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1 Biophysics of action potentials in ”point” neurons

We now step back and detail the biophysical basis of spike generation by neurons.

1.1 Review of the Nernst potential

Consider a cell. It consists of two compartments, labeled ”inside” and ”outside”, each
filled with Na+ and Cl− ions and separated by a lipid membrane. On the inside of the
cell, the concentration of ions is denoted [Na+]in and [Cl−]in and on the outside they are
denoted [Na+]out and [Cl−]out. To get a feel for the scale of moles/liter, let’s put it into
terms relevant for the size of a cell, i.e., ions per cubic micrometer. In a biological cell,
the ion concentration is about 0.15 M, so we have about 108ions/µm3 in a cell.

We set the cell so that, initially, [Na+]in = [Cl−]in and [Na+]out = [Cl−]out and the
two sides are electrically neutral. Further, we impose [Na+]out > [Na+]in. Suppose we
put a sub-nanometer pore that allows only one kind of ion to pass. To be concrete, we
open up a hole that allows [Na+] ions, but not [Cl−] ions, to pass. This is a Na+ selective
channel. What follows is:

• Initially, the [Na+] moves down its concentration gradient, driven by diffusion.

• As Na+ ions move across the wall, the solutions in the two compartments are no
longer electrically neutral. Positive charge (from the Na+) leaves the outside and
builds up on the inside. This leads to an electric field across the wall.

• The electric fields points from the inside to the outside and opposes motion of
additional Na+ ions.

• In time, the electric field caused by the initial movement of ions points from the
inside to the outside. This field is the direction that opposes motion of additional
Na+ ions and will prevent any more Na+ ions from moving. As this point the
system is in equilibrium.

The result is that the concentration difference in Na+ ions between the inside and outside
of the cell leads a difference in electrical potential across the cell.

The value of the potential is found by equating the chemical potential to move an ion
across the membrane, µ, with the electrical potential by eV = µ, i.e.,

µ =

(
∂F

∂N

)
T,V

(1.1)

= −kBT
∂lnZ

∂N

= −kBT
∂ln ξN

N !

∂N
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= −kBT
∂ (Nlnξ −NlnN)

∂N
= kBT lnN + constant

where Z is the partition function, ζ is the partition function per ion, the denominator of
N ! accounts for the ways to arrange N identical ions, and we approximated N ! → NN

(Sterling’s formula). Thus

V =
kBT

e
ln
[Na+]out
[Na+]in

(1.2)

We see immediately that V is on the order of kBT
e
≈ 25 mV.

Review of Goldman-Katz (I-V) relation

In the presence of a weak electric field the motion of ions is limited by the collisions so
that the velocity, as opposed to acceleration, is proportional to the force. We have

v⃗D(x, t) = µE⃗(x, t) (1.3)

= −µ∂V (x, t)

∂x
x̂

where v⃗D(x, t) is known as the drift velocity, albeit we take the one-dimensional case at
present, and µ is the mobility. We can now calculate the flux due to the electric field as

J⃗D(x, t) = [Ion](x, t) v⃗D(x, t) (1.4)

= µ[Ion](x, t) E⃗

= −µ[Ion](x, t)∂ V (x, t)

∂x
x̂.

The total flux includes diffusion down a concentration gradient as well as the electric
force. For simplicity, we drop vector notation as all movement is along the x̂-axis. Then

J(x, t) = −D∂[Ion](x, t)

∂x
− µ[Ion](x, t)

∂V (x, t)

∂x
. (1.5)

At equilibrium, J(x, t) = 0. Then∫ V (x)

V (x′)
dV = −D

µ

∫ x

x′

d[Ion](x)

[Ion](x)
(1.6)

and thus

∆V = V (x)− V (x′) (1.7)

=
D

µ
ln

(
[Ion](x)

[Ion](x′)

)
.

