
13 Modeling Feature Selectivity in Local Cortical Circuits

David Hansel and Haim Sompolinsky

13.1 Introduction

Neuronal representations of the external world are often based on the selectivity of
the responses of individual neurons to external features. For example, many neurons
in visual cortex respond preferentially to visual stimuli that have a specific orienta-
tion (Hube1 and Wiesel 1959), spatial frequency (Campbell et al. 1969), color (Hube1
and Wiesel 1968), velocity and direction of motion (Orban 1984). In motor systems,
neuronal activities are tuned to parameters of a planned action such as the direction
of an arm reaching movement (Georgopoulos, Taira, and Lukashin 1993), or the
direction of a saccadic eye movement (for a review, see Sparks and Mays 1990). It is
often assumed that the primary mechanism underlying the response properties of a
neuron resides in the transformations of sensory signals by feedforward filtering
along afferent pathways (e.g., Hubel and Wiese11962). Although, in some cases, the
feedforward model is consistent with our understanding of the nature of afferent
inputs (Reid and Alonso 1995;, Chapman, Zahs, and Stryker 1991), in others, par-
ticularly in motor areas, the relation between afferent inputs and cortical neuronal
response properties 'is not obvious. Moreover, neurons in cortex, even in the input
stages of primary sensory areas, receive most of their excitatory inputs from cortical
sources rather than from afferent thalamic nuclei (Levay and Gilbert 1976; Peters
and Payne 1993; Ahmedet al. 1994; Pei et al. 1994; Douglas et al. 1995). Cortical
responses are also modulated by strong inputs from inhibitory cortical interneurons
(Sillito 1977; Tsumoto, Eckart, and Creutzfeldt 1979; Sillito et al. 1980; Ferster and
Koch 1987; Hata et al. 1988; Nelson et al. 1994). These facts and other experimental
and theoretical considerations suggest that local cortical circuits may play an impor'-
tant role is shaping neuronal responses in cortex. ,

In this chapter we review the theoretical study of the function of local networks in
cortex in relation to feature selectivity. By "local network" we mean an ensemble of
neurons that respond to the same patch of the external world and are interconnected
by recurrent synaptic connections. Typically, a local network sp.ans roughly 1mm2
of cortical surface and is assumed to consist of subgroups of neurons each of which
is tuned to a particular feature of an external stimulus. These subgroups will be
called "feature columns" and the whole network a "hypercolumn," in analogy with.
the "ice cube" model of primary visual cortex (Hubel 1988; for a review of local
cortical circuitry, see Martin 1988; Gilbert 1992; Abeles 1991).

The complexity of neuronal dynamics and circuitry in cortex precludes systematic
investigation of t4e properties of realistic large-scale neuronal models of local cor-
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500 Hansel and Sompolinsky

tical circuits within a reasonable range of their parameter space (see chapter 12, this
volume). Therefore simplified abstract models offer very valuable theoretical tools to
gain insight into the working of these systems. Not only is the reduced parameter
space of these simplified models significantly easier to search, but many are amena-
ble to analytical investigations. Analytical solutions are extremely useful in that they
often explicitly reveal the important relationships between a dynamic property of the
network and some of its parameters. A primary goal of this chapter is to describe the
application of analytical methods to simplified network models and their solutions.
We will study models known as "neuronal rate models" or "neuronal population
dynamics" (Wilson and Cowan 1972; Ginzburg and Sompolinsky 1994), in which
the state of each neuron is characterized by a single continuous variable representing
its activity level averaged over a short period of time. Similar models are the analog
circuit equations for neural networks (Hopfield 1984). Although these models ob-
viously cannot exhibit the complex dynamics of real neurons and circuits, they can
account for some of the emergent cooperative properties that are either stationary or
evolve on relatively slow time scales. To demonstrate the relevance of the simplified
models to realistic situations, we will also describe in detail numerical simulations of
networks consisting of conductance-based models of cortical neurons and synapses.
(See also chapters 5 and 10, this volume.)

The present study focuses on networks that code the value of a single feature
variable of the external stimulus, and thus have a one-dimensional functional archi-
tecture. The spectrum of possible spatiotemporal patterns of activity in such net-
works can be rich. We will restrict our attention to relatively simple spatial patterns
consisting of a single domain of high activity, sometimes called an "activity hill."
We will also consider the cases of 'moving hills' of activity, where the activity profile
is not static but propagates across the network, successively activating neighboring
columns. We will study the conditions for the emergence of these patterns and ana-
lyze which of their properties depend on the intrinsic circuit parameters and which,
on the properties of the external stimulus.

Modeling of neuronal functions by static and moving localized spatial patterns
in one-dimensional nonlinear neural networks dates back to Didday's model on
the frog tectal bug detection system (Didday 1976) and the reticular formation model
for behavioral mode selection of Kilmer, McCulloch and Blum (1969); (see Amari and
Arbib 1977; and Montalvo 1975 for reviews of these and other models). Theoretical
analysis of these patterns has been pioneered by Amari (1977). The difference between
Amari's theory and the present work will be elucidated in section 13.8. Global spatio-
temporal patterns in one- (and two-) dimensional networks have been studied also by
Ermentrout and Cowan (see Ermentrout 1982 for. review). More recently, localized
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patterns in one- and two-dimensional neuronal rate models have been studied in rela-
tion to orientation selectivity in primary visual cortex (Ben-Yishai, Lev Bar-Or, and
Sompolinsky 1995; Ben-Yishai, Hansel, and Sompolinsky 1997), the coding of direc-
tion of arm movements in motor cortex (Lukashin and Georgopoulos 1993; Lukashin
et al. 1996), head direction tuning in the limbic systems (Redish, Elga, and Touretzky
1996; Zhang 1996), and the control of saccadic eye movements (Droulez and Berthoz
1991; Schierwagen and Werner 1996; Kopecz and Schoner 1995). The mechanisms
underlying the emergence of spatiotemporal patterns of the types described above
are quite universal. For this reason, here these models will be studied in the general
context of coding of a one-dimensional feature (detailed applications to concrete
cortical systems can be found in the recent literature devoted to these models).

The network models examined here are characterized by a strong internal recur-
rency, which gives rise to intrinsic stable static or dynamic patterns, called "attrac-
tors" (for a review of dynamical systems theory see, for example, Strogatz 1994).
Computation by attractors has been studied in recent yearsin relation to associative
memory and optimization problems (Hopfield 1982, 1984; Hopfield and Tank 1986;
Amit, Gutfreund, and Sompolinsky 1985; Amit 1989). The models we will be exam-
ining differ in that their intrinsic stable states are not isolated points in configuration
space (the space of all possible instantaneous states of the system) but form a con-
tinuous line in this space. Recently a network model with line attractor has been
studied as a mechanism for gaze holding by Seung (1996) and by Lee et al. (1996).
We will briefly compare these models in section 13.8.

Section 13.2 describes our network model's basic architecture and defines the net-
work's rate dynamics of excitatory and inhibitory populations in a hypercoIumn.
Section 13.3 further simplifies the model by collapsing the excitatory and inhibitory
populations into a single "equivalent" population; this one-population rate model
serves as the basis of our subsequent analytical investigations. Section 13.4 explores
the properties of static activity profiles that emerge in the case of a uniform external
stimulus and in response to a spatially tuned stimulus. We will analyze in detail how
cortical feedback shapes the emergent activity profile.

Section 13.5 examines, first, the network response to a "moving" external stimulus
(one whose feature value changes with time), where an interesting issue is the net-
work's ability to lock to the moving stimulus. Our investigation also illustrates the
usefulness of phase dynamics (see chapter 7, this volume) in describing how a spa-

. tiotemporal pattern is phase- and frequency-locked to an external force. We next

discuss the emergence of intrinsic moving profiles in networks with static uniform
stimulus. Propagating pulses are known to exist in excitable one-dimensional media,
such as the propagation of action potential along a nerve's axon (Hodgkin and
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502 Hansel and Sompolinsky

Huxley 1952; Rinzel and Keller 1973; Tuckwell1988). Here we study a mechanism
for generating moving localized activity profiles in neural networks which is based
on neuronal adaptation. We incorporate neuronal adaptation current into the one-
population rate model by a simple phenomenological model of a slow, local negative
linear feedback, showing that, for sufficiently strong adaptation, the static hills be-
come destabilized and that propagating hills of activity become the stable states of
the system instead. We briefly discuss the interaction between the intrinsic moving
hills and an external tuned static stimulus.

A central issue of this chapter is the relation between the spatial modulation of the
external input, as well as the cortical interactions, and the emergent tuning of the
network responses. In the model studied in sections 13.2-13.5, the spatial modu-
lations of the internal and external inputs are characterized by their spatial modu-
lation depth. Their range, however, is assumed to be long and fixed. An important
question is the role of the spatial width of the synaptic interactions or of the external
input on the emergent spatial activity profile. This is the topic of section 13.6, which
presents a solution to a model where both the excitatory interactions and the ex-
ternal input are exponentially decreasing functions of distance. Although more com-
plex, this model can still be solved analytically, and it enables us to elucidate the role
of both the spatial modulation depth and the spatial range of the synaptic inputs.

Section 13.7 considers a network model that incorporates realistic conductance-
based dynamics appropriate for cortical neurons, whose architecture is similar to the
rate models, except that the network consists of separate excitatory and inhibitory
populations. Many aspects of the simulations, including the size dependence of the
network behavior and the classification of its synchrony and temporal variability, are
described in detail in Hansel and Sompolinsky (1996). Here we focus mainly on results
directly relevant to the comparison with the predictions of the rate model. We first
show that under certain conditions the state of these networks can also be desc;ribed
by self-consistent rate equations. We then proceed to present the results of numerical
simulations of this model, and compare them with the predictions of the rate model.
The results are also briefly discussed in our conclusion, section 13.8.

13.2 Model of a Cortical Hypercolumn

13.2.1 Network Architecture

We consider a network of neurons that code for a sensory or movement feature. The
feature is assumed to be a scalar denoted bye, with a finite range of values (in most
of this chapter, -11:/2:::;;e < 11:/2).For simplicity, we will assume periodic boundary
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conditions, so that 0 can be considered an angle, and all functions of 0 will be peri-
odic functions with period re. In section 13.6 we will consider the more general case
where 0 is not an angle variable, so that the boundary conditions are not periodic.

Each neuron in the hypercolumn is selective to a particular range of feature
values, and fires maximally when a feature with a particular value is present. This
value is called the "preferred feature" (PF) of the neuron. The network consists of
NE excitatory neurons and N[ inhibitory neurons, parametrized by a coordinate 0,
which denotes their PF. The PFs are assumed to be distributed unifonnly between
--nI2 and +reI2. An additional No neuron provides external input to the network.
These external sources are typically excitatory afferent currents induced by sensory
stimulation. We will refer to this input as the "stimulus input" of the network. We
denote an excitatory neuron by an index E and an inhibitory one by]. The external
excitatory neurons are denoted by O.

Each neuron receives a synaptic current, ]\1.(0,t), where a = E,I denotes the type of
the neuron, 0 its PF, and t denotes time. This current consists of three components:

]\1.(0, t) = ]rxE(O, t) +
]\I.[(0, t) + ]\1.°(0, t), (13.1)

where f\l.fJ(0, t) is the synaptic current on a 0 neuron in the ath population generated
by the activity of the /3th population, and ]\1.°(0,t) stands for synaptic currents from
the external neurons. The synaptic currents ]\1./3are each a sum of synaptic inputs
from individual neurons mediated by pairwise synaptic interactions. The synaptic
efficacy between a presynaptic excitatory neuron, 0', and a postsynaptic neuron, 0 of
type IX,is denoted by (iINE)J\l.E(IO - e'l). The interaction strength between a pre-
synaptic inhibitory neuron, e', and a postsynaptic neuron, e of type IX,is denoted by
(1IN] )J\l.J(Ie - e'l). The functions J\l.fJ(e) represent the dependence of the interaction
between neurons on the similarity of their PFs. Both excitatory and the inhibitory
interactions are assumed to be strongest in magnitude for neurons that have identical
PFs. This hypothesis is consistent with the anatomical and physiological evidence
available in primary visual cortex (Ferster 1986; Ts'o, Gilbert, and Wiesel 1986;
Martin 1988). The factors of NE and NJ are introduced in order to facilitate the
analysis of the size of the inputs from the above three sources in a large, highly con-
nected network. It is assumed that each neuron is connected to a significant fraction
of neurons of both subpopulations. Thus, with the above nonnaJization, the total
inputs ]\1./3from each of the populations are proportional in scale to the functions J\l.fJ

< (for a detailed discussion of this scaling, see Hansel and Sompolinsky 1996; for alter-

native scaling of connections in large networks, see Van Vreeswijk and Sompolinsky
1996).
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Figure 13.1
Architecture of the network.

To model the information carried by the stimulus about the external features,
the input to the neuron 0 of type CI.is taken to be of the form laO(0 - (0), where 00
denotes the feature for which the external input is maximal. Thus 00 represents
the feature value selected by the external input, or simply the stimulus feature. The
network architecture is shown in figure 13.1.

A simple model of the interactions and of the external stimulus is given by retain-
ing only the first Fourier components of their feature dependence. Thus

Jrt.fJ(O - Of) = J~fJ+ h cos(2(0 - Of)), (13.2)

where JOE ~ J'2E ~ 0 and Jo1 ::;;J'21::;;O. These inequalities are consistent with the
above assumption that both excitatory and inhibitory interactions are maximal for
neurons with similar PFs. Likewise, .

