Chaotic Dynamics of RLD Oscillator

Abstract

Chaos is aperiodic behavior in deterministic nonlinear dynamical systemsthat is highly
sensitive to initial conditions. Chaotic behavior can be observed in a simple electronic
(RLD) circuit consisting of aresistor, diode, and inductor with an oscillatory voltage
drive signal. The output voltage signal exhibits both stable periodic behavior and chaotic
behavior, which are visualized by power spectraand phase diagrams. False nearest
neighbor analysis is used to elucidate the dimensionality of a system, distinguishing
between chaos and noise. Synchronized chaotic circuits can be useful for secure
communication applications.

Micah Richert

Diane Whitmer

June 13, 2003

Biophysical Measurements Lab



Table of Contents

Y 0 1 - o SRS 1
g1 oo [1Tex oo PSPPI PPRURN 3
Y a7 (o PSS 3
Period Doubling ROULE t0 Cha0S........cccuieiiieciee e se et st e s s e e sbe s e te e e saae e snae e sneeeenneeennes 4
HOW tO BUIld @ Ch0LIC CITCUIT......eeveeeieiieie ettt sttt sttt st sbe e b e sbeesbeesbeesbeesreesreesreeas 7
L0 = PP UURRPUROPROTRIN 7
BUIIAING ThE CIFCUIT......ee e e e e et e e e e e e st e e st e e eneeenneesnneesnseeenraeennns 8
The SYNchroniZation CIFCUIT ..........c.eiiiie e e et e e s ree e sare e s be e s be e e nre e e snreennnes 9
Observations on Circuit MOifiCalIONS. .......oiviiiieiieiierieree e 12
Distinguishing Chaos fromM NOISE ........eiiiieiiie e s se e e et e s e e ste e e nte e e srae e sneeesnreeenneeennes 13
Phase Space Embedding and False Nearest NeighbOrS ........ccuveiiie e 13
LR E S U TP 14
ANalysis Of PEriod DOUDIING........cccuieiie e s e e e e e snae e sare e snreeennneennes 14
Time Series Data from SIMPIE CIrCUIT.........eoiieeiie e eere e enes 15
S LC o= AN = Y RS 17
Phase Space Reconstructions of Time SEES Data........cccveeiieeiieeiie e et 21
RECONSIIUCIEA ALITACLOIS. ..o ieieeiie ettt sttt sb e s be e sbe e s be e sbe e sbeesbeenbeenbeesbeenbeenee 25
Preliminary Synchronization RESUILS............eeiiiiiiie et st e e snee e snre e srneens 27
SUMMAY aNA CONCIUSIONS .......ueiiiiiic e st e st e e sae e e sn e e snbe e steeesteeesneeesnreesreeans 28
G 1 = 1[0TSR 28



Introduction

Chaosisaclass of complex behaviorsthat can emerge from nonlinear dynamica systems, and is ubiquitous
both in the natural world and technology. Many biological systems such as the human heart and
invertebrate neurons naturally exhibit chactic behavior. Furthermore, digital computing has made feasible
the creation of fracta patterns based on chaos. The beauty of chaos, however, lies not in the aesthetic of
fractals, but in the simplicity of the system from which such complex, unpredictable behavior can emerge.

The electronic RLD circuit is one example of a smple system that can exhibit chaotic behavior. Building a
chaatic circuit isauseful aid for understanding the mathematics and applications of this pervasive
phenomenon.

Chaos liesin the middle of a spectrum that many people conceptualize as a dichotomy between signa and
noise; itisin practical termsasignal that appears noisy, but for which this“noise” has structure and
meaning. Chaos is a specific type of nonlinear dynamical system, one that is aperiodic, non-repeatable, and
highly sensitivetoinitial conditions. Many data analysis techniques, such as spectra analysis, hinge upon
an assumption of linearity, and strive to average out fluctuations believed to be noise. A different set of
techniquesisrequired for nonlinear systems, in which averaging out fluctuations would mean the throwing
away of information about the dynamics of the system. When the underlying dynamics of a system is not
known, analysis todls created for understanding chaotic systems can be used to determine whether a system
isnoisy or chaotic. Specifically, phase space reconstruction can reveal the dimensionality of the underlying
data, and suggest the number of equations necessary to describe the system.

