
Physics 178/278 - David Kleinfeld -Winter 2024 Chapter 3

Revised 2 February 2024

3 Recurrent neuronal networks: Invariant tuning and

continuous attractors

We continue in our quest to connect recurrent networks with biological neurobiological
phenomena. One central issue is that of invariant tuning by sensory, albeit high order
sensory, neurons, as well as by high-order heading cells to chart the direction of locomo-
tion. Invariant tuning refers to the seemingly stable response of neurons to incomplete
stimuli, stimuli who persistence fluctuates or whose intensity varies, or stimuli that must
be decoded in the presence of multiple distractors. Just as a Hopfield network uses attrac-
tor dynamics through recurrence to complete missing information, recurrence in general
can be used to complete the missing information in coding a sensory feature or stabilize
the description of a feature in the face of distractors. We will start with a few examples
through a review of the literature, then constructs a simple model that is motivated by
the data.

3.0.1 Invariant tuning to orientation in mammalian primary vision

A classic case is that of the response of neurons in primary visual (V1) cortex to oriented
bars, gratings, and/or edges that sweep across the visual field. We start with a quick
overview of vision from image formation in the retina to responses in V1 cortex (Figure
1).

Figure 1: The gross layout of the visual stream in mammals, from the photoreceptors in the retina to primary visual
cortex. From the textbook of Bear, Connors and Paradiso, 2007

Different cells respond to different orientations of the edge, which are most simply
described in terms of a peak spike rate, a baseline rate, and a width of the angular
modulation of the rate (Figure 2). This composite information defines the tuning curve.

Orientation specificity is believed to originate from the geometry of the input. Center-
surround cells in the retina and thalamus respond like a Laplacian in all directions (Figure
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Figure 2: The phenomenology of orientation specificity in V1 cortex. From the textbook of Bear, Connors and Paradiso,
2007

3.0.1). This symmetry is inconsistent with orientation coding. The inputs of many center-
surround cells appear to have their inputs ”line up”as they synapse on cortical neurons
(Figure 4). This break in symmetry leads to orientation specificity for a moving bar or
edge or grating.

The details of the orientation preference can occur solely from feedforward connections
or from a mix of feedforward and recurrent connections. The data indicates that the kernel
of orientation results from the input but that the width of the tuning curve results from
cortical interactions.

By the way, in large brains, e.g., monkey, many neighboring cells have a similar pref-
erence for different orientations and thus form a map across the brain. Since space is
mapped onto the cortical mantle, the attempt to map the three dimensions of space and
orientation onto the two dimensional cortical mantle leads to fissures in the map (Figure
3.0.1). This does not occur in small brains. While a well known feature, we will ignore if in
our presentation as it does not impact the circuitry of forming the orientation specificity
of individual neurons.

Individual neurons that respond to the orientation of a stimulus also respond to the
contrast of the scene; at modest to high light levels the contrast and not the absolute
intensity determines the average spike rate so long as the modulation is not too slow nor
too fast. They may also respond to other features like the spatial frequency of a patterned
input. Three (or more) conundrums arise:

Contrast invariant tuning: The width of the tuning curve is independent of contrast
(Figure 6). This appears to be inconsistent with feed-forward models, in which a
fixed threshold would cause the width to increase with increasing contrast. This is
referred to as the ”iceberg” effect.

Size invariant tuning: The width of the tuning curve is largely independent of the as-
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Figure 3: Many output cells from the retina, i.e., retinal ganglion cells, have a center-surround receptive field; Center
OFF here. From the textbook of Bear, Connors and Paradiso, 2007

Figure 4: Cortex synthesizes orientation preference from center-surround receptive fields. From the textbook of Bear,
Connors and Paradiso, 2007

pect ratio of the oriented bar. For small bars, this is inconsistent with a geometrically-
based feed forward model, i.e., the Hubel-Wiesel model. More generally, it points
to an invariance in the representation of a feature in the stimulus.

