
Chaotic Dynamics of RLD Oscillator

Abstract
Chaos is aperiodic behavior in deterministic nonlinear dynamical systems that is highly
sensitive to initial conditions. Chaotic behavior can be observed in a simple electronic
(RLD) circuit consisting of a resistor, diode, and inductor with an oscillatory voltage
drive signal. The output voltage signal exhibits both stable periodic behavior and chaotic
behavior, which are visualized by power spectra and phase diagrams. False nearest
neighbor analysis is used to elucidate the dimensionality of a system, distinguishing
between chaos and noise. Synchronized chaotic circuits can be useful for secure
communication applications.
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Introduction

Chaos is a class of complex behaviors that can emerge from nonlinear dynamical systems, and is ubiquitous
both in the natural world and technology. Many biological systems such as the human heart and
invertebrate neurons naturally exhibit chaotic behavior. Furthermore, digital computing has made feasible
the creation of fractal patterns based on chaos. The beauty of chaos, however, lies not in the aesthetic of
fractals, but in the simplicity of the system from which such complex, unpredictable behavior can emerge.

The electronic RLD circuit is one example of a simple system that can exhibit chaotic behavior. Building a
chaotic circuit is a useful aid for understanding the mathematics and applications of this pervasive
phenomenon.

Chaos lies in the middle of a spectrum that many people conceptualize as a dichotomy between signal and
noise; it is in practical terms a signal that appears noisy, but for which this “noise” has structure and
meaning. Chaos is a specific type of nonlinear dynamical system, one that is aperiodic, non-repeatable, and
highly sensitive to initial conditions. Many data analysis techniques, such as spectral analysis, hinge upon
an assumption of linearity, and strive to average out fluctuations believed to be noise. A different set of
techniques is required for nonlinear systems, in which averaging out fluctuations would mean the throwing
away of information about the dynamics of the system. When the underlying dynamics of a system is not
known, analysis tools created for understanding chaotic systems can be used to determine whether a system
is noisy or chaotic. Specifically, phase space reconstruction can reveal the dimensionality of the underlying
data, and suggest the number of equations necessary to describe the system.

Chaos is not only useful for data analysis, but has broad application in technology. For example,
pacemakers for the heart could incorporate chaotic dynamics to more closely resemble the natural behavior
of the heart. Furthermore, chaotic signals can be used as an encryption technique for communication.

This lab project consists of building a chaotic circuit, analyzing the circuit itself, analyzing chaotic data
from the circuit, and an attempt at building of a secure communication system.

Motivation
In 1997 M. Feigenbaum published a seminal paper proving that if a system exhibits repeated period
doubling by increasing some finite parameter, then the system will have an infinite number of period
doublings or bifurcations in a finite increase of that parameter (Feigenbaum, 1977). This idea is expressed
by the following recursive equation:

The logistic map is a simple example of a system that demonstrates this phenomenon (figure 1).
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Figure 1. Comparison between Bifurcation and Chaos in the Logistic Map.
(Strogatz, 1994, pp .360 & 355.)

The logistic map is an equation used to model population dynamics. The variable r is a scaling factor, and
as r is increased the properties of the logistic map changes. Shown above is a bifurcation for an r slightly
above 1;  the circles are stable points. For values of r less than 1, there is only one stable point. The system
effectively alternates between one point and the other, and all other points eventually converge to this 2-
point limit cycle. For the chaotic illustration, r = 3.9, and if one starts from an arbitrary point in the system,
the system will result in a non-repeating series of points with no apparent pattern.

A very simple electronic system that exhibits this period doubling route to chaos is the chaotic resonator,
first demonstrated in 1981 by Paul S. Linsay.  This circuit is made of three basic components in series: a
resistor, diode and inductor.

This circuit can then be used to investigate the control of chaos, and in particular synchronization of chaos.
Using a continuous unidirectional proportional feedback, one can control a slave oscillator by
synchronizing it to the master; this was first demonstrated by Newell et al in 1993, and later revised by
Mozdy et al in 1995.