Chaosisnot only useful for dataanaysis, but has broad application in technology. For example,
pacemakers for the heart could incorporate chaotic dynamicsto more closdy resemble the natural behavior
of the heart. Furthermore, chactic signals can be used as an encryption technique for communication.

Thislab project consists of building a chaatic circuit, analyzing the circuit itself, analyzing chactic data
from the circuit, and an attempt at building of a secure communication system.

Motivation

In 1997 M. Feigenbaum published a seminal paper proving that if a system exhibitsrepeated period
doubling by increasing some finite parameter, then the system will have an infinite number of period
doublings or bifurcationsin afinite increase of that parameter (Feigenbaum, 1977). Thisideais expressed
by the following recursive equation:

Xn+1 =T Xn(1— Xn)

Thelogistic map isa smple example of a system that demonstrates this phenomenon (figure 1).



Bifurcation Chaos

slope = -1
N

3

X*
n+l Xn+1

Figure 1. Comparison between Bifurcation and Chaosin the Logistic M ap.
(Strogatz, 1994, pp .360 & 355.)

Thelogistic map is an equation used to model population dynamics. The variabler isa scaling factor, and
asr isincreased the properties of the logistic map changes. Shown above is a bifurcation for anr dightly
above 1; thecircles are stable points. For values of r less than 1, there is only one stable point. The system
effectively alternates between one point and the other, and al other points eventually converge to this 2-
point limit cycle. For the chactic illustration, r = 3.9, and if one starts from an arbitrary point in the system,
the system will result in anon-repeating series of points with no apparent pattern.

A very simple electronic system that exhibits this period doubling route to chaos is the chaotic resonator,
first demonstrated in 1981 by Paul S. Linsay. Thiscircuit is made of three basic componentsin series: a
resistor, diode and inductor.

Thiscircuit can then be used to investigate the control of chaos, and in particular synchronization of chaos.
Using a continuous unidirectional proportional feedback, one can control a dave oscillator by
synchronizing it to the master; this was first demonstrated by Newell et al in 1993, and later revised by
Mozdy et al in 1995.

Previous work on this circuit from a couple of class projects at Harvard University, has entailed
investigating the effect of increasing the amount of noise in the circuit and the bifurcation points (Greene et
al., unpublished), and demongtrating that this system has the expected Feigenbaum universal constant
(Schaffer et al, unpublished).

Period Doubling Route to Chaos

Period doubling as aroute to chaos is address in general mathematical terms by Feigenbaum. He proves
that if the system exhibits period doubling by increasing a single parameter, then the system has a universal
constant 6 = 4.669... Such that

lim b, -b,
n— o bn+2 - bn+1

where b, isthe parameter value at which the nth bifurcation occurred. A bifurcation isalso known asa
period doubling.

In the chaotic resonator circuit, the circuit undergoes pitchfork bifurcation as the peak-to-peak drive voltage
isincreased, and is evident by the appearance and a new frequency component at half the drive frequency.
Asthe amplitude is further increased, the bifurcated signal bifurcates again. The amplitude at which each



bifurcation occurs decreases geometrically according to the Feigenbaum equation. This progression iterates
until there are an infinite number of bifurcations from a finite increase of drive voltage, resulting in chaos.

The phase diagram depicted in figure 2 demonstrates this bifurcation process. In phase space, an ordinary
resonator circuit would be a single orbit, which iswhat the output of the circuit looks like for low drive
amplitudes. Asthe amplitudeisincreased, anew frequency component appears, and this new frequency
resultsin seeing two orbits in the phase space plot. Unfortunately, the amplitude of the period doubled
frequency, aswedl asall other bifurcation frequencies, is extremely low. To be able to visualize the
bifurcations, as well as chaos, one must zoom in to the phase space plot to the point where one can no
longer see the entire orbit, but instead see only avery small dice.
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Figure 2.
Phase Plot of Bifurcation: Output signal as a function of drive signal.