Spatial frequency invariant tuning: The width of the tuning curve is largely inde-
pendent of the rate of spatial repetition of a grating, like the pickets in a fence.

A recurrent network with input tuned to orientation can use feedback connections
to surmount these challenges. The stable states of the network are representations of
features, i.e., preferred orientations of edges in the visual field. In fact, removing lateral
interactions in cortex leads to a loss of tuning, supporting the notion of feedback for some
if not all tuning properties of cortical neurons.

3.0.2 Invariant tuning to the spatial extent of touch

Invariance can refer to a signal that depends on the central location of a stimulus but not
the spatial extent. This is seen for the case of vibrissa touch (Figure 8). The extent of the
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Figure 5: Overlap of orientation preference for neurons at three different locations obtained with IOS imaging of all of
V1 cortex. From Bonhoeffer and Grinvald, 1993

Figure 6: Invariance of the width of the orientation preference to contrast, from Sclar and Freeman 1962, and invariance
to spatial frequency, from Ferster, Sooyoung and Wheat 1996

response in a neuron in primary vibrissa somatosensory (vS1) cortex that is sensitive to
touch of the vibrissae is largely insensitive to the number of vibrissae that are activated.

3.0.3 Invariant tuning of neurons toward a heading

Neurons that are tuning to a particular heading have been long know, and more recently
neurons that change their activity relative to he orientation of an animal toward or away
from a landmark have been characterized (Figures 9 and 10). A special feature of these
neurons is their immunity to distractors. As in the above case, a recurrent network
with input tuned to heading can use feedback connections to surmount the challenge of
distractors and incomplete input information. The stable states of the network are a
manifold of preferred headings relative to a landmark in the sensory field.

One example is found in the head direction cells in anterior-dorsal (ADn) thalamus.
A second example, and one that is particularly dramatic, is found in the ellipsoid body

4



Figure 7: Cortical interactions, as opposed to solely feedforward features, define the tuning width. From Crook,
Kisvarday and Eysel

of the central complex of the fly (Figures 11, 12, and 13).

3.1 A rate model for neuronal firing

The notion of a tuning curve, with a smoothly varying rate of spiking, appears inconsistent
with modeling using binary neurons with ON and OFF states. Yet we can maintain the
idea of binary neurons but think of modeling where each element, or index, refers to a
group of cells with similar coding properties. We thus add one level of complexity and
consider that each group, with index ”i”, can spike with a rate, ri(t), that is a monotonic
function of the input. The ideas of rate is that we are averaging over many spikes and
counting spikes per unit time as opposed to just labeling the output ON or OFF. Rate
can be be construed as the number of binary neurons within a group that are firing.

A simple function is motivated by Si = tanh [2G(µi − θi)], where G is the gain, is

ri =
Si + 1

2
(3.1)

=
1

e−G(µi−θi) + 1

where the slope has a value of G in the linear region, i.e.

ri =


−1 if µi < θi
G (µi − θi) if µi ≈ θi
+1 if µi > θi.

(3.2)
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Figure 8: Invariance of the amplitude of the vibrissa touch response. Composite data. From Chen-Bee, Zhou, Jacobs,
Lim and Frostig. 2012

Another useful function is the piecewise-linear function

[ri]+ =

{
0 if µi < θi
G(µi − θi) if µi > θi.

(3.3)

where θi now refers to the transition from OFF to the onset of spiking.

3.2 The ’Ring’ Model of Recurrent Interactions

We now consider a particular model, the so called ”ring” model, as a demonstration of
how recurrent connections and the threshold in the (piece-wise linear) gain curve can
lead to a powerful computation that preserves stimulus invariance. We will write the
rate equations for motion over the full range of 2π radians, which is suitable to describe
heading, as described previously. A similar set of equations can be written for the case
of orientation, except that this covers π radians. There are many substantiations (Figure
15) - we follow the one includes global inhibition and ”cosine” tuning.

