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The interdisciplinary field of nonlinear chemical dynamics
has grown significantly in breadth and depth over the
past three decades. Its subject matter and applications
encompass all branches of chemistry as well as areas of
mathematics, physics, biology and engineering. In this
Perspective, we present an overview of some of the key
results of nonlinear chemical dynamics, with emphasis
on those areas most likely to be of interest to inorganic
chemists. We discuss the range of phenomenology from
chemical oscillation to chaos to waves and pattern
formation, as well as experimental methods, mechanistic
considerations, theoretical techniques, and the results of
coupling and external forcing.

Introduction
Many of the most exciting recent developments in chemistry
involve the phenomenon of self-organization, the spontaneous
emergence of complex, coherent, often periodic, structure
involving many molecular units. Inorganic chemistry has been
well represented in this area.1 The study of how complex struc-
ture arises, both in time and in space, is a major focus of the
field of nonlinear dynamics. In this Perspective, we present a
brief overview of nonlinear chemical dynamics, which has been

much influenced by inorganic chemistry and which, we believe,
has much to offer inorganic chemists. Those who seek a more
detailed, chemically oriented, introduction to this area are
referred to several monographs and collections of review art-
icles.2 A more mathematical, but still accessible, treatment may
be found in the book by Strogatz.3

Like many of the newest areas in science, nonlinear dynamics
is highly interdisciplinary and is characterised by a cooperative
interplay between theory and experiment. Applications and
examples can be found in nearly all fields of chemistry as well as
in engineering, mathematics, physics, biology, geology, astron-
omy, psychology and economics. While most of the early work
was in pure theory, the past decade has seen many instances of
new experimental breakthroughs inspiring new theoretical and
computational approaches and vice versa. The phenomena
involved are occasionally counterintuitive and often aesthetic-
ally pleasing.

Nonlinear dynamics in chemical systems
Nonlinear dynamics is the study of how systems whose
behaviour depends in a nonlinear fashion on the values of key
variables, like concentrations in a chemical reaction, evolve in
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Fig. 1 Oscillatory behaviour in the BZ reaction, showing induction period (A–D) followed by periodic oscillation in the concentrations of several
species. Reproduced with permission from ref. 16. Copyright 1972 American Chemical Society.

Fig. 2 Target patterns in the BZ reaction. Four successive snapshots taken after reaction evolves from initially homogeneous red (dark) solution.
The diameter of each snapshot is about 10 cm.

time. Nearly all systems of interest, including living ones, are
nonlinear, often extremely so, but scientists often find it con-
venient, e.g., in the case of relaxation kinetics,4 to utilise condi-
tions where the system under consideration behaves linearly.
Linear mathematics is familiar and tractable, but it cannot gen-
erate even a small fraction of the rich phenomenology of which
the “simplest” of nonlinear systems is capable. In chemical sys-
tems, nonlinearities typically arise from the rate equations of
mass action kinetics; unless one works under special conditions,
any bimolecular elementary steps lead to quadratic terms in the
rate law. As the example of relaxation kinetics illustrates, if a
system is near equilibrium, nonlinear effects may be negligible.
It is only far from equilibrium that chemical systems become
interesting from the point of view of nonlinear dynamics.

Chemical oscillation
The prototypical phenomenon of nonlinear chemical dynamics
is chemical oscillation, the temporally periodic, or nearly peri-
odic, variation of the concentrations of one or more species in a
reaction. While reports of electrochemical oscillation date back
to 1828,5 the prevailing wisdom among chemists as late as the
1970s was that chemical oscillation was impossible, a violation
of the Second Law of Thermodynamics. Indeed, during the
first half of the twentieth century, Bray’s report 6 of the first
homogeneous chemical oscillator, the iodate-induced decom-
position of hydrogen peroxide, generated more articles devoted
to debunking it than to explaining it mechanistically.7

If chemical oscillation is the prototypical phenomenon, then
the Belousov–Zhabotinsky (BZ) reaction is the prototype sys-
tem for nonlinear chemical dynamics. Like the Bray reaction,
the BZ reaction was discovered accidentally, in this case by the
Russian chemist B. P. Belousov in the 1950s. Belousov’s original
reaction mixture consisted of bromate, citric acid and ceric ion.
Expecting to observe a monotonic change from yellow Ce4� to
colorless Ce3�, he was astonished to find that, after vanishing
initially, the yellow color reappeared at about one minute inter-
vals. Skeptical reviewers prevented publication of Belousov’s
results (despite the inclusion of recipes and photographs)
except for one brief note 8 in an unrefereed conference proceed-
ing. A decade later, Zhabotinsky developed the reaction further

and succeeded in publishing his results on several variants of
Belousov’s original reaction.9 Zhabotinsky replaced the citric
acid with malonic acid, CH2(CO2H)2, which has become the
standard BZ substrate, though many species with an acidic
hydrogen alpha to two electron-withdrawing groups also gener-
ate oscillation, with different pre-oscillatory induction periods,
amplitudes and periods of oscillation. In addition to the color
change, oscillations may be observed in the redox potential
(primarily determined by the ratio of the oxidised and reduced
forms of the metal ion) and the bromide ion concentration as
well as in the concentrations of several organic intermediates.10

Typical data are shown in Fig. 1.
The cerium, which serves as a catalyst, can be replaced by

other metal ions or complexes with similar one-electron redox
potentials. Two catalysts in particular, ferroin [Fe(phen)3

2�]
and Rubipy [Ru(bipy)3

2�],11 deserve special mention. Ferroin,
originally used by Belousov as a redox indicator to enhance the
color changes in the cerium-catalysed system, was shown by
Zhabotinsky to be capable of acting on its own as a catalyst. In
an unstirred thin (ca. 1 mm deep) layer, the ferroin-catalysed BZ
system generates striking spatial patterns consisting of spirals
or concentric rings (target patterns) 12 like those illustrated in
Fig. 2. The spontaneous growth of blue rings or spirals in an
initially homogeneous dish of red solution is a remarkable
phenomenon, serving as both an inspiring lecture demon-
stration and an intriguing analogue of patterns seen in
biological systems such as aggregating slime moulds 13 or devel-
oping frog oocytes.14 The Rubipy catalyst is photosensitive and
affords the possibility of perturbing and controlling either the
temporally oscillating stirred system or the spatially patterned
unstirred system with considerable precision.15 Some appli-
cations of this powerful tool are discussed below.

In the early 1970s, Field, Körös and Noyes 16 (FKN) com-
bined kinetic and thermodynamic approaches to propose a
detailed mechanism for the BZ reaction. Using what at the time
represented state-of-the-art numerical analysis and computing
capabilities, they were able to simulate the resulting rate equa-
tions and demonstrate that oscillatory behaviour was indeed
obtained.17 Together with theoretical advances in nonequilib-
rium thermodynamics,18 the FKN mechanism provided the
chemical community with the evidence it needed to consider
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chemical oscillation a legitimate phenomenon deserving of
careful study. The problem remained, however, that aside from
living systems and the serendipitously discovered Bray and BZ
reactions and their variants, there were no other chemical
oscillators and no systematic route toward creating them.
Fortunately, a solution to that problem was soon forthcoming.

Combining a generic mathematical model,19 a continuous
flow stirred tank reactor to maintain the system far from equi-
librium,20 and some inorganic reaction kinetics,21 De Kepper,
Kustin and Epstein 22 constructed the first systematically
designed chemical oscillator, the chlorite–iodate–arsenite
reaction. Their approach is based on the following principles:

  (1) Sustained oscillation can occur only if a system is main-
tained far from equilibrium. One way to do this is to run the
reaction in a flow reactor, which allows for continuous input of
fresh reactants and outflow of products.

  (2) Autocatalytic reactions frequently exhibit bistable
behaviour when run in a flow reactor. That is, for certain sets of
input concentrations and flow rate, the system may, depending
upon its history, reach either of two steady states, each of which
is stable to small perturbations.

  (3) If a bistable system is subjected to a feedback that affects
the concentration of the autocatalytic species on a time scale
long with respect to the characteristic times for the system to
relax to its steady states, then by intensifying the feedback, it
should be possible to cause the system to oscillate, essentially
between the two, no longer stable, steady states.

  (4) The situation described above can be generated by
choosing an autocatalytic reaction, running it in a flow reactor
to determine conditions for bistability, and then adding a feed-
back species that reacts sufficiently slowly with the appropriate
species in the autocatalytic reaction. Increasing the concen-
tration of the feedback species in the input flow should bring
the system into its oscillatory state.