How to Build a Chaotic Circuit

Overview

Thecircuit required to create chaosis simpleto build, and consists of a small resistor, large inductor and a
diodein series. Figure 3 illustrates the schematic for this circuit.
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Figure 3. Simple Chaotic Circuit

The signal supplied to drive the circuit is a sinusoid with variable peak-to-peak amplitude. For most of our
experiments, we used a 10 Volt peak-to-peak auditory oscillator set to 20 KHz. We chose an audio
oscillator over a digital function generator because the synthesized sine waves produced by digital function
generators can be noisy. Reduction of noise sourcesis critical for studying a chaotic circuit.

Asthecircuit is driven with higher peak-to-peak amplitudes, the circuit takes on nonlinear behavior.
Namely, thiscircuit exhibits a period doubling route to chaos. Voltage was measured between the resistor
and diode réative to ground.

Thecircuit isamaodification of the prototypical RLC circuit, but with the capacitor replaced by the diode.
The diode can then be modeled as an ideal diode and a voltage dependent capacitance, as depicted below:
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Figure 4. |deal Diode and Voltage Dependent Capacitanceas Model for Cir cuit.

Building the circuit

As discussed earlier, the ssmpleresonator circuit is composed of aresistor, diode and inductor all in series,
with asinusoidal drive voltage. The components were chosen to exhibit chaos at arelatively low
frequency. The frequency where chaosis possible is approximatey

_ 1

~2m/LC

where L isthe inductance and C is the approximate capacitance of thediode. Since the diode ishot
changed (always an N4004) and the capacitance is fixed, the inductor must be large for the resonance
frequency be low. Thisiswhy we chose a 100 mH inductor. A 100 Ohm resistor was chosen because the
resistor effectively sets the bandwidth of the resonator, and therefore should be relatively small.

To build the circuit, smply place all 3 componentsin seriesin abreadboard and attach the drive. Refer to
figure 1 asaguide for properly assembling the components.



The Synchronization Circuit

We also investigated synchronizing two identical chaotic resonators. To approximate “identica,” we tested
and chose pairs of components with the most similar characteristics. Wetested the lowest voltage needed
for asingle bifurcation and the frequency at which thislowest bifurcation occurred. Since we only had five
100mH inductors, we were fairly limited on matching them. However, we had a supply of 500 diodes and
sampled well over a hundred before choosing a pair.

The synchronization circuit is composed of two chaotic oscillators as congtructed above. Of the two
circuits, one isthe master, and the other isthe dave. Idedly, the dave matches the master. This matching
can be confirmed by examination of a phase space diagram of master output versus slave output. When the
two circuits are synchronized, this phase plot approaches a straight line.

The chaotic control method used is a continuous version of the Occasional Proportional Feedback (OPF)
contraller. The basic ideaisthat if the two systems arerdatively similar to begin with, then only small
(linear) corrections will be needed in order to keep the slave oscillator matched to the master. To generate
the correction signal, the states of the two circuits are compared, and a scaled down version of this
difference is added to the dave s drive signal. This correction signal can be thought of as anegative
feedback signal, or weak coupling in a coupled oscillator system. The coupling is unidirectional, which
means that the master circuit does not have any correction or feedback applied to itsdrive. The state of the
system is measured in the same way the output of the circuit is measured, between the resistor and

diode. Note, our circuit varies from that described by Mozdy et a. 1995, both in the order of the
componentsin resonator circuit and in the location from which the voltage is measured.

Therequired circuits for the unidirectional control are instrumentational amplifier (subtractor),
potentiometer (variable resistor), and voltage adder. The insrumentational amplifier is comprised of three
opamps. Two opamps act as buffers and the third computes the subtraction. Then this subtracted voltage
needs to be scaled down, so that we can have variable gain. Finally, this scaled down voltage is added to
the drive voltage. The voltage adder is actually done with a current adder, which has the side effect that the
output voltageisinverted; therefore, the voltage needs to be inverted again using a single input current
adder.

