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6 Recording, information transduction, and activa-

tion of neurons

6.1 Conceptual fundamentals

6.1.1 Electrical

Electrode measurements are limited by the thermal noise at the electrode surface. This
can be expressed by the Johnson noise formula for noise voltage δV , i.e.,

δV =
√
4kBTR∆ν (6.1)

where R is the resistance and ∆ν is the bandwidth of the amplifier. For a scenario in
which the noise is 10-times less than that of the 20µV intracellular membrane noise and the
bandwidth matches that of the rise time of the action potential, requiring ∆ν = 10 kHz, we
find R ≃ 200 MΩ. This reflects the reality for intracellular electrodes. A patch electrode
can have considerable less resistance, maybe R ≈ 200 kΩ.

The second issue is the the voltage probe should not draw any current, which is to
say that the resistance should be large. This means that the amplifier used with the
electrode must have an input resistance large compared to the electrode resistance, on
the the range of tens of GOhms; this is reasonable with FET-input amplifiers. In general,
the impedance of the probe must be large compared to that of the source - or system
under study - to avoid perturbing the source.

6.1.2 Optical

Measurements of light, such as that emitted from a fluorescent source, are limited by the
Poisson arrival statistics of photons. Achieving this limits requires that all systematic
noise sources, such an an excitation light, are minimized. Shot noise is expressed as a
current δI, i.e.,

δI =
√
2eI∆ν (6.2)

where e is the electronic charge and I is the total current. Typically, the signal one is
measuring corresponds of a change in the intensity of light, of a change in I denoted ∆I.
Then the signal-to-noise ratio (SNR) is

SNR =
∆I

δI
(6.3)

=
∆I

I

√
I

2e∆ν
.
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This is an important and telling formula. It states that the SNR varies as the fraction
change of the indicator - say a popular calcium indicator like GCaMP - times the square-
root of the intensity of the light. We can turn this into numbers of photons, n,

SNR =
∆n

n

√
n (6.4)

which clearly states that smaller signals require more photons or more measurements to
achieve a reliable estimate.

6.1.3 Information and SNR

When goes one stop making measurements? We saw (Eq 6.4) that the signal-to-noise
increases as we make more and more measurements. So when do we stop? A principled
way to think about this is i terms of the transfer of information about the system from
a measurement. Here the noise may also include terms from the biological system and
various technological sources in addition to fundamentals such as shot noise. Nonetheless,
for specific models of the noise, we can calculate the information gained about a system
from the measurements. For the case of a measure called mutual information, denoted
IM , and noise assumed to follow Gaussian statistics, which is reasonable for large numbers
of measurements, we a classic result (Box 1) is

IM =
1

2
log

[
1 + (SNR)2

]
(6.5)

where the square occurs because are need to convert to power, e.g., (voltage)2. This states
that the mutual informal rises linearly when the SNR is small, i.e., IM ≃ SNR/2 (recall
ln(1+x) ≈ x for x << 1), and then rises only slowly for when the SNR becomes large, i.e,
IM ≃ log(SNR). So, if experimental time is limited and many sites need to be observed,
one should only measure until the SNR reaches say 10-ish, then move on!

Box 1. Mutual Information and signal-to-noise
We start with the definition of conditional probability. Let P (r|s) be fined as the proba-

bility of a response r given a stimulus s. Then the associated Shannon information, denoted
H, or equivalently the entropy of the response, is

H(r, s) = −
∫

dr P (r|s) logP (r|s) (6.6)

The question is if this is larger than a random response. This leads to the definition of the
noise entropy, denoted Hnoise, as an average entropy over all stimuli. Thus

Hnoise(r, s) =

∫
ds P (s)H(r, s) (6.7)

= −
∫ ∫

ds dr P (s)P (r|s) logP (r|s)

The difference between the entropy of the response, denoted Hs(r) where

H(r) = −
∫

dr P (r) logP (r) (6.8)
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and Hnoise(r, s) is the a measure of what can be gleamed about the stimulus from the
response. This is known as the mutual information, denoted Im, where

IM = H(r)−Hnoise(r, s) (6.9)

= −
∫

dr P (r) logP (r) +

∫ ∫
ds dr P (s)P (r|s) logP (r|s)

To simply this, we know that we can express P (r) and a sum the conditional probability
P (r|s) summed over all stimuli, or

P (r) = −
∫

dr P (r|s)P (s) (6.10)

Then

IM = −
∫ ∫

dr ds P (r|s)P (s) logP (r) +

∫ ∫
ds dr P (s)P (r|s) logP (r|s) (6.11)

=

∫ ∫
ds dr P (r|s)P (s) log

P (r|s)
P (r)

We can go one more step and express this in terms of the joint probability P (r, s), where

P (r, s) = P (r|s)P (s) (6.12)

or

P (r, s) = P (s|r)P (r).