This scheme eventually proved so successful that the reper-
toire of chemical oscillators has grown from two accidentally
discovered systems and their variants to literally dozens of new
oscillating reactions spanning much of the periodic table. While
oxyhalogen chemistry,23 which characterises both the Bray and
the BZ systems, remains the richest source, sulfur,24 phos-
phorus,25 cobalt 26,27 and manganese chemistry 28 as well as
organic reactions 26 also give rise to significant numbers of oscil-
lating reactions. Mechanisms have been developed for many
chemical oscillators, making it possible to identify families of
oscillators and even “minimal oscillators,” 29 i.e., the unique
member of a family whose components are found, either as
reactants or as intermediates, in all members of that family. In
Fig. 3 we present a “taxonomy” of chemical oscillators, showing
the major families and the links between them, reactions that

Fig. 3 A taxonomy of chemical oscillators. Rectangular boxes contain
major families. Ovals contain examples of oscillators. Species outside
of boxes are catalysts. Solid lines connect members of a family. Dashed
lines show some of the links (members in common) between families.

contain components from more than one family. The complex-
ity of this picture reflects the richness of the vein of oscillatory
behaviour that has been tapped over the past two decades.

Multistability
The phenomenon of bistability played a major role in the sys-
tematic design of chemical oscillators. More generally, multist-
ability, the existence of two or more stable dynamical states
(steady state, periodic oscillation, chaos) of a system under the
same set of external constraints—input concentrations of
reactants, temperature, pressure, etc.—is one of the most inter-
esting and significant phenomena in nonlinear dynamics.
Multistability can occur only in open systems subject to a flow
of reactants and/or energy, since a closed system possesses a
unique equilibrium state. Its simplest manifestation is bistabil-
ity, the simultaneous existence of two stable steady states. A
bistable system in one of its steady states when subjected to a
small (subthreshold) perturbation will relax back to its original
state, but a large enough (superthreshold) disturbance will
result in a transition to the other steady state. An example of
such behaviour in the oxidation of arsenous acid by iodate ion
is shown in Fig. 4. This reaction is perhaps the best understood
of the many bistable systems that have now been studied,
thanks in large measure to the elegant work of Showalter and
collaborators.30 The key reactions, both of which have been
known for nearly a century, are the Dushman reaction,31 in
which the intermediate iodine is produced:

and the Roebuck reaction,32 in which iodine reacts with
arsenous acid to regenerate iodide:

The net reaction, (3) = (1) � 3 × (2), is autocatalytic in iodide
ion, since reaction (1) is rate-determining.

Bistable systems exhibit hysteresis: as a control parameter is
slowly varied, the steady state composition of the system
changes continuously until, at a critical value of the parameter,
the steady state becomes unstable and the system undergoes a
jump to the composition characteristic of the other steady state.
When the parameter is varied in the opposite direction, the
steady state composition again varies smoothly until a second

Fig. 4 Bistability in the arsenous acid–iodate reaction. Reaction is
carried out in a flow reactor. After steady state (SSII) is established,
iodide ion is added as indicated by the arrows. A small addition leads to
relaxation back to SSII, while a larger addition causes a transition to
the other steady state (SSI). Reproduced with permission from ref. 21.
Copyright 1981 American Chemical Society.

IO3
� � 5I� � 6H� = 3I2 � 3H2O (1)

I2 � H3AsO3 � H2O = 2I� � H3AsO3 � 2H� (2)

IO3
� � 3H3AsO3 = I� � 3H3AsO4 (3)
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transition point, different from the first, is reached and the
system jumps back to the original state. The region of bistabil-
ity, in which the system can be in either steady state, lies
between the two transition points. Bistable systems thus have a
memory; the steady state to which they evolve depends upon
the composition they start with.

While bistability involving two steady states is the most
commonly encountered form of multistability, several other
multistable phenomena have been observed in relatively simple
inorganic reactions. In many systems, varying a control par-
ameter leads to a subcritical Hopf bifurcation, beyond which a
stable steady state coexists with a stable oscillatory state. In the
range of coexistence, concentrations remain stationary or oscil-
late periodically, depending upon the past history of the sys-
tem. Small perturbations to either the steady or the oscillatory
state decay, but larger ones can cause a transition from station-
ary to periodic behaviour or vice versa. Fig. 5 illustrates hyster-
esis between a steady state and an oscillatory state in the
bromate–iodide reaction.33

Less frequently occurring multistable behaviours include
birhythmicity, the coexistence of two stable oscillatory modes, a
phenomenon first observed in the bromate–chlorite–iodide
reaction,34 and tristability, in which three stable steady states
can occur under the same set of conditions. This latter phen-
omenon is found in the chlorite–iodate–iodide-arsenous acid 35

and chlorite–iodine–iodide–thiosulfate 36 systems. Recently, De
Kepper and coworkers 37 have drawn attention to the phenom-
enon of spatial bistability, in which two different spatial
patterns of concentration can occur in an unstirred, spatially
extended system under identical conditions, with the selection
between them again depending upon the history of the system.
Pattern formation in general will be discussed in more detail
below.

It is noteworthy that several of the systems that display
complex multistable behaviour, such as bromate–chlorite–
iodide or chlorite–iodate–iodide–arsenous acid, may be
thought of as chemically coupled,38 i.e., as consisting of two
reactions, each of which would be bistable or oscillatory on its
own, linked through a common intermediate. For example,
both the bromate–iodide 33 and chlorite–iodide 39 reactions
show oscillatory behaviour, but the coupled bromate–chlorite–
iodide system exhibits a far richer range of dynamical
behaviour than either of the two uncoupled systems.34 Chem-
ical coupling is one way of generating multistability. Another is
physical coupling, in which two or more systems interact
through a physical process like diffusion across a membrane. By
joining two flow reactors containing the ingredients of the BZ

Fig. 5 Hysteresis between steady and oscillatory states in the
bromate–iodide reaction. Triangles show steady state values of
potential of a Pt redox electrode. Dashed lines show maximum and
minimum potential in the oscillatory state, with vertical lines marked by
period of oscillation. Upper branch shows data taken at increasing flow
rate k0, lower branch taken at decreasing k0. Arrows indicate transitions
between branches of states. Reproduced with permission from ref. 33.
Copyright 1983 American Chemical Society.

reaction through an adjustable aperture in a common wall,
it is possible to generate bistability between stationary and
oscillatory states as well as between oscillatory states in which
the oscillations in the two compartments are either in phase or
out of phase with each other.40 By linking more units, one can
construct systems with very large numbers of multistable states.
Laplante and Erneux 41 studied a linear arrangement of 16
physically coupled, individually bistable chlorite–iodide reac-
tions, which has, in principle, 2 16 possible states, while Laplante
et al.42 used a system of 8 coupled bistable arsenous acid–iodate
reactions linked by 16 connecting tubes as a primitive pattern
recognition device. Coupling smaller systems to one another
provides a powerful route not only to inducing multistable
behaviour but also to generating other more complex dynam-
ical phenomena. The related phenomenon of external forcing
will be considered later in this article.

Chaos
The concept of chaos has been characterised as one of the
major new scientific ideas to emerge from the past century.43

While it has played a more central role in mathematics and
physics, chaotic behaviour is found in many chemical systems
as well.44 To get a sense of chemical chaos, compare the
oscillations in Fig. 6 with those in Fig. 1. The EFGH pattern in
Fig. 1 repeats regularly with no variation, while in Fig. 6, the
pattern consists of small and large peaks alternating in an
irregular, apparently random fashion. Chaos in an open chem-
ical system may be defined as an aperiodically varying com-
position determined by the intrinsic dynamics of the system
(rather than by noise or external influences), which depends
sensitively on the initial conditions, i.e., two chaotic systems
that differ even infinitesimally in their initial conditions
evolve in time so as to diverge exponentially from one another.
Chaotic behaviour typically emerges from periodic oscillation
as a control parameter is varied, often by a period-doubling
route,45 in which alternate extrema become slightly larger or
smaller at a series of critical values of the parameter until, at
a limit point, the behaviour becomes aperiodic, i.e., chaotic.
Fig. 6 shows another form of chaos in the chlorite–thiosulfate
reaction.46

The first experimental demonstrations of chaos in a chemical
system were made on the BZ reaction.47 Chaotic behaviour has

Fig. 6 Chaos in the chlorite–thiosulfate reaction in a flow reactor.
Input concentrations, [ClO2

�]0 = 5 × 10�4 M, [S2O3
2�]0 = 3 × 10�4 M, pH

= 4, residence time in reactor = a) 6.8 min, b) 10.5 min, c) 23.6 min.
Reproduced with permission from ref. 46. Copyright 1982 American
Chemical Society.
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subsequently been found in many other systems, including the
chlorite–thiosulfate 46 and the hydrogen peroxide–bisulfite–
bicarbonate 48 reactions, the cobalt/manganese/bromide-
catalysed autoxidations of p-xylene and cyclohexanone,49 the
gas phase oxidation of carbon monoxide 50 and the electro-
dissolution of copper.51

Every chaotic trajectory contains an infinite number of
unstable periodic paths, and it has been suggested that one
should be able to “control chaos” by applying very small, care-
fully selected perturbations to a chaotic system in order to
stabilise a chosen periodic behaviour.52 This approach has been
put into practice successfully in the BZ system 53 and in gas
phase combustion reactions.54 Another intriguing notion, thus
far implemented only in numerical simulations of the BZ reac-
tion, is that sequences of symbols (messages) might be encoded
and decoded in the chaotic oscillations of a chemical system
using a similar control algorithm.55

Patterns and waves
Perhaps the most significant, and certainly the most visually
striking, phenomenon associated with nonlinear dynamics in
reaction–diffusion systems is the spontaneous appearance of
propagating waves and spatial patterns. Watching an apparently
homogeneous dish of unstirred solution give birth to the sort of
pattern shown in Fig. 2 has inspired many a student to pursue
further study of chemistry and of nonlinear dynamics.