1rt.0(0 - (0) = Crt.(1 - G + Gcos(2(O- (0))), 0::;; G::;;0.5. (13.3)

The above functions are depicted in figure 13.2A and figure 13.2B. The parameters

Crt.are assumed to be positive. They denote the maximal amplitude of the external
inputs to the two populations. We will refer to them simply as the "stimulus inten-
sity." The parameter Gmeasures the degree of modulation of the input to the cortical
neurons. In the limit G= 0.5, the external input to neurons farthest away from the
stimulus feature, namely, neurons with 0 = 00 :I: n/2, is zero. For G= 0, the external
input to all neurons in the same population is identical. We will refer to G as the
"stimulus tuning;" it is important to note that this parameter is determined both
by the degree of tuning of the sensory stimulus itself and by the organization of
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13.3, with CI1.= 2. Solid line: t;= 0.1; dash-dotted line e = 0.5.
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the afferents to individual cortical neurons. In general, Crx,8, and 80 may be time-
dependent. To complete the model, we specify the dynamics of the network below.

13.2.2 Network Dynamics

Our theoretical study will be based on a relatively simple rate model in which the
highly nonlinear dynamics of spiking neurons is replaced by smooth equations which
describe the temporal evolution of the neuronal activities. These activities are
smooth functions of time and represent the rate of firing averaged over short periods
of time. In the present context, the rate (or simply the activity) of a neuron (C(,8) at
time t is represented by the continuous functions of time, mrx(8,t), where as before
C(= E, /, for excitatory and inhibitory neurons, respectively. It is convenient to nor-
malize the rates by appropriate saturation levels so that 0 < mrx( 8, t) < 1. Thus,
mrx= 1 represents firing rate of the order of 1kHz. The rate variables are assumed to
obey the following dynamic equations (Wilson and Cowan 1972; Ginzburg and
Sompolinsky 1994; Ben-Yishai, Hansel, and Sompolinsky 1997):

1:0 ~ mrx(8, t) = -mrx(8, t) + G(/rx(8,t) - Trx), ('I. = E,I, (13.4)

where 1:0is a microscopic characteristic time assumed to be of the order of a few
milliseconds. The quantities /rx(8, t) are the total synaptic inputs to the neuron C(8
(see eq. 13.1). The two network contributions to /rx(8, t) are of the form

J

+n/2d8'/rxP(8, t) = -JrxP(8 - 8')mP(8', t),
-10/2 11:

P= E,I. (13.5)

Here we have used a mean field description, valid for large networks, according to
which the activity profiles mrx(8, t) are continuous functions of 8. The parameters Trx
are the neuronal thresholds. For the nonlinear gain function G(/), we will adopt the
simple semilinear form

{

o /<0
G(I) - / 0 < / < 1

1 />1.

Furthermore, we will demand that the stable state of the network is such that all
the neurons are far from their saturation level. Therefore in practice the only non-
linearity we will consider is a threshold nonlinearity,

(13.6)

G(/) = [/]+, (13.7)

where [X]+ = X for X > 0, and zero otherwise.

I ',
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In the case of time-independent external inputs, the dynamics of the rate model
may converge to a fixed point. The fixed point equations are

ma(o) = [Ia(O) - Ta]+, r:t.=E,I, (13.8)

where Ia(o) depends on the network activity profiles ma(o) through

J

+71./2
dO'fa(O) = L

.

-Jap(O - O')mP(O') + Iao(O - (0),
P=E,I -71./2 1C (13.9)

If we linearize eq. 13.4 with respect to a small perturbation near the above fixed
point, we find that the criterion of the linear stability of the fixed point is that all the
eigenvalues of the stability matrix

Map(0, 0') = -c5(0 - O')c5aP+ 0(Ia(0))JaP(0 - 0') (13.10)

have negative real parts. The function 0(x) is the step function, that is, 0(x)
= 1, for

x > 0, and zero otherwise.

12.3 One-Population Rate Model

The solution of the above two-population rate model is discussed in detail in Ben-
Yishai, Hansel, and Sompolinsky (1997). Here we will study a simpler model, in
which the excitatory and the inhibitory populations are collapsed into a single
equivalent population. This reduces substantially the number of parameters and
greatly facilitates the analysis of the system behavior (the justification of this reduc-
tion will be discussed in section 13.7). The one population model is described in
terms of a single rate variable m( 0, t) which represents the activity. of the population
of neurons in the column 0 at time t. The rate dynamics are defined by

d
't"odt

m(O, t) =-m(O, t) + [1(0,t) - T]+, (13.11)
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where

J

+71./2
dO'

1(0, t) =
.

-J(O - O')m(O', t) + 10(0 - (0)
-71./2 1C

.
and T is the neuronal threshold.

Adopting the additional simplification of retaining only the first two Fourier
components in the interaction and external input spatial dependencies as in eqs. 13.2

(13.12)

t .,
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and 13.3, we have

J(() - ()/) = Jo + h cos(2(() - ()/)),

and

h ~ 0, -Jo (13.13)

IO(() - ()o) = C(1 - e + ecos(2(() - ()o))).

Substituting eqs. 13.13 and 13.14 into eq. 13.12 yields

(13.14)

I((), t) = C(l - e) + Joro(t) + Cecos(2(() - ()o))+ hr2(t) cos(2(() - 'P(t))), (13.15)

where

J

+n12d ()
ro(t) = - m((), t)

-n12 n
(13.16)

J

+n12 d ()
r2(t) = - m((), t) exp(2i(() - 'P(t))).

-n12 n
(13.17)

The phase 'P(t) is defined by the requirement that r2(t) is a nonnegative real number.
The quantities ro(t), r2(t), and 'P(t) are global measures of the activity profiles and
are called the "order parameters" of the network. The first-order parameter ro mea-
sures the activity of the neurons averaged over the entire network. The second-order
parameter r2(t) measures the degree of "spatial modulation" in the activity profile.
The complex number r2(t) exp(2i'P(t)) represents a vector in two dimensions, which
corresponds to the population vector of the system, evaluated by summing unit vectors
pointed in the PFs of the neurons, weighted by their instantaneous activities (Geor-
gopoulos, Taira, and Lukashin 1993; Schwartz 1993). The phase 'P(t) denotes the
angle of the population vector and r2 denotes its length, that is, the strength of the
spatial modulation of the population. From a functional point of view, 'P(t) may
represent the population coding of the stimulus feature (Seung and Sompolinsky 1993).

Fourier transforming of eq. 13.11 yields self-consistent equations for the temporal
evolution of the order parameters, which in turn determines the dynamics of m( (J, t)
(these equations are derived in chapter appendix A). In the following we study the
properties of the fixed-point solutions. We first assume that, at the fixed point, the pop-
ulation profile m( ()) is centered at the peak of the external input, that is, at (J= (Jo,hence

'II = ()o. (13.18)

Substituting eq. 13.18 In eq. 13.15, we observe that the fixed-point solution for
eq. 13.11 has the form

f .,
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m(O) = M(O - 00),
(13.19)

where

M(O) = [10+ 12 cos(20)]+.
(13.20)

The coefficients 10 and 12 are

10 = C(l - e) + JorO - T (13.21a)

(13.21b)/z = Ce + Jzr2.

Eq. 13.20 shows that eq. 13.18 is indeed self-consistent. The fixed-point values of the
ro and r2 are given by the self-consistent equations

J

+7I:/2dO
ro = -M(O)

-71:/2n

J

+7I:/2dO
r2 =

.

-M(O) cos(20),.
-71:/2n

(13.22)

(13.23)

which will be analyzed below. An interesting quantity is the network gain, G, defined
as the ratio between the activity of the maximally active neuron and the stimulus
intensity relative to threshold:

G =
M(O)

- C-T' (13.24)

Note that, by definition, G = 1 for an isolated neuron.
The stability of the above fixed point is determined by the following equation for

the linear perturbation <5m(O, t) = m(O,t) - m(O):

d
1"0dt<5m(O, t) = -<5m(O, t) + E>(m(O))(Jo<5ro(t) + J2<5(cos2(0 - 'P(t))r2(t))). (13.25)

As usual, stability requires that the solutions for <5m(O,t) decay to zero. (This stabil-
ity analysis can also be reduced to the study of the stability of the order parameters,
as describ~d in chapter appendix B.)

. 13.4 Stationary Activity Profiles

To solve eqs. 13.20-13.23, we have to distinguish between broad and narrow pro-
files. We say that the activity profile is "broad" when all the neurons are above
threshold for all stimulus angles, that is, M(O) is positive, for all O. Conversely, a
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"narrow" profile is characterized by M(B) that vanishes at and beyond a certain
angle Be. Of course, whether the profile is broad or narrow depends both on the
stimulus inhomogeneity and on the cortical interaction parameters, as will be shown
below. Note that m(B)'s being a function of the difference between' B and eo implies
that the form of the activity profile M (B) is identical to the form of the output tuning
curve of a single neuron. Thus a narrow (broad) profile corresponds to a narrow
(broad) output tuning curve.

13.4.1 Broad Activity Profile

We first consider the relatively simple case of a broad M (B), where all the neurons'
are above threshold. Thus eq.. 13.20 simply reads

M(B) = 10 + hcos(2B).
(13.26)

Substituting this expression in eqs. 13.22-13.23 yields Yo= 10; Y2 = h/2. Substituting
in eqs. 13.21a-13.21b results in

C(l - 8) - T
Yo = 1 - Jo

C8
Y2= l'

1-'ih

(13.27)

(13.28)

In the case of a homogeneous input, 8 = 0, the above solution reduces to a homoge-

neous state:

C-T
M(B) =

1 - Jo '
8= O.

(13.29)

For 8 > 0, the gain is

G
1- 1 21

= + 1 '1 - Jo 1 - 'ih

(13.30)

where the effective stimulus tuning is defined as

1=
8C

C-T

(13.31)

As expected, positive feedback generated by positive Jo or h enhances the, system's
gain, whereas negative feedback suppresses it. As we will see below, the parameter
1 is an important measure of stimulus tuning: it takes into account the potential
enhancement of the tuning of cortical neuron activity by the effect of its threshold.

I
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Figure 13.3
Activity profile in the one-population rate model for Jo = ~2 and J2 = O. The tuning of the input is
,,= 0.1. The profile of activity is broad for a contrast C = 2 (dash-dotted line). For a lower contrast, here
C = 1.3 (solid line) the profile is narrow.

When the stimulus intensity is close to threshold, a weak stimulus tuning will cause a
relatively narrow outptlt tuning because the neuron will be active only if it is max-
imally stimulated. It should be noted, however, that Y is a single-neuron property. It
does not take into account the potential modification of the threshold by the cortical
network. An example of a broad profile is shown in figure 13.3.

Eqs. 13.26-13.28 are a self-consistent solution of eq. 13.20, provided that the gain
given by eq. 13.30 is positive. This depends on the value of Y. For suffi-
ciently large values of Y, G becomes negative and the broad solution is not valid any
more. In addition, one has to consider the stability of this solution. The stability
analysis is performed by Fourier transforming eq. 13.25 (taking into account that
here E>(m(B)) = 1, for all B), yielding

.
d

TOd/ro(t) = -(1 - Jo)lJro(t)

d ( J2)TOdtIJr2(t) = - 1 - 2: .

IJr2(t).

I,

(13.32)

(13.33)
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(See chapter appendix B for a full treatment of the stability analysis.) These equa-
tions define two stability conditions that are independent of Y:

Jo < 1 (13.34)

and

h <2. (13.35)

At Jo = 1, the system undergoes an amplitude instability characterized by the di-
vergence of the activity levels of all neurons in the network. Indeed, if we add the
saturation nonlinearity of eq. 13.6, we find that when Jo = 1, all the neurons fire at
saturation level. The instability at J2 = 2 signals a spatial instability, where the sys-
tem prefers a narrowly tuned state over the broadly tuned one, even when Y is zero.
In other words, when the spatial modulation of the cortical feedback is large, even a
small inhomogeneous perturbation (generated by a small Y, or even a nonzero initial
value of r2, with Y = 0) will grow due to cortical feedback, and will destroy the

underlying homogeneous state. The resultant state is described below.

13.4.2 Narrow Activity Profile

We have defined above an activity profile as narrowly tuned if there exists an angle

Be such that M(B) vanishes for IBI> Be. In this case, eq. 13.20 is no more linear. It
can be written as

M(B) = h[cos(2B) - cos(2Bc)]+, (13.36)

where

-/0
cos(2Be) = I;'

The angle Be denotes the width of the tuning curve. Substituting in eqs. 13.22-13.23
yields, after some algebra, the following self-consistent equation for Be:

(13.37)

1 - ~ =
Jofo(Bc) + cos(2Be)

,
Y 1 - hf2(Bc) (13.38)

where

fo(Bc) = !(sin(2Be) - 2Becos(2Bc)). n

f2(Bc) =
~ (Be - ~Sin(4Bc)).

