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1 Introduction to UltraMegaSort2000 
 

Congratulations on downloading UltraMegaSort2000!  You are about to experience the world’s 
finest software package for spike sorting, featuring: 

 Fully automated initial spike sorting 

 An efficient implementation that allows for data sets containing many 10s of thousands 
of spike events 

 Easy manual correction tools implemented in a sophisticated GUI 

 Flexible data structures that allow for multi-electrode, multi-trial data sets 

 Quality metrics to verify the completeness and purity of your spike trains 

 The convenience and customizability of the MATLAB analysis environment 

To get the most out of your UltraMegaSort2000 experience, please read the following manual 
carefully. 

This software contains MATLAB code for spike sorting of extracellular neurophysiological data.  
The code performs automatic detection and sorting of putative single-unit spike trains from 
filtered data.  The requirements on the data set are very general.  The data can be taken with 
multi-channel electrodes and include multiple trials.  This package also contains tools for the 
manual inspection and correction of automated spike sorting.  The user can manually 
manipulate spike clusters by merging or splitting them and removing outliers.  Finally, there is 
also included a set of quality metrics that allow the user to quantify the contamination and 
completeness of a cluster of spikes. 

The spike sorting process has 4 major steps, and this manual presents these steps in this order:  

(1) Format data set  
(2) Automated detection of spike waveforms and clustering  
(3) Manual inspection and correction  
(4) Quality metrics 

As a quick reference, this package also includes a file called demo_script.  This script contains 
example code for a spike sorting session, a list of all the major visualization functions, and code 
to generate a simulated data set.   

This software was written in the Kleinfeld lab at the University of California, San Diego. For a 
review of spike sorting, see (Lewicki 1998). 



2 Automatic spike sorting 
In this software, the spike sorting process begins with an automated algorithm that turns filtered 
extracellular data into sorted spikes.  A typical spike sorting session is run with the following 
block of code: 

spikes = ss_default_params(Fs); 
spikes = ss_detect(data,spikes); 
spikes = ss_align(spikes); 
spikes = ss_kmeans(spikes); 
spikes = ss_energy(spikes); 
spikes = ss_aggregate(spikes); 
splitmerge_tool(spikes) 

 
where Fs is the sampling rate in Hz, data is a data block containing the filtered extracellular 
data, and the last line initiates the manual inspection of the sorted spikes.  The spikes object 
contains all the parameters, spike data, cluster assignments, and processing information for the 
spike sorting session.  A full reference on the fields of this structure are given in section 4. This 
section explains how to format your data and what the sorting functions do.  For reference, the 
automated algorithm is based largely on the method of (Fee 1996b).  
 

2.1 Filtering 
This software assumes that extracellular data has already been properly filtered, but here we 
include a few tips on sorting data.  The goal of filtering is to increase the signal-to-noise ratio of 
your data without distorting spike waveforms.    

 

This is most easily described in the frequency domain where the specification for the filter is that 
it is zero-phase and removes frequency components where the spike waveform has little or no 
spectral power.   As spike waveforms are typically no longer than 1.5 ms, any signal below 700 
Hz can be removed safely.  On the high frequency end, noise tends to dominate signal around 
8000 Hz [Ref].  Show below is the frequency and phase response for a Butterworth filter with 
these cut-offs. 



 

Note that the phase response is non-zero and non-linear.  This can be remedied by running the 
filter both forwards and backwards using a Matlab function called filtfilt.  It should be noted that 
running the filter in both directions means that the gain of the function is squared.  The following 
fragment of code implements this filter: 

Wp = [ 700  8000] * 2 / Fs;       % pass band for filtering 
Ws = [ 500 10000] * 2 / Fs;       % transition zone 
[N,Wn] = buttord( Wp, Ws, 3, 20); % determine filter parameters 
[B,A] = butter(N,Wn);             % builds filter 
data = filtfilt( B, A, data );    % runs filter 
 
The 2nd line of code specifies a transition zone between the stop and pass bands of the filter.  
This transition should not be instantaneous because it would produce an unstable filter.  In the 
3rd line is specified the tolerances of the filter.  The filter will have 3 dB of tolerance in the pass-
band, or roughly a gain that can vary between 0.5 and 2.  The filter will have an attenuation of at 
least 20 dB in the stop-zone, or a factor of 100.  When desigining your own filter, you can see its 
frequency and phase response by using the function freqz. 

2.2 Defining parameters 
All parameters for spike sorting are stored in spikes.params as described in section 4.  The 
default values for these parameters are defined in the function ss_default_params.  This 
function creates an empty spikes object with a fully populated params field.  The user should 
edit this file or make their own copy.  One parameter, the firing rate in Hz (Fs), is taken into 
ss_default_params as an argument. 

 



2.3 Spike event detection 
First the user must put the data set into the proper format.  The input data for ss_detect can 
either be in a matrix format of the form [trials x sample x channels]  or as a cell array of the 
form {trials}[samples x channels].  If a data set is too large to fit into memory, ss_detect can 
be called multiple times with new data sets.   Trials in the new data set will be concatenated to 
the trials from the previous data set.   
 