Every neuron is labeled with an index, ”i”, that refers to the angle of the heading that
is most likely to cause the cell to spike. This is the ”preferred heading” and we assume
that these are uniformly distributed across a sea of neurons, so that

ϕi =
2π

N
i ∀i (3.4)

where N is the total number of neurons. The rate equation for a neuron with preferred
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Figure 9: Bumps of activity in the heading direction system in rodent thalamus/ From Peyache, Lacroix, Petersen and
Buzsaki 2015

Figure 10: Bumps of activity in the heading direction system in rodent thalamus. From Peyache, Lacroix, Petersen
and Buzsaki 2015

heading ϕi is

τ
dri(t)

dt
+ ri(t) = f

 1

N

N∑
j=1

W (ϕi, ϕj) rj(t) + Iext(ϕi, ϕ0, t) − θi

 (3.5)

where W (ϕi, ϕj) is the interaction between cell i and cell j, ϕ0 is the orientation of a
vector to the landmark (for heading) or of an external edge (for coding in vision), and θ
is the threshold for spiking. The function f [·] is a nonlinear function that saturates at
zero and possibly at a maximum firing rate. One such model is a logistic function.

We will shift to the continuum limit, where ri(t) → r(ϕ, t) and 1
2π

∫ π
−π dϕ

′ replaces
1
N

∑N
j=1. Thus

τ
dr(ϕ, t)

dt
+ r(ϕ, t) = f

[
1

2π

∫ π

−π
dϕ′ W (ϕ, ϕ′) r(ϕ′, t) + Iext(ϕ′, ϕ0, t) − θ(ϕ)

]
(3.6)

Motivated by experimental observations in visual systems (Figure 16) and heading
systems, we take the interactions to be a function of the difference in orientation prefer-
ence angles, so that neurons with similar orientation preference have relatively stronger
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Figure 11: Bumps of activity in the landmark heading system in the fly ellipsoid body of the central complex thalamus.
From Seelig and Jayaraman 2015

connections. Thus
W (ϕ, ϕ′) = W (ϕ − ϕ′) (3.7)

and
Iext(ϕ, ϕ0, t) = Iext(ϕ− ϕ0, t). (3.8)

We will write the interaction in terms of a constant term plus one term that varies as
a function of the in-plane heading preference between two cells. This is equivalent to the
first two terms in a Fourier expansion in (ϕ− ϕ0) of the interactions. We have

W (ϕ− ϕ′) = W0 + W1 cos (ϕ− ϕ′) (3.9)

where W0 and W1 are constants. We consider only a cosine term, and discard the sine
term, as the connections should be symmetric with respect to the difference in orientation
preference (Figure 17). One can add higher order terms to describe more complicated (and
realistic) patterns of connectivity, but the basic lessons will be unchanged. Similarly, the
experimental stimulus can be written in terms of a constant and an orientation dependent
term

I(ϕ− ϕ0, t) = Î0(t) + Î1(t) cos (ϕ− ϕ0) . (3.10)

The cosine is the leading term for the projection of a moving bar on a linear array of
center-surround detectors. Yet we also need to be careful that the input is always positive,
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Figure 12: Bumps of activity in the landmark heading system in the fly ellipsoid body of the central complex thalamus.
From Seelig and Jayaraman 2015

so we re-express this as an overall drive and a modulation, ϵ(t), of the drive, i.e.,

I(ϕ− ϕ0, t) = I0(t) ( 1 + ϵ(t) [1 + cos (ϕ − ϕ0)] ) (3.11)

= I0(t) [1 + ϵ(t)] + I0(t)ϵ(t) [cos (ϕ − ϕ0)]

where, for completeness, Î0(t) = I0(t)[1 + ϵ(t)] and Î1(t) = I0(t)ϵ(t) and the selectivity of
the input for modulated activity is

Selectivity of input ≡ Î1

Î0
(3.12)

=
ϵ

1 + ϵ

Putting all of this together yields a rate equation as a function of orientation and time

τ
dr(ϕ, t)

dt
+ r(ϕ, t) = f

{
W0

2π

∫ π

−π
dϕ′r(ϕ′, t) +

W1

2π

∫ π

−π
dϕ′r(ϕ′, t) cos (ϕ− ϕ′) (3.13)

+ I0(t) [1 + ϵ(t)] + I0(t)ϵ(t) cos (ϕ− ϕ0) − θ(ϕ)

}
.

