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1 Introduction

We are in the process of deriving the Hodgkin-Huxley model. That model describes how an action potential is
generated by ion speci�c and voltage dependent channels in a single neuron. It is a biophysical deterministic model.

Biophysical, because we started from a description of the di�erent voltage gated ion channels and how they act
together to create a bistable system.

Deterministic, because the Hodgkin-Huxely equations that you'll see next week have neither inherent variability
nor chaotic behavior. If you start them with the same initial conditions and drive the model neuron with the same
input, you will always get the same spike train.

When experimentalists make measurements of spike trains in all areas of the nervous system, even if they control
the environment very carefully, the neural response to repeated stimuli is variable. This means that the noise in the
neural response is real. After the famous Hodgkin-Huxley papers in the 50's, it took people a few years, until the
early to mid 60's, to realize that the variability they were seeing may not go hand in hand with the deterministic
nature of the Hodgkin-Huxley model.

2 Reconciling Hodgkin-Huxley with neural response variability

One easy way out is simply saying �The neuron is deterministic. The variability in the neuronal response comes
from stochasticity in the synaptic inputs�. A longer way out would be to say that we should look for a stochastic
mechanism that has to be somehow integrated into the biophysical model and generate noise inside the neuron
itself.

It's quite rare that the easy way out is the justi�ed one. William Calvin and Chuck Stevens showed in 1967 that
it's possible to explain the variability of inter spike intervals with the noise of the synaptic inputs.

This is not to say that all of neural variability is a result of the noise in many synaptic inputs. E�ects of recurrent
connectivity can sometimes dominate the variability in the response of single neurons (for example in the balanced
state van Vreeswijk and Sompolinsky [1996]), or, sometimes lead to the opposite e�ect of locking to a particular
rhythm (many works by Eve Mardar and Nancy Kopell, for example Marder and Bucher [2001]). In this lecture,
we will focus on the noisiness of a neuron that is in isolation (or part of a purely feedforward circuit), meaning it
does not a�ect its inputs through recurrent connections.

3 Poisson statistics

Once it is established that neuronal �ring variability is dominated by the stochasticity of synaptic inputs, the most
natural assumption to make is that inputs are independent. In the homework you are asked to discuss why, if there
is nonlinear dendritic integration this assumption is not true. Let's also make the assumption that the inputs have
a constant average. Since the inputs are constant on average, the output, or the average �ring rate is also constant,
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Figure 1: Taken from Calvin and Stevens [1967]

so we will call it r. After we're �nished and we have a result for r we will allow for the �ring rate to be time
dependent r(t).

We want to �nd the probability that the neuron spiked n times during the period T :

PT (n) (1)

We divide the interval T into M bins such that

∆t =
T

M
. (2)

M is large enough (∆t is small enough) so that there are never two spikes in the same bin.

The noisy inputs allow us to make the following simplifying assumption: having a spike in the ith bin ti > t > ti+∆t
is independent of having or not having a spike in the i − 1 bin (or the i + 1 bin). Again, in the homework you're
asked to discuss speci�c cases where this assumption does not hold.

Our strategy to �nd PT (n) is the following (taken from Dayan and Abbott [2001]). It's a product of three factors:

PT (n) = P

 n spikes in
n speci�c

bins

× P

 0 spikes in
other M − n

bins

×

 # of ways of
putting n spikes

in M bins

 (3)

After making all the simplifying assumptions, this is rather easy:

P

 n spikes in
n speci�c

bins

 =

(
rT

M

)n

= (r∆t)
n

(4)
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P

 0 spikes in
other M − n

bins

 = (1− r∆t)
M−n

(5)

 # of ways of
putting n spikes

in M bins

 =

(
M
n

)
=

M !

