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Abstract Many cortical network models use recurrent coupling strong enough to require

inhibition for stabilization. Yet it has been experimentally unclear whether inhibition-stabilized

network (ISN) models describe cortical function well across areas and states. Here, we test several

ISN predictions, including the counterintuitive (paradoxical) suppression of inhibitory firing in

response to optogenetic inhibitory stimulation. We find clear evidence for ISN operation in mouse

visual, somatosensory, and motor cortex. Simple two-population ISN models describe the data well

and let us quantify coupling strength. Although some models predict a non-ISN to ISN transition

with increasingly strong sensory stimuli, we find ISN effects without sensory stimulation and even

during light anesthesia. Additionally, average paradoxical effects result only with transgenic, not

viral, opsin expression in parvalbumin (PV)-positive neurons; theory and expression data show this

is consistent with ISN operation. Taken together, these results show strong coupling and inhibition

stabilization are common features of the cortex.

Introduction
Extensive recurrent connectivity between nearby neurons is a ubiquitous feature of the cerebral cor-

tex (Braitenberg and Schüz, 2013; Lefort et al., 2009; Binzegger et al., 2004; Thomson and

Lamy, 2007), and theoretical work has shown that the strength of recurrent coupling has a major

impact on several computational properties of networks of excitatory (E) and inhibitory (I) neurons.

Strong excitatory recurrent coupling can increase the speed of network response to external stimuli

(van Vreeswijk and Sompolinsky, 1996; van Vreeswijk and Sompolinsky, 1998), allow a network

to sustain persistent activity (Amit and Brunel, 1997), and increase the capacity and robustness of

memory storage (Rubin et al., 2017). Further, strong recurrent coupling can allow networks to

amplify specific input patterns, as well as generate complex spatiotemporal activity patterns in

response to briefer inputs (Murphy and Miller, 2009; Hennequin et al., 2018).

Strong excitatory recurrent coupling, however, can lead to unstable dynamics unless stabilized by

inhibition. When recurrent connectivity is weak, excitatory cells can show stable firing rates indepen-

dent of the activity of inhibitory cells. But in networks with strong recurrent connections, excitatory-

to-excitatory (E-E) connections amplify responses so that the excitatory network is unstable if the fir-

ing rates of inhibitory neurons are kept fixed. Stable excitatory network operation across a range of

firing rates can be restored if inhibitory recurrent connections are sufficiently strong, allowing inhibi-

tion to track and balance excitation (Amit and Brunel, 1997; Tsodyks et al., 1997; van Vreeswijk

and Sompolinsky, 1996; van Vreeswijk and Sompolinsky, 1998; Renart et al., 2010). Such net-

work models, with strong recurrent connections rendering the excitatory cells self-amplifying and

thus unstable, and requiring inhibition for stability, are called inhibition-stabilized networks (ISNs)

(Ozeki et al., 2009).

Whether cortical networks function in the ISN regime, in which conditions they do so, and which

cortical areas may operate as ISNs remain the subject of debate. One key open question has been
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whether cortical networks function as ISNs only during high levels of network activity (as when strong

sensory stimuli are used to drive sensory cortical regions), or also operate as ISNs for weak input or

even during spontaneous activity states. Merely because a network is stabilized by inhibition during

one network state does not imply it is inhibition-stabilized for all network states (Ahmadian et al.,

2013). For example, the fact that the loss of cortical inhibition can lead to epileptic seizures

(Steriade and Contreras, 1998) may seem at first sight to imply that cortical networks are inhibi-

tion-stabilized. However, this observation leaves open the possibility that cortical networks are inhi-

bition-stabilized only in some network states but not all, and that those inhibition-stabilized states

are the ones that generate seizure activity.

One area, cat primary visual cortex (V1), shows behavior clearly consistent with the ISN regime

(Ozeki et al., 2009). This was established in the presence of sensory stimuli, and thus could not

determine whether cat V1 operates as an ISN in the absence of visual stimuli when network activity

is lower (i.e. at rest, during spontaneous activity). Based on these data and others, Miller and co-

authors later developed a model called the stabilized supralinear network (SSN) (Ahmadian et al.,

2013; Rubin et al., 2015), which explains cat and ferret V1 responses to visual sensory stimuli of dif-

ferent sizes and intensities. The SSN shows ISN-regime operation for strong visual stimuli, but pre-

dicts that as sensory stimuli decrease in strength, the network should transition into a non-ISN state.

To examine whether cortical networks operate as ISNs or non-ISNs in different activity levels,

optogenetic stimulation can be used to test predictions of ISN models. A strong prediction of inhibi-

tion stabilization is paradoxical inhibitory suppression — a counterintuitive decrease of inhibitory fir-

ing rate as inhibitory cells receive direct input (Figure 1A–B, Figure 1—figure supplement 1;

Tsodyks et al., 1997). The paradoxical effect is a result of the strong synaptic coupling between

excitatory and inhibitory cells. In an ISN, due to the strong recurrent coupling, more recurrent excita-

tion is withdrawn after inhibitory stimulation than the stimulation adds, leading to a net decrease in

input to stimulated inhibitory cells (Figure 1—figure supplement 1). This decrease in recurrent exci-

tation is the cause of the paradoxical effect. Thus, examining whether inhibitory cells show paradoxi-

cal suppression when stimulated should be able to reveal whether cortical areas are operating in the

ISN regime.

However, optogenetic ISN studies, largely performed in the mouse, have produced conflicting

data about ISN operation during spontaneous activity states. While some paradoxical changes in
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Figure 1. Model predictions of excitatory and inhibitory responses to inhibitory stimulation. (A) Schematic of model, showing connections between

excitatory (E) and inhibitory (I) neuron populations. (WEE , a measure of the strength of E-E connections, is the key parameter controlling non-ISN vs. ISN

operation, see model discussion in Results.) (B) Predictions for average neural responses with weak recurrent coupling (left) and strong coupling (right),

when inhibitory cells are externally stimulated (IIO). (C) Schematic of experiment. Extracellular recordings made in visual (V1), primary somatosensory

(SOMATO), and motor/premotor cortices (see Figure 1—figure supplement 2 for electrode locations; a: anterior, p: posterior, m: medial, l: lateral)

while optogenetically stimulating inhibitory cells at the recording site in awake VGAT-ChR2 animals.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Nullclines characterizing the network response at different levels of inhibitory drive.

Figure supplement 2. Locations of recording sites.
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inhibitory currents have been observed in mouse primary auditory cortex (A1) (Kato et al., 2017;

Moore et al., 2018), several studies have found, in contrast, non-paradoxical effects in inhibitory fir-

ing rate or intracellular currents in mouse V1, A1, and primary somatosensory cortex (S1)

(Atallah et al., 2012; Moore et al., 2018; Gutnisky et al., 2017). One study that observed paradox-

ical changes in firing in mouse A1 via stimulation with ArchT (Moore et al., 2018) found that those

paradoxical effects were not produced via the ISN mechanism, but instead mediated by a circuit

where L4 inhibitory cells suppressed L2/3 inhibitory cells (i.e. using feedforward inhibition). Possible

explanations for these varying observations include differences between anesthetized and awake

states, differences between measurements of firing and intracellular currents, or, as we show experi-

mentally below, differences in which, or how many, inhibitory cells are stimulated (Litwin-

Kumar et al., 2016; Sadeh et al., 2017; Gutnisky et al., 2017). Additionally, in mouse V1, one study

(Adesnik, 2017) found that excitatory and inhibitory currents scale as predicted in the SSN with

increasing visual stimulation. But this study of SSN phenomena also leaves open the question

whether mouse V1 operates as an ISN without sensory stimuli (see also Litwin-Kumar et al., 2016,

their Discussion).

Here, we examine whether cortical networks operate as ISNs at rest, by combining optogenetic

stimulation of inhibitory cells, extracellular recordings in awake animals from several cortical areas,

and theoretical analyses. We find clear evidence for ISN operation even without sensory stimulation

in multiple mouse cortical areas and both in superficial and deep layers. By providing multiple exper-

imental and theoretical lines of evidence for ISN operation, our results argue against non-ISN explan-

ations (e.g. against paradoxical suppression arising from one inhibitory population inhibiting

another).

We also address whether stimulating a single genetic subclass of inhibitory neurons in V1, the

parvalbumin-positive (PV) cells, can produce paradoxical inhibitory effects. We find differences in

paradoxical responses between viral and transgenic expression strategies. These differences are

explained by an ISN model where the fraction of stimulated PV cells is varied (Gutnisky et al., 2017;

Sadeh et al., 2017), and are supported by histological measurements, supporting the idea that cor-

tical responses to inhibitory input can be highly dependent on the number of stimulated cells

(Sadeh et al., 2017). Additionally, while synaptic plasticity (Varela et al., 1999) such as depression

at excitatory synapses can impact network stability, we show via theoretical work (Appendix 1) that

the paradoxical effects we observe imply stabilization by inhibition, even in the presence of synaptic

plasticity.

Together, these results support the idea that the cortex operates in the ISN regime across a

range of areas and brain states.

Results

Mouse primary visual cortex is inhibition stabilized
We first describe experiments where all inhibitory neurons were optogenetically stimulated. We

expressed an excitatory opsin (ChannelRhodopsin-2; ChR2) in all inhibitory neurons using a trans-

genic mouse line (VGAT-ChR2). We delivered blue light to the surface of the cortex, while recording

activity extracellularly with multi-site silicon recording arrays (Figure 1, Figure 1—figure supple-

ment 2). Mice were given drops of reward approximately once per minute (Materials and methods)

to keep them awake and alert. Because neurons in the superficial cortical layers showed the largest

responses to the stimulation light (Figure 2—figure supplement 1), we restricted our analyses to

units within » 400 mm of the cortical surface (Materials and methods), which primarily includes neu-

rons in layer 2/3 and upper layer 4 (Harris et al., 2018). We sorted units into single- (separated from

noise and other units) and multi-units (lower SNR or containing several apparent units) by waveform

(Materials and methods; using a more restrictive threshold for unit inclusion does not affect our con-

clusions, Figure 2—figure supplement 2), and we excluded the multi-units from further analyses.

The majority of recorded units were suppressed by light (146/167 single units, 87%; Figure 2B–

D; 4 animals, 7 recording days). Given that approximately 80% of cortical neurons are excitatory

(DeFelipe et al., 2013; Tremblay et al., 2016), and that extracellular recordings can show several

biases in sampling cortical neurons (Margrie et al., 2002; Olshausen and Field, 2005), this mea-

sured percentage could be consistent with either the presence or absence of paradoxical
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Figure 2. V1 response is consistent with inhibition stabilization. (A) Schematic of experiment, showing recordings/stimulation in V1. a: anterior, p:

posterior, l: lateral, m: medial. V1 recording locations, and intrinsic signal imaging to define V1, are shown in Figure 1—figure supplement 2. (B)

Example recorded unit; greater laser power produces greater firing rate suppression. Blue bar: duration of constant-power laser pulse. (C) Average

firing rate of example recorded unit (rate is steady-state firing rate, over last 300 ms of laser stimulus). Suppression is quantified via initial slope of firing

rate vs laser intensity (Materials and methods). (D) Distribution of initial slopes for all recorded units. (E) Example cell responses without (left) and with

(right) blockers. Top: Cell classified as excitatory; does not respond to laser in presence of blockers (CNQX, APV, bicuculline; Materials and methods).

Bottom: Cell classified as inhibitory; increases firing rate to laser in presence of blockers. (F) Firing rates for units in (E) in presence of blockers;

inhibitory cell (blue) shows a large positive change. (G) Distribution of firing rate changes to laser stimulus with blockers. Red: E-classified units; blue:

I-classified units. (H) Spontaneous firing rates and waveform width (time from waveform first local minimum to first local maximum) for units classified as

E and I via the method in panel G. (I) Example inhibitory units. x-axis: normalized laser intensity. Normalization: to account for variations in tissue optical

properties across recording days, we combined data by fitting a piecewise-linear function to the average inhibitory response for each day to find the

minimum for that day (L0: always between 0.3 and 2.7 mW, see Figure 2—figure supplement 6) and rescaling the laser intensity so L0 ¼ 1 (vertical

lines). Most units (91%) show initial suppression; see J,K for initial slopes for all units. (J) Distribution of initial slopes for units classified as E (red, left)

Figure 2 continued on next page
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suppression in inhibitory neurons. Therefore, we classified recorded units as inhibitory or excitatory

using in vivo pharmacology. (Our results are confirmed by other classification methods: identifying

inhibitory neurons using their response at high laser intensity or by waveform width give similar

results, see below and Figure 2—figure supplement 3).

We first recorded neurons’ responses to optogenetic stimulation, and then applied blockers of

excitatory and inhibitory synapses (CNQX, AP5, bicuculline; which block AMPA, kainate, NMDA, and

GABA-A synapses; Methods). When recurrent synapses are substantially suppressed, inhibitory cells

expressing ChR2 should increase their firing rate to optogenetic input, while excitatory cells’ firing

should not increase. Indeed, by measuring responses to inhibitory stimulation in the presence of E

and I blockers, we were able to classify units into two groups (Figure 2E). Units in the first class

(putative excitatory) were silent for strong stimulation and units in the second class (putative inhibi-

tory) increased their firing rate in response to stimulation. To quantitatively classify cells, we mea-

sured the change in activity induced by light when the blockers had been applied (Figure 2F–G);

cells were labeled inhibitory (33%; 56/167 units) if the change compared with baseline produced at

maximum laser intensity was positive (according to Welch’s t-test, p<0:01), and excitatory otherwise.

Choosing different classification thresholds did not affect our results (Figure 2—figure supplement

4), examining a subset of cells with the most stable waveforms over time did not affect our results

(Figure 2—figure supplement 5), and, finally, examining a subset of inhibitory units where wave-

forms had high signal-to-noise ratio also did not qualitatively change the results (Figure 2—figure

supplement 2). Therefore, we used these response differences in the presence of blockers to iden-

tify recorded inhibitory units.