Spike detection is performed by setting a negative threshold and identifying events that cross 
this threshold. The user can either set this threshold manually or set a number of standard 
deviations above the mean.  In the latter case, the standard deviation is calculated for each 
channel, then multiplied by spikes.params.thresh and then used as the threshold.  Note that if 
ss_detect is called multiple times, the standad deviations will be based only on the first data 
set. When there are multiple channels, an event is detected when any channel crosses 
threshold.  In order to avoid one event triggering multiple threshold crossings, there is a period 
of time set by spikes.params.shadow (ms) that turns off detection for a short period of time 
after every threshold crossing.  This is also called “censoring”. 

 

For every detected event, ss_detect extracts a window from each channel.  Two parameters 
determine this window.  The total length of the window is set by spikes.params.window_size 
(ms).  The position of the threshold crossing event within the window is set by 
spikes.params.cross_time (ms).  These waveforms are stored in spikes.waveforms with the 
format [event x sample x channel].  The time of the event and its trial number are stored in 
spikes.spiketimes  (s) and spikes.trials respectively.  The array spikes.spiketimes stores the 
time of the spike event within a trial.  The absolute time of the spike event is stored in 
spikes.unwrapped_time by appending each trial.  A short buffer time is imposed between each 
trial as specified in spikes.params.trial_spacing (s). 

 



 

  

2.4 Waveform alignment 
In order for spike waveforms to be compared fairly, they must be well aligned.  Aligning a 
waveform on its sampled threshold crossing is problematic because the exact moment of 
threshold crossing is sensitive to noise.  Therefore, the next step in spike sorting is to re-align 
waveforms on their peak.   

 

This is accomplished by looking for the peak of the waveform after the threshold crossing, and 
sliding the waveform window by this amount. The maximum time range that the window can 
slide is set by spikes.params.max_jitter (ms).  Alignment is performed on the channel with the 
most significant peak and all other channel waveforms are slid by the same amount. Spline 
interpolation is used to find the true peak which may occur in between samples.  Note that the  
size of the window after alignment is set by spikes.params.window_size.  The actual size of 
the window before alignment is spikes.params.window_size + spikes.params.max_jitter. 



 

2.5 Over-clustering with K-means 
The next step in the spike sorting algorithm is to split the waveforms into many “miniclusters”.  A 
minicluster is a group of waveforms that’s small enough that it is likely to contain a subset of 
waveforms produced by exactly 1 neuron.  Later these miniclusters will be combined to form 
full-fledged clusters representing all the waveforms from 1 neuron.  The K-means algorithm is 
used to quickly break the data set into many miniclusters.  A single parameter, 
spikes.params.kmeans_clustersize, determines how small the miniclusters will be.  It is 
guaranteed that no minicluster will contain more spikes than 
spikes.params.kmeans_clustersize by more than a factor of 2. 

 



2.6 Cluster similarity and interface energy 
It is difficult to form a statistical model of a single-unit waveform cluster a priori.  Here we only 
assume a single-unit cluster should form a continuous cloud of data points.  We define 
continuity using a quantity called the interface energy.  The details of this calculation can be 
found in (Fee 1996b).  In brief, the interface energy is a non-linear similarity.  The similarity 
metric was designed to only produces large values when 2 clusters are very close to each other, 
such as when 2 clusters really represent a single cluster that was cut in half. In this case, the 2 
clusters will have a large energy because of their common interface.  In this step of the 
algorithm, the interface energy between every possible pair of miniclusters is calculated. The 
logic of creating a set of miniclusters and then combining them is that this interface energy is 
more easily calculated on miniclusters than on every pair of spikes contained in the entire data 
set. 

2.7 Aggregation 
Finally, miniclusters are aggregated.  The pair of clusters that has the highest interface energy 
are merged together and the then its interface energies are recalculated.  The stop criterion for 
aggregation is set by spikes.params.agg_cutoff.  Higher values of this cutoff allow for more 
aggregation.  It is difficult to know what this value should be, but it is easy to merge or split 
clusters manually in splitmerge_tool, so spikes.params.agg_cutoff does not need to be set 
precisely. 



 



 

3 Manual inspection of sorted spikes  
It is critical to examine the results of automated spike sorting as there are many ways in 
which clustering can fail.   

 The threshold for spike detection may be inappropriate.   

 Spike waveforms from the same neuron may be separated into multiple clusters.   

 Waveforms from multiple neurons may be combined into a single cluster.   

 Waveforms may represent non-neuronal events such as electrical noise.   

 A cluster may be inconsistent over time, dropping in or dropping out of the recording 
session.   

Manual inspection must be used to fix errors in waveform aggregation, determine which 
clusters represent single units, and to quantify the quality of a sorted cluster.  The plots and 
statistics described below are provided to facilitate this process by allowing the user a 
variety of informative views into their data. 

Several functions listed below have parameters that are set in ss_default_params and are 
defined in section 4. 