(M − n)!n!
(6)

Now we have a tiny bit of calculus before we're done. We need to take the limit∆t → 0, orM → ∞ andM−n ≈ M .
The three factors above become:

1. (r∆t)
n
: nothing to do about this one

2. lim∆t→0 (1− r∆t)
M−n

:
n is constant while M = T

∆t → ∞, so we can approximate M − n ≈ T
∆t :

lim
∆t→0

(1− r∆t)
M−n ≈ lim

∆t→0
(1− r∆t)

T
∆t (7)

Next we multiply and divide by T inside the parenthesis:

lim
∆t→0

(1− r∆t)
T
∆t = lim

∆t→0

(
1− ∆t

T
(rT )

) T
∆t

(8)

Then we remind ourselves of the de�nition of the exponential function limϵ→0 (1 + aϵ)
1
ϵ = ea, so :

lim
∆t→0

(1− r∆t)
M−n

= e−rT (9)

3. For the last term we need the Stirling approximation, and remembering that it's ok to replace M −n with M
(unless it's in the exponent): (

M
n

)
=

M !

(M − n)!n!
(10)

≈ MM

(M − n)
M−n

1

n!
(11)

≈ Mn

n!
(12)

=

(
T

∆t

)n
1

n!
(13)

combining everything

PT (n) =
(r∆t)

n

n!
× e−rT ×

(
T

∆t

)n

=
(rT )

n

n!
e−rT (14)

which is exactly the Poisson distribution.

If the changes in �ring rate are slow compared to the period T :

T
d

dt
r (t) ≪ r (T ) (15)

then we can replace r → r (t). Note that we can't make T too small because the number of spikes in a small window
T will make the RHS of the inequality small. Dayan and Abbott do this much more carefully, so if among all the
assumptions we made this is the one that bothers you, all these calculations are done quite clearly in their book.
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Figure 2: Taken from Mitchell et al. [2009]

4 What is it good for?

A long standing question that many neuroscientists owe their career to is the question of rate code versus temporal
code. A rate code means that the information that neurons pass between them is not in the exact timing of single
spikes but in the quantity of spikes that arrive within some time window. A temporal code is the opposite. It
means that the timing of single spikes is what carries the information. In the homework you are asked to discuss
what Poisson �ring statistics means in the context of this debate.

One very important thing about the Poisson distribution is that the variance is equal to the mean. Showing this
is also a part of your homework. This means that if under some conditions, when we're presenting repeated trials
the variance of the spike counts is roughly equal to the mean, we can say with some con�dence that the spiking
statistics are Poisson. If under other conditions this is no longer true, and the variance is bigger or smaller than
the mean, the spiking is no longer Poisson, and we have to go back to see which of the assumptions that we made
in our derivation no longer holds and why.

4.1 Attention

A nice example of such modulation was done next door at the lab of John Reynolds at the Salk institute. They
found that attention reduces the fano factor - the ratio of the variance and the mean - of neurons in V4 of Macaque
monkeys. I won't get into all the details, but just point out that this is strong evidence that the network is working
hard to reduce the noise in the network in a dramatic way: the modulation is of the whole noise distribution, not
only the noise �amount�.
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Figure 3: Taken from Zhang et al. [1998]

4.2 Exponential distribution

From a more theoretical point of view, the functional form of the Poisson distribution makes life easier. This is
because many times we are interested in quantities like d

dθP (n) (for example to compute the Fisher information of a
population with some tuning curves for the stimulus variable θ, see Seung and Sompolinsky [1993]) or the derivatives
of the log probability (to compute the maximum likelihood solution or to �t a Generalized Linear Model, see Pillow
et al. [2005]). For these reasons theorists will many times make the assumption that spiking has Poisson statistics
even if it's not 100% true.

5 What are the limitations?

By now it should be quite clear that any number of the assumptions that we made can be unjusti�ed in some
biological network.

5.1 Refractory period/ bursts/ dendritic nonlinearities

In the homework you are asked to discuss a refractory period, a tendency to burst �ring and/or nonlinear dendritic
computations (e.g. coincidence detection) are hard to reconcile with Poisson statistics. (I speci�cally say �hard�
and not �impossible� because if one allows the �ring rate to be time dependent there are ways to work around this,
for example by �tting a GLM.)

5.2 Independent inputs ; Poisson statistics

Preparing for this lecture I came across a relatively recent PRE paper (Lindner [2006]) that claims independent
inputs don't necessarily result in Poisson statistics. If you're interested this could be a good starting point for a
project.
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Figure 4: Taken from Berry and Meister [1998]
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