
Notes on the Critically Damped Harmonic Oscillator
Physics 2BL - David Kleinfeld

We often have to build an electrical or mechanical device. An understand-
ing of physics may help in the design and tuning of such a device. Here, we
consider a critically damped spring oscillator as a model design for the shock
absorber of a car.

We consider a mass, denoted m, that is connected to a spring with spring
constant k, so that the restoring force is F = -kx, and which moves in a lossy
manner so that the frictional force is F = -bv = -bẋ. Prof. Newton tells us
that ∑

F = mẍ = −kx− bẋ (1)

Thus

ẍ+
k

m
x+

b

m
ẋ = 0 (2)

The two reduced constants are the natural frequency

ω0 =

√
k

m
(3)

and the decay constant

α =
b

m
(4)

so that we need to consider

ẍ+ ω2
0x+ αẋ = 0 (5)

The above equation describes simple harmonic motion with loss. It is dis-
cussed in lots of text books, but I want to consider a formulation of the
solution that is most natural for critical damping.

We know that when the damping constant is zero, i.e., α = 0, the solution
of ẍ+ ω2

0x = 0 is given by:

x(t) = Ae+iω0t +Be−iω0t (6)

where A and B are constants that are found from the initial conditions, i.e.,
x(0) and ẋ(0). In a nut shell, the system oscillates forever.
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We know that when the the natural frequency is zero, i.e., ω0 = 0, the
solution of ẍ+ αẋ = 0 is given by:

ẋ(t) = Ae−αt (7)

and

x(t) = A
1− e−αt

α
+B (8)

where A and B are constants that are found from the initial conditions. In
a nut shell, the system grinds to a halt.

A parenthetical remark, of relevance in the laboratory exercises, is that in
the presence of a constant force field, like gravity, the main equation becomes
ẍ+ αẋ+ g = 0 and the solution simply picks up a constant to become

ẋ(t) = Ae−αt − g

α
(9)

In a nut shell, the system reaches a terminal velocity of

ẋ(t←∞) =
mg

b
(10)

on the time-scale of t >> α−1.

To return to the general case, we see that the presence of a decay term
leads to an exponential loss in the amplitude of the system. It is that natural
to suppose that the damped oscillator has a solution of the form

x(t) = e−βtu(t) (11)

where β is a constant and we suspect that u(t) may be the solution to an un-
damped harmonic oscillator. We can test this idea by computing derivatives
and substituting them back into the original equation. We have

ẋ(t) = −βe−βtu(t) + e−βtu̇(t) (12)

= e−βt [u̇(t)− βu(t)]

and

ẍ(t) = −βe−βt (u̇(t)− βu(t)] + e−βt [ü(t)− βu̇(t)] (13)

= e−βt
[
ü(t)− 2βu̇(t) + β2u(t)

]
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Thus

e−βt
[
ü(t)− 2βu̇(t) + β2u(t) + ω2

0u(t) + αu̇(t)− αβu(t)
]

= 0. (14)

Since the prefactor e−βt is never zero, the term in the brackets must be zero.
This term simplifies considerably when the factors in front of the u̇(t) terms
sum to zero, which occurs for the choice

β =
α

2
(15)

Then we have

ü(t) +

[
ω2

0 −
(
α

2

)2
]
u(t) = 0 (16)

which is the equation for simple harmonic motion with a frequency given by

ω =

√
ω2

0 −
(
α

2

)2

(17)

so that for ω �= 0
u(t) = Ae+iωt +Be−iωt (18)

or

x(t) = e−
α
2
t


Ae+i

√
ω2

0−(α2 )
2
t
+Be

−i
√
ω2

0−(α2 )
2
t


 (19)

When ω0 >
α
2
, ω is real and the solution has an oscillatory component. This

is called the underdamped solution. When ω0 <
α
2
, ω is imaginary and the

solution is an exponential decay. This is called the overdamped solution.

The interesting case for us is when ω0 = α
2
, so that

ü(t) = 0 (20)

The solution is
u(t) = A+Bt (21)

so that
x(t) = e−

α
2
t [A+Bt] (22)

This is denoted critical damping. In terms of the initial conditions

x(t) = e−
α
2
t
[
x(0)

(
1 +

α

2
t
)

+ ẋ(0)t
]
. (23)
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To simply matters in graphing x(t), we take ẋ(0) = 0, so that

x(t) = x(0)e−
α
2
t
(
1 +

α

2
t
)
. (24)

and

ẋ(t) = −x(0)
α

2
e−

α
2
t
(
α

2
t
)

(25)

and

ẍ(t) = x(0)
(
α

2

)2

e−
α
2
t
(
α

2
t− 1

)
(26)

Before we set out to graph the above kinematic variables, we note that

x(t← 0) = x(0) +O(t2), (27)

so that the slope of x(t← 0) is zero, i.e., ẋ(0) = 0. We also note that

ẋ(t← 0) = −x(0)
α

2
t+O(t2) (28)

and

ẍ(t← 0) = −x(0)
(
α

2

)2

+O(t), (29)

so that the system slows down with a constant deceleration from the very
start. Lastly, we also see that the speed peaks at

tmax =
2

α
. (30)

In some sense, critical damping gives a ”gentle” return to baseline.
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