3.2.1 Mean field approach

We solve the coupled rate equations by introducing two parameters, referred to as ”order
parameters”, that will represent the mean activity of neurons in the network and the
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Figure 13: Bumps of activity in the landmark heading system in the fly ellipsoid body of the central complex thalamus
in the presence of interfering stimuli. From Seelig and Jayaraman 2015

Figure 14: Neuronal piece-wise linear f-I function.

modulation of the activity of neurons in the network. This will allow us to rewrite equation
for the network (Eq. 3.14) in terms of the mean rate of spiking and the modulation of
that rate. These two new parameters must evaluated in a self consistent manner. The
order parameters are typically measured in the laboratory, although they are usually not
identified as such, so providing a connection between theory and experiment.
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Figure 15: The global model (presented here) and models with local interactions (better suited for the fly) both lead
to a moving bump

Figure 16: Connectivity among neurons in mouse V1 cortex is stronger for cells with overlapping receptive fields. From
Cossell, Iacaruso, Muir, Houlton, Sader, Ko, Hofer and Mrsic-Flogel 2015.

Mean rate: We define r0(t) as the average firing rate of neurons in the network. This
order parameter is an average over ϕ, i.e.,

r0(t) =
1

2π

∫ π

−π
dϕ′r(ϕ′, t) (3.14)

Thus the W0 term is just a synaptic weight times the mean activity r0(t).

Modulated rate: We define r1(t) as the average modulation of the firing rate of neurons
in the network. This order parameter is a weighted average of the activity with
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Figure 17: Connectivity among neurons from W0 multiplying a constant term and W1 multiplying a cosine term.

respect to the complex phase, or angle, and is given by

r1(t) =
1

2π

∫ π

−π
dϕ′r(ϕ′, t) e−iϕ

′
(3.15)

The order parameter r1(t) is a complex valued function that can be expressed in
terms of magnitude |r1(t)| and phase psi(t)

r1(t) ≡ |r1(t)|e−iψ(t). (3.16)

This allows us to evaluate the W1 term as (see Box 1)

1

2π

∫ π

−π
dϕ′r(ϕ′, t) cos (ϕ− ϕ′) = |r1(t)| cos (ϕ− ψ(t)) . (3.17)

The mean field rate equation is thus

τ
dr(ϕ, t)

dt
+ r(ϕ, t) = f

{
W0r0(t) + W1|r1(t)| cos (ϕ− ψ(t)) (3.18)

+ I0(t) [1 + ϵ(t)] + I0(t)ϵ(t) cos (ϕ− ϕ0)) − θ(ϕ)

}
.

Now we have three simpler equations to solve; the mean field equation (Eq. 3.19) and two
order parameter equations (Eqs. 3.14 and 3.15).

3.3 Equilibrium

The goal is to understand how the network dynamics can amplify a signal so that a weak
input can drive a full cortical response. Can this goal can be achieved under equilibrium
conditions? The rate equation becomes

r(ϕ) = f

{
W0r0 +W1|r1| cos (ϕ− ψ) + I0 (1 + ϵ) + I0 ϵ cos(ϕ− ϕ0)− θ(ϕ)

}
. (3.19)
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So long as the gain function ”f [·]” is monotonic, the output will be maximized by max-
imizing the operant. We make the assumption that ψ is chosen to maximize the firing
rate, i.e.,

dr(ϕ)

dψ
|ϕ=ϕ0 = W1|r1| sin (ϕ0 − ψ) (3.20)

= 0

This gives
ψ = ϕ0 (3.21)

and the steady state rate equation becomes

r(ϕ) = f

{
[W0r0 + I0 (1 + ϵ)− θ] + [W1|r1|+ I0 ϵ] cos(ϕ− ϕ0)

}
(3.22)

where we have clustered the input into a constant piece and a piece that is modulated by
the orientation of the input. We further take the threshold to be the same for all neurons.