Then

IM =

∫ ∫
ds dr P (r, s) log

P (r, s)

P (r) P (s)
(6.13)

which is zero if the stimulus and the response are uncorrelated, i.e., if P (r, s) = P (r) P (s).
Note the alternate expressions (useful below)

IM =

∫ ∫
ds dr P (r, s) log

P (r|s)
P (r)

(6.14)

or

IM =

∫ ∫
ds dr P (r, s) log

P (s|r)
P (r)

.

Let’s calculate the mutual information when the stimulus and response both can be
modeled as Gaussian random variables.

• Linear response gives

r = Gs+ η (6.15)

where G is the gain of the transduce and η is the additive noise of the transducer,
with variance σ2. This is the output noise of the system; the noise referred to the
input is σ2/G2.

• Let the stimulus s have an average of < s >= 0 and a variance < s2 >. Here < s2 >.
is the signal, i.e., the mean-square of changes in the input about the mean.
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• Let the response r, or output of the transducer, have an average of < r >= 0 and a
variance < r2 >. The probability distribution for the response is

•
P (r) =

1√
2π < r2 >

e−r2/2<r2> (6.16)

Using the notation

⟨f(r)⟩ ≡
∫

dr P (r)f(r) (6.17)

The entropy H(r) of this distribution is

H(r) = −⟨logP (r)⟩ (6.18)

= − 1

ln 2

〈1
2
ln
(
2π < r2 >

)
+

r2

2 < r2 >

〉
= − 1

ln 2

[
1

2
ln
(
2π < r2 >

)
+

< r2 >

2 < r2 >

]

= − 1

2 ln 2

[
ln
(
2π < r2 >

)
+ 1

]
where we used log2 x = (1/ ln 2) lnx.

Lets now consider the conditional probability of the response given the stimulus, i.e.,

P (r|s) = 1√
2πσ2

e−(r−Gs)2/2σ2
(6.19)

where Gs is the mean response. Using the previous notation

⟨f(r)⟩ ≡
∫

dr P (r, s)f(r) (6.20)

and the alternate form for IM (Eq 6.15), we have

IM =
〈
log

P (r|s)
P (r)

〉
(6.21)

=
1

ln 2

[
−−1

2
ln
(
2πσ2

)
+

1

2
ln
(
2π < r2 >

)
− < (r −Gs)2 >

2σ2
+

< r2 >

2 < r2 >

]

= − 1

2 ln 2

(
ln

< r2 >

σ2
− < σ2 >

σ2
+

< r2 >

< r2 >

)

= − 1

2 ln 2
ln

G2 < s2 > + σ2

σ2

(6.22)

where we used < r2 >= G2 < s2 > +σ2 since < s η >= 0 and < η2 >≡ σ2. Then

IM =
1

2
log

(
1 +

< s2 >

σ2/G2

)
(6.23)

Recall that σ2/G2 is the noise power referred the input, so this is in the form of the general
relation IM = (1/2) log [1 + (SNR)2], where the signal-to-noise ratio is the quotient of the
standard deviation of the signal to the standard deviation of the noise at the input.
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6.2 Modern twists on classical techniques

Classical intracellular recording makes use of glass cylindrical electrodes that provide an
intracellular connection to a cell. The modern twist is intracellular recording from a
cortical or hippocampal neurons in a mouse that is running on a maze (Figure 1). This
shows, for example, that neurons can have so much excitatory drive at the center of their
receptive field that the cell is essentially shunted (Figure 2); this phenomena would be
missed by extracellular electrodes.

Figure 1: Head-mount for jerk-free insertion of an electrode into a pyramidal cell. From Lee, Manns, Sakmann and
Brecht, 2006

Figure 2: Recording from neurons in CA1 of hippocampus as the mouse passes through its place field; bursts of spikes
occurred at regions marked by red dots. From Epsztein, Brecht and Lee, 2011

Classical extracellular recording makes use of metal electrodes that record the flow of
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current outside of a cell and provide a means to infer spikes in a neighboring cell. The
modern twist is extracellular recording from hundreds of sites at once (Figure 3).

Figure 3: Recording from cortex with Neuropixels. From Jun, Steinmetz, Siegle, Denman, Bauza, Barbarits, Lee,
Anastassiou, Andrei, Aydon, Barbic, Blanche, Bonin, Couto, Dutta, Gratiy, Gutnisky, Hausser, Karsh, Ledochowitsch,
Lopez, Mitelut, Musa, Okun, Pachitariu, Putzeys, Rich, Rossant, Sun, Svoboda, Carandini, Harris, Koch, O’Keefe and
Harris, 2017

6.3 Genetically expressed optical-based indicators of intracellu-
lar Ca2+.

In a program started by the late Roger Tsien, these molecules (Figure 6.3) are expressed
in vivo in specific cell types and initiate an increase in fluorescence in response to the
Ca2+ influx that follows an action potential (Figure 5).