The simplest phenomenon of this sort is a propagating front,
which divides a system into two regions in different states, e.g.,
reacted and unreacted. Such a front is typically quite narrow
and moves with nearly constant velocity. This type of behaviour
is common in autocatalytic reaction–diffusion systems as well
as in the movement of wind-driven forest fires, expanding
bacterial colonies, advancing regions of corrosion or the spread
of infectious diseases. Simple autocatalytic models with quad-
ratic or cubic nonlinearities have been thoroughly analysed 56

and shown to support front propagation. In addition to the
arsenous acid–iodate 30 reaction, front behaviour has been
investigated experimentally in the reactions of chlorite and
sulfite,57 ferroin and bromate,58 and Fe() and nitric acid.59

Szirovicza et al.60 have developed an algorithm for constructing
systems that support pH fronts in acid- and base-catalysed
autocatalytic reactions.

When the system is oscillatory or excitable, more complex
behaviour can arise. By excitable we mean that the system has a
stable steady state that when perturbed by a small amount
quickly returns to its initial concentrations, but perturbations
that exceed a threshold first grow before the system relaxes back
to the original state. Such excitable media occur not only in
chemical systems but also in biological contexts, such as nerve
cells and heart muscle.61 Instead of a simple front, one observes
either a single pulse or a series of pulses, in which the concen-
trations are at one level before and after the pulse and at a
different level within the pulse, which has fronts both ahead of
and behind it (“wave front” and “wave back”). After a refrac-
tory period that follows the passage of a pulse, the medium can
support another pulse. It is thus possible to have a train of
pulses, which in two dimensions can result in a pattern of con-
centric rings (target pattern) like those in Fig. 2 or, if a ring is
broken, spirals. Spiral waves are seen not only in homogeneous
reaction–diffusion systems, but also in heterogeneous catalysis.
The most thoroughly characterised catalytic system is the oxid-
ation of CO on the 110 surface of a Pt single crystal, a reaction
which shows not only target patterns and spirals,62 but a rich
array of more complex patterns as well.63

We can expand the variety of wave propagation phenomena
considerably if we go from two-dimensional to three-dimen-
sional systems. The simplest structures in this situation corre-
spond to the 3D extension of 2D target patterns and spiral
waves. These are respectively referred to as spherical and scroll

waves.64 In the latter case, one easily imagines a set of spirals
stacked on top of each other. The tips of the spirals will now be
organized around a column of cores composing a circular tube
or filament. In the simplest situation, one can envisage a
straight filament, but the filament may also twist or bend. Still
more complex shapes are possible if we allow the filament to
close on itself, generating scroll rings or even knots. We stress
that scroll rings, in contrast to the commonly found steady
rotating spirals, are not stable, since they possess a vertical
drift along their symmetry axis superposed on a collapsing
(at moderate excitability) or expanding (at weak excitability)
dynamics. Strogatz and Winfree 65 have exhaustively analysed,
using geometric and topological arguments, an impressive
variety of three-dimensional waves, extracting precise topo-
logical requirements that must be satisfied in order for these
waves to be compatible with physico-chemical principles. Apart
from their interest in a chemical context, spiral and scroll waves
have been observed in many different scenarios of excitability.
In particular, biological realizations of excitable systems can be
found in neuronal and heart tissue,66 in the latter case suggest-
ing striking similarities between scroll waves and cardiac
arrhythmias.67

The patterns described above are nonstationary; regions of
different concentrations move through space. Another import-
ant class of patterns, with potential implications for biological,
geological and other systems as well as in chemistry, are
stationary; once formed, they remain fixed in space. Stationary
patterns in reaction–diffusion systems are associated with the
seminal work of Turing 68 in 1952. He proposed that, as a result
of diffusion coupling to nonlinear kinetics, a uniform steady
state that is stable to homogeneous perturbations could become
unstable to spatially nonuniform disturbances. It would thus
be transformed to another stable, temporally stationary but
spatially patterned state, now referred to as a Turing pattern.
Turing patterns were widely embraced by theoretical biologists
as a model for pattern formation in living organisms,69 but it
was not until nearly four decades after Turing’s death that the
first experimental evidence of Turing pattern formation was
obtained, in the chlorite–iodide–malonic acid (CIMA) reac-
tion.70 The experimental elusiveness of Turing patterns results
from the need to have two species with very different diffusivi-
ties, a requirement not easily satisfied in aqueous solution. The
CIMA reaction turns out to be a fortuitous choice, because the
starch indicator used in the gel reactor in which the experiments
were done reversibly forms an immobile complex with triiodide,
thereby slowing the effective diffusion rate of the key iodine
species by about an order of magnitude.71 This observation
suggests an approach to designing additional Turing pattern-
forming systems by appropriate choices of reactions and com-
plexing agents.72 Examples of Turing patterns in the CIMA
reaction, with their characteristic striped and hexagonal
(spotted) structures 73 are shown in Fig. 7. The patterns, particu-
larly the hexagonal structure in the left panel of Fig. 7, suggest
a sort of two-dimensional crystal, and model calculations 74

imply that three-dimensional patterns should arrange them-

Fig. 7 Turing patterns in the chlorite–iodide–malonic acid reaction.
Dark areas show high concentrations of starch–triiodide complex.
Length of vertical bar = 1 mm.
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selves in ways resembling the packing of atoms or molecules
in a crystal, though experiments on three-dimensional Turing
patterns still remain to be done.

Quite recently, the Brandeis group has developed a new sys-
tem, a water-in-oil reverse microemulsion with nanometer-sized
droplets of water surrounded by a monolayer of the surfactant
sodium bis(2-ethylhexyl)sulfosuccinate (AOT) dispersed in oil
(octane), for studying pattern formation. When the reactants of
the BZ reaction are introduced into this medium (BZ–AOT
system), a remarkable array of pattern formation, summarised
in Fig. 8, results. In addition to Turing patterns, previously
unobtainable in the BZ reaction, one observes targets and
spirals, standing waves, and clusters, which consist of regions
that oscillate in time but remain stationary in space, and several
phenomena that are seen for the first time in the BZ–AOT
medium. These include waves that appear to accelerate as they
approach one another and then go off at right angles after
collision,75 in contrast to BZ waves in other media, which move
with constant velocity and annihilate on collision; wave
packets,76 which resemble electromagnetic waves; antispirals,77

which move toward rather than away from their centers; and
dash-waves,78 which consist of alternating regions of active and
quiescent medium. The extraordinary versatility of the BZ–
AOT system stems from two properties: a) the size and spacing
of the water droplets can be controlled by varying the concen-
trations of water, oil and surfactant; and b) most of the species
in the BZ reaction are polar and therefore reside in the water
droplets, diffusing at a relatively slow rate characteristic of
entire droplets, while some key intermediates, notably Br2 and
BrO2, are non-polar and therefore escape into the oil and are
able to diffuse much more rapidly. More detailed investigations
of this fascinating system, including its use with other reactions,
are planned.

Interaction with external influences
We have described above the behaviour of nonlinear reaction–
diffusion systems in the absence of external forces. Chemists, of
course, have always been fond of subjecting their reactions to
light, heat or other influences in order to understand them more
deeply or to get them to perform in desired ways. Nonlinear
systems are sensitive to external influences, sometimes exquis-
itely so, and even the effects of gravitational and magnetic
fields can be significant. Here we survey briefly some of the
phenomenology of external forces interacting with nonlinear
dynamics.

