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2 Recurrent neuronal networks: Asso-

ciative memory 1

2.1 Recurrent connections and memories

The storage of memories in the brain is an old and central issue in
neuroscience. As we last discussed, it was known since the 1930’s
that bistable devices formed from threshold elements, like a digital
flip-flop, could be built using feedback to hold electronic summing
junctions in a particular state after their inputs had decayed away.
By the 1970’s, it was conjectured that networks with many sum-
ming junctions, or neurons, might be able to store a multitude of
states if the feedback was extended across all pairs of cells, i.e.,
order N2 connections across N neurons. What are the expected
motifs for such circuits? By extension of the idea of flip-flops, we
might expect to find regions of the brain with neurons whose axon
collaterals feed back onto other neurons. This anatomical arrange-
ment was highlighted for the perform cortex of the olfactory system
in a ca 1980’s paper by Haberly (Figure 1) and by other researchers
for the CA3 region of hippocampus. It was explored theoretically
starting in the 1970s and culminated with a pivotal contribution
by Hopfield in 1982 and an analysis of Hopfield’s model by Amit,
Gutfriend and Sompolinsky, by Gardner, and by others, in the mid
1980s.

Figure 1: Summary of major excitatory connections in piriorm cortex. Each cell repre-
sents a population. From Haberly 1985.

The hippocampus seemed a particularly valuable region to con-
sider feedback, as it is known for the occurrence of place cells. In
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their simplest substantiation, these are neurons that fire only when
the animal reaches a particular location in the local environment.
Different cells prefer to spike in different locations. Thus the an-
imals builds up a map of the space, and in principle can use this
map to determine a path to move from one location to another.

So we have an idea - the use of feedback connections to form
memories of many places, or of anything by extrapolation, and we
have biological motivation, in terms of the anatomical evidence,
to understand the dynamics of such networks as well as search for
them in real nervous systems.

2.2 What is a state?

We previously considered the output from neuronal networks with
only two cells, so the notion of a state was pretty obvious. In gen-
eral, the state is simply the arrangement of ON or active neurons
(+1) and OFF or quiescent neurons (-1) under observation. Ideally
this is every neuron in the circuit, which is possible in some prepa-
rations, like the invertebrate preparations at the end of lesson 1. In
some large preparations, the size of the animal or brain region is
sufficiently small that preparations with hundreds to thousands of
contiguous neurons can be imaged with sufficient speed and relia-
bility. Do large systems also exhibit detectable states?

The ideal of repeating patterns came to the front many years
ago in the cortical studies of Moshe Abeles. They recorded from
frontal areas of monkey cortex and tended to see repeated patterns
of spikes, even though they recorded from relatively few cells. Judge
for yourself (Figure 2)!

Zooming up to modern times, the technology has vastly im-
proved to gett a much better view across very many neurons, as
recently measured with electrodes across wide volumes of the brain
by Mateo Carandini and Kenneth Harris (Figure 3). We see many
repeating or near repeating patterns among what is really a very
sparse sample, i.e, 104 neurons among the 108 neurons in the mouse
brain. The same neurons can be active or quiescent across a mul-
titude of states.

Finally, states appear to occur in preparations that contain tens
to hundreds of neurons in which every cell can be observed at effec-
tively the same time. This is shown from recording from Zimmer
of neurons in the worm c. Elegans (Figure 4). Again, we leave
interpretation aside and simple note the clear occurrence of four
states.

One special aspect of all of these and related data is that stable
firing patterns exist. In the last two case would could see patterns
without special statistical tools - just recording of the presentation.
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Figure 2: Firing times of six neurons in monkey frontal cortex over a total of 93 trials
were used to construct an hidden Markov model. Six states were identified. From Abeles,
Bergman, Gati, Meilijson, Seidemann, Tishby and Vaadia 1995.

Figure 3: Sorted output from Neuropixels probes in the brain of mouse, From Stringer,
Pachitariu, Steinmetz, Reddy, Carandini and Harris 2019

A second aspect is that the number of states are few, i.e., far less
than the number of cells, denoted N , and far, far less than the
number of possible states, i.e., 2N , although likely large than the
minimum number of connectivity of a graph, i.e., NlogN .