Note that in the following functions, the argument which defines which events are displayed 
in a flexible manner as defined in get_spike_indices. 

Data type of “which”  Interpretation 

List of unsigned integers Plots all waveforms of the listed cluster IDs.  If waveforms 
have not yet been assigned to clusters, then minicluster 
IDs are used. 

 

Boolean array Must be same length as number of event.  All indices for 
true values (1) are plotted. 

 

‘all’ All waveforms are plotted.  

 

For example, plot_waveforms( spikes, 1 ) plots the waveforms of cluster #1. 

 



 

 

 

 

 

 

 

 

 

 

 

 

3.1 Plots to examine single clusters 

3.1.1 plot_waveforms( spikes, which ) 
This is the primary function to view waveforms.   



 

The vertical and horizontal lines are colored to match the color associated with the given cluster.  
Vertical lines separate waveforms from different electrodes.  The horizontal line is a time scale 
bar whose length is set in spikes.params.display. The y-axis gives the number of waveforms 
in this cluster as well as the number of interspike intervals shorter than the defined refractory 
period (RPVs).  The limits of the y-axis are set to cover the largest event in the entire spikes 
object.  There is a context menu that can be accessed by right-clicking inside the plot.  When 
the plot showsa 2D histogram, one must right-click slightly outside the axes.  Via this context-
menu, the user can select how to display and color the waveforms.  

 



 

 

The choice of how to plot the data can either be shown as a 2D histogram, as bands 
representing 95% of the waveform data, or as the raw waveforms.  The user can also choose 
whether to separate and color the data by cluster ID, minicluster ID, all different, or all same.  
Different options will be available depending on whether the data has been clustered yet and on 
how the data is being displayed.  When bands or raw waveforms are displayed, the user can 
left-click (right-click) a band or waveform to raise (lower) all data of the same color.  A final 
option in the context-menu allows the current view to be applied to all instances of 
plot_waveforms in the same figure.  



  

3.1.2 plot_residuals( spikes, which ) 
Residuals are the standard deviation of the mean waveform as a function of sample.  In the 
ideal case, the residuals are equal to the standard deviation of the background noise.  Although 
sometimes difficult to interpret, plot_residuals can be used to diagnose whether there is 
unusual structure in the variability of a cluster. 

 

This plot shows the residuals as a function of sample.  The red vertical lines separate data from 
different channels.  The dashed line is the standard deviation of all data for that channel.  The 
pink band around the dashed line is the 95% confidence interval. 



 

3.1.3 plot_detection_criterion( spikes, which ) 
It is important to check whether a cluster is well-separated from the threshold for spike 
detection.  This function plots a histogram of the value of the negative peak of each waveform.  
This value is normalized by the threshold for detection so that a value of -1 is just at threshold.  
For multi-channel data, only the waveform on the channel with the largest negative peak is 
used.  A cluster is well-separated from threshold if its distribution is far from -1.  The estimated 
% of spikes that did not cross threshold is given above the plot.  This value is estimated by first 
fitting the histogram with a Gaussian distribution (red line).  Then the % of the Gaussian that is 
above -1 is easily calculated. Note that this estimate is only meaningful if the peaks are truly 
Gaussian distributed.  See quality measures for more information on estimating detection errors. 

 



 

3.1.4 plot_isi( spikes, which ) 
By definition, a real neuron cannot fire spikes during its absolute refractory period.  Therefore, 
the number of interspike intervals in a cluster that are less than the refractory period can 
indicate how contaminated the cluster is.  Further, a real neuron typically has a longer relative 
refractory period where the probability of firing is reduced from the normal mean firing rate.  This 
function allows the user to examine the firing statistics of a cluster on both time scales. 

 

 

 

 
 

On the left is the interspike interval distribution for a cluster.  On the right is the autocorrelation 
function of the spike train.  The user can access a context menu by right clicking the 
background of the plot.  There the user can switch between these two modes or apply the 
current mode to all instances of plot_isi in the current figure.  The red vertical band represents 
the absolute refractory period.  The gray region is the “shadow” region.  No interspike interval 
can be shorter than this limit because of the way that spike detection is performed.  The width of 
the histogram bars and the range of the x-axis are settable parameters. 

The y-axis label gives the number of refractory period violations, along with 3 numbers that 
estimate the percent contamination of the cluster. Spikes that occur less than a refractory period 
apart are assumed to be misclassified spikes.  We use the rate of such events to determine the 
overall rate of contamination.  This requires the assumption that misclassified events occur at 
random, i.e., their event times are not correlated with the event time of correctly classified 
spikes.  See the description of ss_rpv_contamination below or its comments for more 
information. 



In the parentheses on the y-axis, the 2nd number is the estimate of percent contamination based 
on refractory period violations. The 1st and 3rd numbers are a 95% confidence interval on this 
estimate.  Note that the confidence interval makes an additional assumption of Poisson 
statistics for the contaminating spikes.  

