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4 Variability is a fundamental aspect of neural re-

sponses

We previously learned that neurons use two voltage levels and at voltage dependent
conductance, to shift between the two levels. We now re-examine this viewpoint in terms
of synaptic transmission and noise immunity on the one hand, and the trade-off between
noise and the speed of a networks response on the other hand.

4.1 Scale of Thermal Fluctuations

The fundamental voltage scale is the thermal scale, or

kBT

e
≈ 25 mV. (4.1)

We now consider the smallest scale, that of thermal noise, in driving intrinsic fluctuations
in the membrane voltage. Ion flow across the membrane is defined by a net conductance,
G, across the cell. One way to derive the equation for the thermal noise is to use the
equipartition theorem to equate the fluctuating energy in the membrane to the thermal
energy, i.e.,

1

2
CδV 2 =

1

2
kBT (4.2)

This leads to a fluctuation in the potential (Figure 1) of size

δV =

√
kBT

C
. (4.3)

A different derivation is given in Box 1. This noise has the same spectral power density
at all frequencies. This is different that other sources of noise, like 1/f noise, that has
origins in processes occurring of a variety of energy scales (Figure 2).

The capacitance is measure of geometry and electric susceptibility ϵ. It is given by
C = ϵm (area/thickness), so that for a thin dielectric sphere of thickness L and radius a,
C = ϵm

4πa2

L
. Thus

δV =

√√√√(kBT
e

)(
L

ϵm

)
e

4πa2
(4.4)

=
1

2a

√√√√(kBT
e

)(
e

cm

)
1

π
.

1



Figure 1: Thermal noise and the Gaussian amplitude distribution.

Figure 2: Thermal noise with a white - or flat - spectrum and flicker or Brownian noise - with a f−1 amplitude or f−2

spectrum.

For most all cells, the ratio ϵm
L

is

cm ≡ ϵm
L

(4.5)

≈ 0.9x10−14 F

µm2

and
e

cm
= 1.8× 10−2 mV

µm2
(4.6)

so that

δV ≈ 190µV

a (in µm)
. (4.7)

For a cell of radius a = 10µm,
δV ≈ 20µV. (4.8)

Thus:

• The membrane noise level for cell somata is much less, by three orders of magnitude,
then the thermal voltage kBT/e.
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• The membrane noise level for is less, by one order of magnitude, than the typical
minimal synaptic input.

4.2 Variance versus mean driven spiking

Up to now we have considered driving neuronal by a change in the mean level of the input.
We showed that a pulse of current will drive a neuron to fire and found the optimal shape
for that pulse (Figure 8). In anticipation of a discussion of neuronal variability, consider
how noise, or fluctuations in voltage, can drive a neuron to spike. Recall that noise
has a zero mean value and is specified in terms of its range by the standard deviation
or root-mean square value, denoted σ. We are concerned with noise on the scale of
synaptic postsynaptic potentials, which sets the scale at 0.2 mV to 2 mV; the later value
is similar to the transition from an inactive Na+ current to a spike. In fact, intracellular
measurements reveal an interesting fact. The postsynaptic potential is rapidly fluctuating
with amplitudes of a few millivolts (Figure 3). This is surprising at first glance as neurons
are believe to average over many inputs and thus one might imagine that the noise averages
away; a Central Limit theorem arguments. But noise prevails, and as expected for a noisy
subthreshold potential, the neuronal response to repeated presents of the same stimulus
leads to a variable response (Figure 4).

Figure 3: The excitatory and inhibitory postsynaptic potentials for a neurons on primary visual cortex of cat. From
Ferster 1988

.

4.2.1 Can noise alone can drive spiking?

Before we consider a mechanism for this noise, it is worth asking asking if noise alone can
drive spiking? The answer is yes. When the average input to the neuron is well above
threshold, the spiking is primarily driven by changes in the mean rate. But when the
average input is held close to threshold, or just below threshold, fluctuations will drive
the neuron to spike (Figure 5). In fact, the spike rate of the neurons can be a monotonic
function of the standard deviation of the input (Figure 6).
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Figure 4: Variability in spike rate with repeated presentation of the same visual random dot pattern. Data from monkey.
From Shadlen and Newsome 1998

.