(13.39)

(13.40)
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These functions are plotted in figure 13.4. The gain of the network

G =
h(1 - cos(2Bc))

C-T

is given by

G = Y(1 - COS(2Bc) ).
1 - h!2(Bc)
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(13.41 )

(13.42)

These equations (derived in chapter appendix A) are a valid solution for the fbced
point provided G is positive and eq. 13.38 has a solution; otherwise, the only solu-
tion is a broadly tuned one, as described above. Finally, the stability of this solution
has to be determined by linearizing the dynamics around this fuced point (the re-

.sultant stability conditions are derived in chapter appendix B). An example of a
narrow profile is shown in figure 13.3. We discuss below the interaction parameters
where the broad or the narrow solutions are the stable states of the system.
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13.4.3 Weakly Modulated Cortical Interactions

When the tuning of the input is large, that is, I » 1, the cortical interactions may have
little effect on the shape of the activity profile. On the other hand, when the stimulus
tuning is weak, the cortical interactions may playa large role in the emergent network
tuning. Thus a convenient way to characterize the effect of the cortical interactions is
to calculate the influence on the critical value of I, denoted as Ie, below which the
system has a broad activity profile. According to our analysis above, we suspect that
Ie is positive for Jz < 2, whereas Ie = 0 for Jz > 2. The role of Jo is different: it
may affect the value of Ie, but it will not drive it to zero if J2 < 2. In addition, the
value of Jo may affect the overall stability of the system. A large positive value of Jo
signals strong positive feedback, which causes an instability of the network state.
The above qualitative considerations are borne out by our detailed results below. We
first consider the regime of weakly modulated interactions defined by

Jz < 2, Jo < 1. (13.43)

Afferent Mechanism of Feature Selectivity The classical model of feature selectivity
assumes that the selectivity is generated by the spatial organization of the afferent
input to the cortical neurons. In the context of our model, this implies that I is large
and that the contribution of the cortical interactions is not essential, namely,

Jo, Jz ~ o. (13.44)

In this case, the narrow profile described by eq. 13.20 reduces to

M(O) = eC[cos(20) - cos(20e)]+, (13.45)

where Oe is

1 ( -1 )Oe = '2arccos 1 - I ,

The lowest value of I for which this solution exists is ,

Y> Ie. (13.46)

1
Ye='2.

For I < Ie, the system is in a broadly tuned state, where

(13.47)

M(O) = C(l-e) - T+eCcos(2(0- 00)), for all 0 (13.48)

These results are shown in figure 13.5. Finally, in the absence of cortical interactions,
the gain of the system is the same as that of a single neuron, namely, G = 1.

I .,



Modeling Feature Selectivity in Local Cortical Circuits 515

\

\
\

\

\

'-

1.5

\

\
\

ec

,
.....

",

"

"
"- - - - - - - - - - - - - -
-~C"-""-

--~-~--===---------0.5

0
0 0.2 0.4 0.6 0.8 1

Y
1.2 1.4 1.6 1.8 2

Figure 13.5
Width of the tuning curve, ec, as a function of Y. Solid line; afferent mechanism; dash-dotted line: uni-
form cortical inhibition, Jo = -2; dashed line: marginal phase, Jo = -2 and Jz = 6.

Uniform Cortical Inhibition The previous feedforward scenario has an obvious
drawback. If the input tuning e is smaller than 1/2, sharply tuned profile exists only
if the intensity is near the single-neuron threshold. A stimulus with e < 1/2 and a
high intensity relative to T will necessarily generate broad profiles of activity. A
simple mechanism for sharpening the tuning invokes global cortical inhibition.
Within our model, this scenario corresponds to the parameter regime

Jo = -IJol < 0, Jz ~ O. (13A9)

In the presence of this inhibition, the external input of each nel}ron has to overcome
an effective threshold given by n + IJolro. This effective threshold increases linearly
with ro and therefore also with C. Thus, even for C» I and small e, the uniform
inhibition can provide a sufficiently potent threshold to sharpen the tuning width. In.
particular, substituting eq. 13.49 in eq. 13.38 and noting that the maximal value of
(}e is n/2, we see that a narrow profile exists as long as Y is bigger than

I,
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. 1
Yc =

2 + IJol'
(13.50)

The effect of Jo on Be is shown in figure 13.5, which shows clearly that although
the inhibition sharpens the orientation tuning, the value of Be depends strongly on Y,
hence on both C and 8. This highlights the fact that unifonn inhibition is incapable
of generating feature tuning on its own; it can only sharpen the tuning generated by
the modulated input. Finally, from eq. 13.42 we have in the present case

G = Y(1 - cos(2Bc)). (13.51)

Because the cortical inhibition reduces Be, it suppresses the system's gain as expected.

General Case The effect of adding a positive lz is to sharpen the tuning of the net-
work. As illustrated in figure 13.6, for fixed values of Jo, Yc decreases with lz until it
vanishes at lz = 2. This indicates that for larger values of lz, even when Y is zero,
the system's activity profile is narrow (see section 13.4.4).
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Figure 13.6

Yc as a function of the modulation h, for Jo = -2.
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13.4.4 Strongly Modulated Cortical Interactions

We now consider the parameter regime

J2 > 2, Jo < Jc. (13.52)

The upper bound on Jo, Jc, is a function of hand Y, as will be discussed
below.

Homogeneous Input: Marginal Phase In section 13.4.3, we analyzed the case where
the external input is the only source of modulation of the cortical activity. In this
section, we consider the question: can a narrow activity profile be generated by spa-
tially modulated cortical interactions even in the absence of tuning in the external
input? To study this question, we assume here

.

h>O, e= O. (13.53)

According to our previous analysis, the homogeneous state, characterized by eq. 13.29
is unstable. It is also clear that if the system possess an additional, inhomogeneous
solution, this solution must be narrowly tuned because a broadly tuned profile obeys
linear dynamics that does not poses more than one fixed point. Indeed, inspection of
eq. 13.20 reveals that, for e = 0, solutions with a narrow activity profile exist for

h > 2. The general stable solution is of the form

m({})= M({} ~ 'P). (13.54)

The angle 'P, which determines the peak in the population activity profile, is arbi-
trary because the external input is homogeneous. This means that there is a con-
tinuum of stable states. All the states have identical feature-tuned activity profiles,
although the peaks of their profiles differ in location. Such a situation is termed a
marginal phase, which indicates that the system relaxes to a line of fixed points rather.
than to one or several isolated fixed points. A marginal phase represents spontaneous
symmetry breaking, that is, spontaneously generated spatial modulation of the activ-
ity in the network, and arises because spatial modulation of the cortical interactIons,
if sufficiently strong, destabilizes the homogeneous state. The stable state of the net-
work is one where the activity is concentrated in a limited spatial range.

The shape of the activity profile in the marginal phase is still given by eq. 13.36.
As for the width of the profile, inspection of eq. 13.38 reveals that when Y = 0, (}c is.
given by

J2!2({}C) = 1, (13.55)

I .,
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which has a solution for J2 > 2 (see figure 13.4). The gain in this limit is given by

G =
1 - cos(2ee) ( 1 )fo(ec) Jc - Jo (13.56)

and

J -
cos(2ee)

e - - fo(ec)
, Y~O. (13.57)

Eqs. 13.36, 13.41, and 13.56, together with eq. 13.55, which determines ee, complete
the solution for the activity profile. These equations imply that the amplitude of the
external input determines the overall level of activity in the system, although the
shape of the activity profile, in particular its width, is determined by the degree of
spatial modulation of the cortical interactions.

It is clear from eq. 13.56 that for the marginal state to exist, Jo has to be smaller
than Je (this condition can be also derived from a stability analysis presented in
chapter appendix B). When Jo approaches Je, the system undergoes an amplitude
instability similar to the instability that occurs at Jo = 1 for the homogeneous state
and Jz < 2 (see eq. 13.32). The phase diagram for the stability of the various states in
the case of a homogeneous stimulus is depicted in figure 13.7.

Tuned Input We have considered a completely homogeneous input, for which the
location of the peak of the activity profile is arbitrary. Because, however, we are
primarily interested in how the system represents features present in external stimuli,
we consider the solution of eqs. 13.36-13.42 in the parameter regime

0 < Jz < 2, 8> O. (13.58)

Solving eq. 13.38 shows that in most of this regime the tuning is largely independent
of Y, as illustrated in figure 13.5. This implies that the shape of the activity profile is

determined essentially by the cortical interactions, eq. 13.55, and is barely affected
by the presence of nonzero values of Y. Thus the main effect of the inhomogeneity of
the external input is to select among the continuum of possible states that state in
which the peak in the activity matches the feature of the stimulus, that is

'P = eo. (13.59)

However, it will not greatly affect the shape of the tuning curve, as shown in figure
13.8. An exception is the case of low-intensity stimuli, characterized by C close to
threshold T, that is, a large Y. Once the single-neuron thresholdingeffect becomes

,. .,
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Figure 13.7
Phase diagram of the one-population rate model for e = O.

dominant, it sharpens the tuning curve beyond the sharpening provided by the cor'"
tical mechanisms. Another regime where the value of Y is important is near the
amplitude instability. This is because the critical value of Jo, Je, depends on both h
and Y, as shown in the phase diagram (figure 13.7). As Y increases, the value of Je
decreses, expanding the regime where the fixed-point state is table.

Finally, we would like to point out the two main features that make the one-
population model defined by eqs. 13.11-13.13 particularly simple. First, because the
synaptic interaction, eq. 13.13, consists of only two Fourier components, the full dy-
namics can be reduced to a set of self-consistent equations involving a small number
of order parameters, in our case, ro, r2, and '1'. Second, as a consequence of the
choice of threshold linear gain function, the dynamic equations in the regime of
active population are linear equation. The only nonlinearity is the self-consistent. equation for Be that results from matching the boundary between the active and
quiescent populations.
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13.5 Moving Activity Profiles

13.5.1 Response to Changing Stimulus Feature

Thus far, we have discussed the steady-state response to the onset of a stimulus with
a time-independent feature value, Bo. One of the most important consequences of the
existence of the marginal phase is the dynamics of the system's response to perturba-
tions. Consider the case where the system reaches astable state located at the peak of
weakly tuned input, and a weak transient perturbation is applied on it. Qualitatively,
we expect that if the perturbation puts the system momentarily in a state unlike one
of the attractor states, the system will quickly relax to the nearest stable profile. Ori
the other hand, if the perturbation puts the system in a different state on the attrac-
tor, the system will relax to the original state, that is, the profile will move to its
original location relatively slowly, and it will strongly depend on Y, which represents
the restoring force toward' the original state. Indeed, for small perturbations, the
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relaxation times. are the inverse of the eigenvalues of the stability matrix of the
marginal phase (calculated in chapter appendix B). Eqs. 13.BI5, 13.BI6, and 13.B2I
imply that whereas the relaxation times of the shape of the profile, which involves
perturbation of ro and r2, are short even in the marginal phase, the relaxation time of
the perturbation to the position of the profile, namely, 'P, is long and diverges in the
limit of Y -t O.

The slow dynamics of the marginal phase is manifest also in the response of the
system to a time-dependent stimulus where Bo changes with time. In the present
notation, such a stimulus is parametrized as

]o(B, t) = ]o(B - Bo(t)) =C(I - B + Bcos(2(B- Bo(t))). (13.60)

The dynamics of the network is described by eqs. 13.11-13.15, with time-dependent
Bo. The nature of their solution depends on the interaction parameters as well as on
the stimulus-effective tuning parameter Y. In general, if Y is large, the response of
the network may be dominated by the single-neuron dynamics, and the feedback
effects will be minor. Here we will focus on the case of a weakly tuned input that
varies slowly with time, where the network behavior may be quite different from that
of an isolated neuron. In this regime, the dynamics of the network can be reduced to
a simplified phase model, similar in some respects to phase descriptions of neuronal
oscillatory systems. Our assumptions about the stimulus are formally expressed as

I

dBo

I

'ro
dt = O(Y) « 1. (13.61)

Under these conditions, after a long time compared to 'ro, the shape of the activity
profile of the network becomes almost stationary and has the same form as that for a
constant Bo and low Y. The main effect of the motion of the stimulus is to initiate a
translation of the activity profile across the network. Thus

m(B, t) = M(B - 'P(t)), (13.62)

where M(B) has the same shape as in the stationary case at low Y, which is given by
eqs. 13.36, 13.56, and 13.55. The motion of the profile is conveniently described in
terms of the difference between the instantaneous locations of the activity profile and
the stimulus feature:

. il(t) = 'P( t) - Bo(t). (13.63)

In chapter appendix A, we show that, to leading order in B,il(t) obeys the following
equation:
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dt1.( t)
= -

dBo
+ Ve sin(2t1.( t))

dt dt
'

,

where

(13.64)

T/ - Y I: (B' )(1 T ) -
Y

.

(
.

1
.

-
.

C
.

'

.

os(
.

2
.

' Be))
TOy e - - JO e e - JO -2 ' 2G (13.65)

and where Ie is given in eq. 13.57. Note that liVe is proportional to the large
relaxation time of perturbations of 'P, as seen in eq. 13.B2L We now discuss two
applications of this equation.

Responseto SuddenChangein StimulusFeature-VirtualRotation Consider the case
where a stimulus with a feature value Bl is presented in the receptive field of the cells
for a time sufficientlylong that a stationary response to the stimulus that a stationary
response to the stimulus has developed. Then at time t = 0 the stimulus feature is
suddenly changed to the value B2. How will the cells respond to this change? We
consider here separately the regimes of weak and strong cortical modulation.

To illustrate the transient response in the weak modulation regime, we consider
the case of zero modulation of the cortical interactions, namely, 12 = O.In this case
the evolution in timeofm(B, t) is given, according to eq. 13.11, by

.

d 0TOdtm(B, t) = -m(B) + [I (B - (2) + loro - T]+, t> 0, (13.66)

where 10 is the external input (eq. 13.14) corresponding to the second stimulus. This
equation has to be solved with the initial condition m(B, t = 0) = [IO(B - BI) - T]+.