 



 

3.1.5 plot_stability( spikes, which ) 
The statistics of a cluster may not be stationary over time such as occurs during electrode drift.  
This function displays the amplitude (min to max voltage) and firing rate of a cluster over the 
duration of the experiment.  If the experiment consists of multiple trials, the absolute time of a 
spike during the experiment is modeled by adding a constant time delay between trials.  For 
economy of space, the amplitude and the firing rate are shown on the same plot.  If the cluster 
is large, only a subset of amplitude data is shown in the scatter plot. 

 



 

3.1.6 plot_distances( spikes, which ) 
If a cluster is well-described by a Gaussian distribution, then the Mahalanobis distance from the 

mean of the cluster to each waveform will follow a 2  distribution.  This function plots a 

histogram of the Mahalanobis distance of all waveforms.  The green line is the expected 

distribution assuming a 2  distribution.  Histogram values that are far out in the tail of the 

distribution can be interpreted as outliers. 

 

 

 



 

3.2 Plots to compare two clusters 

3.2.1 plot_fld( spikes, which1, which2) 
This function plots histograms of the projection of two clusters onto their Fisher linear 
discriminant.  The Fisher linear discriminant is the projection that most separates two multi-
variate Gaussian distributions.  This projection is a quick way to see how well separated two 
clusters are from each other.  In general, two clusters will be more separate than they appear in 
this dimension because two clusters may be more separable in a higher dimensional space.  A 
context menu can be accessed by right-clicking the background of the plot.  It toggles whether 
the legend is shown and whether the histograms should use the cluster colors or the default 
colors (red and blue).  Left (right) clicking on either histogram will send it to the front (back). 

 

 



 

3.2.2 plot_xcorr( spikes, which1, which2 ) 
If two clusters contain waveforms from the same neuron, their spike trains should show some 
structure in their cross-correlation.   This function plots the cross-correlation between the spike 
trains of two clusters.  As an alternative, the data can be plotted as an auto-correlation of a 
spike train formed by merging the two spike trains.  A context-menu allows the user to switch 
between these two modes.  The user can also apply the current mode to all instances of 
plot_xcorr in the current figure. 

The label of the y-axis indicates how many events are in each cluster.  The title indicates how 
many refractory period violations (RPVs) there are in the merged spike train (TOT), how many 
additional RPVs were created by merging the two spike trains (NEW), and how many would be 
expected if the two trains were uncorrelated (EXP).  The vertical red band indicates the RPV 
region while the gray vertical band represents the “shadow” used in spike detection. 

 



 

3.3 Plots to inspect aggregation tree 

3.3.1 plot_cluster_tree( spikes, clusID) 
This function plots the aggregation tree for a particular cluster. During each iteration of the 
aggregation procedure, a pair of subclusters is merged.  This is represented on the graph by 
two nodes being joined by black lines at a higher node.  The “Aggregation step” of the y-axis 
gives the iteration number when the merging occurred. Therefore, the aggregation procedure 
progresses from bottom to top. Nodes are labeled by their minicluster ID.  The color of the node 
is the color associated with the cluster ID.  So in the example below, every merge produced a 
cluster with an ID of 1. 

 



 

3.3.2 plot_agg_tree( spikes ) 
This function allows you to see all aggregation trees simultaneously.  The top of each tree 
shows the final cluster ID and the total number of member waveforms. 

 

 



 

3.4 Figures to browse all data 

3.4.1 show_clusters( spikes, clusterIDs ) 
This function generates a figure that allows you to see several important plots for all clusters 
indicated in a list.  From left to right, each cluster is plotted using plot_waveforms, 
plot_residuals, plot_detection_criterion, plot_isi, and plot_stability. 

 



 

3.4.2 compare_clusters( spikes, clusterIDs) 
This function generates a figure that allows you to compare the waveforms and spike times 
pairs of clusters indicated in a list.  The row and column determine which two clusters are being 
compared.  The plots along the diagonal are instances of plot_isi.  The plots in the lower left 
are generated by plot_xcorr.  The plots in the upper right are generated by plot_fld. 

 



 

3.4.3 plot_features( spikes, which ) 
This function shows a scatter plot of two statistics from the indicated spike events.  The statistic 
plotted for each axis can be change by clicking on the axis label.  Some statistics even require a 
parameter. 

Statistic  Description      Parameter 

Signal   Voltage value at a particular sample   Which sample 

PC   Principal component     Which component 

Cluster   Cluster ID 

Minicluster  Minicluster ID 

Event Time  Absolute time of event (s) 

ISI Preceding  Interspike interval before spike (ms).  Cutoff at some threshold.   

Total Energy  Sum of squares of waveform 

Amplitude  Range of waveform values 

Width   Time difference between maximum and minimum value of waveform (ms) 



 

Similar to plot_waveforms, there is a context menu where the user can set how the data points 
should be grouped and colored.  The user can also choose whether to show the legend, show 
outliers as black dots, or to replace the scatter plot altogether with a 2D histogram.  Finally, the 
user can left (right) click a data to bring all data points of that color to the front (back). 