Previous work on this circuit from a couple of class projects at Harvard University, has entailed
investigating the effect of increasing the amount of noise in the circuit and the bifurcation points (Greene et
al., unpublished), and demonstrating that this system has the expected Feigenbaum universal constant
(Schaffer et al, unpublished).

Period Doubling Route to Chaos

Period doubling as a route to chaos is address in general mathematical terms by Feigenbaum.  He proves
that if the system exhibits period doubling by increasing a single parameter, then the system has a universal
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where bn is the parameter value at which the nth bifurcation occurred.  A bifurcation is also known as a
period doubling.

In the chaotic resonator circuit, the circuit undergoes pitchfork bifurcation as the peak-to-peak drive voltage
is increased, and is evident by the appearance and a new frequency component at half the drive frequency.
As the amplitude is further increased, the bifurcated signal bifurcates again. The amplitude at which each

Bifurcation Chaos
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bifurcation occurs decreases geometrically according to the Feigenbaum equation. This progression iterates
until there are an infinite number of bifurcations from a finite increase of drive voltage, resulting in chaos.

The phase diagram depicted in figure 2 demonstrates this bifurcation process.  In phase space, an ordinary
resonator circuit would be a single orbit, which is what the output of the circuit looks like for low drive
amplitudes.  As the amplitude is increased, a new frequency component appears, and this new frequency
results in seeing two orbits in the phase space plot.  Unfortunately, the amplitude of the period doubled
frequency, as well as all other bifurcation frequencies, is extremely low. To be able to visualize the
bifurcations, as well as chaos, one must zoom in to the phase space plot to the point where one can no
longer see the entire orbit, but instead see only a very small slice.
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Figure 2.
Phase Plot of Bifurcation: Output signal as a function of drive signal.
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How to Build a Chaotic Circuit

Overview
The circuit required to create chaos is simple to build, and consists of a small resistor, large inductor and a
diode in series.  Figure 3 illustrates the schematic for this circuit.

Figure 3. Simple Chaotic Circuit

The signal supplied to drive the circuit is a sinusoid with variable peak-to-peak amplitude.  For most of our
experiments, we used a 10 Volt peak-to-peak auditory oscillator set to 20 KHz.  We chose an audio
oscillator over a digital function generator because the synthesized sine waves produced by digital function
generators can be noisy.  Reduction of noise sources is critical for studying a chaotic circuit.

As the circuit is driven with higher peak-to-peak amplitudes, the circuit takes on nonlinear behavior.
Namely, this circuit exhibits a period doubling route to chaos.  Voltage was measured between the resistor
and diode relative to ground.

The circuit is a modification of the prototypical RLC circuit, but with the capacitor replaced by the diode.
The diode can then be modeled as an ideal diode and a voltage dependent capacitance, as depicted below:
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Figure 4. Ideal Diode and Voltage Dependent Capacitance as  Model for Circuit.

Building the circuit
As discussed earlier, the simple resonator circuit is composed of a resistor, diode and inductor all in series,
with a sinusoidal drive voltage.  The components were chosen to exhibit chaos at a relatively low
frequency.  The frequency where chaos is possible is approximately

LC
f

π2

1= ,

where L is the inductance and C is the approximate capacitance of the diode.  Since the diode is not
changed (always an N4004) and the capacitance is fixed, the inductor must be large for the resonance
frequency be low.  This is why we chose a 100 mH inductor.  A 100 Ohm resistor was chosen because the
resistor effectively sets the bandwidth of the resonator, and therefore should be relatively small.

To build the circuit, simply place all 3 components in series in a breadboard and attach the drive.  Refer to
figure 1 as a guide for properly assembling the components.
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The Synchronization Circuit
We also investigated synchronizing two identical chaotic resonators.  To approximate “identical,” we tested
and chose pairs of components with the most similar characteristics. We tested the lowest voltage needed
for a single bifurcation and the frequency at which this lowest bifurcation occurred.  Since we only had five
100mH inductors, we were fairly limited on matching them. However, we had a supply of 500 diodes and
sampled well over a hundred before choosing a pair.

