϕ, t) = r0(t) + 2r1(t) cos(ϕ− ψ(t)) +
∑
|n|≥2

rn(t)e
inϕ.

and W1 > 0 for local excitation. Note that in Eq. (1), the input is assumed to have very weak modulation
I1 ≈ 0 and the background input I0 can be incorporated in the threshold parameter θ. For simplicity, we
further assume θ < 0.

1.1 Steady state of the ring attactor model

The steady state/fixed point of Eq. (1) is given by

r(ϕ) = [W0r0 +W1r1 cos(ϕ− ψ)− θ]+. (2)

Note that by re-defining r(ϕ) ≡ r(ϕ + ψ) or r(ϕ + ψ + π), we can take ψ = 0 and r1 ≥ 0 without loss of
generality. Following similar ideas as in class, find the conditions on (W0,W1) such that the steady state
profile r(ϕ) satisfies

a. (Homogeneous state) W0r0 +W1r1 cosϕ− θ ≥ 0, for all ϕ ∈ [0, π].

b. (Bump state) W0r0 +W1r1 cosϕC − θ = 0, for some ϕC ∈ [0, π).
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1.2 Stability of the steady states

We assume a small perturbation around the steady state r(ϕ, t) = r(ϕ) + δr(ϕ, t). By Eq. (1), the pertur-
bations in the Fourier coefficients satisfy

dδr0(t)

dt
= −δr0(t) +

[
W0

2π

∫ π

−π
Θ(r(ϕ)) dϕ

]
δr0(t) +

[
W1

2π

∫ π

−π
Θ(r(ϕ)) cosϕ dϕ

]
δr1(t),

dδr1(t)

dt
= −δr1(t) +

[
W0

2π

∫ π

−π
Θ(r(ϕ)) cosϕ dϕ

]
δr0(t) +

[
W1

2π

∫ π

−π
Θ(r(ϕ)) cos2 ϕ dϕ

]
δr1(t), (3)

where Θ(x) is the Heaviside step function, and

dδψ(t)

dt
= 0,

dδrn(t)

dt
= fn(δr0(t), δr1(t), δψ(t)), for |n| ≥ 2. (4)

[If you are interested, try to show the above equations yourself.] Convince yourself that we only need to
focus on Eq. (3) to understand the stability under small perturbation.

Find the regions in (W0,W1)-plane such that

a. The homogeneous state in 1.1a is stable.

b. The bump state in 1.1b is stable.

[Hint: You can just plot the regions numerically. ]

1.3 Moving bump with weakly modulated inputs

Suppose (W0,W1) are in the region where the bump state is stable. Initially, the network is in a bump
state, r(ϕ), peaked at ϕ = 0 as in 1.1b. Starting at time t = 0, the network receives a modulated input
I1(ϕ, t) = ϵ cos(ϕ − ϕ0), with small amplitude 0 < ϵ ≪ 1 and peak at ϕ0 ̸= 0. Such input will induce
changes in the network activity δr(ϕ, t).

a. It can be shown from Eq. (3) that the resulted changes in the Fourier coefficents δr0(ϕ, t) and δr1(ϕ, t)
will vanish at t→ +∞. However, the change in ψ(t) satisfies (up to the first order of ϵ)

dψ(t)

dt
=

ϵ

2π

∫ ψ(t)+ϕC

ψ(t)−ϕC
sin(ϕ− ψ(t)) cos(ϕ− ϕ0) dϕ. (5)

where ϕC is the angle in 1.1b and is independent of t.

Show that ψ(t) → ϕ0 as t→ +∞, by completing the integral in the above equation.

b. We investigate the change of network activity numerically. Consider N neurons whose firing rates
are described by

dri(t)

dt
= −ri(t) + f

 1

N

N∑
j=1

Wijri(t) + I1 cos(ϕi − ϕ0(t))

 , for i = 1, 2, ..., N,

where ϕi =
2π
N i and Wij =W0 +W1 cos(ϕi − ϕj). For convenience, we use f(x) = 1+tanhx

2 .

