
Physics 178/278 - David Kleinfeld - Winter 2020 - Week 10

Revised 9 March 2020 00:58

10 Layered networks

We consider feedforward networks. These may be considered as the ”front end” of
nervous system, such as retinal ganglia cells that feed into neurons in the thalamus
for the case of vision, or touch receptors that feed into trigeminal second-order
sensory neurons for the case of orofacial touch. Of course, feedforward circuits are
of interest from an engineering perspective for sorting inputs or, more generally,
statistical inference.

10.1 Perceptrons

We begin with the case of a single layer, the ”Perceptron”. We write the calcu-
lated output, denoted ŷ, as

ŷ = f

 N∑
j=1

Wjxj − θ

 = f
[
~W · ~x− θ

]
(10.1)

where the x’s are the inputs, in the form of an N-dimensional vector ~x, ”θ” is
a threshold level, f [·] is a sigmoidal input-output function, and the Wj’s are the
weights to each of the inputs. We follow the scaling used throughout the feed
forward network literature of choosing of W ∝ O

(
1
N

)
, so that the sum is not scaled

by 1
N

. One model for f is

f [x] =
1

1 + e−βx
(10.2)

where β is the gain. As β →∞ the form of f [·] takes on that of a step function that
transitions rapidly from 0 to 1. In fact, it should remind you of the rapid transition
seen in neuronal spike rate with a Hopf bifurcation, such as the squid axon studied
by Hodgkin and Huxley. This is a useful approximation, as it allows us to consider
the mapping of Boolean functions, a program started in the early 1950’s by the
prescient paper of McCullock and Pitts.

1

Consider the case of an AND gate with two inputs and one true output, y. We
restrict ourselves to N = 2 inputs solely as a means to be able to draw pictures; a
model for integration of inputs by a neurons may consist of N >> 1000 inputs!

x1 x2 y
0 0 0
1 0 0
0 1 0
1 1 1

(10.3)

If we look at the input and require that it is positive for W1x1 +W2x2 − θ > 0 and
negative for W1x1 +W2x2 − θ < 0, we will have

0 < θ (10.4)

W1 < θ

W2 < θ

W1 +W2 > θ

There is a set of values of W1, W2, and θ that will work. One that gives the largest
margin, i.e., is least susceptibility to variations in the input, is the choice

W1 = 1 (10.5)

W2 = 1

θ = 3/2

.
This defines a line that divides the ”1” output from the ”0” output. The ”OR”

function is similarly defined, except that θ = 1/2. So far so good. But we observe
that ”XOR” cannot be described by this formalism, as there are now two regions
with a positive output, not one. So we cannot split the space of inputs with a single
line.

x1 x2 y
0 0 0
1 0 1
0 1 1
1 1 0

(10.6)

The ”XOR” can be solved by introducing an additional dimension so that we can
split the space in 3-dimensions by a plane.

2

10.2 Perceptron learning - Binary gain function

For a binary input-output function, we can write a construction rule for the values
of ~W starting from ~W = (0,0) and using the known pairs of inputs and outputs. We
write

~W ← ~W + y~x. (10.7)

when ŷ 6= y. Let’s use this for the case of AND. Note that the pairing has y = 1 for
~x = (1,1) and that y = 0 for the three other members ~x = (0,1), (1,0), and (0,0), so

they will not contribute to learning. Then ~W ← (0, 0) + 1(1, 1) = (1, 1).
The learning rule covers the threshold as well, i.e.,

θ ← θ + y ~w · ~x− 〈y〉 . (10.8)

For the case of AND, we start with θ = 0 and have θ ← 0 + 1(1, 1)T(1, 1)− 1/2 =
3/2.