The synchronization circuit is composed of two chaotic oscillators as constructed above. Of the two
circuits, one is the master, and the other is the slave. Ideally, the slave matches the master. This matching
can be confirmed by examination of a phase space diagram of master output versus slave output. When the
two circuits are synchronized, this phase plot approaches a straight line.

The chaotic control method used is a continuous version of the Occasional Proportional Feedback (OPF)
controller. The basic idea is that if the two systems are relatively similar to begin with, then only small
(linear) corrections will be needed in order to keep the slave oscillator matched to the master. To generate
the correction signal, the states of the two circuits are compared, and a scaled down version of this
difference is added to the slave’s drive signal. This correction signal can be thought of as a negative
feedback signal, or weak coupling in a coupled oscillator system. The coupling is unidirectional, which
means that the master circuit does not have any correction or feedback applied to its drive. The state of the
system is measured in the same way the output of the circuit is measured, between the resistor and
diode. Note, our circuit varies from that described by Mozdy et al. 1995, both in the order of the
components in resonator circuit and in the location from which the voltage is measured.

The required circuits for the unidirectional control are instrumentational amplifier (subtractor),
potentiometer (variable resistor), and voltage adder.  The instrumentational amplifier is comprised of three
opamps. Two opamps act as buffers and the third computes the subtraction.  Then this subtracted voltage
needs to be scaled down, so that we can have variable gain.  Finally, this scaled down voltage is added to
the drive voltage.  The voltage adder is actually done with a current adder, which has the side effect that the
output voltage is inverted; therefore, the voltage needs to be inverted again using a single input current
adder.

The circuit that we used is schematically drawn below.  We have several more opamps in our circuit than is
absolutely necessary; this is because we have found that the phase lag introduced by the opamps is
significant.  To tackle this problem with phase lag, we added opamps between the drive signal and the
master oscillator in order to match the amount of delay between the drive and the slave oscillator.  Opamps
U1A – U4A are serving this purpose: to match the phase lag.  Opamps U19A – U21A are the three opamps
that make up the instrumentational amplifier.  U16A and U17A are two buffers used to ensure that the
correction signal is not contaminated by the drive and to ensure that the third opamp in the
instrumentational amplifier does not saturate; these two opamps are probably not needed.  U6A is a buffer
used to isolate the drive from the slave circuitry.  U7A and U8A make up the voltage adder.

The specific opamps we used were ST’s TL071CN or TL084CN.

The variable gain for the feed back is accomplished using a voltage divider circuit, with a 10K resister in
series with a 10K potentiometer.  However, there are several complications with this simple circuit.  First,
there seems to be a DC bias in the difference signal, which creates an even larger error when it is feedback
to the circuit.  This larger error then increases the difference signal which has the DC bias applied to it
again, and the signal eventually explodes if the gain is too high.  To deal with the DC bias, a 47pF capacitor
was added between the 10K resistor and the potentiometer.  Once the DC bias was successfully controlled
for, a resonance developed inside of the feedback loop at approximately 400 KHz.  To filter out this high
frequency feedback, we added a 471pF capacitor after the 10K resistor to ground.

The gain and filtering circuit that we used is illustrated in the schematic, however, this circuit does not
function exactly as described above.  The 47pF capacitor needs to be placed between the 10K resistor and
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potentiometer and the opamp, for the circuit to work as we described it.  However, we did not realize the
error until after the synchronization data was collected.  It leaves it to be demonstrated that the intended
circuit would be better at synchronization than the configuration actually used.

A significant stumbling block that we encountered was that there was an extremely high frequency noise
appearing on the master resonator once the opamps were added to the circuit.  As it turns out, the power
supply’s +15,-15 lines, which power the opamps, had small amplitude fluctuations.  To remove these
fluctuations, two capacitors were added between +15 to ground, and –15 to ground, they are depicted as C3
and C4 in the diagram (figure 5).
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Figure 5. Circuit Diagram of Two Synchronized Oscillator System.
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Observations on Circuit Modifications

There are some alternative designs of the circuit worth exploring. The diode can be replaced with an LED,
as well as a photodiode.  The circuit is believed to exhibit chaos because of the voltage dependent
capacitance. Therefore, if a LED or photodiode with a large voltage dependent capacitance can be found,
then the diode could be replaced with that component.