 

3.5 Merge/Split/Outlier Tool 
The above graphical tools are useful ways of examining data, and the splitmerge_tool brings 
these plots together while allowing the user to manipulate the results of automated spike 
sorting.  Within this tool, the user can merge multiple clusters into a single cluster, split a single 
cluster into multiple parts, and remove spike events that have outlier waveforms. 

3.5.1 Merge tool 
The splitmerge_tool is initiated by calling splitmerge_tool( spikes ).  The tool begins with the 
merge_tool which allows the users to combine several clusters.  This tool displays all clusters 
in a series of panels.  These panels can be selected by left-clicking them with the mouse which 
causes them to turn white.  The panel at the top of the tool is initially blank, but can be 
populated by selecting cluster panels and hitting the eye button.  This will show instances of 
plot_waveforms, plot_detection_criterion, plot_isi, and plot_stability for the set of spike 
events represented by all the clusters in the selected panels. 

 

The selected clusters can be merged into a single cluster by clicking the go button.  Individual 
clusters can be further manipulated via a context menu that can be accessed by right-clicking its 
panel.  This menu allows the user to open split_tool and outlier_tool (see below).  It also 
allows the user to label clusters as defined in the parameters (see below) causing the panel to 
change color.  Several buttons allow additional functionality. 

 



Buttons (with hotkeys) 

 (s) Saves changes to spikes object to the MATLAB workspace. 

 Saves spikes object to a file. 

  Loads spikes object from a file.  File must be .MAT file containing a variable called 
spikes. 

 Opens an instance of show_clusters for the selected clusters. 

 Opens an instance of compare_clusters for the selected clusters. 

 Opens an instance of plot_features for the selected clusters. 

 (e) Populates top panel with information about the combined spike events from all of the 
selected panels. 

 (x) Merges the clusters from the selected panels. 

 (a) Selects all panels. 

 (d) De-selects all panels. 

 (h) Hides the selected panels. 

 (r) Reveals any hidden panels. 

 (p) Rearrange the panels to fit the width of the figure. 



 

3.5.2 Split tool 
Every cluster is formed by aggregating miniclusters together.  This process can be described by 
a tree where each node in the tree represents the merging of two sets of miniclusters.  The 
split_tool allows the user to examine the branches of this tree and remove any branches that 
may have been included erroneously. 

 

The top-left panel of this tool displays the tree for the given cluster using plot_cluster_tree.  A 
red horizontal line on this tree determines which sub-branches of this tree are viewable. 
Wherever this line cuts the tree, the node immediately below can be viewed.  The tree is colored 
so that all sub-branches have nodes of the same color.  The user can change the level of the 
red line by clicking elsewhere in the tree plot. 



At the bottom of the figure is displayed an instance of plot_waveforms for the spike events of 
each subcluster currently highlighted in the tree.  These panels can be selected and deselected 
the same way as in the merge_tool.   The two wide panels in the middle of the tool each can 
show an instance of plot_waveforms, plot_detection_criterion, plot_isi, and plot_stability.  
The upper one shows these plots for all unselected panels.  The bottom one shows these plots 
for all selected panels.  These two panels can be updated by hitting the EYE button.  

 

When the eye button is hit, the upper-right panel is also updated.  This panel displays plot_fld 
and plot_xcorr comparing the spike events from the selected and unselected panels. 

If the user determines that the selected panels contain subclusters that should not have been 
included in the main cluster, then the GO button can be pushed to remove the selected 
subclusters from the main clusters.  They will become full clusters in the spikes object and will 
appear in the merge_tool after the SAVE button is pressed.  If the green GO button is pressed, 



the removed subclusters will each become their own cluster.  If the yellow GO button is pressed, 
the removed subclusters will be merged into a single cluster. 

Finally, it can occur that a minicluster itself needs to be split.  This option can be selected by 
right-clicking in the panel of a minicluster, which is indicated by red title for the panel.  The 
minicluster is then split exactly in half along its 1st principal component.  It is suggested that the 
user view every minicluster of cluster to determine whether the minicluster was included by 
accident or whether the minicluster contains waveforms from multiple units. 

 

 

Buttons (with hotkeys) 

 (s) Closes the split_tool and saves any changes made to the merge_tool. 

 Opens an instance of show_clusters for the selected subclusters.  

 Opens an instance of compare_clusters for the selected subclusters. 

  Opens an instance of plot_features for the selected subclusters. 

 (e) Divides the set of waveforms into those from selected panels and those from 
unselected panels.  The top panels are updated to show various plots showing and 
comparing the two sets of spikes. 

 (x) Removes the subclusters from the selected panels from the overall cluster.  Each 
selected panel becomes its own cluster. 

 (m) Removes the subclusters from the selected panels from the overall cluster and then 
merges them. 

  These buttons act similarly to the ones described above for the merge_tool.  They 
allow the user to select all, deselect all, hide, show, and rearrange subcluster panels.  