Bazsa and Epstein 59 demonstrated that fronts in the oxid-
ation of iron () by nitric acid can propagate as much as six
times faster down a vertical tube than up the same tube. This
anisotropy, clearly gravitationally driven, can be decreased or

Fig. 8 Summary of dynamical behaviour in the BZ–AOT micro-
emulsion system. “Droplet fraction” is the volume fraction of the
medium occupied by water droplets.

eliminated either by using a wider tube or by adding silica gel to
the reaction mixture. In the chlorite–thiosulfate system, either
ascending or descending fronts may travel faster, depending
upon the concentrations of reactants.79 Pojman and Epstein 80

subsequently developed a theory of anisotropic velocity
behaviour in propagating fronts based on the phenomenon of
double-diffusive convection, which occurs when “salt fingers”
occur in a body of water containing hot, salty water above cold,
fresh water. In the chemical system, there are two sources of
density change as the reaction proceeds: the change in com-
position and the exothermicity.81 The former may cause the
density of the product solution to be either greater or less than
that of the unreacted solution; for example, in the oxidation of
ferrous ion by nitric acid, the higher charge on the product
ferric ion apparently pulls in the solvent molecules more tightly
and causes the solution density to increase. Thermal effects
always cause the density to decrease as the reaction proceeds.
Also, differences in temperature spread much more rapidly
than do differences in concentration and are dissipated more
rapidly in thin tubes than in thick ones. The interplay of these
features leads to an understanding of the complex effects of
gravitational fields on propagating fronts.

Buoyancy effects can play an even more crucial role, since in
addition to affecting the propagation of preexisting waves
or fronts, they can generate instabilities leading to pattern
formation in chemical systems. Chemoconvective patterns,
i.e., patterns originating from hydrodynamic motions triggered
by chemical reactions, have been extensively studied.82 One
particularly interesting example is the so-called “blue bottle”
reaction,83 the alkaline glucose reduction of methylene blue.
Upon standing, the solution turns colorless following the
reduction of the indicator by glucose. After the sample is
shaken, the blue color reappears, indicating that the methylene
blue is oxidised by atmospheric oxygen. When the reaction
takes place in an open Petri dish, an overturning instability,
apparently caused by the accumulation of the slightly denser
product, gluconic acid, at the upper surface, occurs. This
hydrodynamic instability is made visible by the presence of blue
dots or lines in regions of downwelling fluid.84,85 Recently,
gravity effects have also been observed in waves of spreading
depression in the retina.86

The effects of relatively modest electric and magnetic fields
on chemical reactions are generally thought to be negligible,
though there have been questions raised recently as to the con-
sequences for human health of fields from power lines and
computer terminals,87 and some animals are able to use even the
earth’s tiny magnetic field for navigation.88 Certain nonlinear
chemical reactions appear to be ideally suited for probing the
effects of moderate electric and magnetic fields. Since several of
the key intermediates in the BZ reaction are ionic, it seems
plausible that an applied electric field might modify propaga-
tion of BZ waves. A number of investigators have demon-
strated that this is indeed the case. The most thorough studies
have been done by Marek and collaborators,89 who showed that
fields of the order of 10–50 V cm�1 have significant effects on
wave propagation. For, example, if the field is configured so that
the front propagates toward the positive electrode, a constant
field of 20 V cm�1 accelerates the front from 2.3 to 5.7 mm
min�1. Doubling the field yields waves propagating as much as
five times faster than in the field-free situation. Reversing the
direction of the field produces even more dramatic effects. At
small fields, propagation is slowed, as one might expect. For
fields between 10 and 20 V cm�1, new waves split off from
the original wave and travel in the opposite direction. At
still higher fields, the initial wave is annihilated and replaced by
a backward-moving wave. These effects are attributable primar-
ily to the movement of bromide ions, which inhibit the
reaction, toward the positive electrode. Model calculations that
take into account both the mobility of the ionic species and the
effects on the local electric field as a result of the varying
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concentration profiles of these species provide a more detailed
understanding.90

Electric field effects also give rise to more complicated wave
propagation phenomena. Experiments have been performed on
spiral excitation patterns in the BZ reaction under the influence
of an externally applied direct current.91 The spirals drift at a
rate that depends on the intensity of the applied electric field
and in a direction that may be decomposed into a component
parallel to the electric field (pointing toward the positive
electrode) and a perpendicular component whose sign depends
on the chirality of the spiral. More complicated scenarios are
also possible, such as “super-spirals”, resulting from rapid tip
meander induced by pulses of electrical current applied at the
tip.92 The possibility of annihilating spirals by moving a pair
toward each other by means of electric fields has also been
investigated.93

More surprising than the effects of electric fields on wave
propagation are those of magnetic fields. Fig. 9 shows how a
circular wavefront in the Co()-catalysed autoxidation of benz-
aldehyde is distorted as it spreads in a magnetic field of maxi-
mum strength 0.6 T.94 The front is accelerated by as much as a
factor of five as it proceeds into regions of decreasing field
strength and is stopped by positive field gradients. Note that the
initial solution containing Co() is paramagnetic, while Co()
is diamagnetic.

Temperature, of course, plays a major (and nonlinear, via the
Arrhenius factor, which, in an exothermic reaction, generates a
form of autocatalysis) role in determining the rates of chemical
reactions. Chemists studying nonlinear dynamics in homo-
geneous systems have, for the most part, worked under iso-
thermal conditions,95 in part because most chemical oscillators
operate only over a relatively narrow range of temperatures, in
part to avoid introducing another set of parameters, the activ-
ation energies, into their modeling efforts. Chemical engineers

Fig. 9 Magnetic field effects. (Top) Magnetic field strength B in the
central horizontal plane of two flat 10 cm diameter cylindrical magnets
placed 8 cm apart. (Bottom) Time development of a wavefront in a
solution containing benzaldehyde and cobalt() acetate in oxygen-
saturated glacial acetic acid as it spreads in this quasi-two-dimensional
system. Reprinted by permission from Nature (ref. 94), copyright 1990
Macmillan Publishers Ltd.

interested in heterogeneous reactions, especially those catalysed
by metal surfaces, have devoted more attention to the role
played by temperature changes and to the potential for using
temperature as a parameter to control and to probe the
behaviour of thermokinetic oscillators.96 Temperature oscil-
lations in some catalytic oscillators can reach amplitudes of
hundreds of degrees.97

Temperature gradients have sizeable effects on the propaga-
tion of waves under oscillatory and excitable conditions. This
principle was cleverly employed 98 to precisely orient scroll rings
in space and to modify their lifetimes by accelerating, decelerat-
ing, or even reversing their spontaneous shrinkage. This strik-
ing result, together with those reported above on the effects
of electric fields on spirals, can be rationalized in terms of
kinematic descriptions of the wave dynamics.99

Certainly the most extensively studied external influence on
nonlinear reaction-diffusion systems has been light. Even an
apparently simple reaction like the decomposition of S2O6F2:

when illuminated displays a rich set of phenomena, including
bistability under constant illumination,100 and tristability, oscil-
lations, and chaos when a delayed feedback 101 is applied to
modulate the intensity of the incident light.102

The Rubipy-catalysed BZ reaction is quite photosensitive,
owing to the formation of excited catalyst molecules, which
produce the autocatalyst, bromine dioxide: 103

This tool has been exploited to store photographic images on
the surface of a solution containing the BZ reactants.15 Under
excitable conditions, control of illumination has been used to
change the frequency of rotating spirals,104 to split waves using
pulsed illumination,105 to cause spirals to drift in a gradient 106

or with periodic modulation 107 of the light intensity, and to
control wave motion via feedback.108,109 In three-dimensional
systems, eventual control of turbulent regimes for scroll waves
under periodic temporal modulation has been recently con-
sidered both numerically and analytically.110 In the oscillatory
regime, signatures of resonant pattern formation have been
detected under periodic forcing,111 and feedback control has
been used to generate cluster patterns, in which different
regions of the medium oscillate with different phase.112

In addition, the light-sensitive BZ reaction opens up a wide
field of research dealing with the effect of disordered patterns
of excitability on different scenarios of wave propagation. This
has been a major interest of the Barcelona group in recent
years. Randomness in the illumination is easily introduced,
either by applying a homogeneous but temporally fluctuating
light intensity or by projecting a random, spatiotemporally
patterned illumination. A number of striking results have been
experimentally observed, reproduced numerically and analyti-
cally interpreted. The main observations can be classified into
two groups. In the first, noise-induced transitions from sub-
excitable to excitable,113,114 and from excitable to oscillatory
regimes have been observed.114 Spatially extended, temporally
varying noise of zero average, superposed on a mean value
of illumination that corresponds to no wave propagation
(resp. single wave propagation) is able to generate single wave
propagation (resp. target patterns). Fig. 10 shows experimental
observations of the excitable to oscillatory transition, where the
upper row of snapshots follows a single ring developing in the

S2O6F2  2SO3F (4)

Ru() � hν  Ru()* (5)

Ru()* � BrO3
� � 2H�  Ru() � BrO2 � H2O (6)

Ru() � BrO2 � H�  Ru() � HBrO2 (7)

