

• At each time step, select at random a unit i to be updated, and apply the
update rule.

• Let each unit independently choose to update itself according to the update
rule, with some constant probability per unit time.

These choices are equivalent, except for the distribution of update intervals,
because the second gives a random sequence; there is vanishing small probability of
two units choosing to update at exactly the same moment.

Rather than study a specific problem such as memorizing a particular set of
pictures, we examine the more generic problem of a random set of patterns drawn
from a distribution. For convenience we will usually take the patterns to be made
up of independent bits ξi that can each take on the values +1 and -1 with equal
probability.

Our procedure for testing whether a proposed form of Wij is acceptable is first to
see whether the patterns to be memorized are themselves stable, and then to check
whether small deviations from these patterns are corrected as the network evolves.

7.2 Storing one pattern

To motivate our choice for the connection weights, we consider first the simple case
whether there is just one pattern ξi that we want to memorize. The condition for
this pattern to be stable is just

sgn

 N∑
j=1

Wijξj

 = ξi ∀i (7.10)

because then the update rule produces no changes. It is easy to see that this is true
if we take

Wij ∝ ξiξj (7.11)

since ξ2j = 1. We take the constant of proportionality to be 1/N , where N is the
number of units in the network, giving

Wij =
1

N
ξiξj . (7.12)

Furthermore, it is also obvious that even if a number (fewer than half) of the bits
of the starting pattern Si are wrong, i.e., not equal to ξi, they will be overwhelmed
in the sum for the net input

hi =
N∑
j=1

WijSj (7.13)

by the majority that are right, and sgn(hi) will still give ξi. An initial configuration
near to ξi will therefore quickly relax to ξi. This means that the network will correct
errors as desired, and we can say that the pattern ξi is an attractor.

2

Actually there are two attractors in this simple case; the other one is at −ξi.
This is called a reversed state. All starting configurations with more than half the
bits different from the original pattern will end up in the reversed state.

7.3 Storing many patterns

This is fine for one pattern, but how do we get the system to recall the most similar
of many patterns? The simplest answer is just to make wij by an outer product
rule, which corresponds to

Wij =
1

N

p∑
µ=1

ξµi ξ
µ
j . (7.14)

Here p is the total number of stored patterns labelled by µ.

This is called the “Hebb rule” because of the similarity with a hypothesis made
by Hebb (1949) about the way in which synaptic strengths in the brain change
in response to experience: Hebb suggested changes proportional to the correlation
between the firing of the pre- and post-synaptic neurons.

Let us examine the stability of a particular pattern ξνi . The stability condition
generalizes to

sgn(hνi) = ξνi ∀i (7.15)

where the net input hνi to unit i in pattern ν is

hνi ≡
N∑
j=1

Wijξ
ν
j =

1

N

N∑
j=1

p∑
µ=1

ξµi ξ
µ
j ξ

ν
j . (7.16)

We now separate the sum on µ into the special term µ = ν and all the rest:

hνi = ξνi +
1

N

N∑
j=1

p∑
µ6=ν

ξµi ξ
µ
j ξ

ν
j . (7.17)

If the second term were zero, we could immediately conclude that pattern number ν
was stable according to the stability condition. This is still true if the second term
is small enough: if its magnitude is smaller than 1 it cannot change the sign of hνi .

It turns out that the second term is less than 1 in many cases of interest if p,
the number of patterns, is small enough. Then the stored patterns are all stable
– if we start the system from one of them it will stay there. Furthermore, a small
fraction of bits different from a stored pattern will be corrected in the same way as
in the single-pattern case; they are overwhelmed in the sum

∑
jWijSj by the vast

majority of correct bits. A configuration near to ξνi thus relaxes to ξνi . This shows
that the chosen patterns are truly attractors of the system . The system works as a
content-addressable memory.

3

7.4 Scaling for error-free storage of many patterns

We consider a Hopfield network with the standard Hebb-like learning rule and ask
how many memories we can imbed in a network of N neurons with the constraint
that we will accept at most one bit (one neuron’s output in only one memory state)
of error. The input hi is

hi =
N∑
j 6=i

WijSj (7.18)

=
1

N

p∑
µ=1

N∑
j 6=i

ξµi ξ
µ
j Sj

where p is the number of stored memories, N is the number of neurons and

Wij ≡
1

N

p∑
µ=1

ξµi ξ
µ
j (7.19)

is the synaptic weight matrix given by the Hebb rule.

