uide | djustable Voltage Reference Reference , controlled externally. This programs, current-controlled amplifiers, AGC differ ductor to external decirity and the second of | |---| | djustable Voltage Reference Reference , controlled externally. This programs, current-controlled amplifiers, AGC difference amplifiers. | | djustable Voltage Reference Reference , controlled externally. This programs, current-controlled amplifiers, AGC difference amplifiers. | | djustable Voltage Reference Reference , controlled externally. This programs, current-controlled amplifiers, AGC difference amplifiers. | | djustable Voltage Reference Reference controlled externally. This programs, current-controlled amplifiers, AGC difference Amplifier | | Reference controlled externally. This programs, current-controlled amplifiers, AGC difference Amplifierence | | controlled externally. This programs, current-controlled amplifiers, AGC ifier ductorice Amplifier | | s, current-controlled amplifiers, AGC afficient ductor to emplifier | | s, current-controlled amplifiers, AGC afficient ductor to emplifier | | s, current-controlled amplifiers, AGC afficient ductor to emplifier | | s, current-controlled amplifiers, AGC afficient ductor to emplifier | | nductor toe Amplifier | | nductor toe Amplifier | | • | | d Buffers | | | | 1 Transconductance | | iodes and Buffers | | | | | | eference differential voltage signals | | analog and digital signals transmit- | | LM2900 series has found popularity | | nplifier/Comparator | | Amplifier | Amplifier ons within their packages which help ed in control circuits, power supplies, # LF147/LF347/LF347B Wide Bandwidth **Quad JFET Input Operational Amplifiers** #### **General Description** The LF147 is a low cost, high speed quad JFET input operational amplifier with an internally trimmed input offset voltage (BI-FET IITM technology). The device requires a low supply current and yet maintains a large gain bandwidth product and a fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The LF147 is pin compatible with the standard LM148. This feature allows designers to immediately upgrade the overall performance of existing LF148 and LM124 designs. The LF147 may be used in applications such as high speed integrators, fast D/A converters, sample-and-hold circuits and many other circuits requiring low input offset voltage, low input bias current, high input impedance, high slew rate and wide bandwidth. The device has low noise and offset voltage drift. #### **Features** - Internally trimmed offset voltage - 5 mV max - Low input bias current ■ Low input noise current - 50 PA 0.01 pA/A - Wide gain bandwidth - 4 MHz High slew rate ■ Low supply current 13 V/µs 7.2 mA - $10^{12}\Omega$ - High input impedance ■ Low total harmonic distortion A_V= 10, - <0.02% $R_L = 10k$, $V_O = 20 \text{ Vp-p}$, BW = 20 Hz - 20 kHz - Low 1/f noise corner - 50 Hz - Fast settling time to 0.01% #### 2 µs # Simplified Schematic # 1/4 Quad VCC O INTERNALLY TRIMMED INTERNALLY TL/H/5647-13 ### **Connection Diagram** #### Dual-In-Line Package **Top View** Order Number LF147D, LF347D, LF147J, LF347BJ, LF347J, LF347M, LF347WM, LF347BN or LF347N See NS Package Number D14E, J14A, M14A, M14B or N14A #### **Absolute Maximum Ratings** If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. | tenentity and | -p | |---------------|---------------------------------------| | LF147 | LF347B/LF | | ± 22V | ± 18V | | ±38V | ±30V | | ±19V | ±15V | | Continuous | Continuou | | 900 mW | 1000 mW | | 150°C | 150°C | | _ | 80°C/W | |) | 70°C/W | | | 75°C/W | | • | 100°C/W | | M) | 85°C/W | | | ± 22V
± 38V
± 19V
Continuous | | | LF147 | LF347B/LF347 | | | | | |--|----------------|--------------|--|--|--|--| | Operating Temperature Range | (Note 4) | (Note 4) | | | | | | Storage Temperature | | | | | | | | Range | -65°C≤TA≤150°C | | | | | | | Lead Temperature | : | | | | | | | (Soldering, 10 sec.) | 260°C | 260°C | | | | | | Soldering Information | | | | | | | | Dual-In-Line Package | | | | | | | | Soldering (10 seconds) | | 260°C | | | | | | Small Outline Package | , | | | | | | | Vapor Phase (60 seconds) | | 215°C | | | | | | Infrared (15 seconds) | | 220°C | | | | | | See AN-450 "Surface Mounting