 

3.5.3 Outlier tool 
Unusual waveforms, such as noise events or overlapping waveforms, are assigned to the 
nearest cluster.  Therefore, the user must remove these events manually at the end of 
automatic spike sorting.  This is accomplished by opening the cluster in the outlier_tool. 

 

In the outlier_tool, the cluster itself is displayed at bottom in an instance of plot_waveforms.  
The main tool for removing outliers is the plot at top left which is a special instance of 
plot_distances.  It contains a histogram of the Mahalanbois distance of each waveform from 
the cluster center.  A context-menu that can be accessed with a right-click controls whether the 
covariance matrix used in this calculation arises from the statistics of the cluster or the statistics 
of background noise. Overlaid on this is a green line representing the prediction of the 

histogram by the 2 distribution.  When the histogram exceeds this prediction, that is evidence 
these waveforms are statistical outliers.  Also shown is a scatter plot of x’s representing the 
location of spikes that contribute a refractory period violation.  This is included to indicate 
whether cutting outliers will reduce the number of refractory period violations. 

The striped vertical line in this plot is used to select a cutoff for outliers.  Its position can be 
changed by left-clicking within the plot.  When its position is updated, the plot below and the plot 
to the right are also updated.  The plot labeled “Outlier waveforms” shows all of the waveforms 
to the right of the cutoff line.  The thick black trace is the mean waveform for the cluster.  The 
title indicates how many outliers were identified out of how many waveforms total.  The right-



most plot is an instance of plot_features.  The waveforms to the right of the cutoff line are 
represented by black dots.  

The indicated outlier waveforms can be removed by hitting the GO button.  All information about 
the waveforms is then stripped from the main fields of the spikes object and stored in the 
structure, spikes.info.outliers.  If needed, these waveforms can be reintegrated into the main 
spikes structure by calling the function reintegrate_outliers. 

 

Note: It is not recommended to remove an entire cluster as outliers as this makes it difficult to 
determine whether a valid cluster is well-separated from other events. 

 

Buttons (with hotkeys) 

 (s) Closes the outlier_tool and saves any changes to the merge_tool.  

 (x) Marks as outliers any waveforms beyond the current cutoff. 

 

3.5.4 SliderFigure 
SliderFigure.m  is a utility that allows the user to zoom in and out of the figure itself.  The 
normal MATLAB zoom function only allows one to zoom in on the data of a single set of axes.  
The SliderFigure tool adds sliders to the figure if zooming the plots causes axes to not fit on 
screen.  This tool can be used in any figure in MATLAB simply by calling SliderFigure.  The 
figure must only contain uipanels and axes.  See the m-file for more details on the parameters 
to this tool.    

  Zoom in to figure by 10%. 

    Zoom out of figure by 10%. 

  Fit plots to figure size. 

  Fit plots to figure height. 

  Fit plots to figure width. 

  Return figure to 100% zoom. 

 

3.6 Quality measures  
Quality measures estimate the percent contamination of a cluster. The functions below estimate 
the faction of spikes in a cluster that were included in as false positive events or omitted as false 
negative events.  While this can be very useful in assessing the quality of a spike sorting 



session, the user should be aware that each measure makes certain statistical assumptions.  
The descriptions below are meant to be brief.  See the comments of the specific functions or our 
review paper on quality measures (J. Neurosci., in review) for more details. 

For each quality measure listed below, there are two functions in the quality_measures 
directory that implement it.  .One is designed to work with the spikes struct. and has the prefix 
ss_.  The other was designed independently of the spikes struct and has the same file name but 
without the prefix.  This was done so that those who do not use the other functions in the 
toolbox can still have simple access to the quality measures.  For more information about how 
to use the un-prefixed functions, see the comments in those files.  

3.6.1 False positive estimate based on refractory period violations 
Implemented by ss_rpv_contamination( spikes, clusterID  ).  A real neuron has a brief period after 
each spike when it cannot fire again, called the refractory period.  This function uses the number 
of inter-spike intervals (ISIs) that are less than the refractory period to estimate a contamination 
rate.   
 
The logic of this function is detailed in rpv_contamination, but the essential statistical 
assumption is that contaminating spikes which cause refractory period violations occur at times 
that are uncorrelated with the spike times of true spikes in the cluster.  This function also returns 
95% confidence levels on the estimate which make the further assumption of Poisson statistics. 
 

3.6.2 False negative and positive estimates based on waveform distribution of 
pairs of clusters 

Implemented by ss_gaussian_overlap( spikes, clusterID1, clusterID2  ).  This function estimates 
false positives and false negatives from the spike waveforms of two different clusters.  An error probability 
is estimated by assuming that the two clusters were generated by a mixture of 2 multivariate Gaussian 
distributions. The parameters of this distribution are fit using the Statistics toolbox function 
gmdistribution.fit.   
 
Be aware when using this function that a two Gaussian model may not be suited to your pair of clusters.  
Non-Gaussian variability occurs during electrode drift, bursting, poor clustering, etc… Use the 
visualization tools to diagnose this.   
 