Now, check the stability of a stored state. Make Sj = ξ1j , one of the stored
memory states, so that

hi =
1

N

p∑
µ=1

N∑
j 6=i

ξµi ξ
µ
j ξ

1
j (7.20)

=
1

N

p∑
µ=1

ξµi

N∑
j 6=i

ξµj ξ
1
j

‘ =
1

N
ξ1i

N∑
j 6=i

ξ1j ξ
1
j +

1

N

p∑
µ6=1

ξµi

N∑
j 6=i

ξµj ξ
1
j

On average, the second term is zero, so that the average input is

< hi >=
1

N
ξ1i (N − 1) ' ξ1i (7.21)

What is the variance, denoted σ2? The second term, summed over random vectors
with zero mean, consists of the sum of (p−1) inner products of vectors with (N−1)
terms. Each term is +1 or -1, i..e., binomially distributed, so that the fluctuation
to the input is

σ =
1

N
·
√
p− 1 ·

√
N − 1 (7.22)

'
√
p

N
.

4

This results in a fluctuation to the input with a standard deviation, σ. Noise hurts
only if the magnitude of the noise term exceeds 1. The noise becomes Gaussian for
large p and N , but constant p/N , which is the limit of interest, Thus the probability
of an error in the recall of all stored states is

Perror =
1√

2π σ

[∫
−−1∞ e−x

2/2σ2

dx +
∫ ∞
+1

e−x
2/2σ2

dx
]

(7.23)

=

√
2√
π σ

∫ ∞
+1

e−x
2/2σ2

dx

=
2√
π

∫ ∞√
N
2p

e−x
2

dx

≡ erfc

(√
N

2p

)

where efrc(x) is the complementary error function and we again note that the average
of the error term is zero. Note that for N

2p
>> 1 the complementary error function

may be approximated by an asymptotic form given by

Perror '
2√
π

p

N
e−N/2p (7.24)

We have a nice and closed expression in a relevant limit!

Now N · p is total number of “bits” in the network. Suppose only less than one
bit can be in error. Then we equate probabilities of correct to within a factor of one
bit, or 1

Np
. Thus

(1− Perror)Np ≥ 1− 1

Np
(7.25)

But Np is large and Perror will be small by construction, so 1−Np×Perror ≥ 1− 1
Np

and thus

Perror <
1

(Np)2
(7.26)

From the above expansion of the gaussian error:

log [Perror] ' −
1

2
log π − N

2p
− log N

2p
(7.27)

From the constraint on the desired error:

5

log [Perror] < −2 log(Np) (7.28)

Thus

−1

2
log π − N

2p
− log N

2p
< −2 log (Np) (7.29)

We now let N → ∞ with N/p constant. Keeping zero-th and first order terms, we
have:

N

2p
> 2 log (Np) > 2 log (N) (7.30)

so

p <
1

4

N

log N
(7.31)

Note that p has a similar scaling for the choice of a fixed, nonzero error rate.

Thus we see that an associate memory based on a recurrent Hopfield network stores
a number of memories that scales more weakly than the number of neurons if one
cannot tolerate any errors upon recall. Keep a mind that a linear network stores
only one stable state, e.g., an integrator state . So things are looking good.

7.5 Energy description and convergence

These notes were abstracted from chapter 2 of the book by Hertz, Krogh and Palmer
(Introduction to the Theory of Neural Computation, Addison Wesley, 1991)

One of the most important contributions of Hopfield was to introduce the idea of
an energy function into neural network theory. For the networks we are considering,
the energy function E is

E = −1

2

N∑
ij

WijSiSj . (7.32)

The double sum is over all i and all j. The i = j terms are of no consequence because
S2
i = 1; they just contribute a constant to E, and in any case we could choose Wii

= 0. The energy function is a function of the configuration Si of the system, where
Si means the set of all the Si’s. Typically this surface is quite hilly.

The central property of an energy function is that it always decreases (or remains
constant) as the system evolves according to its dynamical rule. Thus the attractors
(memorized patterns) are at local minima of the energy surface.