Thecircuit that we used is schematically drawn below. We have several more opampsin our circuit than is
absolutely necessary; thisis because we have found that the phase lag introduced by the opampsis
significant. To tacklethis problem with phase lag, we added opamps between the drive signal and the
master oscillator in order to match the amount of delay between the drive and the dave oscillator. Opamps
U1A — U4A are serving this purpose: to match the phase lag. Opamps U19A — U21A arethe three opamps
that make up the instrumentational amplifier. U16A and U17A are two buffers used to ensure that the
correction signal isnot contaminated by the drive and to ensure that the third opamp in the
instrumentational amplifier does not saturate; these two opamps are probably not needed. UGA isabuffer
used to isolate the drive from the dave circuitry. U7A and USA make up the voltage adder.

The specific opamps we used were ST's TLO71CN or TLOB4CN.

The variable gain for the feed back is accomplished using a voltage divider circuit, with a 10K resister in
serieswith a 10K potentiometer. However, there are several complications with thissimple circuit. First,
there seemsto be a DC biasin the difference signal, which creates an even larger error when it isfeedback
tothecircuit. Thislarger error then increases the difference signa which hasthe DC bias applied to it
again, and the signal eventually explodesif the gain istoo high. To deal with the DC hias, a 47pF capacitor
was added between the 10K resistor and the potentiometer. Once the DC bias was successfully controlled
for, aresonance developed inside of the feedback loop at approximately 400 KHz. To filter out thishigh
frequency feedback, we added a 471pF capacitor after the 10K resistor to ground.

The gain and filtering circuit that we used is illustrated in the schematic, however, this circuit does not
function exactly as described above. The 47pF capacitor needs to be placed between the 10K resistor and



potentiometer and the opamp, for the circuit to work as we described it. However, we did not realize the
error until after the synchronization data was collected. It leavesit to be demonstrated that the intended
circuit would be better at synchronization than the configuration actualy used.

A significant stumbling block that we encountered was that there was an extremely high frequency noise
appearing on the master resonator once the opamps were added to the circuit. Asit turns out, the power
supply's +15,-15 lines, which power the opamps, had small amplitude fluctuations. To remove these
fluctuations, two capacitors were added between +15 to ground, and —15 to ground, they are depicted as C3
and C4 in the diagram (figure 5).
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Figure 5. Circuit Diagram of Two Synchronized Oscillator System.
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Observations on Circuit Modifications

There are some aternative designs of the circuit worth exploring. The diode can be replaced with an LED,
aswdl asaphotodiode. Thecircuit isbelieved to exhibit chaos because of the voltage dependent
capacitance. Therefore, if a LED or photodiode with alarge voltage dependent capacitance can be found,
then the diode could be replaced with that component.

Oneinteresting possihility is to optically record the state of the chaotic system with an LED in place of the
diode. Several different LEDs were tested to seeif chaos or at the least a bifurcation was possiblein the 10
Volt peak-to-peak drive amplitude range. Ultra-Bright white, yellow and red LEDs were tested, but none
exhibited even asingle bifurcation. The Ultra-Brights were tested because they have extremely anomal ous
properties, one of which might be alarge Voltage-dependent capacitance. This gill might be the case, but
their high resistance effectively makes chaos unachievable. An unknown green LED did bifurcate at
approximately 8 Volts, but none of the higher bifurcations were achievable with our function generators.

Anocther idea for modifying the circuit isto drive the circuit into chaos by changing the internal dynamics
of the diode instead of changing the drive amplitude. To be able to change the dynamics of the diode
component, replace it with aphotodiode. Asmore or lesslight isapplied to the photodiode, its dynamics
change. Wetested asingle IR photodiode. This photodiode demonstrated chaos at alower drive voltage
than the N4004 diode which we were using, but did not have a significantly lower frequency. What seems
counter-intuitive is that as more light is applied to the photodiode, the more chaos was observed. This
might be a very interesting phenomenon to investigate further.