Pharmacologically identified inhibitory and excitatory units showed differences in waveform width

and spontaneous firing rate (Figure 2H), although these two factors were insufficient alone to

completely classify inhibitory cells (i.e. insufficient to predict whether units would increase firing rate

in the presence of blockers). Identified excitatory cells had a wider waveform (0.58 ± 0.01 ms) and

lower firing rate (6.0 ± 0.8 spk/s) than inhibitory cells (width 0.46 ± 0.02 ms, rate 10.7 ± 1.7 spk/s).

However, inhibitory neurons’ widths were broadly distributed, supporting the idea that that some

inhibitory classes can have broader waveforms than others (McCormick et al., 1985; Neske et al.,

2015).

Once recorded units were classified as excitatory or inhibitory, we could ask whether the same

units before adding blockers (i.e. with the animal in the awake state, with recurrent connections

intact) showed paradoxical inhibitory effects. Indeed, inhibitory neurons showed strong suppression

when stimulated (Figure 2I–J, Figure 2—figure supplement 7). The mean response over all

recorded inhibitory units was suppressed (Figure 2L), and also, the large majority of inhibitory units

were suppressed (distributions of response slopes shown in Figure 2J–K; responses for all inhibitory

cells as power is varied shown in Figure 2—figure supplement 7). This paradoxical inhibitory sup-

pression is one piece of evidence that an ISN model is a good description of the upper layers of pri-

mary visual cortex. (Below we show that response dynamics and responses at high laser intensity

provide additional evidence for an ISN.)

Figure 2 continued

and I (blue, right). (K) Distribution of normalized initial slopes ( init:slope
baselinerateþ0:1spk=s), to more clearly show small slopes, for units classified as E and I. Several

excitatory cells with very low firing rates in the no-blocker case have near-zero normalized slopes. (L) Average population response for units classified as

E and I. Inhibitory cells show a prominent paradoxical effect. Errorbars: ±1 SEM (throughout figures, unless otherwise noted).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Unit response to light as a function of depth.

Figure supplement 2. Experimental results are robust to quality of unit isolation.

Figure supplement 3. Paradoxical effects in V1 are preserved when inhibitory units are classified via pharmacology, via waveform width, and via

response at high laser power.

Figure supplement 4. Paradoxical V1 inhibitory response does not depend on statistical E/I classification threshold.

Figure supplement 5. Waveform drift has no qualitative effect on population response.

Figure supplement 6. Reversal point of V1 inhibitory population is typically at a low laser intensity.

Figure supplement 7. V1 inhibitory cell responses.

Figure supplement 8. Responses of broad- and narrow-spiking V1 (VGAT-ChR2) inhibitory units.
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These experiments were done without sensory stimulation, as animals viewed an unchanging neu-

tral gray screen. Because visual cortical neurons’ firing rates increase with increasing contrast across

a range of overall luminance levels, we expected that we would see little difference between data

collected with a neutral gray screen and data collected in the dark. Confirming that expectation, in

one experimental session we measured inhibitory responses to stimulation while animals were in the

dark (with the blue optogenetic light shielded with light-blocking materials), and found paradoxical

suppression (N = 6/6 inhibitory units with initial negative slope, median initial slope �6.9 ± 3.5 spk/s;

p = 0.046, median < 0, Mann-Whitney U test).

In an ISN, paradoxical inhibitory suppression arises because exciting inhibitory cells in turn sup-

presses excitatory cells, which withdraw excitation from the stimulated inhibitory cells. Then,

because more excitatory input from recurrent sources is withdrawn from inhibitory cells than excit-

atory input from optogenetic stimulation is added, the net steady-state response of inhibitory cells is

suppression. For this mechanism to hold, inhibitory cells must transiently increase their firing, even if

only a small number of inhibitory spikes are generated, before the paradoxical suppression

(Tsodyks et al., 1997; Ozeki et al., 2009). Therefore, we looked for transient increases in inhibitory

firing with short latencies after stimulation, and found a small increase in inhibitory firing rate imme-

diately after stimulation, before the larger paradoxical suppression (Figure 3). The transient was

brief (FWHM = 7.1 ms), and so the actual number of extra spikes fired in the transient was small:

only 0.03 extra spikes were fired on average per inhibitory-classified unit per stimulation pulse,

although because we used 100 pulse repetitions, the majority of classified inhibitory units (63%,

N = 35 of 56), showed a detectable initial transient (Figure 3—figure supplement 1).

Another ISN prediction is that inhibitory cells should increase their firing rates at high laser inten-

sities. In a recurrent network operating as an ISN, stimulating inhibitory cells first decreases inhibitory

firing rates, but stronger stimulation eventually suppresses excitatory cells until they reach a firing

rate where the excitatory network is stable without reactive inhibition. Then, increasing stimulation

of inhibitory cells beyond this point produces increases in inhibitory firing rates, as the network

moves into a non-ISN regime (Figure 1C). Indeed, we observed this in our excitatory and inhibitory

identified populations (Figure 2H).

The link between paradoxical responses and inhibition stabilization was initially derived

(Tsodyks et al., 1997) assuming recurrent connections do not change their strength. Short-term syn-

aptic plasticity (Tsodyks and Markram, 1997; Markram et al., 1998) could modify this link, as syn-

aptic plasticity can influence network stability, for example by reducing the self-amplification of the

excitatory network as excitatory rates rise. We thus set out to determine analytically how synaptic

plasticity might affect both responses and dynamics in a network model of excitatory and inhibitory

neurons (Appendix 1). We find that, even when short-term synaptic plasticity is included in the

model, paradoxical responses imply inhibitory stabilization. Therefore, even when our data are inter-

preted in a modeling framework that includes short-term plasticity, our experimental observations

provide evidence for inhibition stabilization.

While our extracellular recording approach has advantages, such as allowing precise measure-

ments of spike rate dynamics, and recording a large number of E and I neurons in the same experi-

ment, one concern might be that misclassification of excitatory waveforms into inhibitory units could

mask inhibitory cell responses. However, confirming that our recording procedures accurately mea-

sured inhibitory waveforms, (1) paradoxical suppression is maintained when we make our classifica-

tion thresholds more stringent (restricting analysis to units with highest waveform signal-to-noise

ratio, Figure 2—figure supplement 2; varying classification threshold in the presence of blockers;

Figure 2—figure supplement 4), (2) units classified by spike width, or by response at high laser

power, also showed clear paradoxical effects (Figure 2—figure supplement 3), and (3) inhibitory,

but not excitatory, response dynamics showed an initial increase followed by suppression (Figure 3,

Figure 3—figure supplement 1), the response patterns expected for E and I neurons in an ISN.

Also, as shown below, in parvalbumin-positive neuron stimulation with viral transfection, using the

same waveform-sorting procedures, we observed no average paradoxical effects. Together, these

observervations argue that paradoxical effects in VGAT-ChR2 animals do not arise due to waveform

sorting, but instead due to the properties of the cortical inhibitory network.

Taken together, these results show that mouse V1 responses are consistent with those of a

strongly-coupled network whose activity is stabilized by inhibition.
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Model-based inference of network
coupling strength and stability
We next used these data to infer network con-

nection parameters in a standard two-population

model that describes the dynamics of population-

averaged firing rates of excitatory and inhibitory

neurons (see Equation 6; Materials and meth-

ods). This parameter inference is possible

because we obtained E and I response measure-

ments in three pharmacological conditions (no

blockers; with E blockers; with E and I blockers;

Figure 4A), and with data from these three con-

ditions, there are more experimental observa-

tions than model parameters (Materials and

methods: Model degrees of freedom). The model

uses a rectified-linear single-neuron transfer func-

tion; using nonlinear transfer functions give simi-

lar results (Figure 4—figure supplement 1 and

Appendix 2).

First, we find that the model, despite being

overconstrained by the data, is a good descrip-

tion of V1 responses (Figure 4A). The model also

makes a number of predictions that are verified

in the data. It predicts that the inhibitory firing

rate slope for high laser intensities should be the

same in the no-blocker and E-blocker conditions,

as seen in the data (Figure 4A, blue: left vs. mid-

dle columns; see also Appendix 2—figure 1).

The model makes three other predictions: that

the reversal point of inhibitory cells (L0, the point

at which initial negative inhibitory slopes become

positive), in all three experimental conditions,

should match the point where excitatory cells

change their slope to become nearly silent. These

effects are also seen in the data (e.g. clearly visi-

ble in the no-blocker case, Figure 4A, left col-

umn). Note that, although these predictions have

been derived in a threshold-linear model

(Materials and methods), they are general fea-

tures of network models which show a transition

from non-ISN to ISN as the activity level of the

excitatory population increases.

One prediction of balanced-state models with

strong recurrent coupling (van Vreeswijk and

Sompolinsky, 1996) is that the total excitatory

and inhibitory currents should each be large,

although they cancel to produce a small net

input. To check this, we computed from the

model the currents flowing into excitatory cells

(Figure 4B). The excitatory and inhibitory cur-

rents are each approximately ten times larger

than threshold (medians are 10.9 and �8.63,

respectively), and their sum is small compared to

the magnitudes of E and I currents (median net

current/threshold = 2.2). The model also allows
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Figure 3. Inhibitory neurons show a small increase in

firing before paradoxical suppression. (A) Average

timecourse of neural responses from units classified as

excitatory (N = 111) and inhibitory (N = 56). Light pulse

is constant-intensity and lasts for 800 ms (high-intensity

pulse, 2.6 �L0; stimulation strength larger than L0 is

predicted by ISN models to produce larger transients

than at L0, though steady-state I rates are larger than

the minimum; see also Figure 3—figure supplement

1). Data from VGAT-ChR2 animals. Heavy lines:

population mean rate, smoothed with a LOWESS filter.

Shaded regions: SEM (Materials and methods). The

onset of the light pulse produces an artifact in the 0 ms

time bin; we drop spikes at that time point (broken

lines, time = 0) to remove the artifact. Inhibitory

neurons show a brief increase in firing before

suppression, and the increase above baseline is

statistically significant (inhibitory firing rates over 12 ms

window after pulse are greater than a matched-

duration interval before pulse, p<0:01, KS test). (B)

Same data as (A), enlarged to show the initial transient

Figure 3 continued on next page
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us to infer the value of the key parameter for

inhibition stabilization, WEE (the excitatory self-

amplification). The excitatory network is unsta-

ble, requiring inhibition for stabilization, and

yielding an ISN, when WEE>1. As expected when

paradoxical effects are present, the fitted value

is greater than 1 (Figure 4C: median 4.7, mode

2.5). This value is not much larger than unity,

suggesting recurrent coupling is not as strong as

some balanced-state models might predict

(van Vreeswijk and Sompolinsky, 1996;

van Vreeswijk and Sompolinsky, 1998;

Amit and Brunel, 1997) but is more consistent

with a moderately-coupled network

(Ahmadian et al., 2013; Rubin et al., 2015;

Hennequin et al., 2018). In Appendix 2, we

extend this model analysis to examine networks

of spiking neurons which feature a fixed level of

input noise, and find qualitatively similar results.

The model shows that measured activity is con-

sistent with the mean input to cells being below

threshold. This implies the recorded cells oper-

ate in the fluctuation-driven regime, matching

expectations from cortical response variability

(Shadlen and Newsome, 1994; Shadlen and

Newsome, 1998; van Vreeswijk and Sompolin-

sky, 1996; van Vreeswijk and Sompolinsky, 1998; Amit and Brunel, 1997). Moreover, when input

fluctuations are taken into account in the model, mean excitatory and inhibitory currents are found

to be of order of the distance between rest and threshold, in agreement with recent estimates sug-

gesting the cortex operates in the loosely balanced regime (Ahmadian and Miller, 2019).

Finally, we computed the parameter ranges over which the network is stable, as a function of the

time constants of E and I firing rate dynamics, t E and t I . We find, by computing the eigenvalues of

the connection matrix (Materials and methods) that the network is stable for t I=t E in the interval

[0, 5.3], and the observed dynamics are consistent with t I=t E ¼ 4:4 and t E ¼ 7:8 ms (Figure 4E);

that is, with excitatory and inhibitory synaptic time constants of the same order. The values of t ðE;IÞ
(Figure 4D) inferred from the response dynamics are within the stable region, providing further sup-

port that the ISN model is a good description of the effects we measure. (Note that the time con-

stants of the opsin may increase these estimates, so the values of t E and t I , while small, are only

upper bounds on the true dynamic response of the network to an instantaneous conductance

change.) The ratio between E and I time constants is close to the point at which the network

becomes unstable through an oscillatory instability (Figure 4E). The fact that the inferred network

model describes the data and is stable with WEE>1 supports the experimental observation that the

underlying cortical network is inhibition-stabilized.

Inhibition stabilization is present in other cortical areas
The data above show that the superficial layers of mouse V1 are inhibition stabilized. Another open

question is how general the ISN regime is across cortical areas. We performed experiments to look

for signatures of inhibitory stabilization in two other cortical areas (Figure 5): somatosensory (body-

related primary somatosensory, largely medial to barrel cortex) and motor/premotor cortex. (See

Figure 1—figure supplement 2 for locations of all recording sites.) As in V1, we recorded units

extracellularly, restricted analysis to the superficial layers of the cortex, and examined responses to

optogenetic stimulation of all inhibitory cells (as above, using the VGAT-ChR2 line).

In these experiments, we classified neurons as inhibitory based on their activity at high laser inten-

sity. In our V1 experiments, paradoxical effects are clear whether neurons are classified in this way,

or with the pharmacological method (Figure 2—figure supplement 3). This high-laser-power classifi-

cation is likely more stringent (i.e. may reject some inhibitory cells if they are suppressed by other

Figure 3 continued

(time range here is indicated in (A) by gray shaded

region). Inhibitory initial positive transient has peak

amplitude 3.6 spk/s above baseline, latency to peak 7

ms, full width at half maximum 7.1 ms, and inhibitory

rate crosses baseline into suppression at 13.1 ms. (C)

Size of transient vs. size of steady-state suppression for

all I units. The majority of units show steady-state

paradoxical suppression relative to both baseline rate

and to transient rate. y-axis: steady-state rate change

(normalized to baseline; rate�baseline
baseline

). x-axis: normalized

transient; measured from 1 to 12 ms after light onset.

Units below the horizontal line at zero show

paradoxical suppression; units in the blue shaded

region are those whose normalized steady-state rate is

lower than their normalized transient rate. A few units

show a positive transient and elevated steady-state rate

(upper right quadrant); these are likely inhibitory units

showing non-paradoxical steady-state rate increases.