Figure 5: Mean versus noise driven spiking in spinal cord slice. From Petersen and Berg, eLIFE, 2016

.

How do we interpret the mean and variance in terms of spike probability? We use the
approximation of neuronal output as a Bernoulli, i.e., V = 1 if the cell spikes and V = 0
if it does not. In the absence of noise the transition for 0 to 1 is sharp at µ = θ. How does
the average probability of spiking smear when the variance is non-zero? The simplest
possibility is to assume a Gaussian amplitude distribution, as we did in the study of the
capacity of the Hopfield model. We take m(t) as the average output across the network,
i.e.,

m(t) ≡ 1

N

N∑
j=1

Vj(t) (4.9)

so that

m(t) ≈ 1√
2πσ

∫ ∞

θ
dx e−

(x−µ)2

2σ2 (4.10)
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Figure 6: Mean versus noise driven spiking in brain slice. From Lundstrom, Higgs, Spain and Fairhall, Nature Neuro-
science 2008

.

=
1√
π

∫ µ−θ√
2σ

−∞
dx e−x2

=
1 + erf

[
µ−θ√
2 σ

]
2

.

When σ is small compared to µ− θ, the transition from m(t) = 0 to m(t) = 1 is weakly
smoothed (Figure 7), with

m(t)
−−−−−−−→
σ ≪ µ− θ 1− σ√

2π(µ− θ)
e−

(µ−θ)2

2σ2 . (4.11)

When σ is large compared to µ − θ, the transition from m(t) = 0 to m(t) = 1 is
completely smoothed with

m(t)
−−−−−−−→
σ ≫ µ− θ

1

2
. (4.12)

The interesting issue for us is to have a fixed input and vary the noise. We see, numerically,
that the spike rate increases monotonically with increasing values of σ to a saturation value
of m = 0.5. Most interestingly, there is a roughly linear region of increase for mean rates
between m = 0.05 and m = 0.25.

4.3 The optimal input to drive spiking

We have considered that a step input leads to spiking and that noise can lead to spik-
ing. But details of the ionic membrane currents should lead to a definitive input as the
best driver of a neuron. While we have not explored such currents so far, the need to
de-inactivate the inactivating component of the sodium channel suggests that a brief hy-
perpolarization before a depolarization is optimal. Indeed, using a noise-based correlation
technique (Box 2) with a computer model of a Hodgkin Huxley cell, Blaise Aguera y Ar-
cas and Adrienne Fairhall numerically determined the optimal current to drive a neuron
(Figure 8). The combination of inhibitory and excitatory components to the input current
suggests that this indicates the necessity of coordinating inhibitory and excitatory inputs
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Figure 7: Gaussian noise threshold model to estimate effect of noise in driving neuronal responses

.

0 1 2 3 4 5 6 7 8 9 10

Noise SD, 

Pr
ob

ab
ilit

y 
of

 s
pi

ki
ng

µ = 2

µ = 1 = θ

µ = 0 µ = -1 µ = -2
µ = -6µ = -4

θ = 1 ( threshold)

-10 -8 -6 -4 -2 0 2 4 6 8 10

Input, µ
0

0.2

0.4

0.6

0.8

1

θ = 1 ( threshold)

σ = 0
σ = 1

σ = 3
σ = 5

σ = ∞

in brain circuits. Interestingly, the literature speaks of ”feed-forward inhibition” and, as
we shall see next, the tuning curves for inhibitory neurons in sensory and motor brain
regions typically match those for excitatory neurons.

Figure 8: The optimal linear transfer function, i.e., current waveform, to elicit a spike. From Aguera y Arcas, Fairhall
and Bialek (2003).

Another issue concerns the variability around the time of the spike. Consistent with an
optimal input, Blaise Aguera y Arcas and Adrienne Fairhall observe that the variability
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in membrane voltage is quenched at the time of a spike (Figure 9). This implies that the
optimal input will reduce the jitter of spike timing.