2.3 Are real networks highly interconnected?

The connectome of very few animals has been brain completed. In
fact, only the connections among the neural integrator for hori-
zontal eye position position in the juvenile zebrafish has been re-
constructed over a large enough region - to date - to draw any
conclusions (Figures 5 and 6). Here about 0.1 of the neurons make
recurrent connections on each other; this should be taken as a lower
bound on connections (Figures 7). In any case all this means is that
we need 0.1∗N � logN or N � 35, which is consistent with about
500 neurons in the integrator.
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Figure 4: Calcium imaging from c. Elegan neurons during movement. Kato, Kaplan,
Schrodel, Skora, Lindsay, Yemini, Lockery and Zimmer 2015

Figure 5: Velocity-to-position neural integrator. Schematic showing the proposed wiring
of modO, cells that project to the periphery, along with the two submodules modOI and
modOM, and DO neurons that synapses onto ABDM and ABDI. From Vishwanathan,
Ramirez, Wu, Sood, Yang, Kemnitz, Ih, Turner, Lee, Tartavull, Silversmith, Jordan, David,
Bland, Goldman, Aksay and Seung, unpublished

2.4 The network

We consider the dynamics of a fully connected recurrent neuronal
network. We will begin our analysis guided by this task:

Store a set of P patterns ~ξk in such a way that when
presented with a new pattern that has partial overlap
with an existing pattern ~Stest, the network responds by
producing whichever one of the stored patterns most
closely resembles ~Stest (Figure 8). Close is defined by
the Hamming distance, the number of different ”bits”
in the pattern.

The neurons are labelled by i = 1, 2, ... , N and the individual
stable patterns are labeled by k = 1, 2, ... , P .

We denote the activity of the i− th neuron by Si. The input to
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Figure 6: Cut-section view of the reconstructed volume and labeling of a synapse. From
Vishwanathan, Ramirez, Wu, Sood, Yang, Kemnitz, Ih, Turner, Lee, Tartavull, Silversmith,
Jordan, David, Bland, Goldman, Aksay and Seung, unpublished

neuron i is denoted by µi and is given by

µi =
N∑

j=1; j 6=i
WijSj + Iexti (2.1)

where the Wij are analog-valued synaptic weights and Iexti is an
external input. The dynamics of the network are (Figure 9):

Si ≡ sgn (µi − θi) (2.2)

where θi is the threshold and we take the sign function sign sgn(h)
to be

sgn(x) =

{
1 if x ≥ 0
−1 if x < 0

(Figure 10). Clearly the output SI is driven by the external input
when Iexti is sufficiently large.

Going forward, we may take θi = 0 ∀i as befits the case of
random patterns on which neuronal outputs take on the values +1
and −1 with equal probability. In the further absence of external
input, we have the minimal description

Si ≡ sgn

 N∑
j 6=i

WijSj

 . (2.3)

There are at least two ways in which we might carry out the updat-
ing specified by the above equation. We could do it synchronously,
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Figure 7: Connectivity matrix of center neurons organized into two modules (modA,
modO). Neurons in the center were clustered whereas neurons in the periphery were not.
Neurons in the periphery were organized by known cell types, vSPNs and ABD neurons.
Colored dots represent the number of synapses. From Vishwanathan, Ramirez, Wu, Sood,
Yang, Kemnitz, Ih, Turner, Lee, Tartavull, Silversmith, Jordan, David, Bland, Goldman,
Aksay and Seung, unpublished

updating all units simultaneously at each time step. Or we could
do it asynchronously, updating them one at a time. Both kinds of
models are interesting, but the asynchronous choice is more natu-
ral for both brains and artificial networks. The synchronous choice
requires a central clock or pacemaker, and is potentially sensitive
to timing errors, as is the case of sequential updating. In the asyn-
chronous case, which we adopt henceforth, we can proceed in either
of two ways:

• At each time step, select at random a unit i to be updated,
and apply the update rule.

• Let each unit independently choose to update itself according
to the update rule, with some constant probability per unit
time.

These choices are equivalent, except for the distribution of update
intervals. For the second case there is vanishing small probability
of two units choosing to update at exactly the same moment.

Rather than study a specific problem such as memorizing a par-
ticular set of pictures, we examine the more generic problem of a
random set of patterns drawn from a distribution. For convenience,
we will usually take the patterns to be made up of independent bits
ξi that can each take on the values +1 and -1 with equal probability.