The online version of this article includes the following

figure supplement(s) for figure 3:

Figure supplement 1. Many inhibitory cells show an

initial transient and also steady-state paradoxical

suppression.
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Figure 4. Population response is consistent with a network with moderately strong coupling. (A) Average

excitatory (red) and inhibitory (blue) response measured in three conditions: without synaptic blockers, with only

the excitatory blockers present, and with both E and I blockers present. Model (Equation 6) that best fits data:

black continuous line; dashed: 1 s.d. obtained by bootstrap; solid red/blue lines: E/I data means; shaded

region: ±1 SEM. Because we applied blockers sequentially (generating separate E and E+I blocker measurements)

the number of independent observations were increased, allowing the inference of all model parameters

(Materials and methods; Figure 4—figure supplement 2). Small steps in left panels (no blockers) arise because a

subset of experimental days used a maximum laser intensity of 5 � L0. (B) Excitatory (red), inhibitory (blue), and net

(gray) current influx into excitatory cells predicted by the model. Arrows: medians (over bootstrap repetitions); E:

10.9, I: �8.63; modes: E: 2.5, I: �2.7. (C) Distribution of WEE values compatible with the data; the red line

represents the transition point between the ISN (WEE>1) and the non-ISN (WEE<1) regime. Median (arrow) 4.7;

mode 2.5. (D) Estimation of time constants of E and I populations. Black line shows the dynamics resulting from

fitting the data (blue: I population; red: E population; shaded region ±1 SEM) with the model for the same laser

power shown in Figure 3. Best-fit values are t I ¼ 34:3 ms and t E ¼ 7:8 ms; note that network response dynamics

shows faster time constants due to recurrent network effects. The full model provides a good approximation to

the dynamics even though it is constrained to simultaneously fit the time constants and the responses at different

intensities. (E) Stability analysis. Real (black) and imaginary (purple) parts of the eigenvalues of the Jacobian matrix

as a function of the ratio t I=t E . Imaginary part (purple) greater than zero signifies the network can show damped

oscillations when being driven to a new stationary point. Note that these damped oscillations are not seen in (D)

because of rectification. When the real part (black) is greater than zero, the network is unstable (shaded red area).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Comparison of linear and nonlinear rate models, and global optimization method.

Figure 4 continued on next page
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inhibitory cells, due e.g. to heterogeneity of recurrent connections) than pharmacological classifica-

tion. Supporting that this classification may be more stringent, some pharmacologically-classified

inhibitory cells show paradoxical effects but little increase at high power (Figure 2—figure supple-

ment 8).

In both the recorded areas (Figure 5), inhibitory neurons showed paradoxical effects, supporting

that these cortical areas do also operate as an ISN. Similar to the V1 data, and as expected in an

ISN, both areas showed a transition to a non-paradoxical response at large laser intensity. Compared

to the somatosensory data, the motor/premotor recordings show a smaller average suppression

(Figure 5B) and more inhibitory units with non-paradoxical effects (rate increases with stimulation;

Figure 5D). However, in both areas, means and medians are significantly negative (see legend for

statistical tests). Thus, the superficial layers of both sensory cortical areas we examined (visual and

somatosensory), and one non-sensory area (motor/premotor) showed responses consistent with

strong coupling and ISN operation.

Differences in paradoxical suppression with viral or transgenic opsin
expression can be explained by different numbers of stimulated cells
Up to this point, we have studied paradoxical suppression by stimulating an opsin expressed in all

inhibitory cells via the VGAT-ChR2 mouse line. A remaining question is whether stimulation of a sub-

class of inhibitory neurons also yields paradoxical suppression. Even in an ISN, stimulation of any sin-

gle subclass of inhibitory cells need not produce paradoxical suppression (see

Materials and methods and Rubin et al., 2015; Litwin-Kumar et al., 2016; Sadeh et al., 2017;

Gutnisky et al., 2017).

To study this, we stimulated parvalbumin-positive (PV) neurons, which provide strong inhibitory

input to other cells (Figure 6). PV basket cells are the most numerous class of cortical inhibitory cells

Figure 4 continued

Figure supplement 2. V1 model parameter stability shown via data bootstrap.
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Figure 5. Inhibition stabilization across cortical areas. (A) Motor/premotor cortex recordings (see Figure 1—figre supplement 2 for recording

locations). (B) Motor cortex population firing rates for E and I units. Initial mean response of inhibitory cells is negative, showing paradoxical

suppression. Mean rate is significantly reduced (p<10�4, paired t-test, rate at 0 vs rate at L0). (C) Spike width distributions for E and I units. Units are

classified as E or I here by response at high laser power (Materials and methods), independently of spike width, which nonetheless varies with E or I unit

identity. (D) Normalized initial slope distributions for all units. Red: E. Blue: I. Both mean and median of initial slopes are negative (paradoxical). Mean I

slope is negative (p<0:01, t-test). Horizontal bar at I median shows 95% confidence interval calculated by bootstrap. (E–H) Same as (A–D), but for

recordings from somatosensory cortex. In (G), highest red bar is truncated for visual clarity (value is 22). Mean I rate (F) is sigificantly reduced (p<10�7,

paired t-test). Mean I slope (H) is negative (p<10�10, t-test). Horizontal bar in (H) shows 95% CI around median slope.
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Figure 6. Stimulation of parvalbumin-positive inhibitory neurons shows paradoxical effects depend on number of cells stimulated. (A) Schematic of cell

populations: opsin-expressing PV cells, non-stimulated inhibitory cells (non-PV inhibitory cells: SOM, VIP, . . ., and non-opsin PV cells), and pyramidal (E)

cells. Data are from two experiments: Viral expression of opsin (Chronos) in PV neurons (PV-Cre animals with AAV-FLEX-Chronos-GFP injections), and

transgenic expression of opsin (ReaChR) in most or all PV neurons (PV-Cre;ReaChR-mCitrine). Responses shown are steady-state responses after light

stimulation (Materials and methods), to avoid differences in opsin kinetics affecting results. (B,C) Histological characterization of viral (B) and transgenic

(C) expression in superficial layers. Viral expression shows more variability across neurons (cf. red and white arrows), and fewer expressing cells (viral

image is a projection across greater depth than transgenic). (D) Responses to stimulation with viral expression. Non-PV-Chronos (E, non-Chronos, or

non-PV) cells: green (N = 152). PV-Chronos (blue) cells (N = 42, 21%), identified by responses at high laser power (Results; see Figure 2—figure

supplement 3 for validation against pharmacology-based classification in V1 data). Compared to when all inhibitory cells are stimulated (VGAT-ChR2

mouse line, Figure 2), weaker paradoxical suppression is seen (blue line; mean rate is not significantly suppressed: p>0:05, paired t-test between rate at

0, rate at 1 � L0) as initial response slope is near zero. (E) A model with a subset of inhibitory cells stimulated (60%) can recapitulate the data in (B).

Shaded region: ±1 s.d. via data bootstrap as in Figure 4. Other than splitting inhibitory population into two subsets, network parameters

(Materials and methods) are as inferred in Figure 4. (F) Population responses for transgenic expression of ReaChR in PV neurons. Unlike the viral-

expression data (D), the identified inhibitory cells in these experiments show paradoxical suppression; mean firing rate is significantly suppressed

(p<10�6, paired t-test on initial slopes). (G) Cell counts in histological sections. Solid/dotted black lines: means across two independent human counters;

upper and lower gray boundaries give results from each counter. X-axis shows variation as counters were asked to use a high or low threshold for

accepting an opsin positive cell. Cells were counted across 400 mm depth and are expressed (y-axis) as a percent of DAPI-positive nuclei. Transgenic

Figure 6 continued on next page
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and make strong synapses near the somata of excitatory cells (for review, see Tremblay et al.,

2016), and PV stimulation effectively suppresses network firing rates (e.g. Glickfeld et al., 2013;

Sparta et al., 2014).

We first used viral methods to express an opsin in PV neurons, injecting a Cre-dependent adeno-

associated virus (AAV) encoding an excitatory opsin (Chronos; Klapoetke et al., 2014), into a trans-

genic mouse line (PV-Cre; Hippenmeyer et al., 2005). In these experiments, the network neurons

can be divided into three populations (Figure 6A): (1) excitatory, (2) Chronos-expressing PV inhibi-

tory (PV-Chronos), and (3) remaining inhibitory neurons: non-PV (e.g. somatostatin-positive, etc.) or

non-Chronos-expressing PV neurons. We identified PV-Chronos cells by measuring whether cells’ fir-

ing is increased at high laser intensity (statistically significant increase at maximum laser power, as in

Figure 5; see Materials and methods). In V1 VGAT-ChR2 experiments, this classification by response

at high laser power produces qualitatively similar measures of paradoxical suppression as pharmacol-

ogy-based classification, Figure 2—figure supplement 3. Non PV-Chronos cells (without increase in

firing at high laser intensity), are likely either excitatory cells, non-PV, or non-expressing cells. Sup-

porting the idea that our classification approach identifies PV-Chronos cells, the majority of classified

inhibitory cells have narrow waveforms (Figure 6I). While not all PV-positive cells are basket cells

(Taniguchi et al., 2013), the large proportion of narrow-waveform units we found suggest our inhibi-

tory classification detects a number of fast-spiking cells.

Stimulating the PV cells produced no significant paradoxical effect on average (Figure 6D, blue).

From a theoretical point of view, this average inhibitory response is an important measure, as with

the standard two-population ISN model, e.g. Tsodyks et al., 1997, it is the average response (aver-

aged over inhibitory cells) that is paradoxically suppressed when a network is inhibition-stabilized

and strongly coupled. A second important measure, e.g. for experimentalists wishing to identify

inhibitory neurons, is how many individual inhibitory cells show paradoxical effects. Examining indi-

vidual units showed that PV-Chronos units often showed no paradoxical effect. Initial slope was often

positive and thus non-paradoxical (e.g. Figure 6H; median not sig. dif. from zero; summarized in

Figure 6K–L; see legend for statistical tests).

One reason why stimulation with viral expression might produce no paradoxical effect on average

is that viral expression could target only a subset of the PV cells (Mathematical methods;

[Sadeh et al., 2017]). We first examined the effect of inhibitory cell subset stimulation in a model,

the rate model of Figure 4, using network parameters inferred there. Stimulating a subset of inhibi-

tory neurons in the model (60%) reduced the magnitude of the average paradoxical effect

(Figure 6E, analytical derivation in Materials and methods, and Figure 6—figure supplement 1),

and described the data (Figure 6D) well. We also considered a model with multiple subclasses of

inhibitory neurons, using the connectivity structure measured in Pfeffer et al., 2013, and found

there also that paradoxical effects were not clear when approximately half of the PV cells were stim-

ulated (Figure 6—figure supplement 1).

Why, intuitively, can stimulation of a subset of inhibitory cells eliminate paradoxical effects? In

networks of strongly-coupled excitatory and inhibitory neurons, increased inhibitory activity pro-

duced by stimulation suppresses excitatory activity and results in a withdrawal of recurrent excita-

tion; this, in turn, drives suppression of stimulated cells (the paradoxical effect). When only a fraction

of inhibitory cells is stimulated, the withdrawal of excitation coexists with other effects produced by

Figure 6 continued

expression gives about twice as many opsin expressing cells as viral expression, in addition to the differences in expression heterogeneity seen in (B–C).

(H) Example viral (PV-Chronos) units show diversity of responses to stimulation. Some narrow spiking units (blue, rightmost two panels) show non-

paradoxical initial increases, and some show paradoxical initial suppression. (I,J) Distribution of spike widths (I) and initial slopes (J) for experiments

using transgenic PV-ReaChR (bottom). Same conventions as in Figure 5, except here colors are as shown in panel (A). (K,L) Same as (I,J) for viral

expression. Although inhibitory units are classified by response at high laser power, differences in spike width are visible in both datasets. Viral mean

and median slopes are zero or positive (t-test for negative mean p>0:05, Mann-Whitney U for negative median p>0:05; 22/42 (53%) negative I slopes);

transgenic mean and medians are negative (negative mean p<10�7, negative median p<10�7; 24/27 (89%) negative I slopes). (M) Summary of mean and

median inhibitory cell initial slopes for these data and data from V1, somatosensory, and motor cortex.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Additional analysis of inhibitory responses to partial stimulation of inhibitory population.

Figure supplement 2. No effect of opsin kinetics on paradoxical effects.
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recurrent interactions. In particular, increased activity of stimulated inhibitory cells tends to suppress

non-stimulated inhibitory cells and to produce a withdrawal of inhibition to excitatory cells and to

stimulated inhibitory cells. This withdrawal of inhibition increases with the fraction of non-stimulated

inhibitory cells and, if large enough, can overcome the withdrawal of excitation and prevent para-

doxical suppression of stimulated cells.

To test these models, and experimentally determine whether differences in number of cells

expressing opsin could change the paradoxical effect, we used a transgenic approach to express a

different excitatory opsin in PV cells (PV-Cre;ReaChR transgenic mice). In these mice, the opsin is

expressed in most or all PV cells (Lin et al., 2013). (Since we study steady-state firing rates

(Materials and methods), we do not expect differences in the onset or offset kinetics of the opsin to

affect these measurements, and we verified that considering different time windows of the steady-

state response does not change the results, Figure 6—figure supplement 2). Because we measured

responses for a range of light intensities, differences in viral and transgenic mean levels of opsin

expression would not affect paradoxical effects. On the other hand, differences in the number of

expressing cells, or variability in opsin levels across cells, are predicted to change the paradoxical

effect. Indeed, we found that, with transgenic expression, the average paradoxical effect was pres-

ent (Figure 6F). Further, the fraction of inhibitory cells that showed paradoxical responses was signif-

icantly larger in PV-ReaChR transgenic animals than in PV-Chronos animals (Figure 6J,L), and was

similar to the VGAT-ChR2 data in V1, somatosensory, and motor/premotor cortex (Figure 6M).