As will be shown below, the mean network activity ro is constant in time, hence the
solution to eq. 13.66 is simply

m(B, t) = M(B - BI)e-t/'Co + M(B - (2)(1 - e-t/'CO), t > 0, (13;67)

where M( B) is the stationary profile under constant stimulus with Bo= O. Thus the
initial activity profile decays while the final one grows in amplitude, as shown in
figure 13.9A, while intermediate columns remain inactive throughout this response.
Note that ro indeed remains constant in time, as can be verified by spatial averaging
of eq. 13.67. Thus the change in the stimulus redistributes the activity among the
neurons within the network without affecting the mean activity level. For this reason,
the network feedback loro does not modify the time constant associated with the
buildup of activity around B2. Indeed, according to eq. 13.67, this time constant is
the single-neuron time constant, TO.
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We next consider the case of a cortical network with weakly tuned stimulus and
strongly modulated interaction, where not only the mean activity but also the shape
of the profile of the population activity changes very little with time. The main effect
of the time evolution is to move the center of the profile until it matches the new
stimulus feature ()z. The evolution in time of the center of the activity profile is given
by

dl:1(t) .
-;It = - Ve sm(21:1(t)), l:1(t= 0) = ()l - ()z, (13.68)

where L\(t) = '¥(t) - ()o(t). Note that, for t> 0, l:1(t) denotes the center of the pop-
ulation profile relative to the instantaneous stimulus, here ()z. The solution of this
equation is

l:1(t) = arctan(A exp(-2 Vet)), (13.69)

where A = tan(I:1(O)). Figure 13.9B shows the full solution results of the network
dynamics, for 1 = 0.1. One sees that the changes in the shape of the activity profile
are small and successive activation of the intermediate columns indeed occurs, as
predicted by the phase model.

The above results mean that, at any given time t, the population activity is similar
to what would occur if there were an external stimulus with a feature ()o= '¥(t).
Thus the temporal evolution of the cortical state corresponds to a virtual smooth
change of an external stimulus with a velocity given by dl:1ldt. This can therefore
serve as a neural mechanism for various psychophysical phenomena related to
apparent motion, including the well-studied phenomenon of "mental rotations"
(Shepard and Metzler 1971). Note that if the difference between the initial and the
final features equals n12, eq. 13.68 predicts that the initial state with the peak located
at ()l is a fixed point of the dynamics. This is, however, an unstable fixed point" so
that slight perturbations will cause '¥(t) to grow toward (h := nl2 or decrease toward
-()z = -nI2, depending on the nature of the perturbation. Finally, it should be
noted that the result of eq. 13.68 is valid provided Veio = 0(1) « 1. Otherwise, the
dynamics involve major defomiations in the activity profile, which resembles the
decay and growth pattern of eq. 13.67.

Locking to a Moving Stimulus Feature We now consider the response of the system
to a stimulus with a feature value that changes smoothly with time, with a constant
velocity,

()o(t) = Vt.

I .,
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If the system encodes the instantaneous stimulus orientation by the location of the
population activity profile, then this profile should be able to fo~low the change in
the stimulus, which raises the following question. Can the population activity profile
lock to the input? If so, what is the range of input velocities for which such locking
occurs? For a stimulus that varies on time scales comparable to single-cell time con-
stants, the answers to the above questions may depend strongly on the details of the
single-cell microscopic dynamics. When, however, the temporal variation of the
stimulus is slow and the direct coupling of the population profile to the changing
stimulus relatively weak, cortical cooperative effects may be the dominant factor in
determing the locking properties. We therefore focus here on the case of a weakly
tuned (Y « 1) and slow time-dependent input, '"CoV = O(Y). In weakly modulated
cortical interactions, the network's responses to the moving stimulus will be essen-
tially linear, similar to the broad profile in the stationary case. The motion of the
stimulus will induce a small time-dependent component of the neuron's activity. The
situation is qualitatively different in the parameter regime of the marginal phase,
where the tuning of the network will be sharp, hence the response to the stimulus is
highly nonlinear. In this limit, the changing stimulus generates a motion of the whole
activity profiles without greatly affecting their shape. Hence the state of the system is
given approximately by an activity profile whose shape is stationary but whose cen-
ter moves with time. The motion of the population activity center relative to the
stimulus, L\(t), is given by eq. 13.64, with (Jo(t) of eq. 13.70:

dL\( t) .
--;It = - V - Vc sm(2L\(t)).

(13.71)

The nature of the solution of this equation depends on the stimulus velocity, V, rel-
ative to the intrinsic velocity constant, Vc.

SLOW STIMULUS (V < Vc)

L\ = -
~

arcsin (V/ Vc).

In this regime, eq. 13.71 has a stable fixed point:

(13.72)

This corresponds to a state in which the activity profile is locked to the stimulus and
follows it with a constant phase lag. For V -+ Vc, the phase lag between the excita-
tory population and the stimulus reaches -n/4. It should be emphasized that here,
as opposed to the previous case, the locking is strong, involving the motion of a
sharply tuned population profile. The positions, of the population vectors and the
stimulus in such a case are shown in figure 13.10A.
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the population vector. (A) Complete locking of the activity profile to the rotating stimulus' at velocity
V = 0.05 radf'ro. (B) Partial locking in the case V = 0.07 radf'ro. (C) No locking in the case V =
0.15 rad/~o.

FASTSTIMULUS(V> Vc) In this regime, eq. 13.71 does not have a fixed-point
solution, and the activity profile is not locked to the rotating stimulus. The solution
of the phase equation yields

{Vc W }Ll(t) = arctan
V + -Vtan(V(t - to)) , (13.73)

where

'roW = JV2 - VE (13.74)

and to is determined by the initial condition Ll(a) = Llo. The phase Ll is periodic in
time with a period P = 2n/ W. Thus the rotation of the population vector is quasi-
periodic,with 'P(t) = Vt - Ll(t). The average velocity of the population vector rota-
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tion is V - W, which is slower than the stimulus velocity, V. The behavior of 'P(t)
for a value of V close to Vc is shown in figure 13.10B, and for a higher velocity in
figure 13.10C. These results, obtained by numerical integration of the population
dynamics, are in a good qualitative agreement with .the predictions of the above
phase equations, which are based on the limit of small e and V.

13.5.2 Intrinsic Moving Profiles

Modeling Neuronal Adaptation One of the major limitations of the one-population
model we have studied above is that, because of the symmetry of its connections
(Hopfield 1984), it always settles into a stationary state when stimulated by a con-
stant stimulus. Neuronal networks, on the other hand, quite often converge to an
attractor that is not a fixed point, even when the stimulus is constant in time. A
simple example is the appearance of stable temporal oscillations in the neuronal
activity as a result of the network feedback (Wilson and Cowan 1972; Grannan,
Kleinfeld, and Sompolinsky 1992). When the network architecture has spatial struc-
ture, as in our case, the time-dependent attractors are in general also spatially
modulated. A simple class of such stable spatiotemporal patterns is a solution where
a spatial activity profile rigidly moves across the network. Indeed, in the more com-
plex architecture of a network comprising distinct excitatory and inhibitory popula-
tions, intrinsic moving profiles can appear, provided the internal spatial modulation
of the inhibitory feedback is strong (this scenario has been studied in detail in Ben-
Yishai, Hansel, and Sompolinsky 1997). Here we study a somewhat simpler scenario
for generating such pattern, one that relies on neuronal adaptation, a ubiquitous
phenomenon in excitatory cortical neurons (Connors,. Gutnick, and Prince 1982;
Connors and Gutnick 1990; Ahmed, Anderson, et al. 1994). Qualitatively, the
movement of the activity profile is caused by the presence of stro:qg, delayed negative
feedback that is local in space. Such inhibitory feedback suppresses activity which
develops in a localized region. The excitatory feedback, in turn, induces activity
growth in nearby unadapted locations, thereby causing the propagation of the pro-
file. We first present a simple way of incorporating adaptation in the population. rate
dynamics, and then study its effect on the network spatiotemporal state.

We incorporate adaptation by the following model:

d
TOdtm(8, t) = -m(8) + [1(8,t) - Ia(8, t) -. T]+, (13.75)

where the total input 1(8, t) is given by eq. 13.12, and where the adaptation current
Ia(8, t) obeys a linear dynamical equation:

I .,
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dla( 8, t)
Ta

dt
= -Ia(8, t) + Jam(8, t).

(13.76)

The parameter Ja > 0 measures the strength of the adaptation and Ta is its time
constant, which will be assumed to be large compared to TO.Note that the adapta-
tion can be thought of as a slow local negative feedback, which we take to be linear.

In the absence of interaction between the neurons, and with a suprathreshold
stimulus (C > I) constant in time, the fixed point of the dynamics is given "by

m(8) = G(C - T)

Ia(8) = Jam(8)

(13.77)

(13.78)

where the single-neuron gain G is given by

I
G =

1 + Ja
.

"

This fixed point is always stable. Thus, for an isolated neuron, the slow adaptation
current does not generate persistent oscillation, and the only effect of the adaptation
at the fixed point is simply to reduce the gain of the neuron by a factor 1 + Ja. A
reasonable value for the adaptation strength is Ja = 1. With this strength, the firing

rates at large time are reduced by 50% compared to the situation without adaptation.
This is compatible with experimental data concerning spikes adaptation of ~ortical
neurons (Connors, Gutnick, Prince 1982; Ahmed, Anderson, et al. 1994).

The stationary solution of the network dynamic equations remains essentially the
same as without adaptation. Here again, the only effect of the adaptation is to reduce
the gain by the factor 1 + Ja: the new fixed solution for m( 8) is as given above except
that the parameters Jo, h, C, and T have to be divided by the factor 1 + Ja. How-
ever, the presence of adaptation strongly affects the stability of this fixed-point
solution, particularly when the spatial inhomogeneity of the stimulus is weak. For
sufficiently strong adaptation, the fixed-point solution is unstable; instead, a new
spatiotemporal solution appears as the system's attractor. "

We first discuss the case of a homogeneous stimulus, Y = O. The results of the
stability analysis of the fixed point as a function of the interaction modulation and
adaptation strength are summarized on the phase diagram of figure 13.11. The weak
adaptation regime is marked by

(13.79)

TO
Ja <-.

Ta

(13.80)

In this regime, the system's behavior is similar to that with no adaptation. When the
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Figure 13.11

Phase diagram of the one-population rate model with firing adaptation, "a = 4"0.

modulation of the interaction h is sufficiently ,small, the homogeneous state is stable.
For a homogeneous inputandh > 2(1 + Ja), the homogeneous state is unstable and
a line of stationary. attractors appears. As before, they correspond to stationary
modulated activity profiles whose peaks are located at arbitrary positions. The,shape
of each activity profile can be deduced from the results of section 13.4 by normaliz-
ing the interactions Jo and hand the effective gain G by the factor 1/(1 + Ja).

In the strong adaptation regime

TO
Ja>-,

Ta
(13.81)

the stationary homogeneous state is stable for h < 2(1 + ToITa).Above this value,
the state is destabilized in favor of a profile of activity that travels across the network

. (figure 13.12). The direction of the pulse movement depends on the initial conditions.
For h> 2(1 + TOITa), the transition to a moving state as Ja increases above the

value TolTa (vertical line in figure 13.11) indicates the destabilization of the stationary

I .,
~0:'



0.2

0.15

m 0.1

0.05

a
-1.5 -1 -0.5 a 0.5 1.5

0.2

0.15

m 0.1

0.05

a
-1.5 -1 -0.5 a 0.5 1.5

0.2

0.15

m 0.1

0.05

a
-1.5 -1 -0.5 a a.!) 1.5

0.2

0.15

m 0.1

530 Hansel and Sompolinsky

a
-1.5 -1 -0.5 a

e
0.5 1.5

Figure 13.12
Traveling pulse of activity in the one-population rate model with adaptation. Parameters: 7:a= 47:0,
Ja = 1, Jo = -2, lz = 6, C = 1.1. Frames are for times t = 0, 57:0, 107:0,157:0.Velocity of the pulse:
V = 0.1389rad/7:0.
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Figure 13.13
Velocity of the traveling pulse in the one-population rate model with adaptation against the adaptation
strength la. Parameters: 1:a= 101:0,10= -2, h = 6, C = 1.1. Velocityin radians/1:o.

inhomogeneous state is due to the appearance of an unstable' transversal mode,
which corresponds to the translation of the profile of activity across the network.
Thus, on the right of the vertical line of figure 13.11, the network settles into a state
where the activity profile moves without changing its shape. The velocity of the
profile vanishes on the line as Ja - 1:0/,ra. When Ja increases beyond this line, the
velocity grows monotonically with Ja, as shown in figure 13.13.

For Ja > 1:0/1:a, the destabilization of the stationary state as h increases above
2(1 + 1:0/1:a)(horizontal line in figure 13.11) corresponds to a pair of complex con-

. jugate eigenvalues, whose real part becomes positive. This instability corresponds
to a direct transition between the stationary homogeneous state and the traveling
pulse. On this line, the half-width of the activity profile is n/2 and the velocity of the
profile is

.,
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1 ~ a
Vo = - Ja - - 1.

2Ta TO

Hansel and Sompolinsky

(13.82)

The velocity is finite on the line except at Ja = TO/Ta,where it vanishes.
When the stimulus is tuned, that is, 8 > 0, three regimes exist depending on the

value of 8. For 8 sufficiently small (8 < 8d, the hill of activity travels across the whole
system but the velocity of the movement depends on the position of the hill. In par-
ticular, when the hill peak approaches the vicinity of the orientation of the stimulus,
it is accelerated. For sufficiently large 8 (8 > 82), one expects that the hill of activity
will be pinned, with the maximum of activity located at the orientation of the stim-
ulus. Finally, for 81 < 8 < 82, the activity hill performs localized oscillations around
the orientation of the stimulus. Figure 13.14 displays the behavior of the system in
the three regimes.
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13.6 Model with Short-Range Excitation

Until now, we have assumed a network architecture with space-dependent inter-
actions whose range extended throughout the whole network (see eqs. 13.2 and 13.13).
In this case, the strength of the spatial modulation of the cortical interactions is
measured by the amplitude of their spatial modulation, for example, the parameter
Jz in eq. 13.13. In general, we expect that the range of the spatial modulation will
also have an important effect on the spatial pattern of network activity. To study this
issue, we consider in this section the case where the excitatory interactions decay
exponentially with the distance between the interacting neurons. We will assume that
the inhibitory interactions have significantly longer range than the excitatory inter-
actions; hence we will approximate them by a global inhibition.