Based on the Gaussian models, this function outputs a confusion matrix that gives an estimate of the 
false negative and positive errors for each of the two clusters.  If C is the confusion matrix, then  
 

C(1,1) is the probability of a false positive for cluster 1  
C(1,2) is the probability of a false negative for cluster 1 
C(2,1) is the probability of a false negative for cluster 2 
C(2,2) is the probability of a false positive for cluster 2 
 

This function should be applied to every pair of clusters to get an overall estimate of false positive and 
negative rates.  All false positive probabilities for a particular cluster are independent and so should be 



combined by multiplying the compliments, (i.e., j
j

1 (1 p )  ).  The same is true for the false negative 

probabilities.   
 
Note that the false positives events estimated from refractory period violations is not independent from 
the false positive events estimated from Gaussian overlap.  Therefore, it is recommended to use which 
ever estimate is larger. 

 

3.6.3 False negative estimate based on spike detection errors 
Implemented by ss_undetected( spikes, clusterID  ).  This function estimates false negative 
errors due to a detection threshold that is too high for the cluster.  The function assumes that 
detection was performed using a simple negative voltage threshold.  A histogram is created of 
the peak voltage for each waveform and is fitted with a Gaussian.  A special fitting function is 
used since the tail of the Gaussian distribution is assumed missing due to the detection 
threshold.  The integral of the missing tail is returned as an estimate of the probability of false 
negatives. 
 
In the case of multi-channel data, the waveform on each channel is normalized by the detection 
threshold on that channel.  Then only the most negative value across all channels is saved for 
the histogram.  
 
The Gaussian fit should be checked visually using plot_detection_criterion. 
 

3.6.4 False negative estimate based on censored period (collisions) 
Implemented by ss_censored( spikes, clusterID ).  Every detected event is followed by a brief 
“censored” or “shadow” period where no further spike can be detected.  This feature is included 
in ss_detect so that a single spike event does not trigger multiple detection events.  However, if 
events are detected at a high rate (> 50 Hz) then these shadow periods can become a 
significant percentage of the data set.  This function calculate what percent of the experiment is 
censored by events outside of the given cluster, thus giving another false negative probability. 

 

Note that “censored” events, “undetected” events, and the overall false negative probability 
estimated by Gaussian overlap are mutually exclusive.  Therefore, these 3 estimates of false 
negative errors can be simply added to get a final estimate of false negative errors.  



 

4 Data structure reference 
This section describes the “spikes” object and all of its fields.  This structure contains all 
waveform, timing, and assignment information for each detected spike as well as the 
parameters and scratch information used during the sorting process. Fields that are 
potentially large are set as “single” precision floating point numbers in order to save 
memory space. In the following text, symbols are used to represent the following values. 

C = number of clusters 

E = number of electrophysiology channels 

N = number of detected spikes 

S = number of samples in a waveform 

4.1 Fields of the “spikes” object 
Fields are added at different points during the spike sorting process. The spikes object 
contains the following fields.   

assigns   [1 x N]  Array of integer cluster IDs for each spike event. 

info Structure containing internal information automated spike sorting.  See 
below.  

labels [C x 2] Matrix of cluster labels.  The first column contains the ID of a 
cluster.  The second column contains the ID of the label for that cluster.   
Label IDs are defined in the params structure.  See below. 

params Structure containing parameters used for processing and display of spike 
data. 

spiketimes [1 x N] Array of time of spike event within its trial (seconds). 

trials  [1 x N] Array of trial membership for each spike event. 

unwrapped_times 

[1 x N] Array of absolute time of spike events (seconds).  The absolute 
time is approximated by concatenating trials and assuming a fixed time 
interval between each trial.  

waveforms [N x S x E] Matrix of waveforms on each channel for each spike event.   

 

 



4.2 Fields of spikes.params 
The params field is created when ss_default_params()  is called.  See this function for 
default values. 

4.2.1 Spike sorting parameters 
These parameters are found as subfields of the spikes.params structure.  They affect 
the procedure of spike sorting. 

agg_cutoff Sets termination criterion for cluster aggregation.  Higher values 
allow less aggregation.  Lower values allow more aggregation. 

cross_time Time within waveform window to place threshold crossing (ms).  
This value becomes the location of the peak after alignment. 

detect_method Either “manual” or “auto”.  If “auto” is used, then the thresh field is 
interpreted as the number of negative standard deviations to set 
the detection threshold for each channel.  If “manual” is used, then 
thresh must contain the actual threshold values used on each 
channel 

Fs   Sampling rate of data (Hz). 

kmeans_clustersize Target size for miniclusters.  See k-means section above.   

max_jitter Maximum amount by which a waveform can be shifted during 
alignment (ms). 

refractory_period Period used to count refractory period violations (ms). 

shadow Period after a threshold crossing until the next spike can be 
detected (ms).  Used to avoid the same spike triggering multiple 
events. 

thresh Determines the value of the negative-going threshold for spike 
detection.  See detect_method above. 

window_size  Length of waveform window (ms). 