One interesting possibility is to optically record the state of the chaotic system with an LED in place of the
diode. Several different LEDs were tested to see if chaos or at the least a bifurcation was possible in the 10
Volt peak-to-peak drive amplitude range.  Ultra-Bright white, yellow and red LEDs were tested, but none
exhibited even a single bifurcation.  The Ultra-Brights were tested because they have extremely anomalous
properties, one of which might be a large Voltage-dependent capacitance.  This still might be the case, but
their high resistance effectively makes chaos unachievable.  An unknown green LED did bifurcate at
approximately 8 Volts, but none of the higher bifurcations were achievable with our function generators.

Another idea for modifying the circuit is to drive the circuit into chaos by changing the internal dynamics
of the diode instead of changing the drive amplitude. To be able to change the dynamics of the diode
component, replace it with a photodiode.  As more or less light is applied to the photodiode, its dynamics
change.  We tested a single IR photodiode.  This photodiode demonstrated chaos at a lower drive voltage
than the N4004 diode which we were using, but did not have a significantly lower frequency.  What seems
counter-intuitive is that as more light is applied to the photodiode, the more chaos was observed.  This
might be a very interesting phenomenon to investigate further.



13

Distinguishing Chaos from Noise

Phase Space Embedding and False Nearest Neighbors
As mentioned previously, one of the utilities of chaos is that it can provide a framework for

analyzing where on the spectrum between pure signal and pure noise, a data set might fall. Chaos is a type
of signal, but can appear to be noise if not analyzed properly. Chaotic signals are irregular in time, but
highly structured in phase space. Phase space embedding therefore provides a tool for visualizing the
structure of chaotic signals, and for distinguishing chaos from noise. Furthermore, noise, by definition, is
infinitely dimensional, whereas chaos is (relatively small) finite dimensional. Time series data can therefore
be “unfolded” into higher dimensional space by sampling data points at fixed distances. A new data point
will be created from a single time point and some integer number of steps ahead of that time point. For
example, a voltage signal at time t: V(t) can be plotted in three-dimensional space as V(t) vs. V(t + τ) vs.
V(t + 2τ). Embedding theorem proves that a sequential ordering of the points still follows the underlying
dynamics (Abarbanel, p.17 and citations therein).

Once time series data is represented in multivariate space, the next step is to find the
dimensionality of the underlying dynamics. There is risk in a phase space reconstruction that some points
will neighbor on each other because they have been projected into too low of a space from a higher
dimension. These points are termed “false nearest neighbors,” and can be used as a metric for finding the
appropriate dimensionality of the phase space. Specifically, a global nearest neighbors value is calculated
based on the average Euclidian distance between each point and its n nearest neighbors, where n is a
parameter to be set. A threshold is set such that when the average distance between false nearest neighbors
exceeds it, the data is unfolded into the next higher dimensional space. This process is repeated until the
global false nearest neighbor distance does not change, at which point the attractor of the system has been
revealed.

One of the challenges of using the false nearest neighbor method lies in the choosing of the time
lag τ. Although there is not a mathematical formalism for determining these parameters, there are
guidelines. By necessity, τ will be some multiple of the sampling rate of the data, given that the data is
already discretized. τ  must also be large enough to change significantly between time steps and display the
underlying dynamics of the system, but not so large that it is unstable. (Remember that chaotic systems, by
definition, are sensitive to initial conditions and neighboring points separate exponentially in time.) A
useful heuristic for determining τ is to calculate the average mutual information and use the time lag at
which the first minimum occurs as the intitial τ (Abarbanel, 1996). Mutual information is a theoretical
construct that describes how interdependent two measurements are with each other. When the mutual
information is a minimum, the two measurements are fairly independent of each other, but not so
independent that there is no connection. This makes for a useful time delay τ such that it is connected with
the nonlinear information that describes the underlying dynamics of the system.  An alternative to choosing
T based on the first minimum of average mutual information is to choose the first zero crossing of the
linear autocorrelation function of the data.

