Phys 178: HW2

Ghita Guessous

February 2024

Due midnight on March. 4th. Please justify all of your answers, make intermediate plots and submit
to Gradescope. Make sure you select the correct question for each part of your submission, otherwise it
will be graded as missing. If you have any questions, please email Ghita Guessous (gguessou@ucsd.edu).

e All physics students (graduate and undergrad) are required to do both Problems.

e Undergraduate biology students are required to do Problems 1.1 and 2 but are encouraged to attempt
the rest

1 Poisson Distribution

An integer-valued random variable X has a Poisson distribution with parameter A (i.e: X P(A,k)) if the

probability that X = k is:
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The real number A > 0 is called the rate parameter of the distribution.

1.1 Suppose X; and X5 are independent random variables and have Poisson distributions with parameters
A1 and Ag. Show that the random variable X = X; + X5 has a Poisson distribution with parameter

A1+ Aa.
1.2 Consider a sequence of independent Bernoulli random variables {Yn}évzl, with
N Dn if k=1,
P{Y"_k}_{l—pn it k=0 vn.

Each Y,, takes values from 0 and 1 and can be imagined as the occurrence of an event. Assume that
there are many possible events, N — 400, but each event is rare,

lim max p, — 0,
N—+oo 1<n<N

such that the overall probability of the occurrences is finite,

N
li L — A e (0, 400).
N—1>I—r0—loonz::lp - < (0 +OO)

Show that the total number of events, Sy = S°V

n—1 Yn, satisfies a Poisson distribution with parameter
Aas N — 4o0.

[Hint: One way to do this is to use a moment generating function. Here is an outline:



The generating function for Y}, is f,(x) = 1+ (x — 1)p,. So the generating function for Sy is
N
Fx(z) = ] fal@).
n=1

Use In[1 + (z — 1)pn] = 1+ (z — D)p, + O(p2) to show Fy(z) — e*®1, which is the generating
function for the Poisson distribution.]

2 Bursting oscillations !

Many neurons exhibit much more complicated firing patterns than simple repetitive firing like we saw in
class in the Hodgkin-Huxley and Fitzhugh-Nagumo models. A common mode of firing in many neurons are
bursting oscillations (Figure 1). The following Hindmarsh-Rose model can describe neurons with bursting
firing pattern:

dx

E:y—x3+bx2—Z+Iapp,

d
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P _ (A~ o) - 2) (1)
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x is a voltage-like variable. y and z are variables related to ion channels. z is a slow variable and € < 1.
b,c,d > 0 are constants. Find a set of parameter values (b, ¢, d, A, g, Iopp) such that Eq.(1) can generate
bursting oscillations and explain why this set of parameters work.

Below is a way to find these parameters (you don’t need to follow this):

2.1 Bifurcation diagram for x vs. z

Since z is a slow variable (2% ~ 0), we can treat z as a bifurcation parameter and take I,,, = 0 for

convenience. We first investigate the behavior of the 2D system (x,y) for different values of z:

d

d—f:y—x3+bx2—z

d

d—g;:c—dxz—y. (2)

a. Show that when b? < 3, for any value of z, the 2D system (z,y) doesn’t have periodic solutions.

[Hint: use Bendixson criterion.

Without periodic solutions, the 2D system (Eq. (2)) will always go to a fixed point as ¢t — +oo. Thus,
the original system (Eq. (1)) can’t have bursting oscillations. Below we will assume b? > 3. We further
assume b < d. [Think about what happens if b > d but you don’t need to write down anything.|

b. Show that when z is large enough (z — +o00), Eq. (2) has only one stable fixed point. Convince
yourself this fixed point is a global attractor in this regime. Find the maximum value of z such that
Eq. (2) has another stable fixed point. Denote this value as zgy, 1.

1This problem is adapted from Hindmarsh and Rose (1984), Proc. R. Soc. Lond. B 221, 87-102.
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Figure 1: Bursting oscillations

c. When decreasing z further, the newly generated stable fixed point will eventually become unstable.
Find the maximum value zp,pr1 when this happens. Show a stable limit cycle L; is generated

when z = zpops 1.
[Hints: Calculate the Lyapunov exponent at the Hopf bifurcation.]
It is difficult to directly analyze what will happen for the stable limit cycle L; when further decreasing

z. We will investigate this numerically. Before running into numerical simulations, we can also identify
part of the bifurcation diagram from the —z direction.

c. Show that when z is small enough (z — —o0), Eq. (2) has only one stable fixed point. Convince
yourself this fixed point is a global attractor in this regime. Find the minimum value of z such that
this fixed point becomes unstable. Denote this value as zfopf.2-

d. Show that a stable limit cycle Lo is generated when z = zpq),f,2.

e. When further increasing z, at 2 = 24,2 > zZmops2, @ new stable fixed point is generated. Find the
value of zg, 2.

[Hints: Calculate the Lyapunov exponent at the Hopf bifurcation.]
Now we are ready to fill in the missing part of the bifurcation diagram through numerically simulation.

f. Let b =3 and d = 5. Simulate Eq.(2) for different values of z to complete the bifurcation diagram.
In words, what happens to the stable limit cycles Ly and Lg at the region zg,2 < 2 < zgopf,1 7

[Feel free to try other values of (b,d) for b < d.]

2.2 Parameters for bursting oscillations

Based on the bifurcation diagram, find a set of parameters (b, ¢, d, A, zg, I4pp) such that Eq.(1) can generate
bursting oscillations. Plot the trajectory (x(t),y(t), z(¢)) in 3D space and z(t) vs. t.