Our procedure for testing whether a proposed form of Wij is
acceptable is first to see whether the patterns to be memorized are
themselves stable, and then to check whether small deviations from
these patterns are corrected as the network evolves.
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Figure 8: Function of the network as a content addressable memory in the recovery of a
full memory from partial initial information. from Hertz, Krogh and Palmer 1991, following
Hopfield 1982.

2.5 Storing one pattern

To motivate our choice for the connection weights, we consider first
the simple case whether there is just one pattern ξi that we want
to memorize. The condition for this pattern to be stable is just

sgn

 N∑
j 6=i

Wijξj

 = ξi ∀i (2.4)

since the update rule produces no changes. It is easy to verify this
if we take

Wij ∝ ξiξj (2.5)

since ξ2
j = 1. We take the constant of proportionality to be 1/N ,

where N is the number of units in the network, which yields

Wij =
1

N
ξiξj. (2.6)

Furthermore, it is also obvious that even if a number (fewer than
half) of the bits of the starting pattern Si are wrong, i.e., not
equal to ξi, they will be overwhelmed in the sum for the net input∑N
j 6=iWijSj by the majority that are correct, so that sgn[

∑N
j 6=iWijSj]

will still give ξi.
An initial configuration near to ξi will therefore quickly relax to

ξi. This means that the network will correct errors as desired, and
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Figure 9: Basic associative or ”Hopfield” network. From Hertz, Krogh and Palmer 1991,
following Hopfield 1982.

Figure 10: Input-output relation. From Hertz, Krogh and Palmer 1991, following Hop-
field 1982.

we can say that the pattern ξi is an attractor. Actually, there are
two attractors in this simple case; the other one is at −ξi. This is
called a reversed state. All starting configurations with more than
half the bits different from the original pattern will end up in the
reversed state.Ê

2.6 Storing many patterns

How do we get the system to recall the most similar of many pat-
terns? The simplest answer is just to make the synaptic weights
Wij by an outer product rule for each of the P patterns, which
corresponds to

Wij =
1

N

P∑
k=1

ξki ξ
k
j . (2.7)
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The above rule for synaptic weights is called the ”Hebbian rule”
because of the similarity with a hypothesis made by Hebb (1949)
about the way in which synaptic strengths in the brain change in
response to experience: Hebb suggested changes are proportional
to the correlation between the firing of the pre- and post-synaptic
neurons.Ê

2.7 Scaling for error-free storage of many pat-
terns

We consider a Hopfield network with the standard Hebb-like learn-
ing rule and ask how many memories we can imbed in a network of
N neurons with the constraint that we will accept at most one bit
of error, i.e., one neuron’s output in only one of the memory states.
The input is

µi =
N∑
j 6=i

WijSj (2.8)

=
1

N

P∑
k=1

N∑
j 6=i

ξki ξ
k
j Sj.

Let Sj ≡ ξ1
j , one of the stored memory states, so that

µi =
1

N

P∑
k=1

N∑
j 6=i

ξki ξ
k
j ξ

1
j (2.9)

=
1

N

P∑
k=1

ξki

N∑
j 6=i

ξkj ξ
1
j

=
1

N
ξ1
i

N∑
j 6=i

ξ1
j ξ

1
j +

1

N

P∑
k 6=1

ξki

N∑
j 6=i

ξkj ξ
1
j

=
N − 1

N
ξ1
j +

1

N

P∑
k 6=1

ξki

N∑
j 6=i

ξkj ξ
1
j

Thus, in the limit of large N , the first term leads to stability while
the second term goes to zero, so that the average input is

< µi > ' ξ1
i (2.10)

Even when the second term for pattern 1 is not zero, the state ~ξ1 is
stable if the magnitude of the second term is smaller than 1, i.e., if
the second term cannot change the sign of the output Sli. It turns
out that the second term is less than 1 in many cases of interest if
P , the number of patterns, is sufficiently small. Then the stored
patterns are all stable – if we start the system from one of these
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states the system will remain in that state. A small fraction of bits
different from a stored pattern will be corrected in the same way as
in the single-pattern case; they are overwhelmed in

∑N
j 6=i

∑P
k 6=lWijSj

by the vast majority of correct bits. A configuration near to ξ1
i thus

relaxes to ξ1
i .