12



Distinguishing Chaos from Noise

Phase Space Embedding and False Nearest Neighbors

As mentioned previoudly, one of the utilities of chaosisthat it can provide a framework for
andyzing where on the spectrum between pure signal and pure noise, adata set might fall. Chaosisatype
of signal, but can appear to be noise if not analyzed properly. Chactic signalsareirregular in time, but
highly structured in phase space. Phase space embedding therefore provides atoal for visualizing the
structure of chaotic signas, and for distinguishing chaos from noise. Furthermore, noise, by definition, is
infinitely dimensional, whereas chaosis (relatively small) finite dimensional. Time series data can therefore
be “unfolded” into higher dimensional space by sampling data points at fixed distances. A new data point
will be created from a single time point and some integer number of steps ahead of that time point. For
example, avoltage signa at timet: V(t) can be plotted in three-dimensional space asV(t) vs. V(t + 1) vs.
V(t + 21). Embedding theorem proves that a sequentia ordering of the points till follows the underlying
dynamics (Abarbanel, p.17 and citationstherein).

Oncetime series datais represented in multivariate space, the next step isto find the
dimensionality of the underlying dynamics. Thereisrisk in a phase space reconstruction that some points
will neighbor on each other because they have been projected into too low of a space from a higher
dimension. These points are termed “false nearest neighbors,” and can be used as ametric for finding the
appropriate dimensionality of the phase space. Specifically, a global nearest neighbors value is cal culated
based on the average Euclidian distance between each point and its n nearest neighbors, wherenisa
parameter to be set. A threshold is set such that when the average distance between false nearest neighbors
exceeds it, the datais unfolded into the next higher dimensiona space. This process is repeated until the
global false nearest neighbor distance does not change, at which point the attractor of the system has been
revealed.

One of the challenges of using the fal se nearest neighbor method lies in the choosing of thetime
lag 1. Although thereis not amathematical formalism for determining these parameters, there are
guiddines. By necessity, T will be some multiple of the sampling rate of the data, given that the dataiis
already discretized. T must also be large enough to change significantly between time steps and display the
underlying dynamics of the system, but not so large that it is unstable. (Remember that chaotic systems, by
definition, are sengitive to initia conditions and neighboring points separate exponentially intime.)) A
useful heuristic for determining T isto calculate the average mutual information and use the timelag at
which the first minimum occurs asthe intitial T (Abarband, 1996). Mutual information is a theoretical
construct that describes how interdependent two measurements are with each other. When the mutual
information isa minimum, the two measurements are fairly independent of each other, but not so
independent that thereis no connection. This makes for a useful time delay T such that it is connected with
the nonlinear information that describes the underlying dynamics of the system. An alternative to choosing
T based on the first minimum of average mutua information isto choose thefirst zero crossing of the
linear autocorrelation function of the data

The goal of false nearest neighbors analysis is to determine the dimensionality of the data and to
plot the attractor. CSPW (1996) is a software package that computes the dimens onality based on the
process described above, iterating through a number of false nearest neighbor cdculations. This software
was used for the analysis of circuit data.

13



Results

Analysis of Period Doubling

Our firg set of data collected was used to test the circuit for period doubling behavior on the route to chaos.
We drove our initial circuit, which was constructed with a 3.4 mH inductor, with a 150 kHz sinusoid at
various amplitudes. Using an output versus input (x-y) plot on the oscilloscope, we judged by eye when the
circuit bifurcated by counting the number of orbits. Furthermore, we judged chaos by the appearance of the
orhits turning fuzzy, with an uncountable (infinite) number of orbits.

At adrive amplitude of 0.542 to 0.659 Valts, one route to chaos was observed and is plotted as the first
four barsin the bar chart below (figure 6). A second route to chaos was observed between 0.74 and 1.658
Volts (figure 6). A height greater than 40 in the bar chart represents an uncountable number of orbits,
which isthe signature of chaos.
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Figure 6. Route to Chaos.

We used this data to calculate the universal 6 constant based on Feigenmaum’s theory. The universal
constant measured from these voltages is 5.58 and 4.44 for the two routes to chaos shown, as compared to
0 = 4.669 measured by Feigenbaum. These values were not only the right order of magnitude, but
surprisingly close to the Feigenbaum constant.