The goal of false nearest neighbors analysis is to determine the dimensionality of the data and to
plot the attractor. CSPW (1996) is a software package that computes the dimensionality based on the
process described above, iterating through a number of false nearest neighbor calculations. This software
was used for the analysis of circuit data.
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Results

Analysis of Period Doubling
Our first set of data collected was used to test the circuit for period doubling behavior on the route to chaos.
We drove our initial circuit, which was constructed with a 3.4 mH inductor, with a 150 kHz sinusoid at
various amplitudes. Using an output versus input (x-y) plot on the oscilloscope, we judged by eye when the
circuit bifurcated by counting the number of orbits. Furthermore, we judged chaos by the appearance of the
orbits turning fuzzy, with an uncountable (infinite) number of orbits.

At a drive amplitude of 0.542 to 0.659 Volts, one route to chaos was observed and is plotted as the first
four bars in the bar chart below (figure 6). A second route to chaos was observed between 0.74 and 1.658
Volts (figure 6). A height greater than 40 in the bar chart represents an uncountable number of orbits,
which is the signature of chaos.
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Figure 6. Route to Chaos.
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surprisingly close to the Feigenbaum constant.

As demonstrated by the data, there are two ranges where chaos is possible from a single orbit, this has
never been published but has been seen by other researchers. We observed that for voltages significantly
higher than 1.7 volts, stable orbits higher than 2-cycle orbits exist on the period-doubling path to chaos. We
observed both a 3-cycle orbit on a period doubling route to chaos, and 5-cycle stable orbit on the path to
chaos at higher voltages (not shown here).
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Time Series Data from Simple Circuit

Our next set of data is taken from the improved circuit (described in “Building the Circuit”) during 2-
second traces, sampled at 200 kHz. In the next few sections, we analyze these data in detail. The following
traces are 5 msec and 0.5 msec segments from a baseline voltage measurement.
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Figure 7.
Baseline Measurement. Drive signal: 3V (peak to peak), 20 kHz sine wave.

1 sample = 0.005 msec

As these data show, the 20 kHz drive frequency dominates the signal, and the signal of interest is on the
order of milliVolt changes on top of 5 to 10 Volt drive signal. These perturbations are perhaps more
obvious in the time trace from a chaotic signal (figure 8).
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Figure 8.
Time Trace During Chaos. Drive signal: 11.4 V, 20 kHz sine wave.

Viewing the time traces by eye, even while focusing in on a 5 msec segment, was not sufficient for
distinguishing among the baseline measurement, periodic orbits, and chaos. We therefore turned to spectral
analysis. Signals from the circuit during period doubling, period tripling, and chaos were analyzed as
follows.
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Spectral Analysis

The data were fast Fourier transformed into the frequency domain for analysis of the spectral components.
The coarsest kind of spectral analysis, a basic FFT, revealed strong spectral components at the drive
frequency and its harmonics (figure 9).
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Figure 9.
Linear Power Spectrum of Baseline Voltage Measurement.

Drive signal: 3 V, 20 kHz sine wave.

There were additional peaks at non-harmonic frequencies (such as ~5.5 k Hz) of which we do not know the
origin. Close examination of the lowest band revealed a clear 60 Hz source of noise contamination (not
shown in detail here).

The most relevant area of the spectrum is the signals at the drive frequency and below. Therefore, the
remaining plots only display data up to roughly 20 kHz. Linear plots of the period doubling and period
tripling regimes demonstrate spectral components at half and thirds of drive frequency, respectively
(figures 10 and 11).
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Figure 10.
Linear Power Spectrum of Period Doubling Regime.

Drive signal: 4.9 V, 20 kHz sine wave.

