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7 The ’Ring’ Model of Recurrent Interactions to

Achieve Stimulus-Invariant Tuning

An interested puzzle is posed by the seemingly stable response of neurons to in-
complete stimuli or stimuli who persistence fluctuates. A classic case is that of the
response of neurons n V1 cortex to oriented bars, gratings, and/or edges that move
across the visual field. Different cells respond to different angles of the edge, which
are most simply described in terms of a peak, a baseline, and a width to the angular
modulation. This composite information defines the tuning curve. The same cells
also respond to the contrast of the scene; at modest to high light levels the con-
trast and not the absolute intensity determines the average spike rate so long as the
modulation is not too slow nor too fast. Two conundrums, summarized, in a 1997
Current Opinions in Neurobiology article by Shapley and Sompolinsky, arise:

Contrast invariant tuning: The width of the tuning curve is independent of con-
trast. This appears to be inconsistent with feed-forward models, in which a
fixed threshold would cause the width to increase with increasing contrast.
This is referred to as the ”iceberg” effect.

Size invariant tuning: The width of the tuning curve is largely independent of
the aspect ratio of the oriented bar. For small bars, this is inconsistent with a
geometrically-based feed forward model, i.e., the Hubel-Wiesel model. More
generally, it points to an invariance in the representation of a feature in the
stimulus.

A recurrent network with input tuned to orientation can use feedback connections
to surmount these challenges. The stable states of the network are representations
of features, i.e., preferred orientations of edges in the visual field. A second case
concerns tuning of neurons toward a heading, i.e., a direction that is defined by one
or more landmarks.

Heading: Neurons that are tuning to a particular heading have been long know,
and more recently neurons that change their activity relative to he orientation
of an animal toward or away from a landmark have been characterized. A
special feature of these neurons is their immunity to distractors. as in the
above case, a recurrent network with input tuned to heading can use feedback
connections to surmount the challenge of distractors and incomplete input
information. The stable states of the network are a manifold of preferred
headings relative to a landmark in the sensory field.
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7.1 Rate model

For will write our equations for motion over the full range of 2π radians, which is
suitable to describe heading. A similar set of equations can be written for the case
of orientation, except that this covers π radians. Every neuron is labeled with an
index, ”i” that refers to the angle of the heading that is most likely to cause the cell
to spike. This is the ”preferred heading” and we assume that these are uniformly
distributed, so that

φi =
2π

N
i ∀i (7.7)

where N is the total number of neurons. The rate equation for a neuron with
preferred heading φi is

τ
ri(t)

dt
+ ri(t) = f

 1

N

N∑
j=1

W (φi, φj) rj(t) + Iext(φi, φ0, t) − θ

 (7.8)

where W (φi, φj) is the interaction between cell i and cell j, φ0 is the orientation of
the external edge, and θ is the threshold for spiking. The function f is a nonlinear
function that saturates at zero and at a maximum firing rate. Without loss of
generality, we take the maximum rate to be 1.

Motivated by experimental observations, we take the interactions to be a function
of the difference in orientation preference angles. Thus W (φi, φj) = W (φi − φj)
and Iext(φi, φ0, t) = Iext(φi − φ0, t). Further, we will write the interaction in terms
of a constant term plus one term that varies as aa function of the in=plane heading
preference between two cells. Thus

W (φi − φj) = W0 + W1 cos (φi − φj) (7.9)

where W0 and W1 are constants. Further, we consider only the cosine term and
thus the connections should be symmetric with respect to the difference in orienta-
tion preference. Similarly, the experimental stimulus can be written in terms of a
constant and an orientation dependent term

I(φi − φ0, t) = Î0(t) + Î1(t) cos (φi − φ0) . (7.10)

It will be useful to re-express this in terms of an overall drive and a modulation,
ε(t), of the drive, i.e.,

I(φi − φ0, t) = I0(t) [1 + ε(t) (1 + cos (φi − φ0))] (7.11)

where, for completeness, Î0(t) = I0(t)[1 + ε(t)] and Î1(t) = I0(t)ε(t). Putting all of
this together yields a rate equation as a function of orientation and time

τ
r(φ, t)

dt
+ ri(φ, t) = f{ W0

2π

∫ π

−π
dφ′r(φ′, t) +

W1

2π

∫ π

−π
dφ′r(φ′, t)cos (φ− φ′)

+ I0(t) [1 + ε(t)] + I0(t)ε(t) cos (φ− φ0) − θ} (7.12)

where 1
2π

∫ π
−π dφ

′ replaces 1
N

∑N
j=1.
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7.1.1 Mean field approach

We solve the coupled rate equations by introducing two parameters, referred to as
”order parameters”, that will represent the mean activity of the network and the
modulation of the activity. This will allow us to write a single equation for the
network in terms of the behavior of one neurons relative to the mean. These new
parameters must evaluated in a self consistent manner.

