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7 Stimulus-Invariant Tuning by Neurons

and the ’Ring’ Model of Recurrent

Interactions. Part 2

We return to our consideration of the ”ring” model (Figure 1), as
a demonstration of how recurrent connections and the threshold in
the gain curve can lead to a powerful computation.

Figure 1: The global model (presented here) and models with local interactions (better
suited for the fly) both lead to a moving bump.

7.0.1 Recap

We previously analyzed this model in the limit of all neurons oper-
ating in the linear part of their gain curve, for which

r̃(φ) = I0

[
1 + ε

1−W0

+
2ε

2−W1

cos(φ − φ0)
]

(7.1)

and the selectivity of the output is

Selectivity of output ≡ |r1|
r0

=
1−W0

2−W1

× Selectivity of input.
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In the linear case, the input determines the output. Thus the choice
ε = 0 will lead to r1 = 0 and no modulation of the neuronal ac-
tivity, despite the angular dependence of the interactions.Here we
infroduce an angular dependence to the activity, a bump along φ,
by allowing for nonlinearity in the gain functions and the W1 > 2.

7.0.2 Marginal (spontaneous bump) state

In the linear case, the input determines the output. Thus the choice
ε = 0 will lead to r1 = 0. Now suppose we increase the interaction
term W1 so that W1 > 2. Clearly we have to allow for a nonlinear
gain of the input so that some neurons will be on and some off so
that the average modulation is bounded.

For simplicity, we take f [x] as threshold linear, i.e.

f [x] = [x]+. (7.2)

Then we expect that |r1| > 0 even if ε = 0. In this case we expect
a bump of neuronal activity that is centered around the average
direction of phase, ψ.

r1 =
1

2π

∫ ψ+π

ψ−π
dφ′ [r(φ′)]+ e

−iφ′ (7.3)

=
1

2π

∫ ψ+π

ψ−π
dφ′ [W0r0 + I0 − θ +W1|r1|cos(φ′ − ψ)]+ e

−iφ′ .

The bump is taken to have an extent with a half width of φC , which
we will have to relate to the synaptic weights. Then we can write
a self consistency equation

r1 =
1

2π

∫ ψ+φC

ψ−φC
dφ′([W0r0 + I0 − θ +W1|r1|cos(φ′ − ψ)] (7.4)

− [W0r0 + I0 − θ +W1|r1| cos (ψ ± φC − ψ)])e−iφ
′

= W1 |r1|
1

2π

∫ ψ+φC

ψ−φC
dφ′ (cos(φ′ − ψ)− cos φC) e−iφ

′

= W1 |r1|e−iψ
1

2π

∫ φC

−φC
dx (cos x − cos φC) e−ix

. = W1 r1
1

2π

∫ φC

−φC
dx

(
eix

2
+

e−ix

2
− cos φC

)
e−ix

= W1 r1
1

2π

∫ φC

−φC
dx

(
1

2
+

e−i2x

2
− cos φC e−ix

)

= W1 r1
1

2π

(
φC −

1

2
sin 2φC

)
so that

W1 =
4π

2φC − sin 2φC
. (7.5)
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Our result relates the synaptic strength to the pattern of activa-
tion. It means that the network will form a bump of activity with
width ±φC . The minimum value of the connectivity, for the widest
possible bump with φC = π, is W1 = 2 (Figure 2). This is just
where the network is linear. Further, φC → 0 as W1 → ∞, i.e.,
stronger connections yield a narrower bump. In the absence of an
input, the phase of the bump is arbitrary.

Figure 2: Tuning width versus W1

7.0.3 Symmetry breaking by a weak input

A weak input will pin the angular position, or phase, of the bump.
Weak means that 0 < ε � 1/2. So long as the stimulus is weak,
the tuning does not depend on the stimulus parameters, i.e., on the
selectivity of the input. To calculate the selectivity of the output
we first need to calculate r0 similarly to the analysis for the above
analysis if r1. We have

r0 =
1

2π

∫ ψ+π

ψ−π
dφ′ [r(φ′)]+ (7.6)

=
1

2π

∫ ψ+π

ψ−π
dφ′ [W0r0 + I0 − θ +W1|r1|cos(φ′ − ψ)]+(7.7)

=
1

2π

∫ ψ+φC

ψ−φC
dφ′([W0r0 + I0 − θ +W1|r1|cos(φ′ − ψ)]

− [W0r0 + I0 − θ +W1|r1| cos (ψ ± φC − ψ)])

= W1 |r1|
1

2π

∫ ψ+φC

ψ−φC
dφ′ (cos(φ′ − ψ)− cos φC)

= W1 |r1|e−iψ
1

2π

∫ φC

−φC
dx (cos x − cos φC)

. = W1 r1
1

π
(sinφC − φC cosφC)
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= r1 4
sinφC − φC cosφC

2φC − sin 2φC
.

so that unlike the case for linear response, the average activity
tracks the modulated activity. Thus we have

Selectivity of output ≡ |r1|
r0

(7.8)

=
1

4

2φC − sin2φC
sinφC − φC cosφC

,

which varies between 1/2 and 1, i.e., by very little, as a function
of φC . In this sense, the network will amplify a weak input and
drive a response. Unlike the case of a feedforward network, where
the width of the tuning curve depends on the input parameters I0

and ε, here the width depends only on W1. This satisfies the goal
of invariance. The relation of W1 to the width of the tuning curve
constitutes a design rule for invariant tuning (Figure 3). There are
also a restricted set of values of W0 and W1 that satisfy stability of
the output (Figure 4).