10.3 Convergence of Perceptron learning

We now consider a proof that the Perceptron can aways learn a rule when there is
a plane that divides the input space. The analysis becomes a bit easier if we switch
to a symmetric notation, with y = ±1 and elements x = ±1. Consider ”n” sets of
Boolean functions with

Input(n) ≡ ~x(n) = {x1(n), x2(n), · · · , xN(n)} (10.9)

and
True output(n) ≡ y(n) = ±1. (10.10)

Training consists of learning the ~W s from the different sets of ~x(n) and y(n), denoted
{y(k), ~x(k)}. We calculate the predicted output above from each ~x using the old

values of ~W s and compare it with the true of y(n). Specifically

Calculated output ≡ ỹ(n) = f [~W (n) · ~x(n)]. (10.11)

The update rule to the ~W s is in terms of the True output and the Calculated output,
i.e.,

~W (m+ 1) = ~W (m) +
1

2
[y(n)− ỹ(n)] ~x(n) (10.12)

= ~W (m) +
1

2

[
y(n)− f [~W (n) · ~x(n)]

]
~x(n)

where we use the notation ~W (m) for the set of weights after m iterations of learning.
Clearly we have used m ≥ n. Correct categorization will lead to

ỹ(n) = y(n) implies ~W (m+ 1) = ~W (m) (10.13)

3

while incorrect categorization leads to a change in weights

ỹ(n) 6= y(n) implies ~W (m+ 1) = {
~W (m) + ~x(n) if ~W (n) · ~x(n) < 0
~W (m)− ~x(n) if ~W (n) · ~x(n) > 0.

(10.14)

One way to look at learning is that the examples can be divided into two training
sets:

Set of class 1 examples {y(k), ~x(k)} with y(k) = +1 ∀ k (10.15)

Set of class 2 examples {y(k), ~x(k)} with y(k) = −1 ∀ k.

An important point about the use of Perceptrons is the existence of a learning
rule that can be proved to converge. The idea in the proof is to show that with
consideration of more and more examples, i.e., with increasing n, the corrections to
the ~W (n) grow faster than the number of errors.

10.3.1 Growth of corrections to the ~W (n) as a function of iteration

Suppose we make m errors, which leads to m updates, among our set of n input-
output pairs. That is, ~W (m) · ~x(m) < 0 ∀m for the set of class 1 examples, yet

y(m) = +1. Let us estimate how the corrections to the ~W (m)s grow as a function
of the number of learning steps, e.g., as m, m2, m3, etc. The update rule is

~W (m+ 1) = ~W (m) + ~x(m) (10.16)

= ~W (m− 1) + ~x(m− 1) + ~x(m)

= ~W (m− 2) + ~x(m− 2) + ~x(m− 1) + ~x(m)

= · · ·

= ~W (0) +
m∑
k=0

~x(k).

In the above, all of the m corrections made use of the first m entries of the set of
class 1 examples. With no loss of generality, we take the initial value of the weight
vector as ~W (0) = 0, so that

~W (m+ 1) =
m∑
k=0

~x(k). (10.17)

Now consider a solution to the Perceptron, denoted ~W1, that is based on the set
of class 1 examples; by definition there is no index to this set of weights. Further,

4

this satisfies ~W1 ·~x(m) > 0∀m for any set of ~x. We use the overlap of ~W1 as a means
to form bounds on the corrections with increasing iterations of learning. We have

~W1 · ~W (m+ 1) =
m∑
k=1

~W1 · ~x(k) (10.18)

≥ m×minimum
{
~W1 · ~x(k)

}
where ~x(k) ∈ set 1 examples. Then

‖ ~W1 · ~W (m+ 1)‖ ≥ m×min
{
~W1 · ~x(k)

}
. (10.19)

But by the Cauchy-Schwartz inequality,

‖ ~W1‖‖ ~W (m+ 1)‖ ≥ ‖ ~W1 · ~W (m+ 1)‖ (10.20)

so
‖ ~W1‖‖ ~W (m+ 1)‖ ≥ m×min

{
~W1 · ~x(k)

}
(10.21)

or

‖ ~W (m+ 1)‖ ≥ m×
min

{
~W1 · ~x(k)

}
‖ ~W1‖

(10.22)

and we find that the correction to the weight vector ~W after m steps of learning
scales as m.