For neural networks in general an energy function exists if the connection strengths
are symmetric, i.e., Wij = Wji. In real networks of neurons this is an unreasonable
assumption, but it is useful to study the symmetric case because of the extra insight

6

that the existence of an energy function affords us. The Hebb prescription that we
are now studying automatically yields symmetric Wij’s.

For symmetric connections we can write the energy in the alternative form

E = −
N∑
(ij)

WijSiSj + constant (7.33)

where (ij) means all the distinct pairs of ij, counting for example ”1,2” as the same
pair as ”2,1”. We exclude the ii terms from (ij); they give the constant.

It now is easy to show that the dynamical rule can only decrease the energy. Let
S ′i be the new value of Si for some particular unit i:

S ′i = sgn

 N∑
j=1

WijSj

 . (7.34)

Obviously if S ′i = Si the energy is unchanged. In the other case S ′i = −Si so, picking
out the terms that involve Si

E ′ − E = −
N∑
j 6=i

WijS
′
iSj +

N∑
j 6=i

WijSiSj (7.35)

= 2Si
N∑
j 6=i

WijSj

= 2Si
N∑
j=1

WijSj − 2Wii.

Now the first term is negative from the update rule, and the second term is negative
because the Hebb rule gives Wii = p/N ∀ i. Thus the energy decreases every time
an Si changes, as claimed.

The self-coupling terms Wii may actually be omitted altogether, both from the
Hebb rule (where we can simply define Wii = 0) and from the energy function as
they make no appreciable difference to the stability of the ξνi patterns in the large
N limit.

The idea of the energy function as something to be minimized in the stable states
gives us an alternate way to derive the Hebb prescription. Let us start again with the
single-pattern case. We want the energy to be minimized when the overlap between
the network configuration and the stored pattern ξi is largest. So we choose

E = − 1

2N

p∑
µ=1

(
N∑
i=1

Siξ
µ
i

)2

. (7.36)

Multiplying this out gives

7

E = − 1

2N

p∑
µ=1

(
N∑
i=1

Siξ
µ
i

) N∑
j=1

Sjξ
µ
j

 (7.37)

= −1

2

N∑
ij

 1

N

p∑
µ=1

ξµi ξ
µ
j

SiSj

which is exactly the same as our original energy function if wij is given by the Hebb
rule.

This approach to finding appropriate Wij’s is generally useful. If we can write
down an energy function whose minimum satisfies a problem of interest, then we
can multiply it out and identify the appropriate strength Wij from the coefficient of
SiSj.

7.6 The issue of spurious attractors

These notes were abstracted from chapter 2 of the book by Hertz, Krogh and Palmer
(Introduction to the Theory of Neural Computation, Addison Wesley, 1991)

We have shown that the Hebb prescription gives us (for small enough p) a dynamical
system that has attractors – local minima of the energy function – at the desired
points ξµi . These are sometimes called the retrieval states. But we have not shown
that these are the only attractors. And indeed there are others, as discovered by by
Amit, Gottfried and Sompolinsky (1985).

First of all, the reversed states −ξµi are minima and have the same energy as the
original patterns. The dynamics and the energy function both have a perfect sym-
metry, Si ↔ – Si ∀ i. This is not too troublesome for the retrieved patterns; we
could agree to reverse all the remaining bits when a particular “sign bit” is –1 for
example.

Second, there are stable mixture states ξmixi , which are not equal to any single
pattern, but instead correspond to linear combinations of an odd number of patterns.
The simplest of these are symmetric combinations of three stored patterns:

ξmixi = sgn(±ξ1i ± ξ2i ± ξ3i) . (7.38)

All 23 = 8 sign combinations are possible, but we consider for definiteness the case
where all the signs are chosen as +’s. The other cases are similar. Observe that
on average ξmixi has the same sign at ξ1i three times out of four; only if ξ2i and ξ3i
both have the opposite sign can the overall sign be reversed? So ξmixi is Hamming
distance N/4 from ξ1i , and of course from ξ2i and ξ3i too; the mixture states lie at
points equidistant from their components. This also implies that

∑
i ξ

1
i ξ
mix
i = N/2

on average. To check the stability pick out the three special states with µ = 1, 2, 3,
still with all + signs, to find:

8

hmixi =
1

N

N∑
j=1

∑
µ

ξµi ξ
µ
j ξ

mix
j =

1

2
ξ1i +

1

2
ξ2i +

1

2
ξ3i + cross− terms . (7.39)

Thus the stability condition is satisfied for the mixture state. Similarly 5, 7, ...
patterns may be combined. The system does not choose an even number of patterns
because they can add up to zero on some sites, whereas the units have to have
nonzero inputs to have defined outputs of ±1.