Changes in the number of stimulated cells could be affected by the virus infecting only a subset

of neurons (Watakabe et al., 2015), or by the virus yielding different levels of opsin expression in

different neurons, so that only a subset are recruited strongly at any given light intensity. To examine

differences in expression pattern, we counted neurons in histological sections from both the viral

(PV-AAV-Chronos) and transgenic (PV-ReaChR) animals. For these comparisons, the Cre line,

expressing Cre in PV neurons, was held constant. We observed both effects. First, viral expression

created some cells with strong, and some cells with weak, opsin expression (Figure 6B–C). Second,

viral expression yielded opsin in about half as many cells as transgenic expression (Figure 6G); posi-

tive-opsin cell percentage significantly different between viral and transgenic cases, both observers

and both thresholds, p<0.05, c2 test). The differences in the number of opsin-expressing cells

roughly matched our model predictions (60% of neurons stimulated, Figure 6E).

Taken together, these data and our analysis support the idea that V1 and other areas of the

mouse cortex are strongly coupled and operate as an ISN. Yet whether an average paradoxical

effect is seen depends on the number of inhibitory cells stimulated. The heterogeneous responses

we saw in PV-Chronos experiments (about half of inhibitory cells paradoxical, half non-paradoxical,

Figure 6D,H,L, also may in part explain why paradoxical inhibitory suppression,and thus ISN opera-

tion, has not been more widely reported in optogenetic PV-stimulation experiments (also see

Discussion).

Paradoxical effects are also seen in deep-layer recordings
To this point all the neurophysiological data we have reported is from the upper layers (L2/3 and 4)

of the cortex, recorded within 400 mm of the cortical surface. We focused on the superficial layers

because the blue light we used to activate ChR2 and Chronos does not penetrate more than a few

hundred microns into the tissue (Yona et al., 2016), so the inhibitory neurons that receive direct

optogenetic input are those in the superficial layers. However, blue light delivered to the cortical sur-

face to stimulate inhibitory neurons has been seen to suppress activity across cortical layers, presum-

ably due to polysynaptic effects (Li et al., 2019). Because we recorded data using silicon probes

that span most of the depth of the cortex, we could also assess whether light delivered to the top of

the cortex also produced paradoxical suppression in deeper inhibitory neurons.

We examined units (Figure 7) recorded � 500 mm from the cortical surface

(Materials and methods). In our multi-area recordings from superficial layers (e.g. Figure 5), we clas-

sified inhibitory cells in different brain areas based on increases in inhibitory response at strong light

intensities, when excitatory cells are silent or largely suppressed. But in deep recordings, presumably

due to attenuation of stimulation light from scattering and absorption, at our highest stimulation

intensities we did not always see clear mean increases in inhibitory firing rates (e.g. Figure 7B).

Therefore, for these deep recordings we classified neurons as inhibitory based on waveform width.

As in superficial layers, we found bimodal distributions of waveform width in our deep-layer data
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(Figure 7A–C, insets). In our upper-layer V1 data, we compared classification of V1 units via pharma-

cology, waveform width, and responses at high power (Figure 2—figure supplement 3). Based on

this comparison, in these deep-layer data, we do not expect excitatory cells to be classified as inhibi-

tory (i.e. few or no excitatory units have narrow waveforms), even though some inhibitory cells with

wider waveforms will be missed with this approach (i.e. some inhibitory units have wide waveforms).

Examining cells recorded from deeper layers, we found that V1, motor, and somatosensory areas

all showed initial paradoxical responses (Figure 7). However, the maximal suppression of inhibitory

and excitatory cells was not as strong as in superficial layers (Figure 2, Figure 5). (Supporting the

idea that this weaker effect of stimulation is due to attenuation of blue light, paradoxical effects in

deep layers were smaller in these data than when using red light to stimulate ReaChR in V1 PV
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Figure 7. Paradoxical inhibitory suppression is also seen in deep-layer recordings. (A) Population average

responses of deep-layer (recorded �500 mm from cortical surface) units, classified as inhibitory (blue) or excitatory

(red) by waveform width (inset; solid line is kernel density fit to underlying histogram, expressed in units of counts

on they-axes, and spike width in ms on the x-axis, see Materials and methods). Shaded area shows ± 1 SEM about

mean. L0 is defined for all units recorded in a single session based on responses to superficial-layer recordings.

Initial slope of inhibitory average response is negative (paradoxical). (B,C) Same, for motor/premotor and

somatosensory. (D–E) Initial slopes of all recorded units shown in A-C. Conventions as in Figure 2K. As in that

panel, slopes here are normalized by baseline rate so that minimum slope is �1. Means and medians of individual

inhibitory neurons’ slopes are all negative (t-test, V1 p<0:05, others p<0:01) except for V1 median (blue error bar

shows 95% confidence interval around median via bootstrap: upper CI, V1 0.03, motor �0.22, somato �0.33). Also,

the population firing rate decrease is significant for all three areas (p<0:001, except V1 p<0:05, Mann-Whitney U on

summed population counts, baseline vs. rate at L0).

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Effects of PV stim with viral vs. transgenic expression in deep-layer neurons is similar to

effects in superficial layers.
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neurons, Figure 7—figure supplement 1.) In all these cases (Figure 7A–C), the mean population

inhibitory responses showed initial suppression.

Thus, the deep-layer data shows no evidence for a different pattern of responses than seen in the

upper layers – deep-layer inhibitory cells show paradoxical suppression to excitatory stimulation.

However, because light applied to the cortical surface affects the superficial layer inhibitory neurons

most directly, we do not make the claim that these data are final proof that deep layers operate in

the ISN regime. On the other hand, the deep-layer data do provide evidence against alternative,

non-ISN, models for L2/3 responses, such as the potential alternative where deeper inhibitory cells

increase their firing and inhibit L2/3 cells. Instead, we find that most inhibitory cells we record, across

layers, are paradoxically suppressed by stimulation.

No transition out of inhibition stabilization is seen during anesthesia, at
lower network firing rates
Theoretical studies have pointed out that a network can switch from non-ISN to ISN when external

inputs are increased (Ahmadian et al., 2013). If the cortical network did transition out of the ISN

state at lower activity levels, this would be computationally important, as the way inputs sum can

change depending on whether the network operates as an ISN or not (Ahmadian et al., 2013;

Rubin et al., 2015). Our results above (Figure 2, Figure 3) show that superficial layers of mouse V1

operate as an ISN at rest (i.e. without sensory stimulation), and also show the transition from ISN to

non-ISN is below the level of spontaneous activity, as network activity is decreased by optogenetic

stimulation of inhibitory neurons. (The transition point is where the slope of I rates vs stimulation

intensity switches from being negative to positive.) However, we wished to determine whether a

brain state with lower activity levels, as that produced by light anesthesia, might result in a transition

to a non-ISN regime.

Under light isoflurane anesthesia, we found no evidence of a transition, and instead found that

paradoxical inhibitory suppression was maintained (Figure 8A). At 0.25% isoflurane (a low level, as

surgical levels are often 1.0% and above), spontaneous firing rates of excitatory neurons are reduced

(Figure 8C; mean 6.4 spk/s reduced to 3.5 spk/s, p<0:02, Wilcoxon signed-rank test; inhibitory neu-

rons’ rates show a negative trend but are not statistically different, 14.5 spk/s awake to 11.6 spk/s

anesth., p<0:10, Wilcoxon signed-rank tesk). Thus, the network changes induced by anesthesia do

not cause the network to transition out of the ISN state. At this low level of anesthesia, we did not

observe prominent up and down state slow oscillations. In one experiment, we used a higher level of

anesthesia (0.5% isoflurane, Figure 8B), yielding even lower firing rates but still preserving the para-

doxical effect. Further confirming the robustness of coupling to changes with anesthesia, the distri-

bution of response slopes is roughly unchanged (Figure 8C), suggesting the network is far from a

transition into a non-ISN state. Anesthesia thus preserves the paradoxical inhibitory response, leav-

ing the network still an ISN.

Discussion
These data show a signature of inhibitory stabilization, the paradoxical suppression of inhibitory cells

to optogenetic excitation, in several different areas of mouse cortex, V1, S1, and motor cortex, dur-

ing spontaneous activity in the absence of sensory stimuli. An important aspect of the work is that

we stimulated all inhibitory cells together, using a mouse line in which all inhibitory cells express

opsin. When single inhibitory subclasses are stimulated, paradoxical effects do not prove that the

network’s excitatory cells are unstable without inhibition (Mathematical Methods; also see Litwin-

Kumar et al., 2016; Mahrach et al., 2020). However, our observation of paradoxical suppression

when stimulating all inhibitory cells together, supported by a model that describes the data

well (Figure 4), is evidence that these cortical networks do indeed have strong excitatory recurrent

coupling, and do indeed operate in the ISN regime.

We found, as predicted by ISN models, that strong inhibitory stimulation causes the network to

transition into a non-ISN state. In this non-ISN state, inhibitory responses are non-paradoxical and

increase their firing when stimulated, and excitatory neurons are suppressed. This transition from

ISN to non-ISN behavior is a prediction of ISN models. We saw paradoxical suppression of the mean

inhibitory firing response in both superficial and deep layers of the three areas, and we found that a

clear majority of inhibitory units (except in one of these six measurements, deep layers of V1) show
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paradoxical suppression when all inhibitory cells

are stimulated. We used several ISN rate models

to fit data from V1, aided by pharmacological

manipulations that yield additional informative

data about the network. We find that despite

having fewer parameters than data degrees of

freedom, the ISN model describes the data well.

During light anesthesia, mean V1 network firing

rates decrease, but we still observed ISN para-

doxical suppression. Finally, we explored the

effect of stimulating a subclass of inhibitory neu-

rons with strong network effects: the PV neurons.

We find that stimulating PV cells also produces

paradoxical effects. We compared viral and trans-

genic expression strategies and found that viral

expression did not produce average paradoxical

effects. This viral/transgenic difference is consis-

tent with theoretical observations that changing

the fraction of stimulated inhibitory cells changes

the strength of the paradoxical effect, and is sup-

ported by histological data.

Multiple lines of evidence rule out
other circuits and argue for the
strongly-coupled ISN explanation
Our data and theoretical results provide the

strongest evidence currently available to rule out

non-ISN interpretations. Three prominent fea-

tures of our data supporting a strongly-coupled

recurrent origin for the results are: (1) that inhibi-

tory response dynamics match ISN predictions

(Figure 3), (2) that an ISN model describes the

data well and makes predictions verified in the

data (Figure 4), and (3) that many inhibitory cells

show paradoxical effects at low stimulation inten-

sity but increase their firing rate at higher stimula-

tion intensity (e.g. Figure 2, Figure 5).

These observations allow us to rule out several

potential alternatives to the ISN explanation for

the paradoxical effects we observed. One poten-

tial alternative might be a model with multiple

inhibitory populations and weak recurrent cou-

pling, perhaps driven to fire spontaneously by

strong external input such as thalamic or cortico-

cortical input. In principle, paradoxical inhibitory

responses could be produced in such a non-ISN

model via feedforward, inhibitory-onto-inhibitory,

interactions. Specifically, in this alternative, stimulation of one inhibitory subclass (e.g. PV cells)

would inhibit a second set of inhibitory cells whose firing rate would decrease (e.g. somatostatin or

SOM cells; the same explanation could hold with the PV and SOM classes swapped). However, in a

feedforward inhibitory model, there would be little reason to predict inhibitory neurons to change

from decreasing to increasing rate as stimulation intensity increases. ISN models, on the other hand,

are predicted to transition into a non-ISN state for strong inhibitory stimulation where inhibitory cells

begin to increase their firing, as our data show (e.g. Figure 2L).

The large fraction of inhibitory cells that we found to be suppressed (paradoxical) at low stimula-

tion intensity (Figure 2J–K) further argues against alternative models with paradoxical effects
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Figure 8. Paradoxical response is preserved with lower network activity due to anesthesia.

(A) Single excitatory (top) and inhibitory (bottom) unit response in the awake state (no

anesthesia, no synaptic blockers), under anesthesia with no blockers (isoflurane, 0.25%) and

with synaptic blockers (CNQX, APV, bicuculline; Materials and methods) plus anesthesia. (B)

Population average response with (gray) and without (blue;red) anesthesia. Spontaneous

firing rates are reduced for both the E (top) and I (bottom) populations below the awake

firing rates, yet inhibitory paradoxical suppression is preserved with anesthesia (lower panel:

gray line shows negative initial slope). In these experiments, inhibitory responses are weaker

at high powers, but this does not affect paradoxical suppression. (C) Distribution of initial

slope and spontaneous rate before and after anesthesia. Initial slope is largely preserved

while excitatory and inhibitory spontaneous rates are suppressed. Colored horizontal bars

within each panel show mean ± SEM for each distribution. Initial slopes are plotted here

non-normalized (units spk/s/mW) to show the slopes are quantitatively similar across firing

rate changes; normalized slopes are shown in Figure 8—figure supplement 1, and their

means and medians remain negative across anesthesia state.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Normalized initial slopes for units recorded in anesthesia

experiments.
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created by multiple differentially-responding inhibitory cell populations. While excitatory opsins

expressed in inhibitory neurons can sometimes cause synaptic release at terminals (Zhao et al.,

2011; Babl et al., 2019), we found that many inhibitory cells fired in response to optogenetic stimu-

lation in the presence of E and I blockers, showing that our stimulation did produce substantial neu-

ral spiking. Further, ISN-generated paradoxical effects are network effects that rely on inhibitory

cells affecting other local neurons, so even if stimulation did cause terminal release, this should not

affect our conclusions. Finally, ISN models predict, and we observed, that the transition point from

inhibitory suppression to excitation occurs when excitatory cells are largely suppressed. It might be

possible for that to occur in a non-ISN case, such as in the feedforward scenario, but it would require

fine-tuning of parameters, and our ISN model’s accurate description of the pharmacology data

makes such fine tuning even more unlikely.

Other non-ISN scenarios would also rely on feedforward inhibitory effects made unlikely by our

data. For example, alternative models could have feedforward inhibition arising from rare, powerful

inhibitory cells, perhaps so rare that we could not record them, or input from deeper-layer inhibitory

cells. These feedforward inhibition scenarios are also argued against by the observations outlined

above (e.g. the transition from suppression to excitation showed by our recorded inhibitory cells,

etc.). And our recordings across depth showed that a majority of inhibitory cells’ firing rates were

paradoxically suppressed by stimulation, independent of the depth of recording, making it unlikely

that our effects were produced by feedforward inhibition arising from a deeper cortical layer. The

ISN model remains a consistent explanation of all the data we observed.