As demonstrated by the data, there are two ranges where chaos is possible from a single orhit, thishas
never been published but has been seen by other researchers. We observed that for voltages significantly
higher than 1.7 volts, stable orbits higher than 2-cycle orbits exist on the period-doubling path to chaos. We
observed both a 3-cycle orhit on a period doubling route to chaos, and 5-cycle stable orbit on the path to
chaos at higher voltages (not shown here).
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Time Series Data from Simple Circuit

Our next set of dataistaken from theimproved circuit (described in “Building the Circuit”) during 2-
second traces, sampled at 200 kHz. In the next few sections, we analyze these datain detail. The following
traces are 5 msec and 0.5 msec segments from a baseline voltage measurement.

Voltage Output from RLD Circuit as a Function of Time
T T T T T T

15
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o

-0.5 %

15 | | | | | | | | |
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Voltage Output from RLD Circuit as a Function of Time
T T T T T T
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4
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Figure7.
Baseline M easurement. Drive sgnal: 3V (peak to peak), 20 kHz sine wave.
1 sample = 0.005 msec

As these data show, the 20 kHz drive frequency dominates the signal, and the signal of interest is on the
order of milliVolt changes on top of 5to 10 Volt drive signal. These perturbations are perhaps more
obviousin thetime trace from a chactic signal (figure 8).
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Chaotic Voltage Output from RLD Circuit as a Function of Time
T T T T T T T

Voltage (Volts)

741 1.0005 1.001 1.0015 1.002 1.0025 1.003 1.0035 1.004 1.0045 1.005
Time (Sanples) M 104
Figure 8.
Time Trace During Chaos. Drive signal: 11.4 V, 20 kHz sine wave.

Viewing the time traces by eye, even while focusing in on a5 msec segment, was not sufficient for
distinguishing among the baseline measurement, periodic orbits, and chaos. We therefore turned to spectral
andysis. Signalsfrom the circuit during period doubling, period tripling, and chaos were analyzed as
follows.
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Spectral Analysis

The datawere fast Fourier transformed into the frequency domain for analysis of the spectral components.
The coarsest kind of spectral analysis, abasic FFT, revealed strong spectral components at the drive
frequency and its harmonics (figure 9).

X 1()4 Power of Circuit
T T

Power (Linear units)

:. ‘ L i

Frequency (Hz) 4

Figure9.
Linear Power Spectrum of Baseline Voltage M easur ement.
Drivesignal: 3V, 20 kHz sinewave.

There were additional peaks at non-harmonic frequencies (such as~5.5 k Hz) of which we do not know the
origin. Close examination of thelowest band revealed a clear 60 Hz source of noise contamination (not
shown in detail here).

The most relevant area of the spectrum isthe signals at the drive frequency and below. Therefore, the
remaining plots only display data up to roughly 20 kHz. Linear plots of the period doubling and period
tripling regimes demonstrate spectral components at half and thirds of drive frequency, respectively
(figures 10 and 11).
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x10' Power of Chactic Circuit During Period Doubling, Absolute Voltage Measurement
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Figure 10.
Linear Power Spectrum of Period Doubling Regime.
Drivesignal: 4.9V, 20 kHz sinewave.

x 105 Power of Chaotic Circuit During Period Tripling, Absolute Voltage Measurement
T T T T T
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Figure 11.
Linear Power Spectrum of Period Tripling Regime.
Drivesignal: 9.1V, 20 kHz sinewave.

The FFT calculation confirmed that the circuit was behaving as expected, which is demonstrated by the
linear-linear power spectrum plots. In the case of period doubling, a sharp spectral component is apparent
at the drive frequency and also at half the drive frequency. During the period tripling regime, sharp spectral
components appeared at the drive frequency f, 1/3 f, and 2/3 f. Harmonics of the signal are also clearly
demonstrated.

The amplitude scale upon which the signal is changing isalmost invisible in the linear plots. We therefore
plot the spectrain log-linear coordinates. Upon closer examination with log-linear plots, however, itisclear
that the data require some processing to remove spectral artifacts. Figure 12 displays an example averaged
spectrum plot of period doubling. Spectral plots for all circuit regimes were then recalculated using
Welch's method, tapered with a Hanning filter and averaged over 10 segments. Welch’'s method allows for
the averaging out of artifactual spectral components based on the particular taper chosen, and increases the
signal to noiseratio within the spectra. Figures 12 through 15 illustrate the power spectra cal culated as such
under the five drive voltage conditions.