Figure 9: Spike-triggered average of a Hodgkin-Huxley action potential with standard deviations for (top) the input
current I, (middle) the fraction of open K+ and Na+ channels, and (bottom) the membrane voltage V , for the input
current parameters mean Io = 0 and spectral variance S = 6.5 × 10−4nA2s. From Aguera y Arcas, Fairhall and Bialek
(2003).

4.4 Variability for a single cell

One might expect that the subthreshold potential would be noisy, if there were relatively
few synaptic inputs. This is consistent with the notion of a few strong inputs that one
sees in cortical slice experiments. Another possibility is that the subthreshold potential is
so noisy because large excitatory inputs are offset by large inhibitory inputs, so that their
mean value just about cancels but the variances, of course, add (Figure 10). The notion
of large offsetting currents comes from the intracellular recording experiments initially
in anesthetized animals (Figure 3) and more recently in awake animals (Figure 21). In
general, excitatory and inhibitory inputs are found to be both large and have the same
sensory receptive fields or ”tuning curves”, so that their inputs act to balance each other,
although this balance is not necessarily exact (Figure 12).

What is gained from this organization of offsetting currents? A transient increase
in excitatory input, as may occur with a large burst of excitatory input, will rapidly
depolarize the cell. So networks with balanced excitatory and inhibitory inputs, which
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Figure 10: Balanced excitatory and inhibitory currents can lead to noisy input currents; calculated consequences of
tight versus loose balance of excitatory and inhibitory currents. From Denuve and Machens 2016.

Figure 11: Balanced currents are observed in vivo in terms of balance of the gamma rhythm. From Atallah and
Scanziani 2009.

Figure 12: Balanced currents are proportional but do not necessarily exactly balance each other. Data from anesthetized
mouse cortex. From Haider, Duque, Hasenstaub and McCormick 2006.
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mean large conductances, are believed to trade noise from the balance for the speed gained
from a large total leak conductance. We shall see!

4.4.1 Weak synaptic inputs

Let’s start with a warm up on the scale of noise in the input. We use a rate model. First,
some definitions, The input to cell i from cell j is Wij with j = 1, 2, ... , N , while the
output of the neuron is take as taken as Vi with i = 1, 2, ... , N where V = 1

2
(S + 1) is a

Bernoulli variable with V = 1 if the cell spikes and V = 0 if it does not.
A Bernoulli probability distribution of the random variable V can be thought of as

a model for the set of possible outcomes of any single measurement whose outcomes is
Boolean-valued. The Bernoulli distribution is a special case of the binomial distribution
where a single trial is conducted, i.e., N = 1 for such a binomial distribution. Let’s define
the probability that a cell is spiking as m, so that V = 1 with probability m and V = 0
with probability 1−m.

The input to the i− th neuron, denoted as in the past by µi(t), is:

µi(t) ≡
N∑
j=1

WijVj(t). (4.13)

The standard thermodynamic scaling, so that total synaptic currents are bounded as the
size of the system increases, is that each input has a strength of order 1/N . For simplicity,
let’s take all of the inputs to be equal, so

Wij →
Wo

N
. (4.14)

The Wo are of order 1 in magnitude, so the sum over all N inputs is of order 1, with

µi(t) = Wo m(t) (4.15)

where m(t) is the order parameter given by the average across the network, i..e.,

m(t) ≡ 1

N

N∑
j=1

Vj(t) (4.16)

so
µi(t) = Wom(t) ∀ i (4.17)

Clearly, for constant connection strengths, the input to all neurons is equal so the popu-
lation average is

µ(t) = Wo m(t) (4.18)

and the time average is

⟨µ⟩ ≡ 1

T

∫ T/2

−T/2
dt µ(t) (4.19)

≡ Wo
1

T

∫ T/2

−T/2
dt m(t)

= Wo m
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The variance across time is

σ2 =
〈
(µi(t)− ⟨µ⟩)2

〉
(4.20)

=
[〈
µ2
〉
− ⟨µ⟩2

]
=

〈
µ2
〉

− W 2
o m2.