10.3.2 Growth of errors in the ~W (n) as a function of learning

We now estimate how the error to the weight vector ~W (m) grows as a function as
the number of learning steps. The error can grow as each learning step can add
noise as well as corrects for errors in the output ŷ(m). The key for convergence is
that the error grows more slowly than the correction, i.e., as most as m2−ε. We
start with the change in the weight vector as as function of the update step. After
m updates, we have

~W (m+ 1) = ~W (m) + ~x(m). (10.23)

But

‖ ~W (m+ 1)‖2 = ‖ ~W (m) + ~x(m))‖2 (10.24)

= ‖ ~W (m)‖2 + ‖~x(m)‖2 + 2 ~W (m) · ~x(m)

≤ ‖ ~W (m)‖2 + ‖~x(m)‖2

so
‖ ~W (m+ 1)‖2 − ‖ ~W (m)‖2 ≤ ‖~x(m)‖2. (10.25)

Now we can iterate:

‖ ~W (m+ 1)‖2 − ‖ ~W (m)‖2 ≤ ‖~x(m)‖2 (10.26)

‖ ~W (m)‖2 − ‖ ~W (m− 1)‖2 ≤ ‖~x(m− 1)‖2

· · ·
‖ ~W (1)‖2 − ‖ ~W (0)‖2 ≤ ‖~x(0)‖2.

5

We sum the right and left sides separately, and again take ~W (0) = 0, to get

‖ ~W (m+ 1)‖2 ≤
m∑
k=0

‖~x(k)‖2 (10.27)

≤ (m+ 1)×maximum
{
‖~x(k)‖2

}
.

Thus we find that the errors to the weight vector ~W after m corrections scale as√
m+ 1 ≈

√
m, i.e.,

‖ ~W (m+ 1)‖ ≤
√
m×max {‖~x(k)‖2}. (10.28)

or √
m×max {‖~x(k)‖2} ≥ ‖ ~W (m+ 1)‖. (10.29)

10.3.3 Proof of convergence

We now have two independent constraints on ‖ ~W (m+ 1)‖:

√
m×max {‖~x(k)‖2} ≥ ‖ ~W (m+ 1)‖ ≥ m×

min
{
~W1 · ~x(k)

}
‖ ~W1‖

(10.30)

and thus

m ≥ max {‖~x(k)‖2}(
min

{
~W1 · ~x(k)

})2 ‖ ~W1‖2. (10.31)

Fini!

10.4 Perceptron learning - Analog gain function

We return to the Perceptron but this time will focus on the use of a gain function
that is not binary, i.e., β infinite. We consider changes to the wights and write the
estimated output as ŷ(n), where n refers to the n-th round of learning. Then

ŷ(n) = f

 N∑
j=1

Wj(n)xj(n)

 (10.32)

where the ~W (n) are the weights after n rounds of learning and the (~x(n), y(n) are
the n-th input-output pair in the training set. The mean-square error between the
calculated and the actual output is

E(n) =
1

2
[y(n)− ŷ(n)]2 (10.33)

The learning rule for the weights on the n-th iteration, Wj(n) = Wj(n − 1) +
∆Wj(n) is now written it terms of minimizing the error, with

∆Wj(n) = −η ∂E(n)

∂Wj(n)
(10.34)

6

where η is a small number. We then insert the form of E(n) and compute

∆Wj(n) = −η [y(n)− ŷ(n)] (−1)
∂ŷ(n)

∂Wj(n)
(10.35)

= η [y(n)− ŷ(n)]
∂f [·]
∂[·]

∂
[∑N

j=1Wj(n)xj(n)
]

∂Wj(n)