The exponential falloff of the excitatory interactions assumed here violates the
periodic boundary conditions assumed until now. Periodic boundary conditions are
appropriate for a network that processes angle variables such as orientation of an
edge in the case of visual cortex, or representation of the dIrection of arm reaching
movement in the case of motor cortex. For other features, such as tuning for spatial
frequency in visual cortex or coding of place in hippocampus, such boundary con-
ditions are not natural. Thus the present model will also illustrate to what extent the
results we have obtained so far are sensitive to the idealized assumption about peri-
odic boundary conditions and perfect translational symmetry.

Our model is a one-dimensional array of N neurons that code for a one-dimensional
feature variable 8. The neurons are labeled by their PF, which is distributed uniformly
in a range of size 2L, that is, - L < 8 < L. The network dynamics are similar to those
of the one-population rate model (eq. 13.11), with

/(8, t) = :LJ(8, 8')m(8', t)+/o(8-8o).
0

The interaction between two neurons located at positions 8 and 8' is of the form
J(8, 8') = J(8 - 8')1N, where

(13.83)

J(8 - 8') = 2f (-l[ + JE exp(-18 - 8'11A)), 181,18'1 < L. (13.84)

The parameter JI > 0 represents a global inhibition. The second term with JE > 0 is
an exponentially decreasing excitation. The parameter JE represents the amplitude of
the spatial modulation of the cortical excitatory interactions, while the parameter A
denotes their spatial range. The external input has the form

,
,

"
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[O(e) = e(l - 2e + 2eexp( -Iel/ ,u)). (13.85)

The spatial dependence of the input is characterized by two parameters, namely, e
and ,u. As in the case of the model investigated in section 13.3, e is the amplitude of
the spatial modulation of the input, generally defined as

[~ax - [~in
e =

21° 'max
(13.86)

where [~ax = e is the maximum value of the external input and [~in is its minimum
value. The-parameter ,u is the width of the input, which in the present model will be a
free parameter.

.

We will assume that both Aand ,u are on the scale of L but may be smaller than L.
Thus, although the excitatory interactions are of a limited spatial range, each neuron
(except at the boundaries) receives excitatory inputs from a sizable fraction A/L of
the N neurons. Thus, for large N, a continuum mean field description of the network
dynamics is valid, yielding for the total input current at time t

J

+L
Ice, t) =

-L
de' J(e - e')m(e', t) + [O(e - eo). (13.87)

The fixed-point state of the network is given by the following self-consistent
equations:

m(O) = [-;1 '0 + J: r: dO' exp( -10 - 0'11'\)m(O') + 10(0 - 00) -
rL

where

J

+L
ro =

.

dem(e).
-L

(13.88)

(13.89)

Comparing eq. 13.88 with eqs. 13.16, 13.17, and 13.20, it is seen that the present
model is more complex than our previous model. Because of the form of the present
interaction function, the fixed-point equations cannot be reduced to a small number
of global order parameters. Yet both models share the simplicity that within the active
population the underlying equations are linear. In fact, differentiating eq. 13.88 twice
with respect to e in the regime where m( e) is nonzero, we find that in this regime the
activity profile obeys the following second-order linear differential equation:

d2m m d2[0 1 ( h 0 )de2 + A2 = de2 + A2 T + Tro - [(e) ,

I. .,
.....

-

(13.90)
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where

2 A?
A =

2JE - 1
. (13.91)

The above equation is supplemented with the following boundary conditions:

hro JE

J

L
m(O) = - T + C - T + T -L

exp( -181/ A)m(8) d8 (13.92)

and

dm(Oi:)
-

d[O(Oi:)

d8 - d8
(13.93)

Finally, ro has to be calculated self-consistently, using eq. 13.89. Eqs. 13.89-13.93
can be solved for broad and narrow profiles for the stimulus of the form given by
eq. 13.85. We first consider the case of a homogeneous input, 8 = O.

13.6.1 Broad Activity Profile

The simplest solution to eqs. 13.91-13.94, for [0(8) = C, that is,d2Io/d82 = 0, is
obtained assuming that the local fields on all the neurons are above threshold. The
solution is of the form

m(8) =
{

(C - T)(A - Bcosh(8/A)) JE <
t(C - T)(Acos(8/A).- B) JE >
2'

(13.94)

The constants A > B > 0, determined by the boundary conditions and eq. 13.90, de-
pend on the parameters h, JE, L, and A, as detailed in Hansel and Sompolinsky
1997. An example of the activity profile in this regime can be seen in figure 13.15,
where the linear solution is unique and centered at 8 = O.Contrary to the previous
case, where the linear solution for homogeneous external inputs was uniform, here
the corresponding solution is not uniform. The 8 dependence of this solution is due
to boundary effect: neurons close the boundaries receive less excitatory feedback;
hence their level of activity is decreased.

13.6.2 Narrow Profiles and Marginal Phase

The above broad solution is valid, provided the m(8) of eq. 13.94 is positive and
does not vanish in the range - L < 8 < + L. Whether this condition holds depends
on both JE and A. For JE < 1/2, the broad solution is indeed a valid solution for all
A. For JE > 1/2, however, the above solution is positive for all 8 only for sufficiently

I,
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Figure 13.15
Profile of activity in the one-population rate model with short range excitation and open boundary con-
ditions for L = n,Jo = -0.2, A = 0.2, C = 1.01. Dash-dotted line: broad profile for h = 0.45; solid line:
narrow profile for h = 1.

large AIL. If A < Ac, the above solution becomes negative, hence not valid. Instead, a
solution with a narrow profile appears in which only part of the population is active.
This solution is not unique. Because the active population does not receive inputs
from neurons near the boundary, the activity of the neurons does not depend on
their location relative to the boundary unless the activity profile is close to the
boundary. Thus the narrow solution ofeq. 13.90 (again, with 1°(8) = C) is of the form

m(8) = M(8 - '¥), -L + 8e < '¥ < L - 8e, (13.95)

where

M(8) = (C - T)A[cos(8IA) - cos(8c/A]+, (13.96)
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The width of the profile is given by

Be(JE) = A(n - arctan y!2JE -- 1). (13.97)

The constant A is related to the gain G through eq. 13.24. It can be shown that the
gain of the narrow profile is

G =
1 - cos(Be/ A)

!(Bc)(h - Jc)'
(13.98)

where

! (Bc) = (BAe + 1) 2 cos
(~)

(13.99)

and

tan2(~)
J - A

e -
2(~+ 1).

(13.100)

Note the similarity between these equations and those of the marginal state in the
periodic long-range model of section 13.4 (eqs. 13.55-13.57). The critical value of A
(or JE) for which this phase exists is given by the condition that Be approaches the
boundary, namely,

Be = L (13.101)

If L is large compared to the range of interactions A, this marginal phase therefore
exists for all A as long as JE > 1/2 (see figure 13.15). The phase diagram of the
model is shown in figure 13.16. It should be noted that the shape of the activity pro-
file is determined only by the modulated component of the interactions. However, as
in the periodic system, the stability of all the above solutions depends also on the
value of J1.

In conclusion, the above results demonstrate the respective roles of the amplitude
and the range of the cortical feedback excitation. The phase diagram (figure 13.16)
shows that when the range of the excitatory interactions is small compared to the
total extent of the network, namely, A « L, the onset of the marginal phase and the
associated emergence of narrow activity profiles in response to broadly tuned input
depend on the amplitude of the spatial modulation of the cortical interactions and
are insensitive to its range. On the other hand, the width of the narrow activity pro-
file depends on both A and JE, as seen from eqs. 13.91 and 13.97.
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---



0.9

0.8

0.7

0.6

AIL 0.5

0.4

0.3

0.2

0.1

0
0

538 Hansel and Sompolinsky

Broad profile Amplitude

instability

0.5 1.5
J

2

Figure 13.16
Phase diagram of the one-population rate model with short range excitation and open boundary condi-
tions for Jo = -0.2. The stimulus is homogeneous.

.

13.6.3 Tuned Input

Considering next the case of an input of the form of eq. 13.85, with e > 0, we focus
on the dependence of the resultant activity profile on the parameters C, e, and fl of
the external input. It is easy to see from the fixed-point equation that the profile of
activity depends on C and e through the effective stimulus tuning Y defined by eq.
13.31. In particular, in the absence of cortical interactions, the resultant activity
profile is the same as that of the input except for the thresholding effect. Thus, for
strongly tuned input, defined by

Y>!, (13.102)

the solution of eq. 13.88 has a narrow activity profile, with

m(8) ex [exp( -18 - 801/fl) - exp( -18e - 801/fl)]+, Y> 1/2, h = JE = 0,

(13.103)

where

1_\
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8e = -Jlln( 1 - 2~)'

This function is depicted in figure 13.17 for Jl = 0.05 and Jl = 1.5. When the stimulus
tuning is weak, that is, Y < 1/2, the activity profile is broad, namely, all the neurons
are above threshold.

We now consider the effect of the cortical excitation on the tuning of the network
activity. We will focus on the parameter regime where the network possesses a mar-
ginal phase, namely, .

(13.104)

JE > 1/2, J[ > Je, A < Ac. (13.105)

As in our previous model the most important role of the tuned stimulus is to select
from the continuum of fixed points (eq. 13.95) the profile

'P = 80. (13.106)

It can be shown that the general solution of the narrow profile in eq. 13.91 is of the
form

m(8) = (C - T)[A cos(81 A) - YBI sin(8IA)I + YDexp( -1191/Jl) + F]+. (13.107)

Thus, for small Y, the form of the activity profile is close to that for a uniform in-
put (eq. 13.96). Note that despite the exponential shape of the external stimulus,
the dominant part of the network activity profile is in this case of a cosine form.
The cosine form of the activity profile in the marginal phase, predicted by eq. 13.36,
is therefore not special to interactions with the cosine form such as eq. 13.13. In-
stead, the cosine form for the profile is quite general and is related to the fact that
the instability to the formation of these patterns occurs first at long wavelength
modes.

Recall that in the model of section 13.4, where both the excitatory interactions and
the stimulus had long spatial range, the width of the activity profile was determined,
in the marginal phase, by the cortical interactions and was rather insensitive to the
effective stimulus tuning Y. In the present model, however, the tuning of the network
activity is in general a complicated function of both Y and Jl through the values
of the constants A, B, D, and F (Hansel and Sompolinsky 1997). The qualitative
behavior of the tuning width can be understood by considering narrow stimulus and

. broad stimulus limits.

Narrow Stimulus This case is defined as JlI A « 1, where the behavior depends on
the effective stimulus tuning Y.

I I
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STRONGLYTUNEDINPUT In the case l' > 1/2, we find that the width of the profile is

Be ~ -,uln(l- 211')' ,u/A « 1. (13.108)

Thus the width of the tuning is the same as if there were no cortical interactions;
namely, it is determined by the width of the input. This is expected because in this
regime the tuning provided by the external input (of the order ,u) is much sharper
than that provided by the interactions (of the order A).

WEAKLY TUNED INPUT If l' < 1/2, we find that the tuning of the neuronal response
is independent of the tuning of the input and is given by eq. 13.97. Therefore, in this
limit, the shape of the activity profile is determined essentially by the cortical inter-
actions; the main effect of inhomogeneity in the external input is to select among the
continuum of possible states that state in which the peak in the activity matches the
stimulus feature, namely, 'P - Bo. The crossover between the two regimes occurs in
the region l' ~ 1/2. The size of the crossover region is a decreasing function of ,u/A.

Broad Stimulus In the limit ,u/A» 1, which corresponds to an input much broader
than the excitatory interaction, the tuning of the input does not much affect the
shape of the tuning curve; as in the previous case, its main effect is. to select the state
with 'P = Bo. An exception is the case of a stimulus with intensity near threshold,
namely, l' »1: once the single-neuron thresholding effect becomes dominant, it
sharpens the tuning curve beyond the, sharpening provided by the cortical
mechanisms.

Figure 13.17 shows Be for various stimulus parameters obtained by a full solution
of the model with tuned input. In the case of ,u/A large, Be is determined by the
cortical interactions, and l' does not significantly affect it. On the other hand, when

,u/A is small, there is a pronounced decrease of Be when l' > 1/2, which agrees with
the analysis above. Comparing these results with those of figure 13.5 (section 13.4),
we see that figure 13.17 is similar to the cases,u/ A > 1. The effect of the width of the
stimulus is most pronounced in the regime of small ,u/A. Here, increasing l' causes a
sharp crossover from interaction-dominated tuning (1' < 1/2) to afferent-dominated

tuning (1' > 1/2).

13.6.4 Intrinsic Moving Profiles

. We now turn briefly to moving profiles with homogeneous external input. The addi-
tion of adaptation current to the present model, as in eqs. 13.75 and 13.76, tends
to destabilize the stationary profile of the marginal phase and to induce moving

t,
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activity profiles similar to those of the periodic system (as shown in "Instability of
the Marginal Phase Due to Adaptation" in chapter appendix B). Although the
boundaries do not affect the existence of stationary narrow solutions in the net-
works's interior, the situation is different in the case of moving solutions. The reason
is that in the moving state all the neurons are active, hence they do feel the influence
of the boundaries. The effect of the boundaries on the wave propagation depends on
the amplitude of the adaptation current. For relatively low values of Ja (but suffi-
cient to generate moving profiles), the boundaries act as reflecting walls. The profiles
bounce between the two boundaries, as shown in figure 13.18A. On the other hand,
for strong adaptation, the boundaries act as sinks; once the symmetry of the direc-
tion of movement is broken by the initial conditions, the profiles keep moving in the
same direction, across the network, as shown in figure 13.18B. It is interesting to
note that the boundaries act here like an inhomogenous external input peaked at the
center in the periodic architecture, as in section 13.5.2; they distort the motion of the
profile but do not reverse its direction of motion. On the other hand, in the case of
relatively low adaptation, the boundaries ac-t as relatively strong inhomogeneities
that localize the moving profile, as shown figure 13.12.