BrO3
�� HBrO2 � H�  2BrO2 � H2O (8)
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Fig. 10 Excitable to oscillatory transition mediated by spatiotemporal noise of zero mean superimposed on a constant level of illumination in the
photosensitive BZ reaction. From ref. 114.

absence of noise, and the lower row demonstrates how a second
ring, the precursor of a target pattern, is induced by the random
illumination. In the second class of problems, zero-mean
randomness in the illumination is used to force preexisting
patterns. The simplest case corresponds to a single front 115 per-
turbed by frozen disorder, where we observe accelerating or
retarding effects, depending on the dimensionality of the pulse.
More interesting is our observation of the Brownian dispersion
of spiral waves (Fig. 11), which shows pronounced resonant
effects when the system is forced with spatially patterned and
time-correlated noise.116 This last situation was also explored in
relation to the lifetime of collapsing scroll rings.117

Another photosensitive system that has been of considerable
importance in nonlinear chemical dynamics is the CIMA reac-
tion and the related CDIMA (chlorine dioxide–iodine–malonic
acid) reaction. These reactions are the system of choice for

Fig. 11 Brownian motion of spirals induced by spatiotemporal noise
of zero mean superimposed on a constant level of illumination in the
photosensitive BZ reaction. From ref. 116.

studying Turing patterns and also support a variety of other
phenomena such as oscillations, bistability and front propaga-
tion.118 The Brandeis group showed that illumination of the
CDIMA system with a tungsten-halogen lamp suppresses oscil-
lations and shifts the steady state to lower concentrations of
iodide and triiodide.119 They attribute this behaviour to the
photodissociation of I2, which leads to a sequence of reactions:

The net reaction is then

By varying the intensity of illumination, one can modify or
even suppress the appearance of Turing patterns. Periodic vari-
ation of the light intensity is more effective than constant
illumination at the same average intensity, and pattern suppres-
sion is most effective at a frequency of illumination equal to the
frequency of oscillation in a stirred CDIMA system of similar
composition.120 Illuminating a Turing pattern at constant inten-
sity through a spatially patterned mask yields similar reson-
ance-like effects, i.e., illumination is most effective in modifying
the pattern when the wavelength of the mask is equal to (or a
small integral multiple of ) the wavelength of the naturally
occurring pattern.121

Experimental tools
One of the most remarkable aspects of the development of
nonlinear chemical dynamics is that nearly all of the most sig-
nificant experimental advances have been made with relatively
simple equipment; this has traditionally been a low-tech field.
Perhaps because even state-of-the-art studies can be done with
inexpensive apparatus, nonlinear chemical dynamics has always
been a very international field as well, with major contributions
coming from investigators in less-developed as well as wealthier
nations.

I2 � hν  2I (9)

I � H2O  I�H2O (10)

I�H2O � ClO2  H� � HOI � ClO2
� (11)

HOI � H� � I�  I2 � H2O (12)

2ClO2 � 2I� � hν  2ClO2
� � I2 (13)
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The earliest experiments on oscillating reactions were done
in beakers and observed by eye. When more quantitative
measurements were called for, potentiometric and spectro-
photometric techniques were employed. Platinum redox elec-
trodes are commonly used to monitor reactions in aqueous
solution. They make it possible to determine the period
and relative amplitude of oscillation, or the existence of
multiple steady states, but they provide only a mixed potential
when more than one redox reaction plays a major role. In oxy-
halogen-containing systems, ion-selective electrodes may be
employed to measure bromide, chloride or iodide concen-
trations. For pH oscillators, a combination glass electrode is
routinely used. For reactions in which colored species are
present, running the reaction in the sample compartment
of a UV-visible spectrophotometer provides an attractive
alternative to potentiometric measurement, particularly since
modern diode array instruments afford the possibility of
obtaining multiwavelength measurements and hence of follow-
ing two or more species simultaneously. For nonisothermal
systems, one can, of course, track the temperature.

More sophisticated techniques that have been used to moni-
tor temporal oscillation include electron spin resonance to
detect malonyl radicals in the BZ reaction 122 and to follow the
cobalt-catalysed oxidation of benzaldehyde 123 and nuclear
magnetic resonance to study the enolization step in the BZ
reaction.124 Magnetic resonance imaging has been used to
investigate propagating fronts in the manganese-catalysed BZ
reaction 125 and in the polymerization of methacrylic acid.126 By
far the most elaborate experimental methods have been
employed in the beautiful studies of the Berlin group on the
spatiotemporal behaviour of catalytic reactions on metal single
crystals. The techniques utilised include low energy electron
diffraction (LEED) 127 and photoelectron emission microscopy
(PEEM).128

Perhaps the single most important experimental advance in
nonlinear chemical dynamics was the introduction of flow
reactor technology. The earliest experiments were carried out
under closed system (batch) conditions, typically in beakers,
cuvettes or Petri dishes. Such a configuration, while inexpen-
sive and easy to set up, necessarily implies that key param-
eters, such as reactant concentrations, change throughout the
course of an experiment as the system approaches equi-
librium. One must be fortunate to find systems that display
interesting behaviour on a time scale that is short relative to
the relaxation time to the equilibrium state. Drawing on the
experience of chemical engineers, investigators studying chem-
ical oscillation in the late 1970s began to employ an open
system configuration, the continuous flow stirred tank reactor
(CSTR). Essentially, a CSTR, shown schematically in Fig. 12,
is an elaborate beaker, equipped typically with a stirring
device, a temperature jacket, one or more probes to monitor
the reaction, and, most importantly, input tubes to bring
fresh reactants into the system and an output tube to main-
tain constant volume while permitting reacted materials to
leave the system. With a CSTR, a reaction can be maintained
far from equilibrium indefinitely, with constant values of the
control parameters—input concentrations of reactants, tem-
perature, flow rate through the reactor. By varying pairs of
control parameters, one can observe how the dynamical
behaviour of the system changes and map out “dynamical
phase diagrams” showing regions of the parameter space in
which qualitatively different behaviour (e.g., steady state,
oscillatory, chaotic) occurs, or, by varying a single parameter,
one can trace out hysteresis loops of the sort shown in Fig. 5.
The input flow is most often regulated with a peristaltic
pump, though syringe pumps provide more precise control
and smoother flow. Very inexpensive (and quite reliable,
though not terribly flexible) systems can be constructed using
gravity-driven flows. Although one typically stirs the system
at hundreds of rpm, CSTRs are only imperfectly mixed, and

some reactions turn out to be quite sensitive to the rate at
which they are stirred.129

While the CSTR is a powerful tool for studying temporal
oscillation, the fact that the system is stirred renders this appar-
atus useless for studying spatial pattern formation. In the late
1980s several designs for continuously fed unstirred reactors
(CFURs) 70,130 were introduced. In most cases, a thin disk of gel,
often polyacrylamide or agarose, serves as the reaction medium.
The input reagents are contained in one or more CSTRs, which
allow for mixing and for the system to be maintained far from
equilibrium. The reagents typically diffuse into the gel via a
membrane or a glass capillary array, thereby minimising the
effects of fluid motion within the CSTR. The high viscosity of
the gel prevents convective motion, which might otherwise dis-
turb pattern formation within the reaction zone. Other systems
that have been used to study pattern formation in the BZ reac-
tion include cation exchange beads,131 Nafion membranes 132

and Couette reactors, in which the reaction takes place in the
gap between two coaxial cylinders, one of which rotates at
an adjustable speed, yielding an effective molecular diffusion
coefficient proportional to the rate of rotation.133

The past decade has witnessed a number of exciting studies
of nonlinear dynamics in electrochemical systems. Electro-
chemical oscillations, under either potentiostatic or galvano-
static conditions are typically several orders of magnitude
faster than homogeneous chemical oscillators, making it pos-
sible to collect large quantities of data in relatively short
periods of time. By introducing spatially distributed probes,
one can observe spatial structures, analogous to those found in
unstirred homogeneous solutions or catalytic surfaces, on
working electrodes of a variety of geometries. Fronts, waves
and patterns in electrochemical systems have recently been
reviewed by Krischer et al.134

Mechanistic considerations
Almost from the beginning, mechanistic studies have played a
key role in the development of nonlinear chemical dynamics.
One might argue that it was the formulation of the FKN
mechanism 16 for the BZ reaction that ultimately established the
credibility of nonlinear dynamics with the majority of chemists.
A persuasive case might also be made that the remarkable
behaviour, both temporal and spatial, of the reactions studied
by nonlinear chemical dynamicists provides the most strin-
gent set of tests available for proposed mechanisms. Recent

Fig. 12 Schematic drawing of a typical CSTR. PP = peristaltic pump,
M = monochromator, R = reactor, PM = photomultiplier. Reproduced
from ref. 20 with permission.
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advances, both on the experimental side to increase the quality
and quantity of the available data, and on the computational
side to make it possible to simulate models with large numbers
of species, have led to the development and refinement of
mechanisms for a significant number of chemical oscillators as
well as to the formulation of general models for classes of oscil-
lating reactions. Mechanistic studies of chemical oscillators,
which often consist of many elementary steps, have inspired the
determination of rate laws, kinetic constants and mechanisms
for numerous component reactions. In addition to detailed
models of individual oscillators, mechanistic studies have led to
the development of several general classification schemes,
which attempt to identify sets of features common to a group
of chemically or dynamically related oscillators, and of new
approaches to extracting mechanistic information from
complex reaction systems.