What is the variance, denoted σ2, induced by the storage of
many memories, the so-called structural noise? The second term
consists of (P − 1) inner products of random vectors with (N − 1)
terms. Each term is +1 or −1, i..e., binomially distributed, so that
the fluctuation to the input is

σ =
1

N
·
√
P − 1 ·

√
N − 1 (2.11)

'
√
P

N
.

More laboriously,

σ2 =
1

N

N∑
i=i

 1

N

P∑
k 6=1

ξki

N∑
j 6=i

ξkj ξ
1
j

 1

N

P∑
k′ 6=1

ξk
′

i

N∑
j′ 6=i

ξk
′

j′ ξ
1
j′

(2.12)

=
1

N3

P∑
k 6=1

P∑
k′ 6=1

(
N∑
i=i

ξki ξ
k′

i

)
N∑
j 6=i

ξkj ξ
1
j

N∑
j′ 6=i

ξk
′

j′ ξ
1
j′

−−−−−→
N →∞ 1

N3

P∑
k 6=1

P∑
k′ 6=1

N δ(k − k′)
N∑
j 6=i

ξkj ξ
1
j

N∑
j′ 6=i

ξk
′

j′ ξ
1
j′

−−−−−→
N →∞ 1

N2

P∑
k 6=1

N∑
j 6=i

ξkj ξ
1
j

N∑
j′ 6=i

ξkj′ξ
1
j′

−−−−−→
N →∞ 1

N2

N∑
j 6=i

ξ1
j

N∑
j′ 6=i

ξ1
j′

 P∑
k 6=1

ξkj ξ
k
j′


−−−−−−−−−−−−→
N →∞; P →∞ 1

N2

N∑
j 6=i

ξ1
j

N∑
j′ 6=i

ξ1
j′ (P − 1) δ(j − j′)

−−−−−−−−−−−−→
N →∞; P →∞ P − 1

N2

N∑
j 6=i

(
ξ1
j

)2

−−−−−−−−−−−−→
N →∞; P →∞ (P − 1)(N − 1)

N2

−−−−−−−−−−−−→
N →∞; P →∞ P

N

Noise hurts only if the magnitude of the noise term exceeds σ = 1.
By the Central Limit Theorem, the noise becomes Gaussian for
large P and N , but constant P/N (Figure 11). Thus the probability
of an error in the recall of all stored states is

perror =
1√

2π σ

[ ∫ −1

−∞
e−x

2/2σ2

dx +
∫ ∞

+1
e−x

2/2σ2

dx
]

(2.13)
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=

√
2√
π σ

∫ ∞
+1

e−x
2/2σ2

dx

=
2√
π

∫ ∞
1√
2σ

e−x
2

dx

≡ erfc

(
1√
2σ

)

where efrc(x) is the complementary error function and we again
note that the average of the error term is zero. Thus

perror = erfc

√ N

2P

 . (2.14)

Figure 11: We compute the probability in the tail of the Gaussian. From Hertz, Krogh
and Palmer 1991.

For N/P � 1 the complementary error function may be ap-
proximated by an asymptotic closed form given by

perror '
2√
π

P

N
e−N/2P (2.15)

so that to leading order

log{perror} ' −
N

2P
− log{N

P
}. (2.16)

Now NP is total number of ”bits” in the network. Suppose only
less than one bit can be in error. Then we equate probabilities of
correct to within a factor of one bit, or 1/(NP ). Thus

1− perror ≥ 1− 1

NP
(2.17)

or
log{perror} < − log{NP}. (2.18)
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Thus

− N

2P
− log{N

P
} < − log{NP} (2.19)

or

− N

2P
< −2 log{P} (2.20)

so

P <
1

4

N

log{P}
. (2.21)

Since P scales sublinearly with N , we can iterate to write

P <
1

4

N

log{N}
. (2.22)

Thus we see that an associate memory based on a recurrent Hopfield
network stores a number of memories that scales more weakly than
the number of neurons if one cannot tolerate any errors upon recall.
Keep a mind that a linear network stores only one stable state, e.g.,
an integrator state. So things are looking good.

This is a worst case analysis that holds in the limit of N →∞.
More typically we want to store states with a fixed, nonzero albeit
small error rate. We will explore this possibility next and see if the
scaling among P and N changes.
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