on Product Reliability" for other
face mount devices. | | | | | | | ESD rating to be determined. # DC Electrical Characteristics (Note 5) | Cumbal | Parameter | Conditions | LF147 | | | | LF3478 | 31 | LF347 | | | l lane | |----------------------|---------------------------------------|--|----------|--------------|-----------|----------|--------------|----------|----------|--------------|----------|--------------| | Symbol | | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | Units | | Vos | Input Offset Voltage | $R_S = 10 \text{ k}\Omega$, $T_A = 25^{\circ}\text{C}$
Over Temperature | | 1 | 5
8 | | 3 | 5
7 | | 5 | 10
13 | mV
mV | | ΔV _{OS} /ΔT | Average TC of Input Offset
Voltage | $R_S = 10 \text{ k}\Omega$ | | 10 | | | 10 | | | 10 | | μV/°C | | los | Input Offset Current | T _j = 25°C, (Notes 5, 6)
Over Temperature | | 25 | 100
25 | | 25 | 100
4 | | 25 | 100
4 | pA
nA | | l _B | Input Bias Current | T _j =25°C, (Notes 5, 6)
Over Temperature | | 50 | 200
50 | | 50 | 200
8 | | 50 | 200
8 | pA
nA | | R _{IN} | Input Resistance | T _j = 25°C | | 1012 | | | 1012 | | | 1012 | | Ω | | Avol | Large Signal Voltage Gain | $V_S = \pm 15V$, $T_A = 25^{\circ}C$
$V_O = \pm 10V$, $R_L = 2 k\Omega$
Over Temperature | 50
25 | 100 | | 50
25 | 100 | | 25
15 | 100 | | V/mV
V/mV | | V _O | Output Voltage Swing | $V_S = \pm 15V$, $R_L = 10 \text{ k}\Omega$ | | ± 13.5 | | ± 12 | ± 13.5 | | ± 12 | ± 13.5 | | V | | VCM | Input Common-Mode Voltage
Range | V _S = ±15V | ±11 | + 15
- 12 | | ±11 | + 15
- 12 | | ±11 | + 15
- 12 | | V
V | | CMRR | Common-Mode Rejection Ratio | R _S ≤10 kΩ | 80 | 100 | | 80 | 100 | | 70 | 100 | | dΒ | | PSRR | Supply Voltage Rejection Ratio | (Note 7) | 80 | 100 | | 80 | 100 | | 70 | 100 | | dВ | | Is | Supply Current | | | 7.2 | 11 | | 7.2 | 11 | | 7.2 | 11 | mA | SR Sie GBW Ga en Eq Note 1: Unie Note 2: Any temperature Note 3: For Note 4: The range 0°C's Note 8: Unie LF347. Vos Note 8: The production 1: temperature recommend Note 7: Suc Vs = ± 5V Note 8: Ref Note 9: Ma outside que symbol ै | _ | | | |---|----------|----------| | 7 | Max | Units | | | 10
13 | mV
mV | | | | μV/°C | | | 100 | pA
nA | | | 200
8 | pA
nA | | | | Ω | | | | V/mV | | | | V/mV | | 5 | | V | | | | V
V | | 1 | | dB | | I | | dB | | I | 11 | mA | # AC Electrical Characteristics (Note 5) | symbol | Parameter | Conditions | LF147 | | | LF347B | | | LF347 | | | Units | |----------------|---------------------------------|---|-------|------|-----|--------|------|-----|-------|------|-----|--------| | | | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | V:110 | | | Amplifier to Amplifier Coupling | T _A = 25°C,
f = 1 Hz - 20 kHz
(Input Referred) | | -120 | | | 120 | | | -120 | | dB | | SR | Siew Rate | V _S = ± 15V, T _A = 25°C | 8 | 13 | | æ | 13 | | 8 | 13 | | V/µs | | GBW | Gain-Bandwidth Product | V _S = ± 15V, T _A = 25°C | 2.2 | 4 | | 2.2 | 4 | | 2.2 | 4 | | MHz | | e _n | Equivalent Input Noise Voltage | $T_A = 25^{\circ}C$, $R_S = 100\Omega$, $f = 1000 \text{ Hz}$ | | 20 | | | 20 | | | 20 | | nV/√Hz | |
la | Equivalent Input Noise Current | T _i = 25°C, f= 1000 Hz | | 0.01 | | | 0.01 | | | 0.01 | | pA/√Hz | Note 1: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage. Note 2: Any of the amplifier outputs can be shorted to ground indefinitely, however, more than one should not be simultaneously shorted as the maximum junction temperature will be exceeded. Note 2: For operating at elevated temperature, these devices must be derated based on a thermal resistance of $\theta_{|A}$. Note 4: The LF147 is available in the military temperature range −55°C < T_A ≤ 125°C, while the LF347B and the LF347 are available in the commercial temperature range 0°C ≤ T_A ≤ 70°C. Junction temperature can rise to T₁ max = 150°C. Note 5: Unless otherwise specified the specifications apply over the full temperature range and for $V_S = \pm 20V$ for the LF147 and for $V_S = \pm 15V$ for the LF347B/LF347. V_{OS} , I_{S} , and I_{OS} are measured at $V_{OM} = 0$. Note 6: The input bias currents are junction leakage currents which approximately double for every 10°C increase in the junction temperature, T_I. Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, P_D. T_I = T_A + θ_A. P_D where θ_{IA} is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum. Note 7: Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice from $V_S = \pm 5V$ to $\pm 15V$ for the LF347 and LF347B and from $V_S = \pm 20V$ to $\pm 5V$ for the LF147. Note 8: Refer to RETS147X for LF147D and LF147J military specifications. Note 9: Max. Power Dissipation is defined by the package characteristics. Operating the part near the Max. Power Dissipation may cause the part to operate outside guaranteed limits. Ł # **Typical Performance Characteristics** TI /H/5847- Typical Performance Characteristics (Continued) TL/H/5647-3 DIV)غمر TIME (6 TL/H/5647-8 # **Application Hints** The LF147 is an op amp with an internally trimmed input offset voltage and JFET input devices (BI-FET IITM). These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit. Exceeding the negative common-mode limit on either input will force the output to a high state, potentially causing a reversal of phase to the output. Exceeding the negative common-mode limit on both inputs will force the amplifier **Applicat** output to a h since raising again puts the operating mo Exceeding th will not chan inputs excee forced to a h The amplifier age equal to width and si When the ne 3V of the nec may occur. Each amplifi which allows plies. Supply gain bandwi The LF147 \ the full temp heavier loac voltage may reach an ac swings. Precautions ply for the ir TL/H/5647-7 larity or the TL/H/5647-5 erting TL/H/5647-7 ve supply as this will result in a destroyed limit on either input otentially causing a eding the negative force the amplifier # **Application Hints** (Continued) output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode. Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier will be forced to a high state. The amplifiers will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3V of the negative supply, an increase in input offset voltage may occur. Each amplifier is individually biased by a zener reference which allows normal circuit operation on ±4.5V power supplies. Supply voltages less than these may result in lower gain bandwidth and slew rate. The LF147 will drive a 2 k Ω load resistance to \pm 10V over the full temperature range. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings. Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit. Because these amplifiers are JFET rather than MOSFET input op amps they do not require special handling. As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground. A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant. #### **Detailed Schematic** TL/H/5847-9 #### Digitally Selectable Precision Attenuator A1 A2 A3 0 0 0 -1 dB 1 1 0 -2 dB 0 -3 dB 0 0 -4 dB -5 dB 0 0 -6 dB 1 -7 dB . Accuracy of better than 0.4% with standard 1% value resistors • No offset adjustment necessary • Expandable to any number of stages · Very high input impedance #### Long Time Integrator with Reset, Hold and Starting Threshold Adjustment TL/H/5647-11 TL/H/5647~10 - V_{OUT} starts from zero and is equal to the integral of the input voltage with respect to the threshold voltage: $V_{OUT} = \frac{1}{RC} \int_0^t (V_{IN} V_{TH}) dt$ - Output starts when V_{IN}≥V_{TH} - . Switch S1 permits stopping and holding any output value - Switch S2 resets system to zero #### Universal State Variable Filter TL/H/5847-12 For circuit shown: to=3 kHz, fNOTCH=9.5 kHz Q=3.4 Passband gain: Highpass—0.1 Bandpass-1 Lowpass-1 Notch-10 • f₀×Q≤200 kHz - 10V peak sinusoidal output swing without slew limiting to 200 kHz. - See LM148 data sheet for design equations TL/H/5647-11 TL/H/5847-10