13.7 Network Model with Conductance-Based Dynamics

13.7.1 Conductance-Based Dynamics of Point Neurons

This section describes a dynamic model based on the well-known Hodgkin and
Huxley-type equations (see chapter 10, this volume) for a single space-clamped
neuron and synaptic c(mductances opened after the occurance of action potential in
the presynaptic neurons. The equation satisfied by the membrane potential of neuron
0 of type IXis

:t
VCl(0, t)

. - Gleak(VCl(0, t) - V/eak) - I;ated( 0, t) + ICl(0, t). (13.109)

For simplicity, we assume the membranes' capacitance is 1. The first term on the
right-hand side of eq. 13.109 corresponds to the contribution of the leak current,
which has voltage-independent conductance Gleak.The current I;ated represents the
voltage-gated ionic curren~s, which are in particular responsible for the generation of
action potential. The last term of eq. 13.109 incorporates all the synaptic inputs
converging on the neurons and consists of the three components described in eq. 13.1.
Each of these components represents synaptic conductances,

f.,
"' ~'"

-'



Modeling Feature Selectivity in Local Cortical Circuits

A

1/\

1/\

11\

I

I

04[
0.2

0

m

543

B

I I ~
II ~I

II~ I

/\ I I~ I

~ r- ~
~ ::1 rJ

1-1 0
e

-1 0
e

Figure 13.18
Traveling pulse in the short range model with open boundary conditions and adaptation. Parameters:
L = 1(;,Jo = -0.2,Jz = 1, A.= 0.2, C = 1.1,Ta = 1OTo. (A) Ja = 0.5. The pulse is oscillating between the
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moving in the same direction. Times (top to bottom; in units of TO):t = 0, 5, 15,25, 30, 35.
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pfJ(e, t) = grxfJ(e, t)(VP - Vrx(e, t)), (13.110)

triggered by the action potentials of the presynaptic neurons,

1
Nfl

grxfJ(e, t) =
N L grxP(e - ei) LffJ(t - ti),

P i=1 Ii

(13.111)p = E,I

1 No

grxo(e, t) =
M L grxo(e, i) L f°(t - ti)'

° i=1 Ii

(13.112)

The synaptic time course is described by the synaptic response function fP(t - ti),
where ti is the occurrence time for a spike in neuron i (of type P). A frequently used
form is

f(t) - A(e-Ih - e-Ij'C2), (13.113)t ~ 0,

and f(t) = 0 otherwise. The normalization constant A is such that the peak value of
f is 1. The characteristic times 1"1and 1"2are, respectively, the synaptic rise and decay
times, whose value may be different for the different types of synapses. The synaptic
reversal potentials are denoted Vrx.

The functions (ljNp)grxP(e - e') represent the peak value of the synaptic con-
ductances between a presynaptic neuron, pe', and a postsynaptic one, ae'. These
functions are proportional to the interaction functions

Ja,p (e - 8') introduced above.

The spatial organization of the input from the stimulus is encoded in gaO(e, i).Be-
cause we are not modeling the architecture and dynamics of the input network in
detail, we will assume the incoming spikes to a neuron obey Poisson statistics at rates
that give rise to a fluctuating input conductance with a time average of the form

<gaO(e, t)av = gaO(e - eo), (13.114)

where eo is the stimulus feature. For instance, the function gaO(e - eo) may be pro-
portional to IaO(e - eo) in eq. 13.3.

.

13.7.2 Mean Field Theory of Asynchronous States

In general, the network described above may develop complex dynamical behaviors
that are hard to analyze. A particularly simple case is when the network settles in an
asynchronous state, which may occur if the external input is statistically stationary
and the temporal fluctuations of the inputs to different neurons are only weakly cor-
related. Under these conditions, if the network is large enough, it may settle into

I,
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a state where the correlations between the activities of different neurons are weak,
despite their interactions. In such a state, the total synaptic conductances on each
neuron is constant in time, up to small fluctuations that vanish in the limit of a large
network, NCI.-+ 00. Whether the network settles into a synchronous or asynchro-
nous state depends on the network parameters (as described in detail in Hansel and
Sompolinsky 1996).

.

In the asynchronous state, the feedback from the network on each neuron can be
described in terms of constant currents and conductances, called "mean fields,"
which obey certain self-consistent equations. In our case, the total synaptic con-
ductance from the IXpopulation on neuron 0 is constant in time and is given by

J

+TeI2dO'
gCl.P(O) = -JCl.p(O - O')mP(O'),

-Te12 1C
fJ = E,I, (13.115)

where mCl.(O)is the time-average firing rate of neuron 0 in the population IX.
Taking into account the stationarity of the synaptic conductances, eq. 13.109 can

be written as a single-neuron dynamic equation:

~
VCI.(O, t) = -(gCl.(O) + JgCl.o(O,t))VCI.(O, t) -lgated(O, t) + lC1.(O), (13.116)

with

gCl.(0) = Gleak + gCl.E(0) + gCl.I(0) + gCl.O(0 - 00)

lC1.(O) = (gCl.E(O) + gCl.o(O.,- 00)) VE +
gCl.I(0) VI.

(13.117)

(13.118)

The term JgCl.O(O,t) represents the fluctuations in the input conductance due to the
Poisson statistics of the incoming spikes. The currents lC1.and conductances gCl.them-
selves depend on the time-average activity profiles, mCl.(0), of the neurons in the net-
work through eq. 13.115. Thus to complete the solution, we have to calculate the
time-average firing rates of single neurons obeying dynamics of the form of eq.
13.116. This results in self-consistent integral equations for the stationary activity
profiles of the form mCl.(0) = F (0, {mP(0')}). A similar approach can be used in
principle to study the properties of the network in cases where the stimulus varies
slowly with time.

In section we analyzed the network properties using simplified rate dynamics.
Here we use numerical simulations to study the properties of a network with the
same architecture as that of the rate model but with conductance-based dynamics.
We first specify below the details of the model and then compare the numerical
results with the theoretical prediction of the rate mode].

"-
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'.

13.7.3 Details of the Numerical Simulations

Single-Neuron Dynamics We have studied eq. 13.109 with voltage-gated current,
fgated,which incorporates sodium (INa) and potassium (fK) currents, responsible for
spike generation, as in the standard Hodgkin-Huxley model. It also includes a non-
inactivating persistent sodium current, (fNaP), and an A-current (fA), known to be
present in cortical and hippocampal cells (Llimis 1988; Stafstrom, Schwindt, and
Crill 1982; Gustafsson et al. 1982; see also chapter 5, this volume). The first current
enhances the excitability of the cells at voltages near threshold, leading to a frequency-
current relationship that increases continuously from zero and thereby increases the
dynamic range of the neurons. The A-current reduces the gain of the neurons, and
thereby suppresses their maximal rate (Connor, Walter, and Mckown 1977; Rush
and Rinzel 1994).

Below we will also study the effect of adaptation on the network state. Because
regular spiking pyramidal cells in cortex display spike adaptation (Connors, Gutnick,
and Prince 1982), but fast spiking neurons do not, we incorporate adaptation only in
the excitatory population, which corresponds to the regular spiking pyramidal cells.
This adaptation is introduced by adding to the single-neuron dynamics a slow po-
tassium current with a relatively large time constant, chosen independently of the
membrane potential for the sake of simplicity and in the range 10-100 msec in
agreement with a recent study of firing adaptation (Ahmed, Anderson, et al. 1994).

The full kinetic equations of these currents are given in chapter appendix C, along
with all the parameter values used in our simulations, which correspond to a cell
with a resting potential, Vrest= -71 mY, and a membrane time constant at rest,

"0 = 10msec. Typical values used below are" = 60msec and ga = lOmSjcm2. As
illustrated in figure 13.19, this corresponds to a reduction in the firing rate on the
order of 50%, which agrees with the experimental results. Traces of the membrane
potentials of single, isolated excitatory and inhibitory neurons are shown in figUre
13.20.

Network Architecture We have simulated a network with an equal number of ex-
citatory and inhibitory neurons; within each population, the neurons have identical
intrinsic and synaptic properties. The synaptic inputs are modeled according to eqs.
13.109-13.113. For the spatial modulation of the synaptic conductances grtP(()- ()f)
in eq. 13.111, we take a square function. All pairs of excitatory neurons whose PFs
differ by an amount smaller in absolute value than a given value, J(), are connected
with the same connection strength; if the difference is larger than this cutoff, the
connection between them is zero. In the present simulations, we use J() = 30° as the

I.,
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Figure 13.19
Firing rate of the neurons in the excitatory population in the spiking neuron networkniodel (no inter-
action). Solid line: firing rate at large time upon injection of a constant current; dash-dotted line: in-
stantaneous firing rate from the first interspike interval after the injection of the current. The adaptation
time constant is 1:a= 60msec. The adaptation maximal conductance is ga = IOmSjcm2.

range of the excitatory interactions. The inhibition to inhibitory neurons is assumed
to be global and homogeneous; each inhibitory neuron is assumed to inhibit all the
excitatory neurons with the same maximal synaptic conductance ~a1though the max-
imal conductance of the inhibition to the inhibitory neurons can differ from that of
the excitatory neurons). The synaptic action of the excitatory neurons on the in-
hibitor neurons is also assumed to be global. For simplicity, propagation delays are
not included in the model. The values of the synaptic strengths and time constants
are give in table 13.1 (chapter appendix C).

Equation 13.112 for the external stimulus is implemented by assuming

grxO(8, t) = gOLf°(t - to),
to

(13.119)

where to is the arrival times of spikes generated by a Poisson process with a rate
C(l - e + ecos(28 - 80)), Here the stimulus intensity C is given in terms of the input

f.
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Figure 13.20
Membrane potential of the neurons in the spiking network model upon injection of a constant current 10
(no interaction). (A) Excitatory neuron. Parameters are given in chapter appendix C. Adaptation parame-
ters as in figure 13.19.10 = II!Ajcm2. (B) Adaptation parameters as in panel A but with 10= 2.5I!Ajcm2.(C) Inhibitory neuron. Parameters are given in table 13.1 (chapter appendix C). 10= 2.5I!Ajcm2.

firing rate onto the maximally stimulated cortical neuron, which ranges between
400 Hz and 2,000 Hz. We assume that the characteristics of the afferent synapses are
the same for all the neurons. The values of the strength gOand the time constant of
the input conductance are given in table 13.1.

Below we present the results of the simulations with NE = N[ = 512 neurons.

13.7.4 The Marginal Phase

Stationary Stimulus In section 13.4.4 (see "Homogeneous Input, Marginal Phase"),
it is predicted that if the orientation-dependent component of the cortical inter-
actions is strong enough compared to the inverse gain of single neurons, then the
system will exhibit a marginal phase where even in the absence of orientation-specific
input it will spontaneously form a spatially inhomogeneous activity profile. In this
marginal phase, and in the presence of weakly tuned stimulus, the orientation tuning
of the system is strongly enhanced by the cortical feedback interactions. There is a

I.
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range of parameters for which our model shows a similar enhancement of orienta-
tion tuning by the cortical feedback interactions. Indeed, we have found that for a
sufficiently low value of ga, a marginal phase appears (the results presented in this
section were obtained for ga = OmSjcm2).

The network response to an homogeneous input (C = 1,000 Hz) is shown in figure
13.2IA. The network settles spontaneously in an inhomogeneous state. The tuning
curve of the neurons, as measured by averaging their activity between t = 200 msec

and t = 400 msec, is displayed in figure 13.21B; the width of this tuning curve is 50°.
This response is the result of spontaneous symmetry breaking the translation invari-
ance, as analyzed theoretically in "Homogeneous Input, Marginal Phase" (section
13.4.4). Note that the location of the activity profile displays random fluctuations.
This is expected, since in the absence of a tuned stimulus, the noise in the network
causes a slow random wandering of the profile along the marginal direction. Because
this motion is a result of a coordinated change in the neuronal states, the time scale
associated with it is proportional to I j N, where N is the number of neurons in the
network.

Figure 13.22A shows the tuning curves of the neurons for different values of the
tuning parameter 8. By comparing figures 13.2IA and 13.22A, it can be seen that
the system of figure 13.2IA acts as if there were an external stimulus at a 30° orien-
tation. The tuning width of the two figures is the same, indicating that it is deter-
mined by the cortical interactions. The weakly tuned stimulus fixes the position of
the activity profile, selecting from among the set of attractors the one that best
matches its own profile, namely, the one that peaks at the orientation column with
the largest input. Figure 13.22A also shows that the width of the tuning curves of the
neurons for different values of the tuning parameter 8 remains almost the same, even
for 8 as large as 05. Indeed, in the presence of stimuli not too strongly tuned, it is
almost independent of intensity even though the response of the neurons to stimuli at
their preferred orientation can increase significantly when the intensity is increased
(figure 13.22B). These properties of the tuning curve were predicted in the analytical
solution of the rate model. Our simulations show that they remain valid in biophysi-
cally more realistic models that incorporate spikes.

Virtual Rotation In our simplified model, the system's transient response to a step
change in stimulus orientation was an indicator of the mechanism of orientation

. selectivity. If the alignment of the afferent LGN input is the main mechanism, then
following a change in the stimulus orientation, the activity in previously stimulated
columns will decay, while the activity of the columns with PFs close to the new
stimulus orientation will increase. If, on the other hand, the spatial modulation of

t. :----.