We evaluate the first term under the assumption that the correlations in the neuronal
outputs are zero, i.e.,

〈
µ2
〉

=

〈
Wo

N

N∑
j=1

Vj(t)
Wo

N

N∑
k=1

Vk(t)

〉
(4.21)

=

〈
W 2

o

N2

N∑
j=1

N∑
k=1

Vj(t)Vk(t)

〉

= W 2
o

〈
1

N2

N∑
j=1

V 2
j (t) +

1

N2

N∑
j=1

N∑
k ̸=j

Vj(t)Vk(t)

〉

=
W 2

o

N

〈
1

N

N∑
j=1

Vj(t)

〉
+W 2

o

(
N2 −N

N2

)〈 1

N

N∑
j=1

Vj(t)

2〉

=
W 2

o

N
⟨m(t)⟩+W 2

o

(
1− 1

N

)〈
m2(t)

〉
=

W 2
o

N
(m−m2) + W 2

om
2 (4.22)

and thus variance for the population is

σ2 =
W 2

o

N
m(1−m). (4.23)

We see that for large networks the mean level drives the spiking and the variability goes
to zero as 1/N , or equivalently the standard deviation goes to zero as 1/

√
N (Figure 13).

As expected for a binomial variable, the variance is also zero when all neurons are active,
i.e., m = 1, or quiescent, i.e., m = 0.

Lastly, for a Poisson process, we get the slightly different answer of σ2 = (W 2
o /N)m

where m = rate × time interval.

4.4.2 Strong synaptic inputs

How can we have a network with high noise? Let’s recall the issue of networks with a
small fraction of strong connections. The challenge is to recast the input so that the
variance does not diminish to zero as a function of the number of input neurons. This is
where the idea of balanced inhibition and excitation comes into play.

1. We need the input to be the sums of two terms, one excitatory and one inhibitory.

2. We need the total current from these two term to cancel, i.e., be equal and opposite
in sign, to first order. The time dependent variation in the firing rate of a neuron
will reflect variations in the balance of the inputs.
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Figure 13: Averaging over synapses decreases the RMS noise

.

3. We need a small fraction of active inputs, defined as K, where 1 ≪ K ≪ N .

4. With a small number of inputs, the total variance, which is the sum of variances of
the excitatory and inhibitory terms, can be high.

The input to the i-th neuron is now the sum of outputs from excitatory cells, i.e., the
V E
i (t), and inhibitory cells, i.e., the V I

i (t). Thus

µi(t) = µE(t) + µI(t) (4.24)

=
K∑
j=1

WE
ij V

E
j (t) +

K∑
j=1

W I
ijV

I
j

Let WE
ij be an excitatory input and W I

ij be an inhibitory input, simplified as above but
now scaled to be large, where large is defined as order 1√

K
rather than order 1

K
. Thus

WE
ij → WE

o√
K

and W I
ij → −W I

o√
K

(4.25)

where we implicitly fix the sign of the inhibition. The mean input under the assumed
scaling is

µi(t) = WE
o

1√
K

K∑
j=1

V E
j (t) − W I

o

1√
K

K∑
j=1

V I
j (t) (4.26)

=
√
K

WE
o

1

K

K∑
j=1

V E
j (t) − W I

o

1

K

K∑
j=1

V I
j (t)


=

√
K
[
WE

o mE(t) − W I
om

I(t)
]

where the order parameters for excitation and inhibition are defined by are defined by

mE(t) ≡ 1

K

K∑
j=1

V E
j (t) and mI(t) ≡ 1

K

K∑
j=1

V I
j (t) (4.27)
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and we have assumed without loss of generality that the same number of excitatory and
inhibitory inputs.The input is large if the excitatory and inhibitory terms do not cancel
balance to within a factor of 1/

√
K. The variance, following the derivation for the single

input case, is

σ2 =
1

K

K∑
i=1

〈(
µE
i (t)− < µE >

)2〉
+

1

K

K∑
i=1

〈(
µI
i (t)− < µI >

)2〉
(4.28)

=
(
√
KWE

o )2

K
mE(1−mE) +

(
√
KW I

o )
2

K
mI(1−mI)

= (WE
o )2 mE(1−mE) + (W I

o )
2 mI(1−mI).