But we showed that this equilibrium potential is just given by the Nernst formula, i.e.,

∆V = VNernst (1.8)

= −kBT

ze
ln

(
[Ion](x)

[Ion](x′)

)
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where include the possibility of a polyvalent ion and write ze for the charge. Thus

µ = D
ze

kBT
. (1.9)

We can now put all of the formalism together to get a final equation for the flux in terms of
a single transport coefficient, D, i.e,

J(x, t) = −D
(
∂[Ion](x, t)

∂x
+

ze

kBT
[Ion](x, t)

∂V (x, t)

∂x

)
. (1.10)

We focus on the case of current through a pore of cross sectional area A that spans a
membrane of thickness L. We further assume that the electric field is uniform (not true,
but it allows us to make some uncluttered progress) and that we are in steady state, so that
V (x) = ∆V · x/L. We have an equation for the electrical current, I, i.e.,

I = −zeJ(x)A (1.11)

= zeDA

(
d[Ion](x)

dx
+

ze

kBT
[Ion](x)

∆V

L

)
.

or

L
d[Ion](x)

dx
+

ze∆V

kBT
[Ion](x) =

IL

zeDA
(1.12)

which we can solve directly to obtain

I = ze
DA

L

zeV

kBT

[ion]in − [ion]oute
− zeV

kBT

1− e
− zeV

kBT

(1.13)

where we took the voltage to be V = 0 on the outside on the cell and thus replace ∆V ← V
(Figure 1). The essential feature is that the I − V curve is nonlinear for voltage changes on
the order of kBT

ze ≈
25
z mV away from the reversal potential.

In the limit that V >> 0 we see that I → (ze)2[ion]in
DA
L

1
kBT V and in the limit In the

limit that V << 0 we see that I → (ze)2[ion]out
DA
L

1
kBT V . Thus in the limits of large and

small voltages Ohm’s Law, i.e., I = GV , is obeyed and the conductance is greater when
the current flows from high concentration of ions to low concentrations of ions. The I − V
relation is often expressed in terms of the Nernst potential, i.e.,

I = ze
DA

L
[ion]in

zeV

kBT

1− [ion]out
[ion]in

e
− zeV

kBT

1− e
− zeV

kBT

(1.14)

= ze
DA

L
[ion]in

zeV

kBT

1− e
− ze(V −VNernst)

kBT

1− e
− zeV

kBT

and is known as the Goldman-Katz relation. The essential feature is that the I − V curve
is nonlinear for voltage changes on the order of kBT

ze ≈ 25/z mV away from the reversal
potential.

We can pack all of the prefactors together as a single conductance, gion(V ) where we
include the possibility that the pores, or conductances, can be modulated by the transmem-
brane voltage through D = D(V, t). We write

I = gion(V, t)

V 1− e
− ze(V −VNernst)

kBT

1− e
− zeV

kBT

 . (1.15)
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Figure 1: The I-V relation for ions is nonlinear. Convention is to ignore this nonlinearity and take I = g (V − VNernst)

.

1.2 Cell circuit with active currents

Lets develop the framework for the physics and electrochemistry of the action potential
V (t) for a cell with no spatial extent. We start in the most general manner by adding
active currents to the equation for a leaky capacitor,

τ
dV (t)

dt
− V (t) = −RmgNa+(V, t) V

1− e
−

e(V −V
Na+

)

kBT

1− e
− zeV

kBT

(1.16)

− RmgK+(V, t) V
1− e

−
e(V −V

K+)

kBT

1− e
− zeV

kBT

− RmgCl−(V, t) V
1− e

−
e(V −V

Cl− )

kBT

1− e
− zeV

kBT

+ Iext(t)

where τ is the time constant of the passive membrane, Rm is the resistance of the mem-
brane, and Iext(t) includes all external inputs. The sign convention is that positive current
flows out.

4



All of the interesting physics is in the form of the conductances gion(V, t) so the appar-
ently complicated form of Goldman-Katz is irrelevant. But Hodgkin and Huxley ignored
Goldman-Katz for unclear historical reasons and chose to approximate the I-V relation in
terms of a voltage and time dependent conductance and a term where the voltage relative
to a battery at the Nernst potential. Thus yields a circuit equation (Figure 2). Of course,
one can expand Goldman-Katz near V = VNernst, which gives

I =

[
gion(V, t)

zeVNernst/kBT

1− e−zeVNernst/kBT

]
(V − VNernst) . (1.17)

where the terms in the square brackets are just a rescaled conductance. The rectifying
form of Goldman-Katz is only important if one swings on both sides of the reversal
potential; this only occurs for Cl−1. All told, this dubious approximation reduces the
equations into a circuit formulation (Figure 2).