Potential explanations why prior evidence for paradoxical suppression
has been mixed
In the last decade, multiple experiments have performed optogenetic stimulation of cortical inter-

neurons, but these studies have yielded mixed results on inhibition stabilization. In layer 2/3 of

mouse V1, optogenetic excitation of PV cells with viral expression was shown to generate non-para-

doxical modulation of inhibition (Atallah et al., 2012). In mouse auditory cortex (A1), in contrast,

Kato et al., 2017 found that suppression of inhibitory cells with viral ArchT produced paradoxical

effects in intracellular currents. ISN models make similar predictions for somatic intracellular currents

as for the firing rates we measured: if a network is strongly coupled and thus inhibition-stabilized,

stimulating all inhibitory neurons will yield paradoxical changes in inhibitory current, as well as a tran-

sient increase in inhibitory current before suppression (Ozeki et al., 2009; Litwin-Kumar et al.,

2016). Another A1 study observed mixed paradoxical effects but linked them to a non-ISN mecha-

nism. Moore et al., 2018 found that stimulation of PV cells using viral transfection produced para-

doxical effects in some PV cells and not others. and they reported evidence for feedforward, non-

ISN, mechanisms in L2/3 via L4 inhibitory input. In somatosensory and motor cortex, a recent study

observed paradoxical suppression for PV subclass stimulation in some layers and not others

(Mahrach et al., 2020). Finally, many experiments have used excitation of inhibitory cells (e.g.

Glickfeld et al., 2013) to suppress excitatory activity, without reporting paradoxical inhibitory

effects, although a recent survey of such methods does report paradoxical effects (Li et al., 2019) in

somatosensory and motor cortex.

Our results, combining theoretical analyses with a range of experimental conditions, suggest

some explanations why paradoxical inhibitory suppression has not been previously widely reported.

First, it appears a significant fraction of inhibitory cells must be stimulated to produce large paradox-

ical changes in firing rate (Sadeh et al., 2017). Stimulating PV cells with viral methods (which can

yield subsets of cells with weaker or no expression; see also Sadeh et al., 2017; Gutnisky et al.,

2017 for a similar explanation for non-paradoxical effects with viral expression), produced in our

hands mixed effects on single cells and weaker mean paradoxical effects (Figure 6). Further, stimu-

lating subtypes of inhibitory cells even with transgenic expression can produce different inhibitory

responses compared to stimulating all inhibitory neurons (Mahrach et al., 2020). Another factor

which can, in principle, generate non-paradoxical effects even when the network is an ISN is reduc-

ing the area of tissue illuminated by stimulation light. This reduces the number of inhibitory cells

stimulated and therefore produces a situation similar to stimulating a subset of network inhibitory

cells. However, this effect of reducing optogenetic light area seems to apply mainly for fairly small

optogenetic light spots. Sadeh et al., 2017 found via modeling that paradoxical effects were dimin-

ished when illumination spot sizes fell to around 100 mm, well below the 500+ mm diameter spots we
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used here to reveal ISN-related paradoxical suppression. This effect of illumination area may, how-

ever, impact experiments using optical fibers, which can have small diameters. Beyond the fraction

of neurons stimulated, a second explanation for differences, especially in experiments using extracel-

lular recording, is that it can be difficult to definitively identify inhibitory cells. Some inhibitory cells’

waveforms are broad (Figure 2, Figure 2—figure supplement 8), and in an ISN, excitatory and

inhibitory cells’ firing rate changes are often similar (inhibitory neurons may only show increased

activity for a few milliseconds before paradoxical suppression begins). Third, for strong enough drive

to inhibitory neurons, ISNs transition to a non-ISN state. In this non-ISN state with low excitatory

activity, tracking of excitatory fluctuations is not needed to stabilize the network, and some past

experiments may have used stimulation large enough for parts of the network to enter into this sec-

ond phase of activity, hiding the signature of inhibition stabilization.

PV cells may be the main source of stabilizing input
While paradoxical effects in a single inhibitory subclass do not imply the overall network is inhibition

stabilized (Figure 6E; Mahrach et al., 2020), PV neurons may well be the principal providers of sta-

bilizing input. In an ISN, strong bidirectional E-I synaptic coupling allows inhibitory cells to stabilize

an unstable excitatory network, by tracking and responding to changes in local excitation. Thus, one

major parameter that would predict which inhibitory cells would show paradoxical effects is the

strength of their synaptic influence on other network neurons. PV neurons receive input from many

diverse local excitatory cells (Bock et al., 2011) show responses that reflect an average of local excit-

atory responses (Sohya et al., 2007; Kerlin et al., 2010), cause network instability when strongly

suppressed (an effect which does not result from SOM suppression) (Veit et al., 2017), and target

virtually all nearby excitatory cells with strong peri-somatic synapses (Fino and Yuste, 2011;

Packer and Yuste, 2011). Other cell types of the diverse inhibitory classes in the cortex (e.g. SOM

or VIP+ interneurons; Tremblay et al., 2016) also could contribute to stabilization (Sadeh et al.,

2017), though if their effect on the whole local network is less strong than PV cells, they may be

unable to produce paradoxical suppression when stimulated alone.

Our data support ’loosely balanced’ cortical models, and show evidence
for ISN operation even at rest
Several influential models of cortical function include inhibition-stabilized parameter regimes, and

our data provide new constraints on such models. The ‘balanced network’ model (Amit and Brunel,

1997; van Vreeswijk and Sompolinsky, 1996) predicts that both excitatory and inhibitory inputs to

single neurons should be large but approximately cancel each other, leading to a balance between

excitation and inhibition. This scenario accounts in a parsimonious way for multiple ubiquitous prop-

erties of activity in cortex, such as the highly irregular nature of neuronal firing, and the broad distri-

butions of firing rates across neurons. Balanced network models, however, can vary in their recurrent

coupling strength, and thus the size of the total excitatory and total inhibitory currents. The analyti-

cal work of van Vreeswijk and Sompolinsky (van Vreeswijk and Sompolinsky, 1996; van Vreeswijk

and Sompolinsky, 1998) was performed in the limit of very large numbers of synaptic inputs per cell

(K), leading to very large E and I currents (whose leading order in K cancel each other — that is, the

sum of the E and I currents is small while the sum’s variability can be substantial). Other balanced

network models (Amit and Brunel, 1997; Brunel, 2000) used finite, moderate-to-large coupling

strength. The network parameters that best fit our data produce moderately large (i.e. within an

order of magnitude of threshold) excitatory and inhibitory inputs (Figure 4), which are on the same

order of magnitude as the ones used in Brunel, 2000. This moderate recurrent coupling, or ’loose

balance’, is also consistent with the SSN model (for review, see Ahmadian and Miller, 2019).

The SSN also makes a specific prediction about the ISN regime that our data constrains. The SSN

predicts that cortical networks are inhibition-stabilized for strong inputs, but not an ISN for suffi-

ciently weak inputs. Thus, the SSN predicts a transition between two operating regimes as network

activity increases. Finding this transition point is important for understanding computation, as the

two regimes show different (supralinear or sublinear) modes of input summation. Prior ISN studies

(Ozeki et al., 2009) have left open whether this transition occurs only with sensory stimulation. A

study of responses to two combined sensory stimuli (Britten and Heuer, 1999) found a linear-to-

sublinear transition for increasing strength (contrast) of visual stimuli, but did not resolve whether
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the non-ISN to ISN transition was above or below the level of spontaneous activity. Our data do

resolve this, showing several cortical networks are in the ISN state even without sensory stimulation.

But a second question our data address is whether during spontaneous activity the network is on the

edge of this transition point, or well into the ISN regime. Our work gives two pieces of evidence that

without sensory activity the network is far above a transition into a non-ISN state: first, excitatory

rates must be substantially suppressed before inhibitory responses switch from paradoxical suppres-

sion to firing rate increases (e.g. Figure 2E), and second, under light anesthesia, we find network

activity is lowered but ISN behavior is preserved. Therefore, our data provides support for the idea

that cortical areas generally operate above this transition point, and that the weakly-coupled, non-

ISN regime predicted by the SSN is not a regime mouse cortex commonly enters during normal

processing in awake behavior.

Conclusion
Together, the results reported here suggest that inhibition stabilization is a ubiquitous property of

cortical networks. This data is consistent with a network that is in the strong coupling regime, but is

not extremely strongly coupled as some balanced network models would predict (Amit and Brunel,

1997; van Vreeswijk and Sompolinsky, 1996). It is tempting to speculate that, while strong cou-

pling allows the network to perform non-trivial computations on its inputs, increasing coupling fur-

ther might not be optimal for several reasons. First, in the strong coupling limit, only linear

network responses are available to a balanced network (unless synaptic non-linearities are included,

Mongillo et al., 2012), while networks with moderate coupling can combine inputs in a non-linear

fashion (Ahmadian et al., 2013). Second, maintaining strong connections might be metabolically

expensive, so that a moderately-coupled network might represent an ideal compromise for cortical

computations.

Materials and methods

Experimental methods
Animals
All procedures were conducted in accordance with the guidelines of the National Institutes of

Health. Seven VGAT-ChR2 (Zhao et al., 2011; ChR2 targeted at the Slc32a1 locus), three PV-Cre

(Hippenmeyer et al., 2005; Cre targeted at the Pvalb locus), and two PV-Cre;ReaChR (Lin et al.,

2013; ReaChR targeted at the Gt(ROSA)26Sor locus) mice were used (JAX stock n 014548, 008069,

and 024846; 2 females and 10 males; singly housed on a reverse light/dark cycle).

Cranial window implants
Mice were implanted with a titanium headpost and a transparent window (optical glass, 0.8 mm

thickness, 3 or 5 mm diameter) in the left cerebral hemisphere. The windows provided access to the

primary visual (V1) and somatosensory cortex, or motor cortices, for imaging and silicon neural

probe recordings with optogenetics. Mice were given dexamethasone (3.2 mg/kg, i.p.), 2 hr before

surgery. Animals were anesthetized during surgery with isoflurane (1.0%–4% in 100% O2). Using

aseptic technique, a headpost was affixed using Metabond (Parkell), and a 3 or 5 mm diameter crani-

otomy made.

Hemodynamic intrinsic imaging
To determine the location of V1, we delivered small visual stimuli to animals at different retinotopic

positions and measured changes in the absorption of 530 nm light resulting from cortical hemody-

namic responses (Ma et al., 2016). We evenly illuminated the brain with a 530 nm fiber coupled LED

(M530F2, Thorlabs) passed through a 532 nm-center bandpass filter (Thorlabs). Images were col-

lected on a stereo microscope (Discovery V8, Zeiss) through a green long-pass emission filter using a

1x objective (PlanApoS 1.0x, Zeiss) onto a Retiga R3 camera (Q Imaging, captured at 2 Hz with 4 �
4 binning). For retinotopic mapping we presented upward-drifting square wave gratings (2 Hz, 0.1

cycles/degree) masked with a circular window (10˚ diameter) for 5 s with 10 s of mean luminance pre-

ceding each trial. Stimuli were presented in random order at four positions in the right monocular

field of view. The response to a stimulus was calculated as the fractional change in intensity between
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the average of the 10 frames immediately preceding the stimulus (as baseline) and a 6–10 frame win-

dow 1 s after stimulus onset (as response) to match the timecourse of the hemodynamic response

(Chen-Bee et al., 2007; Heimel et al., 2007).

Viral injections
We used viral injections to express Chronos (Klapoetke et al., 2014) in PV-Cre animals. Mice were

anesthetized (isoflurane 1–1.5%) and the cranial window implant removed. We used a stereotaxic

injection system (QSI, Stoelting Inc) to deliver 500 nL of a 10:1 mixture of AAV1-hSyn-FLEX-Chronos-

GFP (UNC Vector Core Stock) and 100 mM sulforhodamine (SR101, Invitrogen, for visualization) at a

depth of 200–400 mm. We made 3 to 4 injections spaced 0.5–1.0 mm apart to cover the visual cor-

tex. After the injections a new cranial window was affixed. Viral expression was monitored over the

course of days by imaging GFP fluorescence, and allowed to develop for greater than 4 weeks

before electrophysiological recordings.

Electrophysiological recording with optogenetic activation of inhibitory
neurons
For recording experiments, we first affixed a 3D printed ring to the cranial window to retain fluid.

With the ring in place, we removed the cranial window and flushed the craniotomy site with sterile

normal saline to remove debris. Kwik-Sil silicone adhesive (World Precision Instruments) was used to

seal the craniotomy between recording days. Using a stereomicroscope on an articulating arm we

positioned the end of an optical fiber (600 mm diameter, Doric Lenses) fitted with a light-tight cou-

pler to an optical cannula (400 mm diameter, Thorlabs CFMLC14L02) over our target cortical area,

with a slight 10–30˚ angle from vertical to provide space for the electrodes. We used fiber coupled

LED light sources (M470F3for Chronos and ChR2, or M625F2 for ReaChR, Thorlabs) to deliver illumi-

nation with peak at 470 nm or 625 nm to the brain. We calibrated total intensity at the entrance of

the cannula using a power meter and photodiode (meter model 1918R, photodiode model 918D-SL-

OD3R, Newport Corp). The cannula distance from the dura was adjusted to provide a light spot with

a full width at half maximum intensity of 0.8–1.2 mm (as measured with a small digital macro docu-

mentation microscope, Opti-TekScope); thus, our reported spot irradiance in mW/mm2 is within a

factor of two of the reported power (mW). We targeted a multisite silicon probe electrode (Neuro-

Nexus; 32-site model 4 � 8–100–200–177; four shank, eight sites/shank; sites were electrochemically

coated with PEDOT:PSS [poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate)], Xiao et al.,

2006) to the center of the LED spot using a micromanipulator (MPC-200, Sutter Instruments). With

the fiber optic cannula and electrode in place, we removed the saline buffer using a sterile absor-

bent triangle (Electron Microscopy Sciences, Inc) and allowed the dura to dry for 5 min. After inser-

tion, we waited 30–60 min without moving the probes to reduce slow drift and provide more stable

recordings. We isolated single and multiunit threshold crossings (three times RMS noise) by amplify-

ing the site signals filtered between 750 Hz and 7.5 Khz (Cerebus, Blackrock microsystems). During

recordings, animals were awake and passively viewing a gray screen. To keep animals awake and

alert, animals were water-scheduled (Histed and Maunsell, 2014), and a 1 ml water reward was ran-

domly provided on 5% of the stimulus trials; we verified animals were licking in response to rewards

during the experiments. Superficial units were those recorded from a site within 400 mm of the corti-

cal surface, identified by monitoring spike and local field potential activity (LFP) on sites at different

depths; we typically observed desynchronized cortical LFP activity on any site below the surface and

found the first substantial unit activity 100 mm below the surface. Deep units were those recorded

500–800 mm below the surface. Optogenetic stimuli were square light pulses with 2 ms linear ramps

at start and end to reduce recording artifacts. Pulses were on for 600 ms and off for 1000 ms at a

range of power levels (0.3–10 mW), presented in random order, with 100 repetitions per power

level. For population plots, we normalized the light intensity in each experiment to control for fluctu-

ations across experiments due to e.g. changes in dural thickness or tissue light absorption. We found

a minimum value of the inhibitory responses (L0, with one value for each experiment, used for each

unit recorded in that experiment) by fitting a 2-segment piecewise-linear function to the average

inhibitory response (Figure 2—figure supplement 6). To avoid biases due to light attenuation at

deep sites, L0 was computed for each experiment on the superficial sites only, and this value was
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used for the deep site data (Figure 7). Population firing rate std. dev. and SEM (Figure 3) were cal-

culated on the sum of all unit counts in a given time bin.