Example of a specific reaction mechanism—chlorite–
iodide
The BZ reaction has certainly been the most thoroughly studied
from a mechanistic point of view. Although some alternatives
have been proposed,135 the original FKN mechanism 16 has
stood up well over time, and most of the work of the past three
decades has been devoted to filling in the details of the
inorganic 136 or organic 137 portions of the FKN scheme rather
than to challenging the fundamental concepts that underlie it.
We shall not discuss the details of the BZ mechanism, which
can be found in several review articles and collections.2 Instead,
we present here another example, which has also been quite
thoroughly explored, the chlorite–iodide oscillator and related
reactions.138

The chlorite–iodide reaction has played nearly as central a
role in nonlinear chemical dynamics as the BZ system. The
reaction, particularly when augmented with malonic acid, in
the form of the CIMA system, displays the same wealth of
spatio-temporal behaviour and also possesses several variants
that enhance its versatility. Early mechanistic studies of the
reaction 139,140 predate its identification with nonlinear dynamics
and established its unusual character of being both auto-
catalytic (in the product I2) and substrate inhibited (by the
reactant I�). In the late 1980s, several mechanisms were pro-
posed 141,142 that successfully reproduced key aspects of the
system’s behaviour, notably oscillations and bistability, but
none was totally successful over the entire range of experi-
mental data. Several rate constants had not been determined
experimentally and had to be fitted (or guessed). For example,
the bimolecular rate constant for the reaction of HOCl and
HOI was taken as zero in one model,141b 2 × 103 M�1 s�1 in
another,142 5 × 105 M�1 s�1 in a third,141c and 2 × 108 M�1 s�1 in
yet another proposed mechanism! 141a These differences were, of
course, compensated by discrepancies in the values of other rate
constants in the respective mechanisms.

Lengyel et al.138 studied the system over a wide range of
initial conditions: pH = 1–3.5, [ClO2

�] ≤ 10�3 M, [I�] ≤ 10�3 M,
[I�]/[ClO2

�] = 3–5. They employed multiwavelength spectro-
photometry and stopped-flow techniques and carried out
extensive computer simulations. Because analytically pure
chlorite ion is not easily prepared, they generated ClO2

� in situ
from the reaction between chlorine dioxide and iodide ion.
They found that the overall reaction is multiphasic, consisting
of four separable parts: (a) the reaction of chlorine dioxide with
iodide to generate chlorite ion; (b) the initial reaction of Cl()
with iodide; (c) the reaction of Cl() with the product iodine;
and (d) the disproportionation of hypoiodous and iodous acids.
The overall reaction was broken down into a set of kinetically
active subsystems and three rapidly established equilibria: the
protonation of ClO2

� and of HOI and the formation of I3
�.

The stoichiometry and kinetics were experimentally determined

(in some cases redetermined) or were taken from the earlier
literature for the oxidation of iodine (�1,0,�1,�3) by chlor-
ine(0,�1,�3), oxidation of I� by HIO2 and disproportionation
of HOI and HIO2. Rate constants determined for simpler sys-
tems were fixed in the more complex systems. The final mechan-
ism, given in Table 1, consists of 13 elementary steps plus the
three rapid equilibria, involving a total of 15 species. Simu-
lations using this model fit the experimental data on both the
overall reaction and all component subsystems within 1%
relative accuracy. Reactions (M11)–(M13) are significant only
at pH < 2.0 and high (>10�3 M) concentrations of HClO2, or
when [Cl�] is present initially, or in the HOCl � I2 reaction.
Otherwise they may be neglected along with Cl2 and Cl�.

Mechanistic classification schemes
Mechanistic analysis at something approaching the level of
detail of the chlorite–iodide system has been carried out for
perhaps half a dozen chemical oscillators, and partial mechan-
isms are available for several more. An alternative and more
generally applicable approach is to identify general mechanistic
features that characterise groups of oscillators. Higgins 143

examined models of biochemical oscillators from this point of
view, and Tyson 144 showed by analyzing the “community
matrix,” which consists of the signs of the elements of the
Jacobian matrix, that all processes capable of destabilising the
steady state, and thus of generating oscillatory behaviour, fall
into three general classes. The first attempt of this sort based
on mechanisms of actual chemical oscillators was Noyes’
development 145 of a comprehensive scheme for the family of
bromate-based oscillators. Orbán et al.29 extended this notion
by suggesting that each family or subfamily of oscillators con-
tains a minimal core from which all members may be derived.

Another approach to deriving a mechanistic understanding
of a family of oscillators is to abstract from the mechanism of a
particular reaction the essential dynamical features and pro-
duce a “skeleton mechanism” that is applicable to the entire
family. In Table 2, we show a mechanism 146 for the bromate–
sulfite–ferrocyanide reaction, a member of the family of pH
oscillators.147 The mechanism accurately describes the bistable
and oscillatory behaviours of this reaction and qualitatively
mimics similar phenomena in other pH oscillators. A key ele-
ment is the autocatalytic production of H� via eqns. (B1)–(B6),
which we summarise, writing A for BrO3

�, H for H�, X for
SO3

2�, and Y for one or more of the intermediates, such as
HBrO2, HOBr or Br2, as

The protonation–deprotonation equilibrium, eqns. (B7) and
(B8), also plays a key role and can be represented as

Finally, the system requires a negative feedback in order to
oscillate. In the actual system, this role is played by step (B4),
which removes the intermediate, and by step (B9), which con-
sumes protons. Identifying P with Br�, and B and Q with ferro-
cyanide and ferricyanide, respectively, we can write these two
steps as

If step (17) is sufficiently rapid, reaction (18) may be neglected.
If, conversely, step (18) is fast enough, steps (14), (15) and (17)
may be merged into the single reaction

A � HX � H  Y (14)

HX � Y  3H (15)

X � H  HX (16)

Y  P (17)

B � H  Q (18)
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Table 1 Mechanism of the chlorite–iodide and related reactions a

Number Reaction Rate law

(M1) ClO2 � I�  ClO2
� � ½I2 v1 = 6 × 103[ClO2][I

�]
(M2) I2 � H2O  HOI � I� � H� v2a = 1.98 × 10�3[I2]/[H

�] � 3.67 × 109[HOI][I�]
  v2b = 5.52 × 10�2[I2] � 3.48 × 109[H2OI�][I�]
(M3) HClO2 � I� � H�  HOI � HCl v3 = 7.8[HClO2][I

�]
(M4) HClO2 � HOI  HIO2 � HOCl v4 = 6.9 × 107[HClO2][HOI]
(M5) HClO2 � HIO2  IO3

� � HOCl � H� v5 = 1.5 × 106[HClO2][HIO2]
(M6) HOCl � I�  HOI � Cl� v6 = 4.3 × 108[HOCl][I�]
(M7) HOCl � HIO2  IO3

� � Cl� � 2H� v7 = 1.5 × 103[HOCl][HIO2]
(M8) HIO2 � I� � H�  2HOI v8 = 1.0 × 109[HIO2][I

�][H�] � 22[HOI]2

(M9) 2HIO2  IO3
� � HOI � H� v9 = 25[HIO2]

2

(M10) HIO2 � H2OI�  IO3
� � I� � 3H� v10 = 110[HIO2][H2OI�]

(M11) HOCl � Cl� � H�  Cl2 � H2O v11 = 2.2 × 104[HOCl][Cl�][H�] � 22[Cl2]
(M12) Cl2 � I2 � 2H2O  2HOI � 2Cl� � 2H� v12 = 1.5 × 105[Cl2][I2]
(M13) Cl2 � HOI � H2O  HIO2 � 2Cl� � 2H� v13 = 1.0 × 106[Cl2][HOI]

 Rapid equilibria  

(M14) HClO2  ClO2
� � H� K14 = [ClO2

�][H�]/[HClO2] = 2.0 × 10�2

(M15) H2OI�  HOI � H� K15 = [HOI][H�]/[H2OI�] = 3.4 × 10�2

(M16) I2 � I�  I3
� K16 = [I3�]/[I2][I

�] = 7.4 × 102

a All concentrations in M, times in s. 

and Y eliminated as a variable. With appropriately chosen kin-
etic parameters, the simple model consisting of eqns. (14)–(17)
or of eqns. (16) and (18) generates the clock behaviour in batch
and bistability and oscillations under flow conditions of a wide
variety of pH oscillators.148