τ
dV (t)

dt
− V (t) = RmgNa+(V, t) [V (t)− VNa+ ] (1.18)

− RmgK+(V, t) [V (t)− VK+ ]

− Rmgleak [V (t)− Vleak] + RmI
ext(t).

Figure 2: A circuit model for the conductance-based equations of Hodgkin-Huxley equations

.

1.3 Functional form of the conductances

The business end is the form of the conductances gion(V, t), although in the laboratory
one measures the current which is proportional to the product gion(V, t)[(V, t) − Vion].
The expectation is that the conductance is in the form of a a maximum conductance, ḡ,
times voltage and time dependent terms for the activation, i.e., the opening of channels
designated by Pactivate(V, t), and the inactivations, i.e., the closing of channels designated
by Pinactivate(V, t). This allows for transient behavior by the sequential flow and stoppage
of currents. Recall that all probabilities vary between 0 and 1. Thus

gIon(V, t) ≡ ḡIon × Pactivate(V, t)× Pinactivate(V, t). (1.19)
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1.3.1 A differential equation for Pactivate(V, t)

In general, the activation and inactivation terms are governed by a first order equation
that describes their dynamics. We have

P open
act (V, t) + P closed

act (V, t) = 1 (1.20)

and

dP open
act (V, t)

dt
= kopen(V )P closed

act (V, t)− kclosed(V )P open
act (V, t) (1.21)

= − [kopen(V ) + kclosed(V )]P open
act (V, t) + kopen(V )

= − [kopen(V ) + kclosed(V )]× [P open
act (V, t)− P open

act (V,∞)]

where P open
act (V,∞) is the steady value of the activation. Thus

dPact(V, t)

dt
= −kobs (Pact(V, t)− Pact(V,∞)) . (1.22)

where kobs(V ) = kopen(V )+kclosed(V ). There are two inherently voltage dependent terms,
the steady state value and the observed time constant. We consider the steady-state
behavior and kinetics of a two-state system as a means to understand and parameterize
the basic physics of these terms . The idea is that a thermal average or a population of
two-state systems is a reasonable portrayal of ionic currents. In fact, the decomposition
of macroscopic currents in terms of channels is a justification for this view.

1.3.2 The form of Pactivate(V,∞)

For sake of argument, let’s say that the activation sensor works by having a dipole interact
with the transmembrane potential. Dipole is of the form p⃗ = qd⃗ and the dipole experiences
a torque from the electric field in the membrane that results in an energy

Energy = −p⃗ · E⃗ = qd cosϕ
∂V

∂x
≈
(
q
dcosθ

L

)
V (1.23)

≡ z′e V

where ϕ is the angle between the dipole and the normal to the membrane, and we have
lumped all factors into the charge z′e.

The steady state extent of activation to inactivation is given by the usual Boltzmann
relation

P open
act (V,∞)

P closed
act (V,∞)

= e
z′e(V −Vbias)

kBT (1.24)

where Vbias is the internal potential drop across the activation sensor. Thus

P open
act (V,∞) =

1

1 + e
− z′e(V −Vbias)

kBT

(1.25)

and

P closed
act (V,∞) =

e
z′e(V −Vbias)

kBT

1 + e
− z′e(V −Vbias)

kBT

(1.26)

P open
act (V,∞) is in the form of the logistic function.
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1.3.3 The form of kopen(V )

We now come to the issue of the observed rate constant or the channel. In general, from
a classical view point, the rate is determined by the time it takes for the dipole sensors
to rearrange themselves in the activated versus inactivated state. The rate-constants
kopen(V ) and kclosed(V ), in the absence of an applied electric field, i.e., V = 0, are of the
form

kopen(0) = νe
−∆Go
kBT (1.27)

where ν is an attempt frequency to jump over the barrier and ∆Go is a barrier height.
Then

kclosed(0) = νe
−∆Go−z′eVbias

kBT (1.28)

= kopen(0)e
−z′eVbias

kBT

where ν is a molecular attempt frequency and clearly kinact(0) < kact(0) With the
addition of an electric field, the activation barrier is modified. The simplest assumption
is that the energy of the closed state is raise as much as that of the open state is lowered.
Thus

kopen(V ) = kopen(0)e
−z′eV
2kBT (1.29)

and

kclosed(V ) = kopen(0)e
−z′eVbias

kBT e
z′eV
2kBT . (1.30)

Thus

kobs(V ) = kopen(V ) + kclosed(V ) (1.31)

= kopen(0)

(
e

−z′eV
2kBT + e

−z′eVbias
kBT e

z′eV
2kBT

)

= kopen(0)e
−z′eVbias

2kBT

(
e

−z′e(V −Vbias)

2kBT + e
z′e(V −Vbias)

2kBT

)

= k′
open(0) cosh

(
z′e(V − Vbias)

2kBT

)
.