Pharmacological blocking of excitatory and inhibitory synapses
To classify cells using pharmacological weakening of cortical synapses, we divided the experiment

into three phases, each 30–45 min in duration: first no blockers, then excitatory blockers, then excit-

atory plus inhibitory blockers. For each section, we delivered the same optogenetic stimulation pro-

tocol (above). To apply the pharmacological agents, we made a hole near the recording electrodes

in the agarose on top of the brain, removed the normal saline covering the agarose and hole, and

replaced it with a solution containing the agent in saline. After 15 min, the initial application of

blocking solution was removed via aspiration and refreshed. We waited a total of 20 min for the

pharmacological agent(s) to take effect before recording. Excitatory synaptic blockers (2 mM CNQX,

6 mM APV) affected AMPA, kainate, and NMDA synapses. Inhibitory blockers (1 mM bicuculline)

affected GABA-A synapses. Source: Sigma-Aldrich (#C239, #A8054, and #14343).

Histology and electrophysiology probe tracking
To determine the location and depth of recording electrodes, we coated the shanks with 1,1’-Dio-

ctadecyl-3,3,3’,3’-tetramethylindocarbocyanine perchlorate (DiI) (Thermo Fisher #D282, 50 mg/mL

solution in ethanol), prior to insertion into the brain. We dipped the electrode tips 5 times into the

DiI solution and allowed the coating to dry for 30 s between immersions. Fluorescent electrode

tracks were then visualized in coronal sections of fixed brain tissues. Mice were anesthetized with

isoflurane and injected intraperitoneally with pentobarbital sodium (150 mg/kg). They were then per-

fused transcardially with cold (4˚C) PBS followed by cold 4% paraformaldehyde. Brains were

extracted and fixed in 4% paraformaldehyde for 6–12 hr and then cryoprotected in a 30% (w/v)

sucrose solution in PBS until they sank. Brains were sectioned at 50 mm on a freezing microtome

(Leica), mounted on glass slides, and coverslipped with mounting media containing DAPI (Fluoro-

mount-G with DAPI, Electron Microscopy Sciences). Slides were imaged using an Olympus slide-

scanner (Olympus BX61VS, Japan).

Counting opsin-expressing cells
To quantify opsin expression differences between viral (PV-Cre,AAV-Chronos-YFP) and transgenic

(PV-Cre::ReaChR-mCitrine) animals, we used a confocal microscope (Zeiss LSM780) to image fluores-

cent neurons in L2/3 using 50 mm thick coronal brain tissue sections. (We used the same Cre line for

both cases, so that any Cre expression patterns would affect neurons in both groups, and >90% of

cortical PV neurons are reported to express Cre in this line [Hippenmeyer et al., 2005]). For each

animal, we chose four 100 mm x 100 mm areas in layer 2/3, and constructed 3D stacks by aligning

images across adjacent sections. 3D volumes from 3 viral and three transgenic animals were anony-

mized and manually counted by two independent observers. Observers were instructed to count

cells once with a high threshold for accepting a cell as positive, and once with a low threshold for

accepting a cell. Percentages of opsin-expressing cells were calculated as the average number of

fluorescently labeled cells divided by the number of DAPI-labeled nuclei.

Anesthesia during electrophysiology
To test the effects of lowering overall activity on the stability of the cortical network we fitted ani-

mals with an isoflurane inhalation mask system (model V-1, VetEquip Inc) and provided anesthesia

(0.25–0.5% isoflurane in 100% O2) to put the animal into a lightly anesthetized but awake state dur-

ing recordings. At the lower 0.25% isoflurane concentration, recordings in V1 displayed no synchro-

nized oscillatory Up/Down state activities and the animals eyes were open throughout. The

anesthesia experiments were divided into four sections: awake animal, anesthesia with no blockers,

anesthesia with excitatory blockers, anesthesia with inhibitory blockers. Anesthesia was delivered for

20 min before starting recording.

Spike sorting
Spike waveforms were sorted after the experiment using OfflineSorter (Plexon, Inc). Single units

were identified as waveform clusters that showed clear and stable separation from noise and other
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clusters, unimodal width distributions, and inter-spike interval histograms consistent with cortical

neuron absolute and relative refractory periods. Multiunits were clusters that were distinct from

noise but did not meet one or more of those criteria, and thus these multiunits likely group together

a small number of single neurons. Signal-to-noise ratio (SNR) (Kelly et al., 2007; Histed, 2018) of

single unit waveforms (median ± std): in visual cortex, 3.6 ± 1.7 (N = 167), see Figure 2—figure sup-

plement 2; in other datasets: motor, 3.7 ± 1.2 (N = 103); somatosensory, 3.7 ± 1.7; in V1 PV data

(Figure 6) 2.91 ± 1.3. Only single-units were analyzed; multiunits were discarded. We also repeated

our single-unit analyses using both more- and less- stringent criteria to qualify a unit as a single unit,

and found no qualitative differences in the results (Figure 2—figure supplement 2). Supporting the

idea that single units did not group together multiple units, we found no significant correlation

between SNR and baseline firing rate in any of the four datasets (all p>0:2 by linear regression).

Mathematical methods
Model equations
To quantitatively analyze the network response, we used a two population rate model (Wilson and

Cowan, 1972), in which the average firing rates of excitatory (E) and inhibitory (I) populations (rE
and rI , respectively) evolve according to

t E
drE
dt

¼�rE þfE WEE rE �WEI rI þ IEXð Þ
t I

drI
dt

¼�rI þfI WIE rE �WII rI þ IIX þlLð Þ

(

(1)

where fA, IAX and t X are the static transfer function (f-I curve), external input and time constant of

population A (=E,I), respectively, while WAB is the strength of connections from population B to A.

The optogenetic stimulation is described by the parameters l and L which represent the efficacy

and the intensity of the stimulation light. Results shown in the main text (Figure 4) have been

obtained with a rectified-linear transfer function

fAðxÞ ¼ aA x� x0A½ �þ ; (2)

which is zero for input x smaller than the threshold x0A, and increases linearly, with a gain aA, other-

wise. This transfer function is the simplest one that can describe the data, which shows an approxi-

mately piece-wise linear dependence of firing rates on stimulation intensity (see Figure 4). We also

fit the data using a different transfer function

fAðxÞ ¼ bA log 1þ exp
aA

bA
x� x0Að Þ

� �� �

(3)

that smoothes the threshold non-linearity of the rectified linear function, using an additional parame-

ter bA that controls the width of the exponential region around threshold. This function reduces to

the rectified-linear transfer function when bA ! 0. We find that the nonlinear transfer function pro-

vides a minor improvement in describing the data and does not significantly affect the values of the

inferred parameters (Figure 4—figure supplement 1).

In the experiments, recordings of the response are done in three separate phases: (1) A ’normal’

phase in which recurrent interactions are intact; (2) A phase with E synaptic blockers; and (3) A phase

with both E and I synaptic blockers. The addition of blockers in the model is described with two

parameters, �E;I 2 0; 1½ �, representing the decrease in strength of excitatory and inhibitory synapses.

After the addition of excitatory blockers, connectivity is modified as

WEE; IEX ;WIE; IIX ! �EWEE; �E IEX ; �EWIE; �E IIX ; (4)

and with inhibitory blockers, connectivity is modified as

WEI ;WII ! �I WEI ; �I WII (5)

Combining Equations 1, 4 and 5 with the transfer function of Equation 2, the model uses 15

parameters (2 time constants, 2 thresholds, 2 gains, 4 connectivity strengths, 2 external inputs, 1

stimulation efficacy, 2 blocker efficacies) to describe simultaneously the three phases of the

experiment.
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To compare the model response with the data, we find the equilibrium solution of Equation 1,

shown in Equation 6. Since t E and t I do not affect the equilibrium solution, the number of relevant

independent variables in the model reduces to 13. Moreover, the values of aE and aI can be reab-

sorbed in the definitions of W , I and l. It follows that all the parameters can be inferred up to a pro-

portionality constant and, without loss of generality, we can fix aE ¼ aI ¼ 1. This reduces the number

of independent parameters to 11.

Note that this number of parameters is smaller than the number of parameters needed for piece-

wise-linear fits of the data (average firing rates vs light intensity for both E and I neurons). Such

piecewise-linear fits of the data need 15 parameters: 3 phases times five parameters per phase

(three for inhibitory neurons - two per linear region, minus one for the continuity constraint; and two

for excitatory neurons, for the single linear region at low intensities). Thus, the model does not have

enough parameters to fit successfully the data, unless the model structure accurately describes the

cortical responses. Indeed, Figure 4 shows that the model gives a good description of the data. The

additional 4 degrees of freedom present in the data lead to four parameter free model predictions

described in the main text.

The fixed point solutions of Equation 1 (without blockers) are

rE ¼ ðWIIþ1ÞðIEX�x0;EÞ�WEI ðIIXþlL�x0I Þ
WEIWIE�ðWIIþ1ÞðWEE�1Þ

rI ¼ WIEðIEX�x0;EÞ�ðWEE�1ÞðIIXþlL�x0I Þ
WEIWIE�ðWIIþ1ÞðWEE�1Þ

8

<

:

and
rE ¼ 0

rI ¼ IIXþlL�x0;I
WIIþ1

(

: (6)

For every value of the laser intensity, the excitatory and inhibitory nullclines are defined as the

functions rI ¼ rIðrEÞ which solve the first and the second line of Equation 6, respectively. Every inter-

section between the two nullclines is a solution of Equation 6 and gives a stationary state of the net-

work dynamics.

Equation 6 has two dimensions that can be inferred only up to a multiplicative constant:

WEE � 1;WEI ; IEX ; x0;E ! gEðWEE � 1Þ; gEWEI ; gEIEX ; gEx0;E ;

WIE;WII þ 1; IIX ; x0;I ; l! gIWIE; gIðWII þ 1Þ; gI IIX ; gIx0;I ; gIl

�

: (7)

Because of these invariances, using data from a single experimental phase, only ratios between

parameters can be inferred. This is no longer true when the three phases are considered; in this case

all the 11 relevant model parameters can be found.

Parameter inference
Given the dataset of excitatory and inhibitory responses, the best set of parameters describing the

data is found via global optimization as follows:

1. Select random initial parameters in the interval [0,10].
2. Find the optimal set of parameters through a least-squares optimization (python function

‘curve_fit’, variables are constrained to be positive and, for �E;I , in the interval [0,1]) of the
difference between observed rates and model predictions given by Equation 6.

3. Repeate the procedure 104 times, and select the solution with minimal error as the optimal
parameter set describing the data.

The optimization procedure is applied simultaneously on data from all phases and recording ses-

sions in V1. For the first phase (awake), data from all recording sessions from VGAT-ChR2 animals in

V1 (9 days, four animals) were pooled together for fitting. For the second and third phases (E block-

ers, E+I blockers), in order to describe the variability from day to day of the efficacy of the blockers,

we use a different set of �E;I for each recording session (6 days, two animals). For these two phases,

three out of the nine recording sessions are excluded from the analysis because blockers were

added after anesthetizing the animals. The optimal parameters found by this approach are:

WEE ¼ 2:56;WEI ¼ 1:77; IEX ¼ 8:51spk=s; x0E ¼ 1:19spk=s;

WIE ¼ 8:54;WII ¼ 7:11; IIX ¼ 34:16spk=s; x0I ¼ 8:65 spk=s; l¼ 6:3 spk=s
(8)

These parameters are used in Equation 6 to generate the best model description of the data in

the first phase of the experiment (Figure 4A, first column, black line). For the second and third

phases, predictions also depend on the efficacy of synaptic blockers, which are different in the
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different recording sessions (see Figure 4—figure supplement 2). Data and model predictions for

all sessions are shown in Figure 4—figure supplement 2; in the main text, we showed averages of

the two computed across sessions for each phase (Figure 4A, second and third columns, black line).

We use a bootstrap approach, combined with the global optimization described above, to esti-

mate the precision with which model parameters can be inferred from the data. The optimal (mini-

mum-error) estimates obtained from 104 random resamplings (random with replacement) are shown

in Figure 4—figure supplement 2. Despite the non-uniqueness of the solutions, the bootstrap

shows (dashed lines in Figure 4: 1 s.d. via boostrap) that model rates are clustered around the data

in all three phases of the experiment.

Stability of the solution
To analyze the stability of the system, we compute the eigenvalues of the dynamical matrix defined

by Equation 1. For the linear transfer function we find

l� ¼ aEWEI

2t E

aEWEE � 1

aEWEI

� r
aIWII þ 1

aIWIE

� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aEWEE � 1

aEWEI

þ r
aIWII þ 1

aIWIE

� �2

�4r

s
2

4

3

5 (9)

with r¼ t EaIWIE

t IaEWEI
This ratio cannot be inferred from the data since t E;I do not appear in the static solu-

tion. We thus determined t E and t I (shown in Figure 4E) from the response dynamics (Figure 4D).