The important point is that there is no decrement in the variance as K → ∞. Further,
the variance remains nonzero for the special case of WE

o mE = W I
om

I , where the network
is in ”perfect” balance.

4.4.3 Experimental evidence for
√
k scaling

It is fair to ask if there is evidence to support this scaling, which would depend on a
homeostatic mechanism for maintenance. The data comes from networks in cell culture
of different size. The data supports scaling of the synaptic inputs, i.e., the post synaptic
potentials, as 1/K0.6 (Figure 14). This is close to the predicted value of 1/

√
K for strong

inputs, as opposed to 1/K for weak input. Not bad!

Figure 14: In vitro synaptic scaling preserves excitatory-inhibitory balance. From Barres and Reyes, 2016.
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4.5 Circuit model

So far we have only address noise and scaling at the level of noise in individual cells.
Now we analyze a network of neurons with balanced inputs (Figure 15). We consider
the consequences of the choice of connections in a network on the ability to maintain the
balanced state.

Figure 15: Feedback circuit model with two populations of neurons

.

Consider a network of a population of interconnected excitatory (E) and inhibitory
(I) cells.The full equations are

τE
dV E

i (t)

dt
+ V E

i (t) =
[
µE
i (t)− θEi

]
+

(4.29)

and

τI
dV I

i (t)

dt
+ V I

i (t) =
[
µI
i (t)− θIi

]
+
, (4.30)

where [· · ·]+ is the Heavyside function, τE and τI are the cellular time constant, and the
θEi and θIi are thresholds. The inputs are

µE
i (t) = µE

ext(t) +
K∑
j=1

WEE
i,j V E

j (t) +
K∑
j=1

WEI
i,j V

I
j (t) (4.31)

and

µI
i (t) = µI

ext(t) +
K∑
j=1

W II
i,j V

I
j (t) +

K∑
j=1

W IE
i,j V

E
j (t). (4.32)

As in the case of the model cell, we will scale the synaptic inputs by 1/
√
K, as opposed

to 1/K, i.e.,

WEE
ij → WEE

√
K

; W II
ij → −W II

√
K

; WEI
ij → −WEI

√
K

; W IE
ij → W IE

√
K

(4.33)

where we explicitly put in the negative signs of inhibition. As will soon be clear, we need
to scale the external inputs by

µE
ext(t) →

√
K E mext(t) and µI

ext(t) →
√
K I mext(t) (4.34)
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where E and I are inputs of strength of O(1). The dependence on a common term is a
statement that excitatory and inhibitory neurons share the same tuning curve (Figure 3).
All together, we have

µE
i (t) =

√
KEmext(t) +

WEE

√
K

K∑
j=1

V E
j (t)− WEI

√
K

K∑
j=1

V I
j (t) (4.35)

and

µI
i (t) =

√
KImext(t) +

W IE

√
K

K∑
j=1

V E
j (t)− W II

√
K

K∑
j=1

V I
j (t). (4.36)

In terms of the order parameters,

µE(t) =
√
KEmext(t) +

√
KWEE 1

K

K∑
j=1

V E
j (t)−

√
KWEI 1

K

K∑
j=1

V I
j (t)

=
√
KEmext(t) +

√
KWEEmE(t)−

√
KWEImI(t) (4.37)

=
√
K
[
Emext(t) +WEEmE(t)−WEImI(t)

]
and

µI(t) =
√
KImext(t) +

√
KW IE 1

K

K∑
j=1

V E
j (t)−

√
KW II 1

K

K∑
j=1

V I
j (t)

=
√
K
[
Imext(t) +W IEmE(t)−W IImI(t)

]
. (4.38)

As
√
K → ∞ the left hand side goes to zero and the equilibrium state will satisfy

0

(
1√
K

)
= Emext(t) +WEEmE(t)−WEImI(t) (4.39)

and

0

(
1√
K

)
= Imext(t) +W IEmE(t)−W IImI(t). (4.40)

The implication of this equilibrium condition is that the average input remains finite as
the fluctuations remain large (Figures 16 and 17). This is the balanced state.