This functional form has the shape of a bowl with a minimum at V = Vbias. Thus the
larger the magnitude of the voltage change, the faster the rate of the shorter the opening
time.

1.3.4 Synopsis

The bottom line is that the above forms for P open
act (V,∞) and kobs(0) provide a formulation

of the ionic basis for the action potentials. The measured currents for one voltage sensor
is

Iactive = ḡIon × Pactivate(V, t)×
[
V − V Nernst

]
(1.32)

from which one extracts Pactivate(V, t) by measuring the current as a function of voltage.
This is a nontrivial procedure, as all currents but one must be blocked while Pactivate(V, t)
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as well as a potential Pinactivate(V, t) must be measured. Currently, the measurements
are best done by measuring ”tail” currents to avoid the contributions of leakage currents.
This is now a standard art and we urge you to look in a Neurobiology text. Our focus is
on where the Physics takes hold.

1.4 Experimental self-consistency of the Hodgkin-Huxley model

From a formal point of view, the transmembrane voltage, V (x, t) and the activation
parameters for each current, P open

act (V, t), form the state variables for the the system. For
the Hodgkin-Huxley model there are four state variables total, while for models of thalamic
relay neurons the number of state variables is (presently) 13.One arrives at measured
currents for each ion that can be used to parameterize P open

act (V, x,∞) and τobs(V, x) for
that ion.

The Hodgkin-Huxley equations are functions of 4 variables.

• V (x, t) ← the transmembrane potential

• m(V, t) ← the activation function (Pact(V, t)) for Na+ current

• h(V, t)← the inactivation function (a separate function, P ′
inact(V, t) = 1−P ′

act(V, t))
for Na+ current

• n(V, t) ← the activation function (P ′′
act(V, t)) for K

+ current

The exact fitting parameters are in standard texts and we will not show them. The
functional dependencies on V that we expect are clearly seen. This framework includes
the observation that the peak of the time constants and the midpoint of the activation
functions occur at nominally the same potential. The dynamic equations are

τ
dV (x, t)

dt
= −rmgNa+m

3(V )h(V ) (V − VNa+) (1.33)

− rmgKa+n
4(V ) (V − VK+)

− −rmgleak (V − Vl) + rmI
ext(t).

which has 7 independent biophysical parameters, i.e., τ , rm, gNa+ , gK+ , gleak, VNa+ , VK+ ,
and Vleak as well as 12 (or more in principle) fitting parameters as exponents on the
activation and inactivation functions.

dh(V, t)

dt
=

h∞(V )− h(V, t)

τh(V )
(1.34)

dm(V, t)

dt
=

m∞(V )−m(V, t)

τm(V )
(1.35)

dn(V, t)

dt
=

n∞(V )− n(V, t)

τn(V )
(1.36)

where n∞(V ) ≡ n(V, t→∞) and the parameterization for each rate expression has three
fitting parameters, i.e., z′, Vb, τobs(0), for a total of 9 parameters (Figure 3).
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Figure 3: The parameters experimentally derived for the Hodgkin Huxley equation, from data. From Hodgkin and
Huxley1952.

.

These circuit equations, derived from current clamp data (Figure 4), were used to
predict the shape of the action potential in both the space clamped and, as we will discuss
later, in the non-space clamped propagating place. The results showed self consistency
about the ionic currents and the voltage changes (Figure 5).

Figure 4: Computation shows the form of the currents throughout the action potential.

.

To recap, the action potential results from an instability in the conductance such that
the direction of the membrane current transiently reverses in response to a perturbative
current. Eventually, the conductance saturates and recovers to a linear response. In both
cases, the cell is leaky and the effective time-constant is transiently very short, so that
the width of the action potential is small, less than one millisecond.
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Figure 5: Logic of the onset activation parameter derived for the Hodgkin Huxley K+ and Na+ currents from data.
From Hodgkin and Huxley1952 as summarized by Fee class notes.

.
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