Third, for large p there are local minima that are not correlated with any finite
number of the original patters ξµi .

7.7 The phase diagram of the Hopfield model

A statistical mechanical analysis by Amit, Gottfried and Sompolinsky (1985) shows
that there is a crucial value αc of α ≡ p/N where memory states no longer exist. A
numerical evaluation gives

αc ≈ 0.138 . (7.40)

The jump in the number of memory states is considerable: from near-perfect recall
to zero. This tells us that with no internal noise we go discontinuously from a very
good working memory with only a few bits in error for α < αc to a useless one for
a α > αc.

The attached figure shows the whole phase diagram for the Hopfield model, de-
lineating different regimes of behavior in the T − α plane, where T is the variance
of the random input. There is a roughly triangular region where the network is a
good memory device, as indicated by regions A and a’ of the figure. The result
corresponds to the upper limit on the α axis, while the critical noise level Tc = 1 for
the p� N case sets the limit on the T axis. Between these limits there is a critical
noise level Tc(α), or equivalently a critical load αc(T), as shown. As T → 1, αc(T)
goes to zero like (1− T)2.

In region C the network still turns out to have many stable states, called spin
glass states, but these are not correlated with any of the patterns ξµi . However,
if T is raised to a sufficiently high value, into region D, the output of the network
continuously fluctuates with 〈Si〉 = 0.

Regions A, A’, and B both have the desired retrieval states, beside some percentage
of wrong bits, but also have spin glass states. The spin states are the most stable
states in region B, lower in energy than the desired states, whereas in region A
the desired states are the global minima. For small enough α and T there are also
mixture states that are correlated with an odd number of the patterns as discussed
earlier. These always have higher free energy than the desired states. Each type
of mixture state is stable in a triangular region (A, A’ and B), but with smaller
intercepts on both axes. The most stable mixture states extend to 0.46 on the T
axis and 0.03 on the α axis (region A’).

9

7.8 Noise and spontaneous excitatory states

Before we leave the subject of the Hopfield model, it it worth stepping back and
asking if, by connection with ferromagnetic systems, rate equations of the form used
for the Hopfield model naturally go into an epileptic state of continuous firing, but
not necessarily with every cell firing. This exercise also allows us to bring up the
issue of fast noise that is uncorrelated from cell to cell.

We consider N binary neurons, with N >> 1, each of which is connected to all other
neighboring neurons. For simplicity, we assume that the synaptic weights Wij are
the same for each connections, i.e., Wij = W0. Then there is no spatial structure
in the network and the total input to a given cell has two contributions. One term
from the neighboring cells and one from an external input, which we also take to be
the same for all cells and denote h0. Then the input is

Input = W0

N∑
j=1

Sj + h0. (7.41)

The Energy per neuron, denoted ε, is then

εi = −Si W0

N∑
j=1

Sj − Si h0. (7.42)

The insight for solving this system is the mean-field approach. We replace the sum
of all neurons by the mean value of Si, denoted < S >, where

< S > =
1

N

N∑
j=1

Sj. (7.43)

so that

εi = −Si (W0N < S > + h0). (7.44)

We can now use the expression for the value of the energy in term of the average
spike rat, < S >, to solve self consistently for < S >. We know that the average
rate is given by a Boltzman factor over all of the Si. Thus

< S > =

∑+1
Si=−1 e

−εi/kBT Si∑+1
Si=−1 e

−εi/kBT
(7.45)

=

∑+1
Si=−1 e

Si(W0N<S>+h0)/kBT Si∑+1
Si=−1 e

Si(W0N<S>+h0)/kBT

=
− e−(W0N<S>+h0)/kBT + e(W0N<S>+h0)/kBT

e−(W0N<S>+h0)/kBT + e(W0N<S>+h0)/kBT

= tanh

(
W0N < S > +h0

kBT

)
.

10

A

A’
B

C

D