Mean rate: We define r0(t) as the average firing rate of neurons in the network as
an average over φ, i.e.,

r0(t) =
1

2π

∫ π

−π
dφ′r(φ′, t) (7.13)

Thus the W0 term is just r0(t) ,

Modulated rate: We define r1(t) as the average modulation of the firing rate of
neurons in the network. this order parameter is a complex number , so we
write it as”

r1(t) ≡ |r1(t)|e−iψ(t) =
1

2π

∫ π

−π
dφ′r(φ′, t) e−iφ

′
(7.14)

This allows us to evaluate the W1 term as

1

2π

∫ π

−π
dφ′r(φ′, t) cos (φ− φ′) = <{ 1

2π

∫ π

−π
dφ′r(φ′, t)ei(φ−φ

′)} (7.15)

= <{eiφ 1

2π

∫ π

−π
dφ′r(φ′, t)e−iφ

′}

= <{eiφ |r1(t)|e−iψ(t)}
= |r1(t)| cos (φ− ψ(t))

where < means real part.

Relation to Fourier series: Note that r0(t) and r1(t) are the coefficients for the
constant term and the first harmonic term in a Fourier series of r(φ, t).

The mean field rate equation is thus

τ
dr(φ, t)

dt
+ r(θ, t) = f{ W0r0(t) + W1|r1(t)| cos (φ− ψ(t)) + I0(t) (1 + ε(t))

+ I0(t)ε(t) cos (φ− φ0)) − θ} (7.16)

7.2 Steady state

A goal is to understand how the network dynamics can amplify a signal so that a
weak input can drive a full cortical response. This goal can be achieved in steady
state. The rate equation becomes

r(φ) = f{W0r0 +W1|r1|cos (φ− ψ)) + I0 (1− ε) + I0ε cos (2(φ− φ0))− θ}. (7.17)
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So long as the gain function ”f” is monotonic, the output will be maximized by
maximizing the operant. We make the assumption that ψ is chosen to maximize the
firing rate. This gives ψ = φ0 and the steady state rate equation becomes

r(φ) = f{[W0r0 + I0(1 + ε)− θ] + [W1|r1|+ I0 ε] cos(φ− φ0)} (7.18)

where we have clustered the input into constant pieces and pieces that are modulated
by orientation.

7.2.1 Superthreshold (linear) limit

We previously learned how, in the context of the line attractors model, feedback can
help in the linear case. Lets see what happens here when the inputs are sufficiently
large so that the neuron operates solely above threshold. We thus take f [x] = x.
Then

r(θ) = [W0r0 + I0(1− ε)− T ] + [W1|r1|+ I0ε] cos(2(φ− φ0)). (7.19)

The functional dependence of r(ψ) must follow the drive and thus vary as φ − φ0.
We can expend r(φ) as a Fourier series with coefficients that are identical to the
order parameters, i.e.,

r̃(φ) = r0 + r1e
iφ + r−1e

−iφ (7.20)

where

r0 ≡
1

2π

∫ π

−π
dφ′r(φ′), (7.21)

r1 ≡ |r1|e−iψ(t) (7.22)

=
1

2π

∫ π

−π
dφ′r(φ′, t) e−iφ

′
.

and

r−1 ≡ r∗1 = |r1|eiψ(t) (7.23)

=
1

2π

∫ π

−π
dφ′r(φ′, t) eiφ

′
.

Then
r̃(φ) = r0 + 2|r1|cos(φ − ψ) (7.24)

We now equate terms for the average and for the harmonic, i.e.,

r0 = W0r0 + I0(1 + ε)− θ (7.25)

or

r0 =
I0(1 + ε)− θ

1−W0

(7.26)

and

r1 =
W1r1 + I0ε

2
. (7.27)
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or

r1 =
I0ε

2−W1

. (7.28)

We see that, even for the linear case, there is the potential for gain in the modulation
term when W1 → 2.