4.6 The balanced state

Solving the above equations for mo
E and mo

I gives relations for the equilibrium activity of
the excitatory and inhibitory cells in terms of the external drive:

m0
E =

W IIE −WEII

WEEW II −WEIW IE
mext. (4.41)

and

m0
I =

W IEE −WEEI

WEEW II −WEIW IE
mext. (4.42)

Recall that the equilibrium values of activity mo
E and mo

I must be both positive and
bounded by 1. This constrains the values of the synaptic weights.
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Figure 16: Balanced networks have emergent variability. From Shadlen and Newsome, 1994.

Figure 17: Statistics of have emergent variability. From Shadlen and Newsome, 1994.

4.6.1 Linear response

A seemingly paradoxical effect is that increasing the external inhibitory input, i.e., in-
creasing I, will lead to a net decreased spiking of inhibitory cells and l will concurrently
decrease bothmE andmI (Figure 18). This is a feedback effect. Excitatory and inhibitory
activity track each other until the excitatory cells are completely turned off; this behavior
is seen across cortical regions (Figure 19).

A second issue is that rapid feedback prevents the occurrence of significant correlations.
This depends of having faster inhibitory than excitatory synapses, as occurs for Gaba-A,
but not Gaba-B (Figure 20).

4.6.2 Stability and response speed

We return to the full network equations and look at the variation around the equilibrium
value of mE and mI . Taking the time constants, τ , conversion gains, β, and thresholds
to be the same for the E and I populations, and denoting

δmE(t) = mE(t)−mo
E (4.43)
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Figure 18: Model predictions of excitatory and inhibitory responses to inhibitory stimulation. (A) Schematic of model,
showing connections between excitatory (E) and inhibitory (I) neuron populations. (B) Predictions for average neural
responses with weak recurrent coupling (left) and strong coupling (right), when inhibitory cells are externally stimulated.
(C) Schematic of experiment. Extracellular recordings made in visual (V1), primary somatosensory (SOMATO), and
motor/premotor cortices (a: anterior, p: posterior, m: medial, l: lateral) while optogenetically stimulating inhibitory cells
at the recording site in awake VGAT-ChR2 animals. From Sanzeni, Akitake, Goldbach, Leedy, Brunel and Histed 2020.

Figure 19: Inhibition stabilization across cortical areas. (left) Motor/premotor cortex recordings and motor cortex
population firing rates for E and I units. Initial mean response of inhibitory cells is negative, showing paradoxical suppres-
sion. Mean rate is significantly reduced (p¡10−4, paired t-test, rate at 0 versus rate at L0). (right)Similar experiment but
for recordings from somatosensory cortex; the mean I rate is significantly reduced (p¡10−7, paired t-test). From Sanzeni,
Akitake, Goldbach, Leedy, Brunel and Histed 2020.

Figure 20: Synaptic rise and decay times

and
δmI(t) = mI(t)−mo

I (4.44)

leads to

τ
d δmE(t)

dt
+ δmE(t) =

[
β
√
K
(
WEEδmE(t)−WEIδmI(t)

)]
+

(4.45)
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and

τ
d δmI(t)

dt
+ δmI(t) =

[
β
√
K
(
W IEδmE(t)−W IIδmI(t)

)]
+
. (4.46)

When the neurons are active, this reduces to the linear equations

τ
d δmE(t)

dt
+ δmE(t) = β

√
K
(
WEEδmE(t)−WEIδmI(t)

)
(4.47)

and

τ
d δmI(t)

dt
+ δmI(t) = β

√
K
(
W IEδmE(t)−W IIδmI(t)

)
. (4.48)

These linear equations are solved by taking δmE(t) ∝ eλt, so that

(λτ + 1) δmE(t) = β
√
K
(
WEEδmE(t)−WEIδmI(t)

)
(4.49)

and
(λτ + 1) δmI(t) = β

√
K
(
W IEδmE(t)−W IIδmI(t)