-1.5
0 1000 2000 3000 4000 5000 6000 7000 8000t (msec)

50
,

B
45

40

35
..-.
N
:r: 30 -. . . .."'-"

.'" ....Q) ... ..
CtI25J....
0> . ...!: 20 ..

~~15

10

51-

0
-1.5 -1 -0.5 0 0.5 1.5e

550
Hansel and Sompolinsky

1.5-
A

0.5 .:

e 0

Figure 13.21
Response of the network to an homogeneous stimulus (8 = 0) in the marginal phase. Parameters are given
in tables 13.1 and 13.2. Stimulus is presented at t = 200msec. (A) Raster plot. (B) Activity profile aver-
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the cortical interactions plays a dominant role, then the population activity will
move across the cortex, transiently activating the intermediate column until it settles
in the new stable position. . .

To test whether this prediction also holds in our more realistic model, we have
calculated the response of the system to changing of the stimulus feature. Figure
l3.23A shows the evolution in time of the activity profile following a 60° change in
the stimulus feature for a tuning parameter of the LGN input e = 0.1, while figure
l3.23B shows the evolution of the membrane potential for five neurons. Together,
the figures clearly illustrate the phenomenon of virtual rotation. The velocity of the
rotation depends on the input tuning, as we can see in figure 13.23C, where the tra-
jectory of the maximum of the activity profile is plotted as a function of time, for
different values of e. To make a more quantitative comparison between these simu-
lation results and our theory, we have computed the velocity Vc by fitting these tra-
jectories according to eq. 13.69. We find that when e is not too large, the angular
velocity is inversely proportional to e, which closely agrees with the theory of section
13.4.

13.7.5 Network with Adaptation-Intrinsic Moving Profiles

The theory of section 13.5.2 (see "Modeling Neuronal Adaptation") predicts that
when single neurons display sufficiently strong or sufficiently fast firing adaptation,
the response of the network to a weakly tuned input is a pulse of activity traveling
across the network. Here we show that this result holds also in our more realistic
network model of spiking neurons.

The raster plot of figure l3.24A corresponds to the network state when the stim:-
ulus is not tuned for typical adaptation parameters. It shows a pulse of activity of
width Be = 30°, which travels across the network at an angular velocity of ill =
9.2 rad/sec. For a given adaptation time constant, the velocity of the pulse decreases
monotoncally with the adaptation maximal conductance (see figure 13.24B). For the
corresponding set of parameters, the stationary state is destabilized for adaptation
conductances as small as ga = 1.8mS/cm2, where the rate of adaptation is 5%, a
value much smaller than what is observed in reality. For this value of ga, Vo ~
2.1 rad/sec. For small values of ga, Vo becomes small and hard to measure because
of the noise in the network. The effect of this noise can be reduced only by increasing
the network size. For instance, the result with the smallest ga (ga = 1.8 mS/cm2) in
figure 13.24B was obtained ina network of NE = N[ = 2,048 neurons by averaging
the velocity of the pulse over 18 sec. Traveling pulses of activity exist for gaas small
as 1mS/cm2, but a quantitative evaluation of their velocity would have required
even larger networks and longer time averaging.



Modeling Feature Selectivity in Local Cortical Circuits
553

Finally, we consider the effect input tuning has on these traveling pulses. For a
sufficiently small value of 8, a pulse of activity can still propagate across the whole
network. If we measure the tuning curve of neuron by averaging its response to
stimuli with different features over different trials, we find it is extremely wide. For
a sufficiently large value of 8, the traveling pulse is completely pinned around the
column corresponding to the input feature (result not shown). This network state
resembles what is obtained in the absence of adaptation. Finally, for intermediate
values of 8, the profile of network activity performs oscillations around the angle
corresponding to the stimulus feature (see figure 13.25). The tuning curve of the
neurons, averaged over many trials, will show the right preferred feature but with a
width greater than that of the network activity profile.

13.8 Discussion

We have studied how local excitatory and inhibitory feedback shapes the selective
response of neurons to external stimuli. With regard to stationary states, we have
found three qualitatively different regimes. In the first regime, the dominant feedback
is afferent input; in the second, it is broad inhibition, which may, as a result, sub-
stantially sharpen the tuning of the neurons. Yet in both these regimes, the tuning
width strongly. depends on the effective tuning of the input, implying that decreasing
the spatial modulation of the external input or increasing its overall intensity will
broaden the tuning of the neuronal responses. .As a corollary in both regimes, if the
input is spatially homogeneous, the network activity will be uniform as well. The
third, or marginal, regime is characterized by strong, spatially modulated excitatory
feedback, leading to the emergence of an intrinsic line of stable states. Each of these
states exhibits a single "hill" of activity whose width is determined by both the
modulation amplitude and the spatial range of the cortical feedback, but whose
height is linearly related to the stimulus intensity. Activating the network by a tuned
input will select the profile whose peak coincides with that of the input. The width of
the activity profile is substantially modified by the input only when the tuning pro-
vided by the afferent mechanism is significantly sharper than that of the intrinsic
profile. Computationally, our work suggests a mechanism for generating a separable
coding of several stimulus features (Salinas and Abbott 1996).

The intrinsic localized states in our models differ from those studied by Amari. In.
Amari's model (1977), the localized states appear exclusively as bistable where the
stimulus is subthreshold and are characterized by a saturated activity of at least part
of the network. In contrast, in our network, the stimulus is suprathreshold and all
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Figure 13.23 (continued)

the neurons are far below saturation, which leads to important differences in the
properties of the localized states. In contrast to our network, in Amari's case, the
width rather than the height of the activity profile depends strongly on the stimulus
intensity. Another important difference is that in contrast to Amari's analysis, in our
study stable states with multiple peaks do not exist. The reason for this is related to
two features of our model: the above-mentioned unsaturated regime; and the long-
range inhibition, which can stabilize a single hill of unsaturated n~uronal activity,
but not multiple hills.

The analytical work presented here used a one-population rate model, which con-
tradicts the separation of excitation and inhibition in cortex. There are conditions,
however, where the state of a two-population network can be exactly described by an
equivalent one-population network. And even when these conditions are not met
exactly; many qualitative properties of the stationary states may not differ, as is
evident from our theoretical study of the full two-population model (Ben-Yishai,
Hansel, and Sompolinsky 1997). The most important difference between these net-
work types is that two populations may give rise to additional nonlinearities with.
respect to stimulus intensity. These effects may be functionally important. For in-

stance, increasing stimulus intensity may suppress network activity. Also, in general,
the invariance of the shape of the activity profile to changing the stimulus intensity
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Figure 13.25
Pinning of the traveling pulse by inhomogeneous input. The parameters are as in figure 13.24A. The input
tuning is G= 0.2.

breaks down at low contrasts. Another important difference lies in the temporal do-
main.. Whereas the symmetry of the connections of the one-population model (without
adaptation) precludes the appearance of temporal attractors, the two-population
model may give rise to spatiotemporal attractors such as the above-mentioned moving
hills and various other oscillatory states. Here, too, the threshold nonlinearities of the
inhibitory population lead to potentially important dependence of the moving hill's
velocity on the stimulus intensity(see Ben-Yishai, Hansel, and Sompolinsky 1997 for
more details).

We have show that a substantial spike adaptation may give rise to intrinsic trav-
eling waves in the form of activity pulses that move with constant velocity. In fact,
neuronal adaptation can be viewed as a form of local inhibitory feedback (present in
addition to explicit global inhibition). In this model, as in the two-population model
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mentioned above, ~he spatial dependence of the connections is symmetric. Therefore,
the direction of propagation is determined by symmetry breaking, for example, by
the initial conditions. An alternative mechanism for the generation of moving hills is
provided by spatially asymmetric connections. If the pattern of connection is such
that each neuron excites neighbors on its right more strongly than those on its left,
the system may generate a traveling waves that always movesto the right. (Lukashin
et at 1996; Zhang 1996; Tsodyks et al. 1996)

Another simplification of our model is the description of the neuronal nonlinearity

as a thresho~d linear gain function. This greatly simplifies the analytical study; the
resultant dynamical equations are all linear except for one parameter, namely, the
tuning width, whose value is given by an implicit nonlinear equation. This gain
function is not a bad approximation of the rate-current

characteristics of many cor-

tical cells (Connors, Gutnick, and Prince 1982; Ahmed, Anderson, et al. 1994). Add-
ing moderate nonlinearity to the neuronal suprathreshold gain function does not
substantially change its behavior.

We have also analyzed the behavior of network models with conductance-based
dynamics appropriate for cortical neurons. These models are too complex for a ana-
lytical study, we have nevertheless shown that under certain conditions these net-
works can in principle be described by a set of mean field self-consistent rate equations
similar in spirit to those of the rate models. The qualitative similarity between sim-
plified and realistic models is evident from the numerical simulation results. We have
shown that the main qualitative predictions of the simplified rate models are mani-
fest also in the realistic models, a conclusion also supported by the numerical simu-
lations of Somers, Nelson, and Sur (1995), who have studied the role of cortical
excitatory feedback in orientation selectivity in primary visual cortex using integrate-
and-fire network models, with a more realistic modeling of the external input to the
network. Earlier numerical investigations studied the role of cortical inhibition on
orientation selectivity using integrate-and-fire

network models (Wehmeier
et.. at

1989; Worgotter and Koch 1991). One-dimensional
networks of conductance-based

neurons coding for the direction of movement have been simulated by Lukashin and
Georgopoulos (1994). It should be emphasized, however, that all these models make

similar simplifying assumptions about the local connectivity pattern in cortex; none
incorporates potentially important synaptic dynamical properties such as short-term

depression and facilitation.
We have limited our discussion to either stationary or coherent temporal behavior.

In other studies (Ginzburg and Sompolinsky 1994; Ben-Yishai, Lev Bar-Or, and
Sompolinsky 1995), it has been shown that the theory makes important predictions

also with regard to the spatiotemporal spectrum of fluctuations in neuronal activ-

'-.
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ities that can be tested by correlation measurements. Our numerical simulations have
shown that these aspects can also be observed in the realistic networks (Hansel and
Sompolinsky 1996). Thus the main spatiotemporal cooperative properties of these
networks are the result of the architecture of connections rather than the details of
the dynamics.

Line attractor neural networks have been also proposed as models of neural inte-
grator circuits in the brainstem structures that control eye position (Robinson 1989;
Seung 1996), where each state along the line represents one possible stable eye posi-
tion. In the integrator models, it is proposed that the line attractor lies in a linearly
marginally stable direction of the connection matrix. This mechanism relies on the
system's being only weakly nonlinear. By contrast, the mechanism in our networks
invokes the translational symmetry of the connections and is also present in strongly
nonlinear regimes. Our study of the short-range model with open boundary condi-
tions illustrates that the results are robust against boundary effects that break the
symmetry. Nevertheless, it should be stressed that the existence of line attractor in
both kinds of networks requires fine-tuning of some network parameters. In our net-
works, the existence of marginal phase is sensitive to local perturbations, such as
nonuniform distribution of the representation of the preferred features (Zhang 1996;
Lee et al. 1996; Tsodyks and Sejnowski 1995). Provided these perturbations are
weak, however, the response of the system to an external stimulus may only be
weakly affected, as long as the tuning bias generated provided by the stimulus is
strong compared with those generated by the internal "imperfections." Ultimately, if
line attractors are used for substantial computation, it is likely that their stability
is maintained by an appropriate learning mechanism. Thus, even in sensory areas,
the processing of stimuli may be intimately related to the short-term and long-term
dynamics of the connections, an important topic outside the scope of this study.
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Appendix A: Solution of the One-Population Rate Model

This appendix presents the details of the solution of the one-population model defined by eqs. 13.11-
13.17.

General Time-Dependent Equations

We first consider the general case of stimulus with a time-varying feature Bo(/). We write eq. 13.11 as

d
TOdtm(B, t) = -m(B, I) + [10(t)+ h(t)cos(2(B - <I>(t)))]+. (13.A1 )

By comparison with eq. 13.15, we obtain

10= C(l - B)+ loro - T (13.A2)

(13.A3)
h = BCcos(2( Bo- <1»)+ hr2 cos(2('P - <1»),

where, for simplicity, we have suppressed the time arguments. Note that, in general, ro,Bo,'P, and <I>are
time-dependent. Phase <1>,the location at which the total inputl(B, I) (eq. 13.12) is maximum, is deter-
mined by the condition

0 = BCsin(2( Bo- <1»)+ hr2 sin(2('P - <1»). (13.A4)

The case of broad-tuning where the input is above threshold for all Band t is straightforward and will not
be dealt with here. We focus on the case of narrow-tuning for which, by definition, there exists a value Be
such that

1(<1>:!: Be, t) = 10+ h cos(2Bc) = O. (13.A5)

Therefore, Be is given by

1
Be = -arccos(-lolh),

2
(13.A6)

and eq. 13.A1 can be written

d
TOdtm(B, t) = -m(B, t) + h(/) [cos(2(B - <I>(t)))- cos(2(Bc(/))]+. (13.A7)

Dynamical equations for the order parameters (eq. 13.16) are derived by Fourier-transformingeq. 13.A7,
which yields

dro
TOdt = --ro + hfo(Bc)

(13.A8)

,.
1.__' --.-----.
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dr2
.

'0 (it = -r2 -+-hf2(8c)cos(2(<I> - '1'))

2r2'0 dd~ = hf2(8c)sin(2(<I> - '1')),

(13.A9)

(13.AIO)

where

J

+"/2 d8
.fo(8c) = -[cos(28) - cos(28c)]+

-,,/2 n

J

+"/2d8
f2(8c) = --cos(28)[cos(28) - cos(28c)1-t-

-,,/2 n

(13.All)

(13.Al2)

Performing the integrals, we find the the functions given in eqs. 13.39 and 13.40.