Let W0 = −6, W1 = 10, N = 500 and I1 = 0.02. Design the following input

ϕ0(t) =

{
0 if 0 ≤ t ≤ tb,

2π/3 if t > tb,

with tb = 500. Plot the peak position of the network activity as a function of time.
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2- Ring Attractor Numerics 
 
In this problem, we will numerically simulate the dynamics of the ring attractor. 
Warm up: exploring the properties of the weight matrix 

• First create a network consisting of N=1000 neurons, that are evenly spaced along a ring 
with each neuron having a preferred angle 𝜙! = 𝑖	(2𝜋/𝑁) (Eq. 3.4) 

• Create the angle distance matrix 𝑊,𝜙! , 𝜙". = 𝑊,𝜙! − 𝜙". = 𝑊(Δ𝜙)  
• We can Fourier expand the matrix as 𝑊(Δ𝜙) = 𝑊# +𝑊$ cos(Δ𝜙)	 (Eq.3.9). Let’s 

consider two cases: 
o 𝑊1 > 0, 𝑊# = 0  
o 𝑊1 > 0, 𝑊# = 𝛼𝑊$ where 1 < 𝛼 < 2 

Plot the synaptic weights 𝑊(Δ𝜙), where Δ𝜙 ∈ [−𝜋, 𝜋]. Which values of Δ𝜙 correspond 
to local vs. distal neurons? What do the weights reveal about connections between local 
and distal neurons? Are the connections inhibitory or excitory? How does 𝑊# affect the 
weights?  

• Now add a bias term 𝜙%!&' such that 𝑊(Δ𝜙) = 𝑊# +𝑊$ cos(Δ𝜙 − 𝜙%!&')	. What 
changes? 

 
Response to static external stimulus  

• Set up the connection matrix 𝑊, with 𝑊1 > 0, 𝑊# = 0, 𝜙%!&' = 0  
• Set up a static external stimulus (i.e: none of the parameters are time dependent) such 

that 𝐼(Δ𝜙, 𝑡) = 𝐼(Δ𝜙) (Eq. 3.11) 
𝐼(𝜙 − 𝜙#, 𝑡) = 𝐼(Δ𝜙, 𝑡) = 𝐼#(1 + 𝜖) + 𝐼$𝜖 cos(𝜙 − 𝜙#) 

• Solve the corresponding ODE (Eq. 3.13) for the static stimulus defined above  

τ
d
dt 𝑟! + 𝑟!

(𝑡) = 𝑓EΣ"($) 𝑊!"𝑟" + 𝐼(Δ𝜙)G 

• Plot the firing rate of the ith neuron, 𝑟!(𝑡) as a function of the preferred angle 𝜙!  as well 
as the steady-state activity profile 𝑟!(𝑡 = 𝑡*+,) = 𝑟-H 

 
Response to dynamic external stimulus 

• Set up the connection matrix 𝑊, with 𝑊1 > 0, 𝑊# = 0, 𝜙%!&' = 0  
• This time, set up a dynamic external stimulus (Eq. 3.11) 

𝐼(Δ𝜙, 𝑡) = 𝐼$𝜖 cos(𝜙 − 𝜙#(𝑡)) 
Where  

𝜙#(𝑡) = I
𝜙# +

𝜋
4
	𝑓𝑜𝑟	𝑡 < 𝑡%

𝜙# −
𝜋
4 𝑓𝑜𝑟	𝑡 ≥ 𝑡%

 

• Solve the corresponding ODE (Eq. 3.13) for the stimulus defined above: 

τ
d
dt 𝑟! + 𝑟!

(𝑡) = 𝑓EΣ"($) 𝑊!"𝑟" + 𝐼(Δ𝜙, 𝑡)G 

• Plot the firing rate of the ith neuron, 𝑟!(𝑡) as a function of the preferred angle 𝜙!. 
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