With multiple inhibitory subclasses, ISN operation need not imply
paradoxical suppression
To understand how the network response to PV stimulations depends on its structure, here we ana-

lyze a three-population model (Figure 6A) with one excitatory and two inhibitory populations,

referred hereafter as E (pyramidal cells), P (ChRonos-expressing PV cells), and I (non-expressing PV ,

SOM, VIP. . .). The network dynamics is described by

t E
drE
dt

¼�rE þfE WEErE �WEIrI �WEPrP þ IEXð Þ ;
t I

drI
dt

¼�rI þfI WIErE �WIIrI �WIPrPþ IIXð Þ ;
t P

drP
dt

¼�rP þfP WPErE �WPIrI �WPPrPþ IPX þlLð Þ:

8

>

<

>

:

(10)

The model predictions in Figure 6 have been obtained from Equation 10 using

WEE ¼WVGAT
EE ; WEI ¼ ð1� fracÞWVGAT

II ; WEP ¼ fracWVGAT
II ; IEX ¼ IVGATEX ;

WIE ¼WVGAT
IE ; WII ¼ ð1� fracÞWVGAT

II ; WIP ¼ fracWVGAT
II ; IIX ¼ IVGATEX ;

WPE ¼WVGAT
IE ; WPI ¼ ð1� fracÞWVGAT

II ; WPP ¼ fracWVGAT
II ; IPX ¼ IVGATEX ;

(11)

where frac 2 ð0;1Þ represents the fraction of ChRonos-expressing PV cells, WVGAT
AB and IVGATA represent

the parameters of Equation 8, obtained using the V1 data from the VGAT-ChR2 mouse line.

Using the rectified linear transfer function of Equation 2, and assuming aA ¼ 1 to simplify expres-

sions, the equilibrium response to stimulation of the P population is given by

rPðLÞ� rPð0Þ ¼
ð1�WEEÞðWII þ 1ÞþWEIWIE

N
lL (12)

with

N ¼ ð1�WEEÞ ðWII þ 1ÞðWPPþ 1Þ�WIPWPI½ �
�WEI WIPWPE �WIEðWPPþ 1Þ½ �þWEP ðWII þ 1ÞWPE �WIEWPI½ �

Equation 12 shows that, both for WEE<1 and WEE>1, depending on the network connectivity, the

ratio on the r.h.s. can be either positive or negative. It follows that, in a network with two inhibitory

populations, an unstable excitatory subnetwork does not imply paradoxical suppression when one of

the populations is stimulated. This can be seen more easily in a simplified model in which connectiv-

ity depends only on the identity of the presynaptic unit. In particular, using WEE ¼WIE ¼WPE ¼W,

WEI ¼WII ¼WPI ¼ kIW, and WEP ¼WIP ¼WPP ¼ kPW , Equation 12 becomes
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rPðLÞ� rPð0Þ ¼
1þðkI � 1ÞW

1þðkPþ kI � 1ÞW (13)

In the large W limit, in which the excitatory population is unstable without inhibition, the network

shows the paradoxical effect only if kI<1 and kP>1� kI . (Note that, for the network to be stable in

this condition, the matrix of the coefficients of Equation 10, linearized around the fixed point, must

have eigenvalues with a negative real part, a requirement which also involves the magnitude of t E,

t I , and t P.)
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Appendix 1

Paradoxical response implies inhibitory stabilization in
networks with short term plasticity
In the main text, we have shown that cortical response to optogenetic stimulations is

consistent with the network being stabilized by inhibition. Our conclusion was based on

theoretical work linking paradoxical inhibitory responses to inhibitory stabilization of unstable

excitatory activity (Tsodyks et al., 1997). This work shows that network stability is determined

by two variables, strength of recurrent connections and time scale of neuronal responses,

which are assumed to be constant in time. Short term plasticity (STP) (Tsodyks and Markram,

1997; Markram et al., 1998) could potentially modify the link between paradoxical response

and inhibition stabilization, as it dynamically modifies synaptic efficacy, but its effects on

network stability have not been analyzed yet. In this section, we show that paradoxical

inhibitory response implies inhibitory stabilization also when STP is taken into account.

However, the reverse is no longer guaranteed to be true, as inhibition stabilization no longer

necessarily implies paradoxical response. Therefore, the conclusions of the main text remain

valid also in a modeling framework which includes STP.

1. Mathematical description of STP
To investigate the effects of STP on the relationship between paradoxical effect and inhibitory

stabilization, we use the phenomenological description of STP developed in Tsodyks et al.,

1997; Markram et al., 1998; Tsodyks et al., 1998. This framework is accurate enough to

capture quantitatively both short term depression (STD) and short term facilitation (STF), and

is simple enough to allow analytical investigation. The state of each synapse is described by

two variables: the fraction x (0 � x � 1) of vesicles available for release, and the fraction u

(0 � u � 1) of available vesicles that release neurotransmitter after a presynaptic spike (release

probability). In the model, a presynaptic spike arriving at time t opens calcium channels in the

presynaptic terminal, which generates an increases the value of uðt�Þ by an amount U½1�
uðt�Þ� (0<U<1 is a fixed parameter) and produces the release of a fraction uðtþÞxðt�Þ of
vesicles. After the spike, channels close with a time constant t F and vesicles recover with a

time constant t D. As shown in Tsodyks et al., 1998, when presynaptic spikes are Poisson-

distributed with rate r, the dynamics of x and u is given by

du
dt
¼� u

t F
þUð1� uÞ r ;

dx
dt
¼ 1�x

t D
�Wxr ;

W¼ uþU 1� uð Þ½ � :

8

>

<

>

:

(A1)

In this model, synaptic efficacy and postsynaptic current are proportional to Wx and Wxr,

respectively. The modulation of synaptic efficacy by the presynaptic rate can be understood as

follows. When u is fixed, x and the synaptic efficacy decrease with r, leading to synaptic

depression. When x is fixed, the increase in u with r augments synaptic efficacy and leads to

synaptic facilitation. When both u and x are allowed to vary, facilitation dominates at low r and

depression dominates at high r (Markram et al., 1998; Tsodyks et al., 1998). A stationary

input rate rðtÞ ¼ r0 gives

W0 ¼U
1þ t Fr0

1þUt Fr0
; x0 ¼

1

1þW0t Dr0
; (A2)

and, since U<1, produces a synaptic current which increases monotonically with r0; this

monotonic increase will be important in the upcoming sections.

In what follows, we include the description of STP discussed above in our network model

(Equation 1 of the main text) by adding variables xAB and uAB for all projections WAB, so that

the synaptic current WABrB becomes xABuABWABrB. Therefore, the network dynamics is given by
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t E
drE
dt

¼�rE þ xEEWEEWEE rE � xEIWEIWEI rI þ IEX � x0E½ �þ
t I

drI
dt

¼�rI þ xIEWIEWIE rE � xIIWIIWII rI þ IIX þlL� x0I½ �þ
duAB
dt

¼� uAB
t F

þUð1� uABÞr ;
dxAB
dt

¼ 1�xAB
t D

�WAB xAB r ;

WAB ¼ uABþU 1� uABð Þ½ � :

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(A3)

Here A;B2 ½E; I� and, to simplify the analysis, we assumed threshold-linear single neuron

transfer function.

2. Conditions for paradoxical response in networks with
STP
In this section, we investigate conditions for paradoxical inhibitory response in networks with

STP; the role of inhibition in stabilizing activity is discussed in the next section.

As discussed in Tsodyks et al., 1997; Ozeki et al., 2009 and in Figure 1—figure

supplement 1, paradoxical inhibitory response can be studied using the rE and rI nullclines of

the model in the rE=rI plane. The difference with those previous studies is that we have

additional dynamical variables for synaptic strengths, and these should be set to their

equilibrium values. Using dxAB=dt ¼ 0 and duAB=dt ¼ 0, we express WAB and xAB as a function of

rB (as done in Equation A2) and define

fEðrIÞ ¼ xEIðrIÞWEIðrIÞWEI rI ; fIðrIÞ ¼ rI þ xIIðrIÞWIIðrIÞWII rI : (A4)

Since each term xABðrBÞuABðrBÞWABrB is a monotonically increasing function of the

presynaptic rate rB, fE;I can be inverted and, in the region of rates rE;I>0, we can write the

excitatory and inhibitory nullclines as

r
excitatory
I ðrEÞ ¼ f�1

E xEEðrEÞuEEðrEÞWEE rE � rE þ IEX � x0E½ �
r
inhibitory
I ðrE;LÞ ¼ f�1

I xIEðrEÞuIEðrEÞWIE rE þ IIX þlL� x0I½ � :

(

(A5)

Using the fact that f�1

I ½:� is an increasing function of its argument, we obtain that the

inhibitory nullcline r
inhibitory
I ðrE;LÞ increases with rE and L. It follows that the response of the

inhibitory population is paradoxical, that is the stationary value of rI decreases with L, only if

the excitatory nullcline r
excitatory
I ðrEÞ has positive slope, that is if

df�1

E ðrEÞ
drE

>0 : (A6)

Equation A6 must be satisfied by any network of excitatory and inhibitory neurons with

STP which shows paradoxical effect. In the next section, we show that this condition is violated

in networks which are stable with fixed inhibition.

To conclude, we note that the condition of Equation A6 is only necessary but not sufficient,

and in order for the paradoxical response to emerge, one also needs

df�1

E ðrEÞ=drE<df�1

I ðrEÞ=drE. Without STP, this condition is met any time the network is

dynamically stable (Ozeki et al., 2009). With STP, proving an analogous result is more

complicated, as it involves the stability of Equation A3, that is of a ten-dimensional dynamical

system.

Inhibition stabilization in networks with STP
In this section, we investigate the relation between paradoxical effect and inhibitory

stabilization in networks with STP. As discussed above, plasticity can be included in all the

synapses of the model (i.e. at all projections WAB in Equation 1) but only STP at recurrent

excitatory synapses (WEE) can influence the role of inhibition in the stabilization of dynamics. In

fact, a network is said to be inhibition stabilized if instabilities emerge once inhibitory rates are
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forced to be constant in time (Tsodyks et al., 1997; Ozeki et al., 2009). This condition is not

affected by plasticity involving inhibitory neurons (both pre- and post- synaptically), therefore

we can limit our investigation to STP in WEE. In what follows, first we study analytically

networks in which only one between STD or STF is present, then we investigate numerically

networks in which both STD and STF are included simultaneously. In all these cases, we find

that paradoxical inhibitory response implies that the network is unstable with fixed inhibition.

Therefore, if a stable network shows paradoxical response, the excitatory network must be

unstable on its own and has to be stabilized by inhibition. It follows that the conclusions

derived in the main text about cortical networks remain valid also when STP is taken into

account in the analysis.

Effects of STD
With STD in WEE synapses, the network dynamics is given by

t E
drE
dt

¼�rE þ xWEE rE �WEI rI þ IEX � x0E½ �þ
t I

drI
dt

¼�rI þ WIE rE �WII rI þ IIX þlL� x0I½ �þ
dx
dt

¼ 1�x
t D

� xUrE :

8

>

<

>

:

(A7)

The effect of STD on the stationary response can be seen by looking at the rE and rI

nullclines of the system (Appendix 1—figure 1A) in the rE=rI plane, setting x to its steady-

state value. Expressing x as a function of rE, we find

r
excitatory
I ðrEÞ ¼ 1

WEI

WEE

1þt DUrE
� 1

� �

rE þ IEX � x0E

h i

;

r
inhibitory
I ðrE;LÞ ¼ 1

1þWII
WIE rE þ IIX þlL� x0I½ �

8

<

:

(A8)

The above expression shows that STD decreases the self-excitation of excitatory cells as the

excitatory rate increases. The stationary solutions of the Equation A7 (here referred to as x�,

r�E, r
�
I ) are the points at which the two nullclines of Equation A8 cross. As discussed in general

terms in the previous section, increasing L in Equation A8 moves the inhibitory nullcline

upward and Equation A6 provides a necessary condition for the paradoxical inhibitory

response to emerge; this condition is met any time that

x�>
1
ffiffiffiffiffiffiffiffiffi

WEE

p : (A9)

If Equation A9 is not satisfied, the network response is not paradoxical.

The stability of the stationary solutions is found with a standard perturbation analysis

around the stationary state. With frozen inhibition, we can write perturbation around the

stationary solutions as x ¼ x� þ dx and rE ¼ r�E þ dE. In the case of r�E>0, the dynamics of these

perturbations is given by

t E
ddE
dt

¼ �1þ x�WEEð ÞdE þWEEr
�
E dx

ddx
dt

¼�x�UdE � 1

t D
þUr�E

� �

dx

8

<

:

: (A10)

Equation A10 shows that, with fixed inhibition and fixed STD (dx ¼ 0), the excitatory

network is unstable if

x�WEE>1 (A11)

which, since 0<x<1, also implies that WEE>1. With fixed inhibition and dynamic STD,

the dynamics is stable if

x�<min
1
ffiffiffiffiffiffiffiffiffi

WEE

p ;
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4
t E

t D
WEE

q

2WEE

0

@

1

A (A12)
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If Equation A12 is verified, the network is stable without dynamic inhibition. Since this

condition cannot be satisfied simultaneously with Equation A9, stabilization in a network with

STD in WEE synapses which shows paradoxical effect has to be realized by inhibition.