3.3.1 Super-threshold (linear) limit

Let’s see what happens when the inputs are sufficiently large so that the neuron operates
solely above threshold. We thus take f [x] = x. Then

r(ϕ) = [W0r0 + I0 (1 + ϵ)− θ] + [W1|r1|+ I0ϵ] cos(ϕ− ϕ0). (3.23)

The functional dependence of r(ϕ) must follow the drive and thus vary as ϕ−ϕ0. We can
expend r(ϕ) as a Fourier series with coefficients that are identical to the order parameters
and then equate terms with Equation 3.22. Thus

r̃(ϕ) = r0 + r+1e
iϕ + r−1e

−iϕ (3.24)

where

r0 ≡ 1

2π

∫ π

−π
dϕ′r(ϕ′), (3.25)

r+1 =
1

2π

∫ π

−π
dϕ′r(ϕ′) e−iϕ

′
(3.26)

≡ |r+1|e−iϕ0 .

and

r−1 =
1

2π

∫ π

−π
dϕ′r(ϕ′) eiϕ

′
(3.27)

≡ |r+1|eiϕ0 .

Then

r̃(ϕ) = r0 + |r+1|
(
e−i(ϕ0−ϕ) + ei(ϕ0−ϕ)

)
(3.28)

= r0 + 2|r+1|cos(ϕ − ϕ0).
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We now equate terms for the average and for the first harmonic, i.e.,

r0 = W0r0 + I0 (1 + ϵ)− θ (3.29)

or

r0 =
I0 (1 + ϵ)− θ

1−W0

(3.30)

and

r1 =
W1r1 + I0ϵ

2
. (3.31)

or

r1 =
I0ϵ

2−W1

. (3.32)

We see that, even for the linear case, there is the potential for gain in the modulation
term when W1 → 2. We put all of the above together to write

r̃(ϕ) =
I0 (1 + ϵ)− θ

1−W0

+ ϵ
2I0

2−W1

cos(ϕ − ϕ0). (3.33)

How does this response help in altering the output of the network? We first let θ = 0
without loss of generality to get the simplified form

r̃(ϕ) = I0

[
1 + ϵ

1−W0

+ ϵ
2

2−W1

cos(ϕ − ϕ0)
]

(3.34)

and then write the selectivity of the output as

Selectivity of output ≡ |r1|
r0

=
ϵ

1 + ϵ

1−W0

2−W1

(3.35)

= Selectivity of input ×
(
1−W0

2−W1

)
.

recalling Equation 3.13. This is as far as linearity gets you. There is gain, and potentially
very large gain, but no invariance! In the linear case, the input determines the output.
Thus the choice ϵ = 0 will lead to r1 = 0 and no modulation of the neuronal activity,
despite the angular dependence of the interactions.

3.3.2 Marginal (spontaneous bump) state

We now introduce an angular dependence to the activity, a bump along ϕ, by allowing
for nonlinearity in the gain functions and an increase in the interaction terms so that W1

> 2. Clearly, some neurons will be ON and some OFF so that the average modulation is
bounded. For simplicity, we take f [x] as threshold linear, i.e.

f [x] = [x]+. (3.36)

Then we expect that |r1| > 0 even if ϵ = 0. In this case, we expect a bump of neuronal
activity that is centered around the average direction of phase, denoted ψ. With the
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choice ϵ = 0, the bump is spontaneous and the choice of direction is random. The idea is
that the smallest input, i.e., smallest value of ϵ and a value of ϕ0, will seed the angular
position of the bump.

r1 =
1

2π

∫ ψ+π

ψ−π
dϕ′ [r(ϕ′)]+ e

−iϕ′ (3.37)

=
1

2π

∫ ψ+π

ψ−π
dϕ′ [W0r0 + I0 − θ +W1|r1| cos(ϕ′ − ψ)]+ e

−iϕ′ .