How does this gain help is altering the output of the network? To make a bit
more progress, we can write the selectivity of the input for modulated activity as

Selectivity of input ≡ Î1

Î0
(7.29)

=
ε

1 + ε

and note that we can write the selectivity of the output, taking θ = 0 for simplicity,
as

Selectivity of output ≡ |r1|
r0

=
I0 ε

2−W1

1−W0

I0(1 + ε)
(7.30)

=
1−W0

2−W1

× Selectivity of input.

This is as far as linearity gets you. Gain, but no invariance.

7.2.2 Marginal (spontaneous bump) state

In the linear case, the input determines the output. Thus the choice ε = 0 will lead
to r1 = 0. Now suppose we increase the interaction term W1 so that W1 > 2. Clearly
we have to allow for a nonlinear gain of the input so that some neurons will be on
and some off so that the average modulation is bounded. For simplicity, we take
f [x] as threshold linear, i.e., f [x] = [x]+. Then we expect that |r1| > 0 even if ε =
0. In this case we expect a bump of neuronal activity that is centered around the
average direction of phase, ψ.

r1 =
1

2π

∫ ψ+π

ψ−π
dφ′ [W0r0 + I0 − θ +W1|r1|cos(φ′ − ψ)]+ e

−iφ′ . (7.31)

The bump is taken to have an extent with a half width of φC , which we will have
to relate to the synaptic weights. Then

r1 =
1

2π

∫ ψ+φC

ψ−φC
dφ′([W0r0 + I0 − θ +W1|r1|cos(φ′ − ψ)] (7.32)

− [W0r0 + I0 − θ +W1|r1| cos (ψ ± φC − ψ)])e−iφ
′

= W1 |r1|
1

2π

∫ ψ+φC

ψ−φC
dφ′ (cos(φ′ − ψ)− cos φC) e−iφ

′
.

= W1 |r1|e−iψ
1

2π

∫ φC

−φC
dx (cos x − cos φC) e−ix
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. = W1 r1
1

2π

∫ φC

−φC
dx

(
1

2
+

e−i2x

2
− cos φC e−ix

)

= W1 r1
1

2π

∫ φC

−φC
dx

(
1

2
+

e−i2x

2
− cos φC e−ix

)

= W1 r1
1

2π

(
φC −

1

2
sin 2φC

)
so that

W1 =
4π

2φC − sin 2φC
. (7.33)

Our result relates the synaptic strength to the pattern of activation. It means that
the network will form a bump of activity with width ±φC . The minimum value
of the connectivity, for the widest possible bump with φC = π, is W1 = 2. This
is just where the network is linear. Further, φC → 0 as W1 → ∞, i.e., stronger
connections yield a narrower bump. In the absence of an input, the phase of the
bump is arbitrary.

7.2.3 Symmetry breaking by a weak input

A weak input will pin the phase of the bump. Weak means that 0 < ε << 1/2. So
long as the stimulus is weak, the tuning does not depend on the stimulus parameters,
i.e., on the selectivity of the input. Noting that a similar analysis to the one above
yields

r0 = |r1|
W1

π
(sinφC − φC cosφC) , (7.34)

we have

Selectivity of output ≡ |r1|
r0

(7.35)

=
1

4

2φC − sin2φC
sinφC − φC cosφC

,

which varies between 1/2 and 1, i.e., by very little, as a function of φC . In this
sense, the network will amplify a weak input and drive a response. Unlike the case
of a feedforward network, where the width of the tuning curve depends on the input
parameters I0 and ε, here the width depends only on W1. This satisfies the goal of
invariance. The relation of W1 to the width of the tuning curve constitutes a design
rule for invariant tuning.

7.3 Epilog

The ring model was motivated by experiments on the coding of orientation in visual
stimuli. A number of predictions were made.

Transient onset of invariance: The invariance should arise slowly as this de-
pends on recurrent connections. Thus the response of neurons at short times
is expected to follow feedforward dynamics, while the response at later times,
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say after tens of milliseconds, would follow recurrent dynamics. This was not
found.

Moving bump: Recordings from the colliculus for eye position and from the an-
terior thalamus for heading suggest the notion of a moving bump of activity.
This was predicted to occur in the visual system when the angle of the stimu-
lus is rapidly changes. Here, activity would transiently pass through neurons
that coding intermediate orientations. This was not found.

Angular dependent connectivity: This is really a postdiction. Neurons with
similar orientation preference tend to make stronger connections. Ditto for
neurons in the same direction.

The great success of the model turns out to be with respect to heading, as seen
in the activity of neurons in the ellipsoid body of the central complex of the fly.
Neurons will code their preferred heading relative to the direction - call it φ0 - of a
landmark.
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