Figure 4: The cyclically permutable GFP turned into a detector of intracellular Ca2+. From Chen, Wardill, Sun,
Pulver, Renninger, Baohan, Schreiter, Kerr, Orger, Jayaraman, Looger, Svoboda and Kim, 2013.

6



Figure 5: Absorption and fluorescent spectrum.

6.4 In vivo recording of neuronal structure and function with
two-photon laser scanning microscopy

Winfried Denk’s technique of two-photon laser scanning microscopy, properly pushed to
the limit with corrections for the wavefront distortion through tissue (Figure 6), allows
changes in intracellular Ca2+ to be measured in neuronal soma down to spines in nearly
all layers of cortex. Note that the region of observation, the point spread function, is
elongated in ”z” (Figure 7).

Figure 6: Essential components of a state-of-the-art two photon microscope. From Liu, Li, Marvin and Kleinfeld 2019.

6.5 In vivo recording of calcium signaling with two-photon laser
scanning microscopy

In vivo Ca2+ signals may be recorded after a single spike, and from many sites (Figure
8). Still the interpretation in terms of numbers of spikes is imperfect and thus curation
is suggested in quantitative interpretation of signals (Figures 6.5, 10, and 11).
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Figure 7: The distortion of cell images by the point spread function is most severe along the optical axis. From Tsai,
Mateo, Field, Schaffer, Anderson and Kleinfeld, 2015.

Figure 8: Intracellular responses in superficial V1 of mouse visual cortex using GCaMP6. From Chen, Wardill, Sun,
Pulver, Renninger, Baohan, Schreiter, Kerr, Orger, Jayaraman, Looger, Svoboda and Kim, 2019.

Figure 9: Intracellular responses in hippocampal brain slice with cell culture using Oregon Green BABTA. From Sasaki,
Takahashi, Matsuki and Ikegaya, 2008.
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Figure 10: Intracellular Ca2+ is an unreliable measure of spike count and may fail to detect single spikes in vivo. From
Theis, Berens, Froudarakis, Reimer, Roson, Baden, Euler, Tolias and Bethge 2016.

Figure 11: Intracellular Ca2+ in distal dendrites of L5b neurons can dissociate from somatic electrical activity. From
Helmchen and Waters 2002.

6.6 In vivo recording of activity in the locomoting animal

The use of virtual reality in combination with two-photon microscopy permits behavior
and circuit dynamics to be concurrently measured (Figures 12 and 13).
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Figure 12: In vivo hippocampus preparation. From Dombeck, Harvey, Tian, Looger and Tank 2010.

Figure 13: In vivo recording in hippocampus. From Dombeck, Harvey, Tian, Looger and Tank 2010.

6.7 Genetically expressed optical-based drivers of spiking

Optical activation of certain microbial opsin expressed in the membrane of neurons (Figure
14), most famously channelrhodopsin (Figure 15), can be used to photo-excite, or photo-
inhibit, neurons.

6.8 All optical schemes for feedback control of spiking

The use of two-photon imaging and concurrent two-photon photoactivation permits be-
havior and circuit dynamics to be concurrently measured and perturbed solely with light
and light-activated molecules (Figures 16, 17, 18, 19, and 20).
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Figure 14: Natural transmembrane proteins that use light to pump ion of open ion selective pores.

Figure 15: One photon absorption and dynamics of channelrhodopsin. From Klapoetke, Murata, Kim, Pulver,
Birdsey-Benson, Cho, Morimoto, Chuong, Carpenter,Tian, Wang, Xie, Yan, Zhang, Chow, Surek, Melkonian, Jayara-
man, Constantine-Paton, Wong and Boyden, 2014

Figure 16: Two-photon action spectra for activating neurons with red-shifted channelrhodopsin C1V1 and action
spectrum for recording Ca2+ transients with GCaMP3.
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Figure 17: Narrow range of excitation for two-photon activation with red-shifted channelrhodopsin ReaChR. From
Chaigneau, onzitti, Gajowa, Soler-Llavina, Tanese, Brureau, Papagiakoumou, Zeng and Emiliani, 2016

Figure 18: Schematic for feedback induced long-term synaptic potentiation. From Zhang, Russell, Packer, Gauld and
Hausser 2018.
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Figure 19: Test of feedback induced long-term synaptic potentiation. From Zhang, Russell, Packer, Gauld and Hausser
2018.

Figure 20: Test of feedback induced long-term synaptic potentiation. From Zhang, Russell, Packer, Gauld and Hausser
2018.
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