The bump is taken to have an extent with a half width of ϕC , which we will have to relate
to the synaptic weights. Then we can write a self consistency equation for r1 (see Box 2
for details)

r1 =
1

2π

∫ ψ+ϕC

ψ−ϕC
dϕ′{[W0r0 + I0 − θ +W1|r1| cos(ϕ′ − ψ)] (3.38)

− [W0r0 + I0 − θ +W1|r1| cos (ψ ± ϕC − ψ)]}e−iϕ′

= W1 r1
1

2π

(
ϕC − 1

2
sin 2ϕC

)
so that

W1 =
4π

2ϕC − sin 2ϕC
. (3.39)

Our result relates the synaptic strength to the width of activation. It means that the
network will form a bump of activity with width ±ϕC . The minimum value of the con-
nectivity, for the widest possible bump with ϕC = π, is W1 = 2 (Figure 18). This is just
where the network is linear. Further, ϕC → 0 as W1 → ∞, i.e., stronger connections yield
a narrower bump. In the absence of an input, the phase of the bump is arbitrary.

]

Figure 18: Tuning width versus W1
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3.3.3 Symmetry breaking by a weak input

A weak input will pin the angular position, or phase, of the bump. So long as the stimulus
is weak, the tuning does not depend on the stimulus parameters, i.e., on the selectivity of
the input. To calculate the selectivity of the output we first need to calculate r0 similarly
to the analysis for the above analysis if r1. We have (see Box 3 for details):

r0 =
1

2π

∫ ψ+π

ψ−π
dϕ′ [r(ϕ′)]+ (3.40)

= r1 4
sinϕC − ϕC cosϕC
2ϕC − sin 2ϕC

.

so that unlike the case for linear response, the average activity tracks the modulated
activity. Thus we have

Selectivity of output ≡ |r1|
r0

(3.41)

=
1

4

2ϕC − sin 2ϕC
sinϕC − ϕC cosϕC

,

which varies between 1/2 and 1, i.e., by very little, as a function of ϕC . In this sense, the
network will amplify a weak input and drive a response. Unlike the case of a feedforward
network, where the width of the tuning curve depends on the input parameters I0 and ϵ,
here the width depends only on W1. This satisfies the goal of invariance. The relation of
W1 to the width of the tuning curve constitutes a design rule for invariant tuning (Figure
19). There are also a restricted set of values of W0 and W1 that satisfy stability of the
output (Figure 20).

Figure 19: Selectivity of the network as a function of W1
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Figure 20: Phase diagram for different ranges of synaptic weights

We can now substitute in our expressions for W1 (Eq. 3.39) and r1 (Eq. 3.41) into the
mean field equation (Eq. 3.22) to assess the competition between recurrent interactions
and external input. We find

r(ϕ) = f

{
4W0r0 + I0 (1 + ϵ)− θ +

(
π

sinϕC − ϕC cosϕC
r0 + I0ϵ

)
cos(ϕ− ϕ0)

}
. (3.42)

To complete the representation in terms of the width of the bump, we cook-up a form for
r(ϕ) in terms of ϕC . A uniform distribution with θ = 0 gives r0 = ϕC/π. A cosine bump
gives

r0 =
1

2π

∫ π

−π
dϕ′

[
cos

(
π

2

ϕ′

ϕC

)]
+

(3.43)

=
1

2π

∫ ϕ0

−ϕ0
dϕ′ cos

(
π

2

ϕ′

ϕC

)

=
2

π2
ϕC

Then

r(ϕ) = f

{
8

π2
W0 ϕC + I0 (1 + ϵ) +

(
2

π

ϕc
sinϕC − ϕC cosϕC

+ I0ϵ

)
cos(ϕ− ϕ0)

}
(3.44)
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where the competition is between the recurrent term, i.e.,

2

π

ϕC
sinϕC − ϕC cosϕC

→
{

2
π

as ϕC → π
1

3ϕ2C
as ϕC → 0,

and the external input, i.e.,
I0ϵ, (3.45)

both of which contribute to the cos(ϕ− ϕ0) term. When recurrency wins, there will be a
bump of activity. When the external input wins, the neurons track the input.