Figure 11.
Linear Power Spectrum of Period Tripling Regime.

Drive signal: 9.1 V, 20 kHz sine wave.

The FFT calculation confirmed that the circuit was behaving as expected, which is demonstrated by the
linear-linear power spectrum plots. In the case of period doubling, a sharp spectral component is apparent
at the drive frequency and also at half the drive frequency. During the period tripling regime, sharp spectral
components appeared at the drive frequency f, 1/3 f, and 2/3 f. Harmonics of the signal are also clearly
demonstrated.

The amplitude scale upon which the signal is changing is almost invisible in the linear plots. We therefore
plot the spectra in log-linear coordinates. Upon closer examination with log-linear plots, however, it is clear
that the data require some processing to remove spectral artifacts. Figure 12 displays an example averaged
spectrum plot of period doubling. Spectral plots for all circuit regimes were then recalculated using
Welch’s method, tapered with a Hanning filter and averaged over 10 segments. Welch’s method allows for
the averaging out of artifactual spectral components based on the particular taper chosen, and increases the
signal to noise ratio within the spectra. Figures 12 through 15 illustrate the power spectra calculated as such
under the five drive voltage conditions.
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Figure 12.
Average Power Spectrum of Period Doubling Regime.

Drive signal: 3V, 20 kHz sine wave.

Spectra calculated as such were sufficiently clean to make some conclusions about the data. However, it
should be noted that a more accurate spectral estimation could be made with overlapping Welch segments.
Even better than Welch’s method is the multi-taper method, whereby multiple tapers are averaged together
to cancel out noise, improving the signal to noise ratio. A further benefit of the multi-taper method is that it
enables determination of confidence intervals of the spectral estimates.
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Figure 13.
Average Power Spectrum of Period Tripling Regime.

Drive signal: 9.1 V, 20 kHz sine wave.

Figures 12 and 13 more clearly demonstrate the period doubling and tripling described above, and give a
baseline measure of the amount of noise, for comparison with the chaotic regime. The tapered and averaged
power spectrum from the chaotic data is demonstrated in figure 14.

Figure 14.
Average Power Spectrum of Second Chaotic Regime.

Drive signal: 11.4 V, 20 kHz sine wave.

The spectrum of the chaos signal is broadband, as is expected from the definition of chaos. It is also worth
noting that the spectrum has strong frequency components at the period tripled frequency values. This is
not surprising, given that this particular chaotic regime occurred at a drive voltage just slightly higher than
the drive voltage that produced period tripling. The system should therefore favor that attractor.
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Phase Space Reconstructions of Time Series Data
The next step in the analysis was to visualize the data in phase space. Our initial guess about an appropriate
time lag, τ, was 10 given that there were 10 data points sampled per cycle of the drive signal. The following
three plots display 3-dimensional plots of the the time series data for period doubling, period tripling, and
chaos based on time lags of 10 and 20.

Figure 15.
Phase Space Reconstruction of Period Doubling Data

The period doubling phase diagram displays a fixed periodic orbit that appears to be unfolded in three
dimensions.
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Figure 16.
Phase Space Reconstruction of Period Tripling Data

The period tripling phase plot is slightly more complex than the period doubling phase diagram. It crosses
itself a greater number of times, but conserves the overall shape of the period doubling data.
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Figure 17.
Phase Space Reconstruction of Chaotic Data

The chaotic phase plot displays the same overall shape as the period tripling data, but is significantly more
complex. The plot suggests the aperiodicity of the data because the orbit does not repeat, and thereby fills
in the space.
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False Nearest Neighbor Analysis of Circuit Data

The plots above were an initial pass at phase space reconstruction based on intuition (dimensionality d = 3
and time lag = 10). The next step in the analysis was to try to determine the correct dimensionality of the
chaotic data and plot its attractor. We used the CSPW software and average mutual information metric
method described previously to determine the appropriate time lag, τ, for embedding the data into a higher
dimension.