= η [y(n)− ŷ(n)]
∂f [·]
∂[·]

xj(n)

where we used the above form of the gain function,

f [z] =
1

1 + e−βz
(10.36)

for ŷ(n). We further recall that

∂f [z]

∂[z]
= βf [z] [1− f [z]] (10.37)

so

∆Wj(n) = η β ŷ(n) [1− ŷ(n)] [y(n)− ŷ(n)] xj(n). (10.38)

The first group of terms, ηβ, are just constants. The product ŷ(n) [1− ŷ(n)] com-
presses the fractional change in the weight away from the mean value ŷ(n) = 1/2.
The term [y(n)− ŷ(n)] is proportional to the error. The final term xj(n) is just the
value of the input. The process of learning is repeated over the entire training set
(~x(n), y(n)).

10.5 Two layered network - Analog gain function

We consider a two layer network with a single output neuron. The input layer
corresponds to the ~x(n), as above. The middle layer is refereed to as the hidden

layer, ~h(n). Using the same form of the nonlinearity as above,

ĥj(n) = fh

[
N∑
i=1

Wji(n)xi(n)

]
(10.39)

where the Wji are the connections from each of the input units xi to the hidden unit
hj and

fh[z] =
1

1 + e−βĥz
. (10.40)

The output unit is driven by the output from the hidden units, i.e.,

ŷ(n) = fo

 M∑
j=1

Wj(n)ĥj(n)

 (10.41)

7

where the Wj are the connections from each of the hidden units hj to the output
unit y sand

fo[z] =
1

1 + e−βoz
. (10.42)

The error after n iterations of learning can only depend on the output, and as above,

E(n) =
1

2
[y(n)− ŷ(n)]2 (10.43)

10.5.1 Learning at the output layer - Analog gain function

∆Wj(n) = −η ∂E(n)

∂Wj(n)
(10.44)

= −η [y(n)− ŷ(n)] (−1)
∂ŷ(n)

∂Wj(n)

= η [y(n)− ŷ(n)]
∂fo[·]
∂[·]

∂
[∑N

j=1Wj(n)ĥj(n)
]

∂Wj(n)

= η [y(n)− ŷ(n)]
∂fo[·]
∂[·]

ĥj(n)

= ηβo [y(n)− ŷ(n)] ŷ(n) [1− ŷ(n)] ĥj(n)

which is the same as the result for a Perceptron with the difference that the input
is from the hidden layer.

10.5.2 Learning at the hidden layer - Analog gain function

We begin by substitution in the form of the input from the hidden layer into the
equation of the estimated output to get

ŷ(n) = fo

 M∑
j=1

Wj(n) fh

[
N∑
i=1

Wji(n)xi(n)

] (10.45)

Then

∆Wji(n) = η
∂E(n)

∂Wji(n)
(10.46)

= −η [y(n)− ŷ(n)] (−1)
∂ŷ(n)

∂Wji(n)

8

= η [y(n)− ŷ(n)]
∂fo[·]
∂[·]

∂
[∑M

j=1Wj(n) fh
[∑N

i=1Wji(n)xi(n)
]]

∂Wji(n)

= η [y(n)− ŷ(n)]
∂fo[·]
∂[·]

M∑
j=1

Wj(n)
∂fh[·]
∂[·]

∂
[∑N

i=1Wji(n)xi(n)
]

∂Wji(n)

= η [y(n)− ŷ(n)]
∂fo[·]
∂[·]

∂fh[·]
∂[·]

M∑
j=1

Wj(n) xi(n).

We see that the update to the weight ∆Wji(n) contains terms,
∑M
j=1Wj(n), that are

non-local. Thus the value of the nonlocal terms must arrive in a retrograde manner
from the output. In the slang of layer networks they are ”back propagated”. This
overall process could be continued for any number of hidden layers. It also contain
products of the derivative of gain functions. An attempt to gain biological relevance
suggest the form

∆Wji(n) ∝ < Wj(n) > xi(n). (10.47)

9