3.4 Predictions versus experiment

The ring model was motivated by experiments on the coding of orientation in visual
stimuli. A number of predictions were made.

Contrast invariance: This is observed and was a motivation observation (Figure 24).

Transient onset of invariance: The invariance should arise slowly as this depends on
recurrent connections. Thus the response of neurons at short times is expected to
follow feedforward dynamics, while the response at later times, say after tens of
milliseconds, would follow recurrent dynamics. This was not found.

Traveling bump: Recordings from the colliculus for eye position and from the anterior
thalamus for heading suggest the notion of a moving bump of activity. This was
predicted to occur in the visual system when the angle of the stimulus is rapidly
changes. Here, activity would transiently pass through neurons that coding inter-
mediate orientations (Figure 23). This was not found to date in V1 cortex, yet is
seem nicely in the fly ellipsoid body (Figure 21).

Angular dependent connectivity: This is really a postdiction. Neurons with similar
orientation preference tend to make stronger connections. Ditto for neurons in the
same direction.

The great success of the model turns out to be with respect to heading, as seen in
the activity of neurons in the ellipsoid body of the central complex of the fly and their
manipulation by optogenetics (Figure 22). Neurons will code their preferred heading
relative to the direction - call it ϕ0 - of a landmark. Modifications of the ring model that
more closely match the observed anatomy have been analyzed (Figure 15). Other work
is trying to see if these models hold, in some fashion, for three-dimensional movement
(Figure 25).

Box 1. General form of the order parameter for modulation

1

2π

∫ π

−π
dϕ′r(ϕ′, t) cos

(
ϕ− ϕ′

)
= ℜ{ 1

2π

∫ π

−π
dϕ′r(ϕ′, t)ei(ϕ−ϕ

′)}

= ℜ{eiϕ 1

2π

∫ π

−π
dϕ′r(ϕ′, t)e−iϕ

′}
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Figure 21: Evolution of neuronal activity in response to a shift in landmark. From Kim, Rouault, Druckmann and
Jayaraman 2017.

Figure 22: Optogenetic activation of heading cells leads to a stable state. From Kim, Rouault, Druckmann and
Jayaraman 2017.

= ℜ{eiϕ |r1(t)|e−iψ(t)}
= |r1(t)| ℜ{ei(ϕ−ψ(t))}
= |r1(t)| cos (ϕ− ψ(t)) (3.46)

where ℜ means real part.

19



Figure 23: Evolution of neuronal activity in response to a shift in stimulus orientation from 0 to 60 degrees. From
Hansel and Sompolinsky 1998.

Figure 24: Contrast invariance with feedback. W0 = -0.4, W1 = 4.0, and ϵ = 0.09. From Hansel and Sompolinsky
1998.

Figure 25: The ring model can be extended to describe coding in two and even three dimensions, as occurs in the
heading of flying animals, such as bats

Box 2. The order parameter r1 for the marginal phase

r1 =
1

2π

∫ ψ+ϕC

ψ−ϕC
dϕ′(

[
W0r0 + I0 − θ +W1|r1| cos(ϕ′ − ψ)

]
(3.47)
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− [W0r0 + I0 − θ +W1|r1| cos (ψ ± ϕC − ψ)])e−iϕ
′

= W1 |r1|
1

2π

∫ ψ+ϕC

ψ−ϕC
dϕ′

(
cos(ϕ′ − ψ)− cos ϕC

)
e−iϕ

′

= W1 |r1|e−iψ
1

2π

∫ ϕC

−ϕC
dx (cos x − cos ϕC) e

−ix

. = W1 r1
1

2π

∫ ϕC

−ϕC
dx

(
eix

2
+

e−ix

2
− cos ϕC

)
e−ix

= W1 r1
1

2π

∫ ϕC

−ϕC
dx

(
1

2
+

e−i2x

2
− cos ϕC e−ix

)