A still more general approach is to classify oscillating reac-
tions according to the kind of feedback that causes them to
oscillate. Expanding on earlier ideas of Tyson 144 and Franck,149

Luo and Epstein 150 proposed such a categorization based on
two types of positive feedback—direct (which can be either
explosive or self-limiting) and indirect autocatalysis, and three
types of negative feedback—coproduct autocontrol, double
autocatalysis, and flow control. An alternative classification,
which utilises stoichiometric network analysis 151 to identify
groups of reactions that destabilise the reaction network, has
been proposed by Eiswirth et al.152

Approaches to analyzing complex reactions
One byproduct of efforts to construct mechanisms for chemical
oscillators has been the development of new approaches to the
analysis of complex, multistep reactions. The experimental
capability of diode array spectrophotometers to obtain data at
multiple wavelengths with a time resolution much less than the
duration of a typical oscillation and the computational power
of modern PCs have led to methods for treating large quan-
tities of experimental data and extracting from them kinetic
parameters. It is now possible, using sophisticated matrix
manipulations along with computer simulation and fitting
of differential equations,153 to utilise data sets consisting of

A � HX � H  nH  (n ≥ 2) (19)

Table 2 Mechanism for the bromate–sulfite–ferrocyanide reaction

Number Reaction

(B1) BrO3
� � HSO3

�  HBrO2 � SO4
2�

(B2) HBrO2 � Br� � H�  2HOBr
(B3) HOBr � Br� � H�  Br2 � H2O
(B4) Br2 � H2O  HOBr � Br� � H
(B5) 2HBrO2  BrO3

� � HOBr � H�

(B6) Br2 � HSO3
� � H2O  2Br� � SO4

2� � 3H�

(B7) H� � SO3
2�  HSO3

�

(B8) HSO3
�  H� � SO3

2�

(B9) BrO3
� � 2Fe(CN)6

4� � 3H�  HBrO2 � 2Fe(CN)6
3� �

H2O

thousands of points to compare literally hundreds of candidate
mechanisms.154

Other approaches, in analogy to relaxation kinetics, involve
perturbation techniques. Ruoff 155 attempted to test the FKN
mechanism for the BZ reaction by adding small quantities of
KBr, AgNO3 and HOBr and comparing the observed phase
shifts of the oscillations with those predicted by the mechan-
ism. A more general technique, developed by Hynne and
Sørensen,156 is known as quenching. If we think of an oscillating
reaction as occurring in a space whose coordinates are the con-
centrations of the oscillating species, then a typical oscillation
may be represented as a periodic closed curve like a circle or an
ellipse, in mathematical terms a limit cycle, in that space. At the
center of the limit cycle lies an unstable steady state. If one
perturbs the system by adding (or subtracting) just the right
amount of a reactant or intermediate at just the right phase of
the oscillation, one may move the system off the limit cycle and
onto (or at least into the neighbourhood of ) the steady state.
Although the steady state is unstable, so that the system will
eventually resume oscillating, the oscillations will be quenched
for a significant time. Comparing the results of a set of quench-
ing experiments with the predictions of a model can provide a
stringent test of the model.

Another perturbation method, correlation metric construc-
tion (CMC),157 is derived from electronic circuit theory. Here
one subjects a system near its steady state to random concen-
tration changes in a set of input species. Sequences of meas-
urements of as many concentrations as possible subsequent to
the perturbation are used to construct a time-lagged correlation
matrix, which measures the interspecies and time correlations
within the reaction network, i.e., which species concentrations
show related changes separated by a particular time interval.
The resulting matrix is then converted into a set of “distances”
between species. When these distances are projected onto a two-
dimensional plane, a picture of the reaction network emerges.
Unlike the methods described above, the CMC approach is
more qualitative, but can be used to generate the reactions in a
complex network rather than simply testing the quantitative
success of a network consisting of a given set of reactions.

Models
As noted above, the FKN mechanism is the most widely
accepted kinetic scheme for the BZ reaction. However, it
involves so many chemical species and reactions that the
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complete kinetic model that follows from it is analytically of
very limited use. Fortunately, the structure of the FKN mech-
anism is so robust that it can be reduced to a much simpler
model, the Oregonator (after Oregon, USA, where it was
first proposed). Since its formulation by Field, Kőrös and
Noyes 16 nearly thirty years ago, it has been and continues to be
commonly used to interpret the dynamic behaviour of the BZ
reaction, both in homogeneous and spatially dependent condi-
tions. The reduction from the original FKN extended mechan-
ism proceeds through the standard techniques of chemical
kinetics, mainly the pseudo-steady-state and rate-limiting-step
approximations.

The Oregonator model
The standard Oregonator model is commonly written in terms
of five irreversible steps, whose rate constants are assumed to
incorporate proton concentrations when appropriate. The
sequence of basic reactions may be written as:

In this scheme, A = BrO3
�; B = organic species such as malonic

acid and bromomalonic acid; P = HOBr; X = HBrO2; Y = Br�,
Z = oxidized form of the catalyst; and f is a stoichiometric
factor that serves as an adjustable parameter. In what follows
we assume that the major reactants A and B are kept at fixed
concentrations and focus our analysis on the three intermedi-
ates X, Y and Z. The corresponding rate equations are:

The analysis is greatly simplified by converting these equations
to a dimensionless form. The appropriate conversion factors
are:

Introducing some additional dimensionless parameters, we
obtain a simpler form of the kinetic equations:

The three dimensionless parameters remaining in eqn. (23) have
typical values of ε ≈ 10�2, ε� ≈ 10�5, q ≈ 10�4. Note that the
autocatalytic contribution, the genuine nonlinear term in the
dynamics of the Oregonator model, is clearly identified through
the term x(1 � x).

(20)

(21)

(22)

(23)

Even in this form, the Oregonator model appears formidable
from an analytical point of view. We pursue a further reduction
of the original set of equations to a form that still captures the
basic nonlinear dynamic features of the BZ reaction. To this
end we take advantage of the smallness of the quantities ε and
ε�, respectively associated with the time scales governing the
evolution of HBrO2 and Br�. Since ε� is much smaller than ε,
one can invoke the steady state approximation for the concen-
tration of bromide ion to obtain y = fz/(q � x). Substituting this
result into eqn. (23), we end up with a pair of rate equations for
the bromous acid concentration and the oxidized form of the
catalyst:

Written in this way, the reduced Oregonator model has the typi-
cal form of an activator-inhibitor model, with x the autocata-
lytic (activator) species, and z the consuming species (inhibitor).

Phase-space analysis of stability: oscillating and
excitable regimes
The simplest behaviour of the BZ reaction we aim at repro-
ducing with the kinetic scheme just derived consists of temporal
oscillations. Naturally, temporal oscillations emerge, rather
than the “classical” monotonic approach to a steady state, as a
consequence of the loss of stability of the steady state solution.
Our task is thus to obtain the steady state solutions, classify
them in terms of some parameter (for instance, f) and check
their stability properties. Such a stability analysis can be done
a posteriori by direct numerical integration of the differential
equations. A more elegant approach invokes analytical linear
stability techniques.158 There is, however, a much more intuitive
a priori technique based on the notion of trajectories in the
phase space spanned by the set of variables of our dynamical
system.159 A curve in this space is nothing but the succession of
states attained by the system as it evolves in time. We look
briefly at how this tool enables us to interpret pictorially the
onset of oscillations in the two-variable Oregonator model (24).

A pair of special curves easily constructed in the phase space
of our system turn out to be particularly important for
our discussion (Fig. 13). They are the so-called nullclines,
which locate the (x, z) pairs such that dx/dt = 0 (x-nullcline) and
dz/dt = 0 (z-nullcline). In the reduced Oregonator model, the
z-nullcline for the inhibitor variable is a straight line with slope
unity and passing through the origin. The x-nullcline for the
activator species has a more complicated (inverted N) shape.
The curves intersect at a single point, which corresponds to the
steady state. Several distinct scenarios can be envisaged by con-
sidering the position of this crossing point relative to the
nullclines. Depending on the value of the parameter f, the
nullclines intersect to the right (left) of the maximum (mini-
mum) of the x-nullcline, for low (high) values of that par-
ameter, or, alternatively, they cross on the middle branch, for
intermediate values of f. The stability of the corresponding
steady states is easily determined by using the fact that the
nullclines separate the phase plane into four different regions
each with a different combination of the signs of the derivatives
dx/dt and dz/dt (Fig. 13).