Appendix 1—figure 1. Network dynamics with short term depression. (A) Excitatory (red) and

inhibitory (blue) nullclines of Equation A7. Different columns correspond to different values of

WIE (from left to right, WIE ¼ 11:10, 3.42, 0.60); symbols correspond to the stationary solutions

of the Equation A7. STD bends the excitatory nullcline downward, with a decrease that starts

when rE ~ 1=Ut D. Since increasing L moves the inhibitory nullcline to the left, paradoxical

inhibitory response emerges only if the nullclines meet in the region of positive slope of the

excitatory nullcline. (B) As in (A) but for Excitatory (red) and x (black) nullclines of

Equation A7. Dashed lines correspond to threshold for paradoxical response (purple,

Equation A9) and stability of the excitatory population with fixed x and rI (green,

Equation A12). Note that paradoxical response can appear only if the network with fixed rI is

unstable. Therefore, if a network is stabilized by STD, it cannot show paradoxical response. (C)
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Dynamics of excitatory neurons in response to perturbations applied at time t ¼ 0. Different

colors correspond to different constraints on the dynamics. Different columns are as in panels

A and B. (D) Values of x� as a function of WEE for which the network: has paradoxical response

(Equation A9, purple), is stable with fixed rI (Equation A12, green), is stable with fixed x and

rI (Equation A11, red). Paradoxical inhibitory response emerges only if the excitatory

subnetwork is unstable on its own (WEE>1) and with STD and fixed inhibition (Equation A12).

Symbols correspond to the stationary solutions of panels A and B. Simulation parameters are:

WEE ¼ 3:33, WEI ¼ 1:77, WII ¼ 7:11, IEX ¼ 8:51, IIX ¼ 32:45, l ¼ 6:3, x0E ¼ 1:19, x0I ¼ 8:65,

t E ¼ 7:8 ms, t I ¼ 34:3 ms, t D = 500 ms, U = 0.6.

Effects of STF
In the presence of STF in WEE synapses, the network dynamics is given by

t E
drE
dt

¼�rE þ WWEE rE �WEI rI þ IEX � x0E½ �þ
t I

drI
dt

¼�rI þ WIE rE �WII rI þ IIX þlL� x0I½ �þ
dW
dt

¼�W 1þUrEt F

t F
þU 1þrEt F

t F

:

8

>

>

<

>

>

:

(A13)

Proceeding as in the case of STD, we find that inhibitory response is paradoxical, that is

Equation A6 is verified, if

WEE>1 and W�>1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1þU WEE � 1ð Þ
WEE

s

: (A14)

On the other hand, dynamics with fixed inhibition is stable if

W�<1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1þU WEE � 1ð Þ
WEE

s

(A15)

Therefore, as in the case of STD, stability with frozen inhibition is incompatible with

paradoxical effect and paradoxical inhibitory response implies inhibitory stabilization.

Analysis of networks with STF and STP in E!E synapses
To conclude our analysis, we investigate the relation between paradoxical inhibitory response

and inhibitory stabilization in networks with both STF and STD in WEE synapses. In these

networks, the dynamics is given by

t E
drE
dt

¼�rE þ xWWEE rE �WEIrI þ IEX � xE0½ �þ
t I

drI
dt

¼�rI þ WIE rE �WIIrI þ IIX � xI0 þlrI½ �þ
du
dt

¼� u
t F
þUð1� uÞrE

dx
dt

¼ 1�x
t D

�WxrE ; W¼ uþUð1� uÞ

8

>

>

>

>

<

>

>

>

>

:

: (A16)

The analytical approach we used to study networks with either STD or STF cannot be

applied here, as finding the stationary solutions of Equation A16 requires solving a system of

equations with polynomials of degree higher than two in rE. Therefore, to investigate the

relation between paradoxical inhibitory response and inhibitory stabilization, we used a

numerical approach.

We considered networks with randomly generated parameters and, for each realization, we

analyzed numerically the response to external excitation of inhibitory neurons and the role of

inhibition in stabilizing the dynamics. We considered networks with t E ¼ t I ¼ 10 ms, l ¼ 1,

x0E ¼ x0I ¼ 0 and randomly generated WAB; IAX 2 f0; 10g, t F;D 2 f0:01s; 0:99sg and

U 2 f0:01; 0:99g, using uniform distributions in the specified intervals. For each network, that is

for each realization of the randomly-generated parameters, we simulated the dynamics

induced by Equation A16 for a time time T ¼ 10 s (Euler method, integration time step

dt ¼ 0:1 ms) and measured the stationary values of rE, rI , u and x. We assessed numerically that
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each solution was stationary, and that rates were not oscillating or running away, by measuring

the standard deviation of rE for t>5 s; we considered the dynamics stationary if, for t>5 s,

std ðrEÞ= mean ðrEÞ<10�3. For each network with stationary dynamics, we ran another

simulation (T ¼ 10 s) and measured the response of inhibitory neurons to external stimulation.

Specifically, we increased the value of L from to 0.1 for t 2 f5; 10g s and considered the

response to be paradoxical if ðrIðL ¼ 0Þ � rIðL ¼ 0:1ÞÞ=ðrIðL ¼ 0Þ þ rIðL ¼ 0:1ÞÞ>10�3, where

rIðL ¼ zÞ represents the rate measured at the end of the simulation period (t ¼ T ¼ 10 s) for

L ¼ z. To investigate the role of inhibition in stabilizing the dynamics, we ran yet another

simulation (T ¼ 10 s) in which, for time t>5 s, we clamped the value of inhibitory rates and

applied a perturbation to excitatory neurons (increase in 0.05 spk/s of rE for t>5:00 s, t<5:01 s).

We considered the network to be inhibition-stabilized if

jrEðP ¼ 0:05 spk=sÞ � rEðP ¼ 0 spk=sÞj=ðrEðP ¼ 0:05spk=sÞ þ rEðP ¼ 0spk=sÞÞ>10�3, where rEðP ¼
zÞ represents the rate measured at the end of the simulation period (t ¼ T ¼ 10 s) with a

perturbation of z spk/s. Applying this approach to N ¼ 998845 networks, we found that 98%

(979227/998845) of them had stationary dynamics. Of these, 65.5% (639245/979227) were

inhibition stabilized and 9% (88559/979227) had paradoxical inhibitory response. Of the

inhibition stabilized networks, only 14% (88559/639245) showed paradoxical inhibitory

response. This is consistent with our analytical results in networks with either STD or STP,

where we found that inhibitory stabilization does not imply paradoxical inhibitory response. Of

the networks with paradoxical response, consistent with what we found in networks with either

STD or STP, 100% (88559/88559) were inhibition stabilized.

Our numerical results suggest that, also in networks in which STD and STF coexist in WEE

synapses, paradoxical inhibitory response implies inhibitory stabilization.
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Appendix 2

Response analysis with networks of leaky integrate and
fire neurons
In the main text, using rate models without input noise, we have shown that experimental data

recorded in V1 are consistent with the network operating in the inhibition stabilized regime,

with mean excitatory and inhibitory inputs larger than threshold and total input of order

threshold. In this section we show that similar results are obtained using a rate model which

features input noise and a more biologically accurate transfer function. Furthermore, this

analysis shows that inferred parameters agree with previously measured network properties,

and that data are consistent with the loose balance regime (Ahmadian and Miller, 2019) and

noise driven firing.

Model definition
We use a network of excitatory and inhibitory neurons analogous to the one described in the

main text, but with a single neuron transfer function matching that of leaky integrate and fire

models. In the network, each neuron in population A ¼ ½E; I� receives a Gaussian distributed

input, of mean �A and variance s2

A, which is produced by recurrent and feedforward

interactions. As shown in Brunel, 2000, population firing rates are found by solving:

rE ¼ t rpþ t E

ffiffiffiffi

p
p R umax;E

umin;E
eu

2

1þ erfðuÞð Þdu
h i�1

;

rI ¼ t rp þ t I

ffiffiffiffi

p
p R umax;I

umin;I
eu

2

1þ erfðuÞð Þdu
h i�1

;

8

>

<

>

:

(B1)

where t rp is the single neuron refractory period, while umax;A and umin;A are the distance from

spiking threshold � and reset Vr of the mean input �A measured in units of input noise sA,

that is

umax;A ¼
���A

sA

; umin;A ¼
Vr ��A

sA

: (B2)

In the model, using the same notation as in the linear model of the main text, means are

given by

�E ¼ IEX þWEErE �WEIrI ;

�I ¼ IIX þWIErE �WIIrI þlL ;
(B3)

we assume noise amplitude to be fixed to sE ¼ sI ¼ 5mV (Haider et al., 2013). Other model

parameters are: t rp ¼ 2ms, t E ¼ 20ms, t I ¼ 10ms, �¼ 20mV, Vr ¼ 10mV. This model has a

total of 9 free parameters (four connectivity parameters WAB, two feed-forward inputs IAX , one

laser efficacy l, two blockers efficacy �A) which will be inferred from the data.

Fitting procedure
Evaluating rates from Equation B1 is computationally expensive; to speed up the exploration

of the parameter space, we fitted the model directly to the average population response as

follows.

We discretized laser intensities into 101 bins centered around laser values Li and equally

spaced in the interval ½0; Lmax� (Lmax is the maximum L=L0 common to all recording days, we

used Lmax ¼ 15 and checked that results were unchanged for Lmax ¼ 10� 14). The error in the

model description was computed as
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Err ¼
X

A2½E;I�;phase2½1;2;3�
ErrA;phase ;

ErrA;phase ¼ 1

numberof pointswithLi � Lin

X

Li�Lin

dataðLiÞ�modelðLiÞ
maxðsemðLiÞ;1Þ

� �2

þanalogousexpression forLin<Li<Lmax ;

(B4)

where modelðLiÞ is the model prediction obtained from Equation B1 for L¼ Li, while dataðLiÞ
(semðLiÞ) is the mean rate (standard error of the mean); this was computed averaging

responses from all cells to stimuli of intensity L=L0 within the bin centered around Li. The

parameter Lin divides data into two groups, Li<Lin and Lin<Li, whose contributions to the error

are weighed by the corresponding number of data points; this split was used to prevent the

large laser responses of inhibitory cells from dominating the error (we used Lin ¼ 1 and

checked that results were robust for Lin ¼ 2;3). The minimum bound on the standard error of

the mean (maxðsemðLiÞ;1Þ) prevents regions with low semðLiÞ (specifically, the large laser

intensity response of excitatory cells) from dominating the error.

Given the average neural responses of different populations and phases, optimal model

parameters were determined by minimizing Equation B4 as described in the methods section

of the main text. Finally, to better estimate the excitatory rate at large laser intensity, we

included in our analysis only cells that were classified in the same way (inhibitory or excitatory)

from the classification done with blockers and with response at high laser intensity. This

filtering reduces the number of cells used in the analysis, from 167 (111 E+ 56 I) to 119 (90 E +

29 I), and decreases the excitatory rate measured at large laser intensity (Appendix 2—figure

1A).

Results of the analysis
The best model description of the data, obtained minimizing Equation B4, is shown in

Appendix 2—figure 1A. The corresponding model parameters are:

WEE ¼ 2:65mVs;WEI ¼ 2:28mVs;WIE ¼ 3:03mVs;WII ¼ 2:50mVs;

IEX ¼ 20:19mV; IIX ¼ 19:49mV; l¼ 3:38mV; �E ¼ 0:55; �I ¼ 0:32:
(B5)

As in the main text, we used a bootstrap approach to estimate the precision with which

model parameters can be inferred from the data; results are shown in Appendix 2—figure 1B.

The analysis shows that distribution of inferred parameters are localized around the optimal

solution described above. Moreover, the parameters of the model can be map to known

biophysical quantities by noticing that WEE ¼ t EKEEJEE (Brunel, 2000), where KEE and JEE are

the average number of recurrent excitatory projection and their efficacy (analogous expression

holds for the other elements of the matrix W). Assuming t E ¼ 20ms and KEE »10
2 � 10

3, we

obtain an estimate of JEE »0:1� 1mV, which is consistent with direct biophysical

measurements (Holmgren et al., 2003).

We computed the inputs into excitatory cells; contributions coming from recurrent

inhibition (�WEIrI ), recurrent excitation (WEErE), and feed-forward excitation (IEX ) are shown in

Appendix 2—figure 1C. The total input is found to be below threshold, at a distance of order

one in unit of input noise. This result is consistent with the balanced state model (Amit and

Brunel, 1997; van Vreeswijk and Sompolinsky, 1996; van Vreeswijk and Sompolinsky,

1998), where firing is driven by input noise. However, unlike what is expected by the balanced

state model, the different components of the input (e.g. feed-forward excitation) are of order

threshold, consistent with the loose balance regime recently suggested to underlie cortical

dynamics (Ahmadian and Miller, 2019).

In the model, the strength of self-excitation of the excitatory population is obtained from

Equation B1 as

WEE ¼
d

drE
t rp þ t E

ffiffiffiffi

p
p Z umax;E

umin;E

eu
2

1þ erfðuÞð Þdu
" #�1

; (B6)
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where the integral is evaluated at the inferred baseline activity. The quantity WEE is the

generalization of the parameter WEE analyzed in the main text, which takes into account the

amplification of coupling strength due to transfer function nonlinearities. Values of WEE

inferred with data bootstrap are shown in Appendix 2—figure 1D. Results are consistent with

WEE larger than one, indicating that indeed the excitatory subnetwork is unstable without

inhibition, and in the range 5–15, consistent with the result obtained in the main text using a

linear model.

To summarize, the analysis derived in this section shows that results obtained in the main

text are preserved when a more biologically accurate, spiking, model is used to describe the

data. Moreover, this approach also shows that inferred parameters are consistent with known

biophysical properties of cortical networks.

r
E

L0

r
I

L0 L0

WEE WEI WIE WII IEX

I IX E E

EE

Appendix 2—figure 1. Population response in the three phases of the experiment. (A) Optimal

fit of population response given by Equation B1. (B) Distributions (lines) and medians (arrows)
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of inferred parameters obtained with data bootstrap; dashed lines are optimal parameters

reported in the text. (C) Distribution (line) and median (arrow) of self excitation of excitatory

cells computed from data using Equation B6. The inferred values are distributed above the

instability point WEE ¼ 1 (red line). (D) Distributions (lines) and medians (arrows) of recurrent

excitation (WEErE, purple), recurrent inhibition (�WEIrI , blue), feed-forward+recurrent

excitation (WEErE þ IEX , red), and total input (�WEIrI þWEErE þ IEX , gray) to excitatory cells. As

discussed in the text, inputs are of order threshold (dashed line); data are consistent with

fluctuation driven firing (Amit and Brunel, 1997; van Vreeswijk and Sompolinsky, 1996;

van Vreeswijk and Sompolinsky, 1998) and loose balance regime (Ahmadian and Miller,

2019).
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