
Winter 2019 PHYS 178/278, Homework 3
Due 11:59 PM on February 24th

1 Two Oscillators with Exponential-decay Coupling
Consider the two weekly coupled phase oscillations,

dψi
dt

= ω + ~Z (ψi) · ~P (ψi, ψj) , i, j = {1, 2}

the two perturb each other with a small phase shift, δψi = ψi − ωt,

dδψi
dt

= ~Z (δψi + ωt) · ~P (δψi + ωt, δψj + ωt) .

Since dδψi,j

dt � ω, we can average the perturbation over a full cycle,

dδψ1

dt
= Γ (δψ1, δψ2) (1)

dδψ2

dt
= Γ (δψ2, δψ1) (2)

where Γ (δψi, δψj) represents the averaged perturbation of oscillator j on oscillator i over a full cycle,

Γ (δψi, δψj) =
ε

2π

∫ π

−π
dθ ~Z (δψi + θ) · ~P (δψi + θ, δψj + θ) , (3)

note that we have replaced ωt = θ ∈ {−π, π}. Similar to what we did in the lecture, assume that the perturbation
~P (· · ·) solely depends on the phase of the other oscillator, i.e., ~P (δψi + θ, δψj + θ) → ~P (δψj + θ),

Γ (δψi, δψj) =
ε

2π

∫ π

−π
dθ ~Z (δψi + θ) · ~P (δψj + θ) , change of variable θ → θ − δψj

=
ε

2π

∫ π

−π
dθ ~Z (θ + (δψi − δψj)) · ~P (θ) , let ∆ij = δψi − δψj

⇒ Γ (δψi, δψj) = Γ (∆ij) =
ε

2π

∫ π

−π
dθ ~Z (θ +∆ij) · ~P (θ) , (4)

where the sensitivity of phase to the perturbation is

Z (φ) = sin (φ) , (5)

and the perturbation ~P (· · ·) is given by an exponential function

~P (φ) =

{
0 , φ < 0
gsyn

cm
e−φ/ωτ , φ ≥ 0.

(6)

Subtracting the two equations, Eq. (1) and (2), we get the equation of motion for the phase difference between the
two oscillators,

d∆12

dt
= Γ (∆12)− Γ (∆21) ,

= Γ (∆12)− Γ (−∆12) ,

= 2Γodd (∆12) , (7)

1

where Γodd (· · ·) is the odd part of the function Γ (· · ·).

1.1 Calculate the averaged perturbation Γ (∆ij) and then find the odd function Γodd (∆ij) (Hint : see the foot note1).

1.2 Analysis the stability for the case where two oscillators have (a) excitatory connections gsyn = gexcitatorysyn > 0;
(b) inhibitory connections gsyn = ginhibitorysyn < 0. For each case, do the two oscillators tend to synchronize or
anti-synchronize?

2 Hopfield model
Here we will study the energy landscapes of a Hopfield network. A Hopfield network is a network of N “binary
neurons” (that can each have a value of +1 or −1). Each network state is a vector with the values each neuron
has in that state. The neurons are connected according to the weight matrix Wij . The states can be thought of as
memories that the network converges into from the initial state (sometimes referred to as a cue). The convergence
from the cue to the memory is done on the surface of the “energy landscape”. The energy at a point ~y is defined as:

E(~y) = −1

2
~yTW~y = −1

2

N∑
i=1

N∑
j=1

yiWijyj (8)

Where ~y is any N dimensional binary vector. We will work with a network of N = 900 neurons. The memories
can therefore be represented as a vector with 900 entries (each can be only +1 or −1), or a 30× 30 “picture”. We
are given a “bank” of 60 such pictures (in the file memories.mat, Fig. 1), and the goal is to check how well the
network can remember them. The memory “quality” is closely related to the energy function defined above. The
more “rugged” this energy landscape is, the bigger the chance that the network will converge into a “wrong” memory
from a given initial condition.

1. First we will build the code needed for the Hopfield network:

(a) Given a set of memories ~x(k), compute the connectivity matrix according to the equation:

Wij =
1

N

p∑
k=1

x
(k)
i x

(k)
j (9)

where p is the number of memories, and x(k)i is the i-th component of the k-th memory.
Or, in matrix notation:

WN×N =
1

N
XXT (10)

where X is a N × p matrix that holds the N dimensional memories,

X =

 | | | |
~x(1) ~x(2) · · · ~x(p)

| | | |


N×p

.

Note that W is the outer product of X and should be a N ×N matrix. (It is the connectivity matrix of
a network that “remembers” these specific p memories).

(b) In each step (“time t”) the update is done according to the equations:

ai(t) =

N∑
j=1

Wijyj(t) (11)

yi(t+ 1) =

{
+1 ai(t) > 0

−1 otherwise
(12)

1The integral (Eq. 4) can be done by extending the range of integration over all time, i.e.,
∫∞
−∞. Since ~P (φ) = 0 when φ < 0, the

integral in Eq. 4 becomes
∫∞
0 .

2

where yi(t) is the “value” (+1 or −1) of the i-th neuron at time t (~y is the current state vector of the
whole network).
The first equation can be compactly written in matrix notation:

~a(t) =W~y(t) (13)

This is useful when writing the MATLAB code.
The update stops when for all i:

yi(t+ 1) = yi(t) (14)

Here, you are going to do the asynchronous updating : only one neuron (yi) of the state vector (~y) is
updated at a time. This i-th neuron can be picked at random, or a pre-defined order can be imposed
from the very beginning.

(c) Given ~y and W , compute the energy.
Hint, steps (a) (b) and (c) this could all be done in one line of code (for each step) with matrix and
vector multiplication. Look at the vector equations and try to avoid loops.

2. Now, pick your favorite picture from the bank (for your convenience, a visualization of the image bank is
given below), and pick an initial condition ~y (0) not too close to your image (the initial condition is a vector
of length 900 with +1’s and -1’s).
It will be easiest run the code if you construct a vector bnk with the indices of the pictures you want your
network to remember. If you do so, the MATLAB code that gives the correct N×p matrix is simply X(:, bnk),
where X is the 900× 60 matrix given to you with all the memories.
Ex: if you want the network to memorize the selected pictures of no. 12, 18, 21, 35, 48, 55, and 60, create the
vector bnk = [12, 18, 21, 35, 48, 55, 60], then X(:, bnk) gives you the N × 7 matrix.

(a) Initialize the network weights to “remember” the picture you have chosen.

(b) Plot your initial condition in a picture format (use the function reshape to turn a vector of length
900 to a 30× 30 square matrix of size).

(c) Run the update rule until the states in two consecutive steps are identical.
In every step, compute the energy and keep it in a vector. (the length of this vector is going to be the
number of iterations until convergence)

(d) Plot the final state. Is it the memory you have chosen?

(e) Plot the energy as a function of the iteration step.

3. Repeat steps (a)-(e) but instead of remembering just one picture, add more and more pictures (to increase
the number of memories p, simply add indices to the vector bnk) from the bank to the initialization step (a).
Start from the same initial condition every time.

4. Comment on your results. Does the system converge to one of the initial memories when adding more
pictures in the initialization step? Does the energy landscape change when adding more pictures?

3

Figure 1: 60 30-by-30 binary pictures.

4