)
, (4.50)

which requires that∣∣∣∣∣ β
√
KWEE − 1− λτ −β

√
KWEI

β
√
KW IE −β

√
KW II − 1− λτ

∣∣∣∣∣ = 0 (4.51)

and leads to

λ1,2 =
β
√
K
(
WEE −W II

)
− 2

2τ
(4.52)

± 1

τ

√√√√(β√K (WEE −W II)− 2

2

)2

− β2K W IEWEI

−−−−−→
K → ∞ β

√
K

τ

WEE −W II

2
±

√√√√(WEE −W II

2

)2

− W IEWEI


=

β
√
K

τ

[
WEE −W II

2

] 1±
√√√√(1− 4

W IEWEI

(WEE −W II)2

) .
The system is stable only if the real part of λ1,2 < 0. This implies

W II > WEE, (4.53)

which is a prediction for connectomic analysis. We note that, by construction, W IEWEI >
0. The response time of the system is shortened by a factor of

√
K, i.e.,

τ

β
→ τ

β
√
K

O(1). (4.54)

The change in recovery speed of the network has not been properly measured. But a
sudden jump in the excitation of cortical input leads to an observed time-constant of
about 10 ms (Figure 21). Unfortunately this is not very different from estimates for
isolated neurons and thus the dynamics of the balanced still is a topic under analysis.
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Figure 21: Relaxation of the signal in V1 cortical neurons after shut-down of thalamus. From Reinhold, Lien and
Scanziani 2015

Box 1. Thermal noise starting with Johnson Noise formula
The expression for Johnson noise is

δV =

√
4kBT∆f

G
. (4.55)

But the bandwidth for an RC circuit is

∆f =

∫ ∞

0
df

1

1 + (2πf(C/G))2
(4.56)

=
G

4C
.

so

δV =

√
kBT

C
. (4.57)

Box 2. Transfer function
Typically one measures two time series in recording from a neuron in an animal

• V k
app(t) is the applied stimulus or motor output for the k-th trial.

• Sk
meas(t) =

∑
spike times δ(t− tkr ) is the measured spike time for the k-th trial.

How well can we reconstruct the stimulus from the spikes” We use the measured information
to construct a linear filter that allows us to predict the stimulus for an unknown spike train.
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In a sense. This idea is old, although it came into use only at the time of WW II, when
there was a big push at the MIT Radar Laboratory to formulate the mathematics of optimal
filtering and prediction. The procedure is as follows:

• We define T (t) as the sought after transfer function.

• We define V k
pred(t) as the predicted stimulus for the k-th trial, based on the measured

spike train, where

V k
pred(t) =

∫ t

−∞
dt′T (t− t′)Sk

meas(t
′) (4.58)

=

∫ t

−∞
dt′T (t− t′)

∑
s

δ(t′ − tkS)

=
∑

spike times, S

∫ t

−∞
dt′T (t− t′)δ(t′ − tkS)

=
∑
S

T (t− tkS)

is the predicted output, given by a convolution integral (Figure 22).

To determine T (t), we minimize the difference between the actual and the predicted
stimulus, averaged over all trials and time, i.e.,

Error =
∑
k

∫
dt
(
V k
pred(t)− V k

app(t)
)2

(4.59)

=
∑
k

∫
dt

(∫ t

−∞
dt′T (t− t′)Sk

meas(t
′)− V k

app(t)

)2

The error is computed in terms of measured quantities, except for T (t), which we find by
the criteria that we choose T (t) to minimize the error. This is much easier to solve in
the frequency domain, where convolutions turn into products. We consider the Fourier
transformed variables:

V k
app(t) ⇐⇒ Ṽ k

app(f) (4.60)

Sk
meas(t) ⇐⇒ S̃k

meas(f) (4.61)

V k
pred(t) ⇐⇒ Ṽ k

pred(f) (4.62)

T (t) ⇐⇒ T̃ (f) (4.63)

(4.64)

where

T̃ (f) =

∫ ∞

−∞
dtei2πftT (t) (4.65)