18
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Figure 12.
Average Power Spectrum of Period Doubling Regime.
Drivesignal: 3V, 20 kHz sine wave.

Spectra calculated as such were sufficiently clean to make some conclusions about the data. However, it
should be noted that a more accurate spectral estimation could be made with overlapping Welch segments.
Even better than Welch's method is the multi-taper method, whereby multiple tapers are averaged together
to cancel out noise, improving the signal to noiseratio. A further benefit of the multi-taper method isthat it
enables determination of confidence intervals of the spectral estimates.
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Figure 13.
Average Power Spectrum of Period Tripling Regime.
Drivesignal: 9.1V, 20 kHz sinewave.

Figures 12 and 13 more clearly demonstrate the period doubling and tripling described above, and givea
baseline measure of the amount of noise, for comparison with the chaotic regime. The tapered and averaged
power spectrum from the chaotic datais demonstrated in figure 14.
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Figure 14.

Average Power Spectrum of Second Chaotic Regime.
Drivesignal: 11.4 V, 20 kHz sine wave.

The spectrum of the chaos signal is broadband, asis expected from the definition of chaos. It isalso worth
noting that the spectrum has strong frequency components at the period tripled frequency values. Thisis
not surprising, given that this particular chaotic regime occurred at a drive voltage just dightly higher than
the drive voltage that produced period tripling. The system should therefore favor that attractor.
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Phase Space Reconstructions of Time Series Data

The next step in the analysis was to visualize the datain phase space. Our initial guess about an appropriate
timelag, T, was 10 given that there were 10 data points sampled per cycle of the drive signal. The following

three plots display 3-dimensiona plots of the the time series data for period doubling, period tripling, and
chaos based on time lags of 10 and 20.

Phase Diagram of First 100 msec of Period Doubling Data

Time Series (T+20)

0.1 " os
005 //f
F\\ e 0.05
005 \//ﬁ 0
Time Series (T+10) R Time Series(T)
Figure 15.

Phase Space Reconstruction of Period Doubling Data

The period doubling phase diagram displays a fixed periodic orbit that appears to be unfolded in three
dimensions.

Phase Diagram of First 100 msec of Period Tripled Data

0.2
0.15

0.1

Time Series (T+20)

Time Series (T+10)

Time Series(T)

Figure 16.
Phase Space Reconstruction of Period Tripling Data

The period tripling phase plot is dightly more complex than the period doubling phase diagram. It crosses
itself a greater number of times, but conserves the overall shape of the period doubling data.
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Phase Diagram of First 100 msec of Chaotic Data

Time Series (T+20)

Time Series (T+10) 01 01

Time Series(T)

Figure 17.
Phase Space Reconstruction of Chaotic Data

The chaotic phase plot displays the same overall shape asthe period tripling data, but is significantly more

complex. The plot suggests the aperiodicity of the data because the orbit does not repeat, and thereby fills
in the space.
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False Nearest Neighbor Analysis of Circuit Data

The plots above were an initial passat phase space reconstruction based on intuition (dimensionality d = 3
and time lag = 10). The next step in the analysis was to try to determine the correct dimensionality of the
chaotic data and plot its attractor. We used the CSPW software and average mutual information metric
method described previously to determine the appropriate time lag, T, for embedding the data into ahigher
dimension.

Average Mutual Information
T T T T T : T
Samplas: 32768

Opt Time delay: 7
Dimension: 2

("
T
I

CACSPWIChastic_Analysis3.mut

Il | 1 | |
0 5 10 15 20
Time Delav M

Figure 18.
Average Mutual I nformation of Chactic Data

The average mutual information calculation yielded 2 asthe intial minimum, suggesting that atime lag of
two data steps is appropriate for replotting the time series datain multi-variate space. Surprisingly, the plot
alsorevealsthat 10 isaparticularly inappropriate value for the time lag because the average mutual
information has alocal maximum at atime delay of 10.