= W1 r1
1

2π

(
ϕC − 1

2
sin 2ϕC

)

Box 3. The order parameter r0 for the marginal phase

r0 =
1

2π

∫ ψ+π

ψ−π
dϕ′

[
r(ϕ′)

]
+ (3.48)

=
1

2π

∫ ψ+π

ψ−π
dϕ′

[
W0r0 + I0 − θ +W1|r1| cos(ϕ′ − ψ)

]
+

=
1

2π

∫ ψ+ϕC

ψ−ϕC
dϕ′(

[
W0r0 + I0 − θ +W1|r1| cos(ϕ′ − ψ)

]
− [W0r0 + I0 − θ +W1|r1| cos (ψ ± ϕC − ψ)])

= W1 |r1|
1

2π

∫ ψ+ϕC

ψ−ϕC
dϕ′

(
cos(ϕ′ − ψ)− cos ϕC

)
= W1 |r1|e−iψ

1

2π

∫ ϕC

−ϕC
dx (cos x − cos ϕC)

. = W1 r1
1

π
(sinϕC − ϕC cosϕC)

= r1 4
sinϕC − ϕC cosϕC
2ϕC − sin 2ϕC

.

Box 4 - Travel versus heading
From an ethological perspective the fly needs to compute its direction travel as opposed to

just heading (Figure 26). The travel direction, denoted Ω, includes shifts in heading caused
by wind. Recent work provides a basis for this calculation. There are four populations of
neurons that code for wind direction, the PreFan body neurons (PF-Ns), that target neurons
in the Fan-shaped body. These are tuned to wind direction, but not heading (Figure 27).
Heading and wind direction come together in the Fan-shaped body, and the question is how
travel is computed (Figure 26). These neurons have responses whose amplitude depend
on wind velocity, i.e., speed |bfV | and direction Θ, and that code the direction of travel
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direction, denoted Ω as well. The four flavors of input can be described as

Rate of PF−NdL input = |V | sinΩ cos (Θ− ϕ+ π/4) (3.49)

Rate of PF−NdR input = |V | cosΩ cos (Θ− ϕ− π/4) (3.50)

Rate of PF−NvL input = −|V | sinΩ cos (Θ− ϕ− 3π/4) (3.51)

Rate of PF−NvR input = −|V | cosΩ cos (Θ− ϕ+ 3π/4) (3.52)

Nature supplies a number of phase shifts through anatomical positioning of different
copies of the inputs to h∆B neurons. in the Fan Shaped Body (Figure 28); this turns out to
be critical for summation of trigonometric functions! The output from these four cells are
added together in the Fan Shaped Body and used to compute the direction of heading. All
we need to recall to simply this summation is that cos(A + B) = cosA cosB - sinA sinB
and that cos(π/4) = sin(π/4) = 1/

√
2. Then

Sum of rates of PF−N inputs =
|V |√
2
[sin (Ω + Θ− ϕ) + cos (Ω + Θ− ϕ)] . (3.53)

This is maximum when the derivation is zero, or cos (Ω + Θ− ϕ) = sin (Ω + Θ− ϕ), or
Ω + Θ − ϕ = π/4. Thus if different neurons code different values of Ω, the rate is greatest
for the cell with

Ω = ϕ−Θ+
π

4
. (3.54)

So the fly knows its travel direction, using information based on heading and wind direction,
by the index of the neuron with the largest rate (Figure 26).

Figure 26: The travel direction complex of fly. From Lyu, Abbott and Maimon, Nature 2021
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Figure 27: The response of PR-N neurons to changes in wind direction (top and middle row) and the lack of response
with respect to changes in heading (bottom row). Note ±π/4 and ±3π/4 shifts in physiological output (Figure 28). From
Lyu, Abbott and Maimon, Nature 2021

Figure 28: The direction complex of fly showing ±π/4 and ±3π/4 anatomical offsets. From Lyu, Abbott and Maimon,
Nature 2021
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