Stationary State

In the case of a stimulus with a constant feature 80, the solution .of the above equations converges at large
time to a fixed point, which is obtained by substituting the time derivatives in all the above equations by
zero. From eqs. 13.A4 and 13.AIO we find

<I>= 'P = 80. (13.A13)

Another solution exists in which <I>= 'P = 80 -+- n, put this solution is unstable, as can be seen from the
next section. This means that in a stationary state the peaks of the profiles of both the total input and the
output coincide with that of the stimulus. Thus eqs. 13.A2 and 13.A3 read

10 = C(l - B) -+- 10ro - T

h = BC -+- 12r2.

(13.Al4)

(13.Al5)

Substituting this into eqs. 13.A8 and 13.A9 yields

ro= (CB-+- 12r2)/0 (13.Al6)

(l3.Al7)

(13.Al8)

r2 = (CB -+- 12r2)/2.

For B > 0, the solution is

CBf2(8c)
r2 =

1 - 12f2(8c)

CB/o(8c)
ro = .

1 - hf2(8c)

(13.Al9)

(l3.A20)

Replacing ro and r2 by these expressions in eq. 13.A6, we obtain the equation for the width of the activity
profile. The stationary profile has the form of eq. 13.36, and the gain Gis

. G = h(l - cos(28c)), (13.A2l)

yielding for the gain G the expression given in eq. 13.42.
For B= 0, eq. 13.Al7 always has a homogeneous solution, r2 = 0, because the system is invariant by

rotation. From eq. 13.Al9, however, we see that an inhomogeneous solution (r2 oF0) can also exist, pro-
vided that

I \
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1 = J2h(Oe). (13.A22)

Eq. 13.A22, which corresponds to eq. 13.55, determines Oe in the marginal phase and possesses a solution
only if h > 2. In this regime, ro and r2 are determined by eq. 13.A6, 13.A14, and 13.A15, with e = 0 and

ro = J2r2/0.

Substituting the results in eq. 13.A21 yields, finally, eq. 13.56.

(13.A23)

Response to Moving Stimulus

We consider here the solution of the time-dependent eqs. 13.A8-13.AlO in the case of time-dependent
stimulus feature Oo(t). Eqs. 13.AlO and 13.A4 yield

dl/J(t) .
7:0~ = - Ve sm(2(Oo(t) - <1>(t))), (13.A24)

where

v:
eChh(Oe)

7:0 e =
2h~

.

Although, in general, Vc is itself a function of time, when 17:0dOo/dtl = 0(1) «1, the time dependence of
Ve introduces corrections of order 1 to Ve. To leading order, Ve is given by substituting the value of r2 at
order 1, which in turn is given according to eq. 13.A9 (with <1>= '¥ and dr2/dt = 0) by r2= hh- Sub-
stituting this value yields 7:0Vc = eC/2J2r2. Finally, using eqs. 13.55-13.57, we obtain eq. 13.65.

(13.A25)

Appendix B: Stability of the Stationary States

This appendix presents the stability analysis for the stationary states of the one-population rate model with
neuronal adaptation given by eqs. 13.75-13.76 and 13.12-13.14.

Stability of the Broad Profile

When the system has a broad profile, all the neurons are above threshold and the system operates in
the linear regime. Thus small perturbations around the linear fixed point of eqs. 13.75 and 13.76 obey the
linear equations

7:0 ~ orn( 0, t) = -orne0, t) + Jooro + hor2 cos(20) + J2r2 sin(20)0'¥ - Ma (0, t)

d
7:adtMa(O, t) = -Ma(O, t) + Jaorn(O, t).

(13.B1)

(13.B2)

The solutions of these equations can be written in the form

orn(O, t)oceyt

Ma(O, t) oceyt.

(13.B3)

(13.B4)

The homogeneous fixed point is stable if and only if Re y < O.Solving eq. 13.B2 for Ma and substituting in
eq. 13.B1 yields

(1 + r(y))orn(O, t) = Jooro + J2 cos(20)or2 + hr2 sin(20)0'¥, (13.B5)

I
.
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where

r(y) =YTO+~'1 + YTa

Fourier-transfonning this equation gives

(13.B6)

(1 + r(y))oro = Jooro

h(1 + r(y))orz = 20rz

(1 + r(y))o\f = ~z o\f.

(13.B7)

(13.B8)

(13.B9)

(Eq. 13.B9 has to be considered only if 8 =F0.) Thus the two Fourier modes of fluctuations are decoup1ed
and the condition that Oz relaxes is identical to the condition for o\f to relax.

The first mode corresponds to a homogeneous fluctuation of the neuron activity. Here y is the solution
of

1 + r(y) = Jo. (13.BlO)

Therefore, in this mode, y is determined by a second-order algebraic equation. Solving this equation, we
see that, depending on the strength of the adaptation, the broad state may lose stability in two ways.

Case 1. Ja < TO/Ta: Y is real and is negative only for Jo < 1 + Ja. In particular, when there is no adapta-
tion, we recover the result of eq. 13.34.

Case 2. Ja > TO/Ta: Y is complex on the instability line which is given by

TO
Jo = 1 + -.

Ta

(13.Bll) ,

On this instability line, the system enters into a global oscillatory state.

The second mode of instability corresponds to a spatial instability. For this mode, y is determined by

Jz
1+r(y)=2' (13.B12)

Here also, two cases have to be distinguished:

Case 1. Ja < TO/Ta: Y is real on the instability line given by

J2 = 2(1 + Ja). (13.B13)

This instability corresponds to the fact that if J2 > 2(1 + Ja), the system prefers a narrowly tuned sta-
tionary state over the broadly tuned one, even when the input is homogeneous. In particular, for Ja = 0,
we find eq. 13.35.

Case 2. Ja > 1:0/Ta: Y is complex on the instability line given by

1:0
h = 1+-.

Ta

(13.B14)

. This line is drawn in figure 13.11. For h larger than this value, the system prefers a narrowly tuned state
which, becausey is complex,is nonstationary and consistsof a travelingpulse of activity. On the instability
line, the velocityof the pulse is givenby the imaginarypart of y, yieldingeq. 13.83.

1- -.---.-.-
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Stability of the Marginal Phase

We discuss here the stability of the narrow profile in the marginal phase. We first discuss the case of e =
0

and Ja = O. We linearize eqs. 13.A8-13.AIO about the fixed point of the marginal phase, eqs. 13.36 and
13.41 with eqs.-13.54-13.57, and we find

dfJro ( 2JoOe) h
'C°Cit=- 1--;- fJro+-;sin(20e)fJr2

(13.BI5)

dfJr2 Jo. ( h ( I. ))1:0 Cit = -;sm(20e)fJro- 1 - -; Oe+ 4
sm(40e) . fJr2

(13.BI6)

dfJ\}l

7:°Cit = -(1 - h!2(Oe))fJ\}l = o.
(13.BI7)

In eq. 13.B17 we have used the relationship between Oeand h
(eq. 13.55). This equation implies that the

fluctuations keeping the shape of the activity profile but changing the position of its peak (also called
"transverse fluctuations") are marginal, that is, they do not decay with time. The "longitudinal fluctua-
tions," representing perturbations of the shape of the profile, evolve according to eqs. 13.BI5-I3.BI6.
Searching for a solution of the form fJro, fJr2 oc

eyt, we find that y satisfies the second-order algebraic

equation

2 ( Oe( ) h.
y + 3 -; Jo + h) y + -;sm(20e)!0(Oe)(lc - Jo) = 0,

(13.BI8)

where Je is given by eq. 13.57. Solving eq. 13.B18, we find that the instability occurs when y is real and
becomes positive, that is, on the line

(13.BI9)

lc = Jo.

This line is drawn in figure 13.7: it separates the marginal phase from the amplitude instability region.
The above stability analysis can be straightforwardly extended to include the case of inhomogeneous

input. In particular, the transverse fluctuations still decouple from the longitudinal fluctuations; they
evolve according to

dfJ\}l fJ\}l

Cit - -
7:'1''

where

(13.B20)

7:0 G
7:'1'= 1 (1 - cos(20e))

> O.
(13:B21)

Thus the external tuned input stabilizes the transverse fluctuations, whose relaxation time 7:'1'
is propor-

tional to 1/1 and diverges as 1-> 0, in agreement with eq. 13.Bl7.

.

Instability of the Marginal Phase D\le to Adaptation

We now extend the previous analysis to include adaptation. We will show that if e =
0, the transverse

. fluctuation mode of the inhomogenousfixedpoint is unstable if

7:0
Ja >-.

7:a

(13.B22)

This condition corresponds to the vertical line drawn on figure 13.11. As will be shown, this result is gen-
eral and independent of the form of interaction and the boundary conditions.

I, --,---~_.
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A narrow profile has the fonn

m(O) = Ia;:) = M(O - 'P),

where M(O) satisfies

M(O) =~
J

e,
J(O - O')M(O') dO'.

+ a -e,

565

(13.B23)

(13.B24)

If we differentiate eq. 13.B24 with respect to 0 and integrating by part the right-hand side, using M(Oe) =
M( -Oe) = 0, we find

M'(O) = ~
J

e,
J(O - O')M'(O') dO'.

1 +Ja -e,

The fluctuations which maintain the shape of the profile but change its position have the fonn

I5m(O, t) = M'(O - 'P)I5'P(t)

Ma(O, t) = JaM' (0 - 'P)I5'Pa(t)

If we linearize the dynamical equations, using eq. 13.B25 and the fact that M'(O) #- 0, we find that

dl5'P
<0 (it = Jal5'P - Jal5'P a

d'Pa
<a(it = -15'Pa + 15'P.

(13 .B25)

(13.B26)

(13.B27)

(13.B28)

(13.B29)

These equations imply that the longitudinal mode is unstable if the condition given by eq. 13.B22 is sat-
isfied. Note that this proof holds for any fonn of interaction and that it is also independent of the bound-
ary conditions, hence it applies also to the short-range model of section 13.6. However, it crucially relies
on the gain functions being semilinear.

Appendix C: Details of Conductance-Based Model

This appendix presents the details of the model, given by eqs. 13.1-13.4, we have used in our numerical
simulations. The voltage-gated current in eq. 13.110 is of the fonn

n

. I;ated(O, t) = L Gi(vIJ.(O, t))(VIJ.(O,t) - VI),
1=1

(13.Cl)

where GI and VI are the voltage-gated conductances and the reversal potentials of the various ionic cur-
rents that contribute to Igated,detailed below (see also table 13.1).

Sodium Current: INa = gNam3h(V - VNa)

The inactivation variable h follows the first-order relaxation equation

dh
=

Ahoo(V) - h
dt <h( V)

ah(V)
hoo(V) =

ah(V) +bh(V)

I.- ,

(13.C2)

(13.C3)



Table 13.1
Parameter and constant values for conductance-based cortical network model

E I m

gNa 120 120 ,e 31
gK 10 20 ,e 12
gA 60 40 ,i 71
gNaP 0.5 0.2 ,i 12
gl 0.1 0.1 gEE 2

gz 10 0 gEl 1.3

VNa 55 55 gll 0.8

VK -70 -70 glE 1

VA -75 -75 ~~n 0

VI -65 -65 ~~n -75
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1
'h(V) =

ah(V} + bh(V)
(13.C4)

ah = 0.07 eHV+55)f20) (13.C5)

(13.C6)bh = 1/(1 + e(-(V+25)flO)).

To simplify the dynamics, we assume that the activation variable m is fast and equal to its instantaneous
equilibrium value, given by

am(V)
moo(V) = am(V) +bm(V)

(V + 30)
am(V) = 0.1

1 -e(-(v+30)flO)

(13.C7)

(13.C8)

bm(V) =
4e(-(V+55)f18). (13.C9)

The faqtor A has been introduced in order to tune the maximum firing rate to the desired high value. We
use A = 4.

Delayed-Rectifier Potassium Current: IK = gKn4(V - VK)

The inactivation variable n satisfies

dn=t:f..noo(V)-n
dt 'n(V)

an(V)
noo(V) =

an(V) + bn(V)

1
'n( V) = an(V) + bn( V)

(13.ClO)

(13.Cll )

(13.C12)
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(v+ 45)
an = 0.01

1 -
e(-(V+45)jIO)

bn = 0.125e(-(v+55)j80).

(l3.Cl3)

(l3.C14)

A-Current: IA = gAah(V - VA)

We assume activation is instantaneous and satisfies

1
a = aoo(V) = 1 + e(-(V+50)j4) . (l3.C15)

We further assume the relaxation time of the inactivation variable is independent of the membrane poten-
tial: 7:b = 10 msec, and satisfies

db - boo(V) - b
dt -

7:b
(l3.C16)

1
boo =

1 + e«V+70)j2) . (l3.C17)

Persistent Sodium Current: INaP = gNaPSoo(V)(V - VNa)

The activation variables satisfies

1
soo(V) = 1 + e(-O.3(V+50))' (l3.C18)

Slow Potassium Current: Iz = gzz(V - VK)

This currents is incorporated into the dynamics of the excitatory population. The activation variable z
satisfies the relaxation equation

dz
-

Zoo(V) - z
dt - 7:z

where 7:z = 60 msec is independent of the membrane potential and

(l3.C19)

I
zoo(V) =

1 +e(-O.7(V+30)) (l3.C20)

Note that the sodium current and the potassium delayed rectifier have the same parameters as in the
Hodgkin-Huxley model, except for a shift of the membrane potential by 55mV. This shift ensures that the
threshold to spike is in the range observed in cortical neurons. Membrane potential is measured in milli.volts.