By simply following trajectories starting from arbitrary
points in the phase space, we convince ourselves that whenever
the steady states are located either on the left or on the right
branch, they are stable, whereas any steady state located on the
middle branch is unstable. In this last situation (Fig. 14a), if
one starts with an arbitrary initial condition, e.g., below the
x-nullcline, the system jumps, nearly horizontally, dx/dt � 0,

(24)
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to the right branch and then moves upward, (dz/dt > 0),
approaching the maximum of the x-nullcline. At this point
dz/dt is still positive, so the trajectory has to leave the nullcline,
this time jumping backwards toward the left branch. On cross-
ing this branch, dz/dt changes sign, so the trajectory goes
downward and approaches the minimum. Since at this point
dz/dt is still negative, the trajectory is forced again to leave
the nullcline and this time is projected toward the right branch
to repeat the cycle forever. There is thus no possibility for
the system to reach its steady state, but instead it gets trapped
in a “limit cycle” trajectory, a signature of its oscillatory
behaviour.

The phase-space analysis of excitability, rather than of oscil-
latory behaviour, proceeds similarly (Fig. 14b). Assume now
that the intersection point is located on the left branch, but very
close to the minimum of the x-nullcline. If, starting from rest,
the system is slightly (subcritically) perturbed in such a way that
it remains to the left of the middle branch, a monotonic relax-
ation back to the steady state will take place. If it is instead
perturbed strongly enough (supercritically), so that it crosses
the middle branch, then the dynamics will take the system
through a large excursion around the phase plane before return-

Fig. 13 Phase space representation of the reduced Oregonator model
showing the x- and z-nullclines. Parameter values are: ε = 0.03, q = 0.015
and f = 1.0.

ing to the rest state. Note in this case that the important notion
of refractoriness is easily understood within our phase space
representation. The system is effectively insensitive to any fur-
ther excitation during the slow evolution along the right branch
of the x-nullcline and as it begins to descend along the left
branch. It is only when it approaches the rest state that the
middle branch is again reachable and the system regains its
excitability.

As mentioned above and when considering unstirred
reactors, oscillatory or excitable conditions can give rise to
striking spatially extended phenomena of wave propagation.
True waves, either isolated, in the form of single pulses, or
collectively organized as wave trains (target patterns), propa-
gate based on a reaction–diffusion mechanism. The simplest
situation occurs under excitable conditions, where the role of
the perturbative excitation at any point of the extended system
can be played by a diffusional flow from neighboring elements
of the medium. Naturally in this case, the model used so far and
appropriate to zero-dimensional (point or well-stirred) systems,
has to be extended to include diffusion.

Modeling Turing-like patterns
Up to now in this section we have analyzed typical phenomena
occurring in the BZ reaction that can be easily accounted for, at
least qualitatively, with the standard Oregonator model, or
even more advantageously, in terms of its reduced two-variable,
form (24). We now consider the modeling of stationary Turing
patterns, which do not arise in the ordinary BZ reaction, but do
occur in the CIMA system. The CIMA reaction also admits a
convenient description in terms of a two-variable activator–
inhibitor model 71

where X = I� stands for the activator, Y = ClO2
� is the inhibitor

species and α denotes a phenomenological parameter. The
resulting rate laws can be nondimensionalized (omitting the
details) into the form

(25)

Fig. 14 Phase space representation of the reduced Oregonator model: a) Oscillatory regime; b) Excitable regime. Parameter values ε and q as in
Fig. 13, f = 1.0 (a) and f = 10 (b).
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There are two key features of Turing-like structures that must
be reproduced by any model aimed at their study. First they
must arise through instabilities of steady states that are stable to
homogeneous perturbation. Second, the patterned state must
have an intrinsic wavelength that is determined solely by the
kinetic and diffusion parameters, but is independent of the size
of the system (provided this dimension is larger than the
wavelength).

The onset of Turing patterns can be described mathematic-
ally in a straightforward way. To illustrate this procedure we
look at a one-dimensional generic activator–inhibitor model of
the sort we have written above for the CIMA reaction,
expanded to include diffusion terms as

Note that for convenience we have defined D to be the ratio
of diffusivities of the two species, since one of the diffusion
coefficients, in this case that corresponding to the activator
variable, can be used to nondimensionalize the spatial scale.

We assume that the system has a homogeneous steady state
(uss, vss), such that f(uss, vss) = g(uss, vss) = 0. A linear stability
analysis of such a solution in the absence of diffusion, i.e.,
for homogeneous perturbations, is easily formulated in terms
of the Jacobian matrix constructed from the kinetic terms. We
write it as, A|(uss,vss) where the notation reminds us that the
Jacobian is evaluated at the reference steady state solution. Its
components are the partial derivatives of the kinetic functions

The eigenvalues of the linear stability analysis are directly
obtained as

in terms of the trace Tr(A) = fu � gv, and the determinant, |A| =
fugv � fvgu, of the Jacobian. Stability is guaranteed if Tr(A) < 0
and |A| > 0.

Now let us consider stability with respect to inhomogeneous
perturbations of the form (u,v) ∝ (u0,v0)e

λτ ± ikx. The Jacobian
matrix now incorporates the diffusion terms, and the
corresponding eigenvalues read

with h(k2) ≡ Dk4 � (Dfu � gv)k
2 � |A|. The only possibility for

the steady state to be unstable is that h(k2) < 0 for some nonzero
value of k at which Re[λ(k)] > 0. As a function of k2, h(k2) has a
minimum, and, since |A| > 0, (Dfu � gv) must be positive. On the
other hand, recall that Tr(A) = fu � gv is negative, so we must
have D ≠ 1 as a necessary condition for a Turing-like instability.

(26)

(27)

(28)

(29)

(30)

Indeed, fu and gv must be of opposite sign. For convenience,
suppose that fu >0 and gv <0, in accordance with the activator–
inhibitor classification in our two-species model. Then D > 1,
i.e., the inhibitor diffuses faster than the activator. This import-
ant restriction is characteristic of the Turing instability.

Although the last inequality on the ratio of diffusion co-
efficients is a necessary condition, it is not sufficient for instabil-
ity (i.e., to ensure that h(k2) < 0). More precisely, we require that
the minimum of h be negative, which requires that

At the bifurcation, i.e. when hmin = 0, we can obtain a critical
value for D, as well as the critical value of the wavenumber at
the onset of the instability

This summarizes our mathematical description of the Turing
instability.

Future prospects
Nonlinear chemical dynamics has grown rapidly, perhaps
exponentially, during the past three decades. While we hesitate
to predict where such a vital field will move in the future, it
seems appropriate to suggest a few areas that are likely to grow
in prominence in the coming years. Increasingly, the complex
chemical reactions studied by nonlinear dynamicists are being
coupled to other phenomena that have generally been con-
sidered to belong more to the domains of physics or biology.
The effects of linking “exotic” chemical reactions to hydro-
dynamics, surface tension, fluid flows and mechanical forces are
likely to become significant areas of research. We expect the
insights of nonlinear chemical dynamics to be applied to
systems much larger and much smaller than the beakers, Petri
dishes and laboratory scale reactors that have played the major
roles to date. The oceans and the atmosphere are two realms in
which nonlinear chemical dynamics has only begun to have an
impact, though its relevance is already clear.

Going down from the typical laboratory scale, a particularly
interesting context is that of nonequilibrium structures in soft-
condensed systems.160 All the chemical phenomena reported so
far in this article refer to “dilute”systems, where physical inter-
actions between reacting molecules can be neglected. But non-
equilibrium structures can also appear in condensed systems of
particles with weak attractive interactions (liquid crystals, lipid
membranes or vesicles, Langmuir or Langmuir–Blodgett films,
thin liquid films on solid surfaces and adsorbate layers in met-
als). In particular, promising reports have already appeared of
wave propagation phenomena in Langmuir monolayers of
amphiphilic photoisomerization compounds.161 On the micro-,
even the nano-scale, we point out that the water droplets in
which the BZ reaction occurs in the microemulsion system in
Fig. 8 have volumes of about 10�22 L. It has recently been
reported that the BZ oscillator can be used to direct the peri-
odic, stepwise self-assembly of acrylonitrile-derivatised gold
nanocrystals.162

Thus far, nonlinear chemical dynamics has been a relatively
“pure” science, with few applications of practical importance.
We expect that situation to change as studies of catalysis,127 the
use of oscillating reactions in gels to create devices for drug
delivery,163 and the production of new materials via frontal
polymerization 164 along with other, so far unforeseen, appli-
cations evolve. Future progress will almost certainly involve
working with and developing new approaches to

(Dfu � gv)
2 > 4D|A| (31)

(32)
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“dirtier”systems—heterogeneous materials, media that change
in size and shape, highly coupled configurations. Continued
development of approaches that enable investigators to control
and design dynamical behaviour, both in time and in space, is
likely to play a key role, aided by further progress in experi-
mental methods and computational power. Finally, we expect
nonlinear chemical dynamics to remain what it has always been,
a vibrant, interdisciplinary, international field where theory and
experiment are inextricably linked.
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