Figure 3: Selectivity of the network as a function of W1

7.1 Epilog

The ring model was motivated by experiments on the coding of
orientation in visual stimuli. A number of predictions were made.

Contrast invariance: This is observed and was a motivation ob-
servation (Figure 6).

Transient onset of invariance: The invariance should arise slowly
as this depends on recurrent connections. Thus the response
of neurons at short times is expected to follow feedforward
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Figure 4: Phase diagram for different ranges of synaptic weights

dynamics, while the response at later times, say after tens of
milliseconds, would follow recurrent dynamics. This was not
found.

Moving bump: Recordings from the colliculus for eye position
and from the anterior thalamus for heading suggest the no-
tion of a moving bump of activity. This was predicted to occur
in the visual system when the angle of the stimulus is rapidly
changes. Here, activity would transiently pass through neu-
rons that coding intermediate orientations (Figure 5). This
was not found to date in V1 cortex, yet is seem nicely in the
fly ellipsoid body (Figure 7).

Angular dependent connectivity: This is really a postdiction.
Neurons with similar orientation preference tend to make
stronger connections. Ditto for neurons in the same direc-
tion.

The great success of the model turns out to be with respect to
heading, as seen in the activity of neurons in the ellipsoid body of
the central complex of the fly and their manipulation by optogenet-
ics (Figure 8). Neurons will code their preferred heading relative to
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Figure 5: Evolution of neuronal activity in response to a shift in stimulus orientation
from 0 to 60 degrees. From Hansel and Sompolinsky 1998.

Figure 6: Contrast invariance with feedback. W0 = -0.4, W1 = 4.0, and ε = 0.09. From
Hansel and Sompolinsky 1998.

the direction - call it φ0 - of a landmark. Modifications of the ring
model that more closely match the observed anatomy have been
analyzed (Figure 1). Other work is trying to see if these models
hold, in some fashion, for three-dimensional movement (Figure 9).

7.1.1 Travel versus heading: A final calculation by the fly

We are done with the essence of the ring model, but from an etho-
logical perspective the fly needs to compute its direction travel as
opposed to just the heading. The travel direction, denoted Ω, in-
cludes shifts in direction of heading caused by wind. Recent work
provides a basis for this calculation, which we will sketch. The
problem is illustrated in Figure 10; there are for four populations
of neurons that code for wind direction, the PreFan body neu-
rons (PF-Ns) neurons, that target neurons in the Fan-shaped body.
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Figure 7: Evolution of neuronal activity in response to a shift in landmark. From Kim,
Rouault, Druckmann and Jayaraman 2017.

Figure 8: Optiogenetic activation of heading cells leads to a stable state. From Kim,
Rouault, Druckmann and Jayaraman 2017.

These are tuned to wind direction, but not heading (Figure 11).
Heading and wind direction and heading come together in the Fan-
shaped body, and the question is how travel is computed (Figure
??). These neurons have responses whose amplitude depend on
wind velocity, i.e., speed |bfV | and direction Θ, and that code the
direction of travel direction, denoted Ω as well.The four flavors of
input can be described as

Rate of PF− NdL input = |V | sin Ω cos (Θ− φ+ π/4) (7.9)

Rate of PF− NdR input = |V | cos Ω cos (Θ− φ− π/4) (7.10)

Rate of PF− NvL input = −|V | sin Ω cos (Θ− φ− 3π/4)(7.11)

Rate of PF− NvR input = −|V | cos Ω cos (Θ− φ+ 3π/4)(7.12)

Nature supplies a number of phase shifts through anatomical
positioning of different copies of the inputs to h∆B neurons. in
the Fan Shaped Body (Figure 12); this turns out to be critical
for summation of trigonometric functions! The output from these
four cells are added together in the Fan Shaped Body and used to
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Figure 9: The ring model can be extended to describe coding in two and even three
dimensions, as occurs in the heading of flying animals, such as bats

Figure 10: The travel direction complex of fly. From Lyu, Abbott and Maimon, Nature
2021

compute the direction of heading. All we need to recall to simply
this summation is that cos(A + B) = cosA cosB - sinA sinB and
that cos(π/4) = sin(π/4) = 1/

√
2. Then

Sum of rates of PF− N inputs =
|V |√

2
[sin (Ω + Θ− φ) + cos (Ω + Θ− φ)] .

(7.13)
This is maximum when the derivation is zero, or cos (Ω + Θ− φ)
= sin (Ω + Θ− φ), or Ω + Θ − φ = π/4. Thus if different neurons
code different values of Ω, the rate is greatest for the cell with

Ω = φ−Θ +
π

4
. (7.14)

So the fly knows its travel direction, using information based on
heading and wind direction, by the index of the neuron with the
largest rate (Figure 10).
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Figure 11: The response of PR-N neurons to changes in wind direction (top and middle
row) and the lack of response with respect to changes in heading (bottom row). Note ±π/4
and ±3π/4 shifts in physiological output (Figure 12). From Lyu, Abbott and Maimon,
Nature 2021

Figure 12: The direction complex of fly showing ±π/4 and ±3π/4 anatomical offsets.
From Lyu, Abbott and Maimon, Nature 2021
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