Figure 18.
Average Mutual Information of Chaotic Data

The average mutual information calculation yielded 2 as the intial minimum, suggesting that a time lag of
two data steps is appropriate for replotting the time series data in multi-variate space. Surprisingly, the plot
also reveals that 10 is a particularly inappropriate value for the time lag because the average mutual
information has a local maximum at a time delay of 10.

We then used the software to calculate the percentage of false nearest neighbors as a function of dimension.
We set the number of nearest neighbors to be used in the calculation of global distance to be 40, and set a
maximum dimension of 20.

The first minimum on this plot suggests that the chaotic data are 3-dimensional (figure 19). A
dimensionality of 3 is not surprising considering that our circuit is a modification of a known 3-
dimensional nonlinear system, namely, the RLC circuit.
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Figure 19.
Dimension Calculation of Chaotic Attractor
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Reconstructed Attractors
Finally, we used the CSPW software to plot the underlying attractor of the chaotic data based on the
average mutual information and false nearest neighbors analysis described above. The data is best
visualized when a subset of the total data points are plotted.

The following three plots are the same attractor, viewed from three different vantage points, based on the
first 1000 data points in the sample. If the data is stationary, then it does not matter which 1000 data points
are used to create the plot; the results should be the same. We examined the data in a frequency versus time
plot to test for stationarity (not illustrated here), and it confirmed that the chaotic data is in fact stationary.

Figure 20 a.

Figure 20 b.
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Figure 20 c.

Despite our having embedded the data in a phase space based on a less than ideal time lag, our three
dimensional phase plot of chaos (figure17) bears striking resemblance with the attractor depicted here.

This analysis demonstrates that the chaotic behavior of the circuit is described by a three-dimensional
system of nonlinear equations.
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Preliminary Synchronization Results

Using the circuit as described, synchronization was only possible in non-chaotic regimes. In addition,
synchronization was only possible ~10% of the time.  Depending upon the initial state of the two
resonators, partial synchronization was possible.  To change the initial state of the resonators touching
resistor R20 injects a large amount of noise, and a small percentage of the time the circuits will be
synchronized when the finger is released.  Even when the circuits synchronize, when looking at a phase
space plot (master vs. slave), the plot is not a straight line.  Instead the plot is an orbit; however the number
of orbits is reduced when the circuit is “synchronized” vs. when it is not, when there has been one or more
bifurcations.  This incomplete synchronization would suggest that our unidirectional control circuit is not
working correctly.  We attribute the main problem to be the phase lag introduced by the opamps, it would
be advisable to use opamps with a higher gain than the TL071CN, which would reduce the lag.

To demonstrate that partial synchronization was achieved, we have plotted below the log amplitude of
different frequencies from the Master resonator vs. the Slave resonator, shown below.  In the
unsynchronized case, the frequency amplitudes are less matched to one another than in the synchronized
case (not close to an Y=X line).  The data was collected at 100 KHz from both Master and Slave
resonators; however the corresponding data point in the slave was taken 5ms after that in the master.  This
means that slave’s data is 10% out of phase relative to the master, and thus plotting master vs. slave for
pure amplitudes, was never a straight line.  In the pure amplitude plot, unsynchronized and synchronized
data was indistinguishable from each other.

Figure 21.
Comparison of Unsynchronized and Synchronized Circuits

Unsynchronized Synchronized



28

 Summary and Conclusions

With a resistor, resistor, diode and inductor in series and a sinusoidal drive signal, we were able to
reproduce Lindsay’s result and drive a circuit into chaos. Our circuit recapitulated the Feigenbaum
universal constant and was very close to the expected value. Our time series analysis, spectral analysis, and
phase space embedding demonstrated period doubling and tripling on the route to chaos. Using false
nearest neighbor analysis, we calculated the dimensionality of the chaotic data to be 3, based on 40 nearest
neighbors and a maximum dimension set at 20. Additionally, we attempted to reproduce synchronization
experiments and demonstrated with preliminary data that synchronization of chaotic circuits is possible.
Finally, we discuss a few modifications to the circuit that might be interesting to investigate further,
including using LEDs and photodiodes.
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