T (t) =
1

2π

∫ ∞

−∞
dfe−i2πftT̃ (f) (4.66)

so that (ignoring causality for the moment) the convolution becomes∫ ∞

−∞
dt′T (t− t′)X(t′) = T̃ (f)X̃(f) (4.67)
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and we recall Parseval’s theorem, effectively a conservation of energy, i.e.,∫ ∞

−∞
dt|T (t)|2 =

∫ ∞

−∞
df |T̃ (f)|2 (4.68)

where|T̃ (f)|2 = T̃ (f)T̃ ∗(f). We put the above together to write:

Error =
∑
k

∫
df
∣∣∣Ṽ k

pred(f)− Ṽ k
app(f)

∣∣∣2 (4.69)

=

∫
df
∑
k

(∣∣∣Ṽ k
pred(f)− Ṽ k

app(f)
∣∣∣2)

=

∫
df
∑
k

(∣∣∣T̃ (f)S̃k
meas(f)− Ṽ k

app(f)
∣∣∣2)

=

∫
df
∑
k

(
T̃ (f)S̃k

meas(f)− Ṽ k
app(f)

) (
T̃ ∗(f)S̃k∗

meas(f)− Ṽ k∗
app(f)

)
=

∫
df
∑
k

(
T̃ (f)T̃ ∗(f)|S̃k

meas(f)|2 − T̃ (f)S̃k
meas(f)Ṽ

k∗
app(f)

−Ṽ k
app(f)T̃

∗(f)S̃k∗
meas(f) + |Ṽ k

app(f)|2
)

=

∫
dfT̃ (f)T̃ ∗(f)

∑
k

|S̃k
meas(f)|2 −

∫
dfT̃ (f)

∑
k

S̃k
measṼ

k∗
app(f)

−
∫

dfT̃ ∗(f)
∑
k

Ṽ k
appS̃

k∗
meas(f) +

∫
df
∑
k

|Ṽ k
app(f)|2

The next step is to minimize the error with respect to the transfer function. We compute
the function derivative

∂(Error)

∂T̃ ∗(f)
= 0 (4.70)

so that

0 =

∫
dfT̃ (f)

∑
k

|S̃k
meas(f)|2 −

∫
df
∑
k

Ṽ k
appS̃

k∗
meas(f) (4.71)

=

∫
df

(
T̃ (f)

∑
k

|S̃k
meas(f)|2 −

∑
k

Ṽ k
appS̃

k∗
meas(f)

)

The expression for T (f) must be valid at each frequency. Thus the frequency representation
of the transfer function is

T̃ (f) =

∑
k Ṽ

k
app(f)S̃

k∗
meas(f)∑

k |S̃k
meas(f)|2

(4.72)

This is the central result. For the case of measured signal that is a spike train,

T̃ (f) =

∑
k Ṽ

k
app(f)

∑
s e

i2πftkS∑
k

∑
S,S′ e

i2πf(tkS−tk
S′ )

(4.73)

In the time domain, this is just

T (t) =
1

2π

∫
dfe−i2πft

∑
k Ṽ

k
app(f)

∑
s e

i2πftkS∑
k

∑
s,s′ e

i2πf(tkS−tk
S′ )

(4.74)
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Ugly! But this has a simple form when the spike arrival times may be taken to be a random,
e.g., Poisson variable. This occurs if the spike rate is not too high, so that the refractory
period plays no role. In this case the denumerator is just∑

k

∑
S,S′

ei2πf(t
k
S−tk

S′ ) ≈ N (4.75)

where N is the total number of spikes across all trials, and the numerator is just

1

2π

∫
dfe−i2πft

∑
k

Ṽ k
app(f)

∑
S

ei2πft
k
S =

∑
k

∑
S

1

2π

∫
dfe−i2πf(t−tkS)Ṽ k

app(f) (4.76)

=
∑
k

∑
S

V k
app(t− tkS)

Thus T (t) is just the spike triggered average of the stimulus waveform, i.e.,

T (t) ≈ 1

N

∑
k

∑
S

V k
app(t− tkS) (4.77)

and finally we see that all that happens is that the transfer function reports the waveform
of the stimulus that is most likely to cause the neuron to fire.

Figure 22: Pictorial guide to the convolution of v(t) with u(t).
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