We then used the software to cal culate the percentage of false nearest neighbors as a function of dimension.
We set the number of nearest neighbors to be used in the calculation of global distance to be 40, and set a
maximum dimension of 20.

The first minimum on this plot suggests that the chaotic data are 3-dimensional (figure 19). A

dimensionality of 3 isnot surprising considering that our circuit isamodification of a known 3-
dimensional nonlinear system, namely, the RLC circuit.
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False Nearest Neighbors
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Figure 19.

Dimension Calculation of Chaotic Attractor
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Reconstructed Attractors

Finally, we used the CSPW software to plot the underlying attractor of the chaotic data based on the
average mutual information and fal se nearest neighbors anaysis described above. The dataiis best
visualized when a subset of thetotal data points are plotted.

The following three plots are the same attractor, viewed from three different vantage points, based on the
first 1000 data pointsin the sample. If the datais stationary, then it does not matter which 1000 data points
are used to create the plot; the results should be the same. We examined the data in a frequency versustime
plot to test for stationarity (not illustrated here), and it confirmed that the chaotic dataisin fact stationary.

Figure 20 b.
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Figure 20 c.

Despite our having embedded the data in a phase space based on aless than idea time lag, our three
dimensional phase plot of chaos (figurel?) bears striking resembl ance with the attractor depicted here.

This analysis demonstrates that the chaotic behavior of the circuit is described by a three-dimensional
system of nonlinear equations.
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Preliminary Synchronization Results

Using the circuit as described, synchronization was only possible in non-chactic regimes. In addition,
synchronization was only possible ~10% of thetime. Depending upon theinitial state of the two
resonators, partia synchronization was possible. To changetheinitial state of the resonators touching
resistor R20 injects alarge amount of noise, and asmall percentage of the timethe circuits will be
synchronized when thefinger isreleased. Even when the circuits synchronize, when looking at a phase
space plot (master vs. dave), the plot isnot astraight line. Instead the plot isan orbit; however the number
of orbits isreduced when the circuit is “synchronized” vs. when it is not, when there has been one or more
bifurcations. Thisincomplete synchronization would suggest that our unidirectional control circuit is not
working correctly. We attribute the main problem to be the phase lag introduced by the opamps, it would
be advisable to use opamps with a higher gain than the TLO71CN, which would reduce the lag.

To demonstrate that partial synchronization was achieved, we have plotted below the log amplitude of
different frequencies from the Master resonator vs. the Save resonator, shown below. Inthe
unsynchronized case, the frequency amplitudes are less matched to one ancther than in the synchronized
case (not closeto an Y=X line). The data was collected at 100 KHz from both Magter and Slave
resonators,; however the corresponding data point in the dave was taken 5ms after that in the master. This
meansthat dave s datais 10% out of phase relative to the master, and thus plotting master vs. dave for
pure amplitudes, was never astraight line. In the pure amplitude plot, unsynchronized and synchronized
data was indistinguishabl e from each other.

Unsynchronized Synchronized

Slave log frequency amy

Slave log frequency

0 2 4 3 s bl K P 2 0 2 4 3 s
Master log frequency amplitude. Master log frequency amplitude.

Figure 21.
Comparison of Unsynchronized and Synchronized Cir cuits
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Summary and Conclusions

With aresistor, resistor, diode and inductor in series and a sinusoidal drive signal, we were ableto
reproduce Lindsay’ s result and drive a circuit into chaos. Our circuit recapitulated the Feigenbaum
universal constant and was very close to the expected value. Our time series analysis, spectral analysis, and
phase space embedding demonstrated period doubling and tripling on the route to chaos. Using false
nearest neighbor anaysis, we calculated the dimensionality of the chactic datato be 3, based on 40 nearest
neighbors and a maximum dimension set at 20. Additionally, we attempted to reproduce synchronization
experiments and demonstrated with preliminary data that synchronization of chactic circuitsis possible.
Finally, we discuss a few modificationsto the circuit that might be interesting to investigate further,
including using LEDs and photodiodes.
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