8 Storage Capacity in Associative Networks for (Near) Perfect Recall

We consider a Hopfield network with the standard Hebb-like learning rule and ask how many memories we can imbed in a network of N neurons with the constraint that we will accept at most one bit (one neuron’s output in only one memory state) of error.

\[
\text{Input} = \sum_{j \neq i}^{N} W_{ij} S_j = \frac{1}{N} \sum_{\mu=1}^{p} \sum_{j \neq i}^{N} \zeta_{\mu}^{j} \zeta_{\mu}^{i} S_j
\]

(8.201)

where p is the number of stored memories, N is the number of neurons and

\[
W_{ij} \equiv \frac{1}{N} \sum_{\mu=1}^{p} \zeta_{\mu}^{i} \zeta_{\mu}^{j}
\]

(8.202)

is the synaptic weight matrix given by the Hebb rule.

Now, check stability of stored state. Make $S_j = \zeta_1^j$, one of the stored memory states, so that

\[
\text{Input} = \frac{1}{N} \sum_{\mu=1}^{p} \sum_{j \neq i}^{N} \zeta_{\mu}^{j} \zeta_{\mu}^{i} \zeta_1^j
\]

(8.203)

\[
= \frac{1}{N} \zeta_1^i \sum_{j \neq i}^{N} \zeta_1^j + \frac{1}{N} \sum_{\mu \neq 1}^{p} \zeta_{\mu}^{i} \sum_{j \neq i}^{N} \zeta_{\mu}^{j} \zeta_1^j
\]

On average, the second term is zero, so that

\[
\text{Average of Input} = \left(\frac{N - 1}{N} \right) \zeta_1^i \simeq \zeta_1^i
\]

(8.204)

What is the variance? The second term, summed over random vectors with zero mean, consists of the sum of $(p - 1)$ inner products of vectors with $(N - 1)$ terms. Each term is $+1$ or -1, i.e., binomially distributed, so that

\[
\text{Variance of Input} = \left(\frac{1}{N} \right)^2 \cdot (p - 1) \cdot (N - 1) \simeq \frac{p}{N}
\]

(8.205)
This results in a fluctuation to the input with a standard deviation, \(\sigma \), of

\[
\sigma = \pm \sqrt{\frac{P}{N}} \tag{8.206}
\]

Noise hurts only if the magnitude exceeds 1. The noise becomes Gaussian for large \(p \) and \(N \), which is the limit of interest, Thus the probability of an error in the recall of all stored states is

\[
P_{\text{error}} = \frac{1}{\sqrt{2\pi} \, \sigma} \left[\int_{-\infty}^{-1} e^{-x^2/2\sigma^2} \, dx + \int_{1}^{\infty} e^{-x^2/2\sigma^2} \, dx \right] \tag{8.207}
\]

\[
= \frac{\sqrt{2}}{\sqrt{\pi} \, \sigma} \int_{1}^{\infty} e^{-x^2/2\sigma^2} \, dx \tag{8.208}
\]

\[
= \frac{2}{\sqrt{\pi}} \int_{\sqrt{\frac{2p}{N}}}^{\infty} e^{-x^2} \, dx \tag{8.209}
\]

\[
\equiv \text{erfc} \left(\sqrt{\frac{N}{2p}} \right)
\]

where \(\text{erfc}(x) \) is the complementary error function and we again note that the average of the error term is zero. We recall that for \(\frac{N}{2p} \ll 1 \), the complementary error function may be approximated by an asymptotic form, so that

\[
P_{\text{error}} \simeq \frac{1}{\sqrt{\pi} \, \sqrt{2p}} \frac{2p}{N} e^{-N/2p} \tag{8.210}
\]

We have a nice and closed expression in a relevant limit!

Now \(N \cdot \cdot p \) is total number of “bits” in the network. Suppose only less than one bit can be in error. Then

\[
(1 - P_{\text{error}})^{Np} \geq 1 - \frac{1}{Np} \tag{8.211}
\]

But \(Np \) is large and \(P_{\text{error}} \) will be small by construction, so \(1 - Np \times P_{\text{error}} \geq 1 - \frac{1}{Np} \) and thus

\[
P_{\text{error}} < \frac{1}{(Np)^2} \tag{8.212}
\]

From the expansion of the gaussian error:

\[
\log [P_{\text{error}}] \simeq -\frac{1}{2} \log \pi - \frac{N}{2p} - \log \frac{N}{2p} \tag{8.213}
\]
From the constraint on the desired error:

\[\log[P_{\text{error}}] < -2 \log(Np) \] \hspace{1cm} (8.214)

Thus

\[-\frac{1}{2} \log \pi - \frac{N}{2p} - \log \frac{N}{2p} < -2 \log (Np) \] \hspace{1cm} (8.215)

We now let \(N \to \infty \) with \(N/p \) constant. To leading order, we have:

\[\frac{N}{2p} > 2 \log (Np) \] \hspace{1cm} (8.216)

To go further and solve for \(p \) in terms of \(N \), we assume that

\[p = \alpha(N)N \] \hspace{1cm} (8.217)

then

\[\frac{N}{2\alpha N} > 2 \log (N\alpha N) \] \hspace{1cm} (8.218)

\[1 > 8\alpha \log N \] \hspace{1cm} (8.219)

and therefore

\[p < \frac{1}{8} \frac{N}{\log N} \] \hspace{1cm} (8.220)

Note that \(p \) has a similar scaling for the choice of a fixed error rate.

Thus we see that an associate memory based on a recurrent Hopfield network stores a number of memories that scales more weakly than the number of neurons if one cannot tolerate any errors upon recall. If a finite number of errors can be tolerated, a statistical mechanical deviation shows \(p < 0.14N \).