 

4.2.2 Display parameters 
These parameters are found as subfields of the spikes.params.display structure.  They 
affect how the results of spike sorting are displayed. 

4.2.2.1 Parameters used by plot_waveforms 
cmap [Mx3] RGB color map used for 2D histograms.  M can be any 

unsigned integer.  

default_waveformmode   



Default method for displaying waveforms.  Choose 1 to see raw 
waveforms.  Choose 2 to see bands representing 95% of 
waveform values.  Choose 3 to see a 2D histogram. 

time_scalebar Length of scale bar (ms). 

 

4.2.2.2 Parameters used by plot_features 
show_outliers  Sets whether outliers should be displayed by default. (0 or 1) 

xchoice Specifies what statistic is plotted as the x-axis value.  Valid 
choices are Signal, PC, Cluster, Minicluster, Event Time, ISI 
Preceding, Total Energy, Amplitude, and Width. 

 
xparam Specifies a parameter for the statistic specified by xchoice.  See 

documentation for plot_features. 

ychoice  Similar to xchoice but for y-axis.  

yparam  Similar to yparam but for y-axis. 

 

4.2.2.3 Parameters for plotting spike train correlations 
correlations_bin_size Bin size used for cross- or auto-correlation plots (ms). 

default_xcorr_mode Sets whether plot_xcorr initially shows the cross-
correlation of the two spike trains (1) or the auto-correlation 
of the spike train formed when the two trains are merged 
(0).  

isi_bin_size   Bin size used to plot interspike interval histograms (ms) 

max_autocorr_to_display Extent of x-axis for all correlation plots (s). 

max_isi_to_display  Extent of x-axis for interspike interval histograms (s). 

show_isi Sets whether plot_isi initially shows the interspike interval 
histogram or the auto-correlation plot (0 or 1). 

trial_spacing Sets the amount of time to pad between trials when 
concatenating spike trains for the field 
spikes.unwrapped_times (s). 



 

4.2.2.4 Parameters used by plot_stability 
max_scatter Maximum number of data points to show in scatter plot of 

spike amplitude. 

stability_bin_size  Bin size used to calculate firing rate over time (s). 

 

4.2.2.5 Parameter used by outlier_tool 
default_outlier_method Sets how the outlier tool determines the covariance matrix of a 

cluster.  Use 1 to estimate the covariance matrix from the cluster 
itself.  Use 2 to estimate it from the background noise. 

 

 

4.2.2.6 Parameters for labeling clusters 
label_categories  Cell array of strings for possible labels that can be applied in 

splitmerge_tool.  The first string is used as the default.  

label_colors [Mx3] matrix of colors for the corresponding labels in 
label_categories.  There must be one entry for each category. 

 

4.2.2.7 Parameters for layout of tool figures 
default_figure_size   [1x4] Default figure position in ‘normalized’ 

coordinates. 

figure_font_size   Default font size used in figures. 

initial_split_figure_panels Initial number of subclusters shown in split_tool.  
The aggregation tree for the cluster will be cut at a 
level so that this many subclusters can be viewed.  

 

4.2.2.8 Parameters for color of tool figures 
merge_fig_color   [1x3] Background color of splitmerge_tool figure. 

split_fig_color   [1x3] Background color of split_tool figure. 

outlier_fig_color   [1x3] Background color of outlier_tool figure. 



 

4.2.2.9 Parameters for layout of clusters within tools 
aspect_ratio  Ratio of height to width of plots in tools. 

margin   Number of pixels between adjacent plots (with no zoom). 

outer_margin  Number of pixels for figure margin. 

width   Number of pixels for width of a plot (with no zoom). 

 

4.3 Fields of spikes.info 
This structure is mainly for internal use by the spike sorting software.  It contains detailed 
information about how the data was sorted.  The structure spikes.info contains the 
following fields, listed in order of when they are added during the spike sorting process. 

4.3.1 detect  

Generated by ss_detect.  Contains information relevant to extracting spikes from 
electrophysiology data. 

 

align_sample Index of sample within waveform that corresponds to 
threshold crossing. 

cov Estimated covariance matrix by sampling random data 
windows.   

dur   Array of duration of each trial (s).   

event_channel Array of channel IDs for each waveform indicating which 
channel had the largest event.  

stds   Array of standard deviations for each channel.    

thresh Array of negative thresholds used to detect events on each 
channel. 

 

4.3.2 pca  

Generated by ss_detect.  Contains the principal components (SVD) of the waveforms.  
s   Diagonal matrix containing singular values. 

u Matrix satisfies the equation spikes.waveforms(:,:) = u*s*v’ 

v Matrix containing the principal component vectors. 



 

4.3.3 align 

Generated by ss_align.  Contains only a flag to show whether alignment was called. 
aligned Set to 1 when alignment has been performed.   

 

4.3.4 kmeans  

Generated by ss_kmeans.  Contains information used during the k-means algorithm.  
Importantly, the minicluster IDs for each spike event are stored here.  

 

assigns  Array of minicluster membership IDs for each spike event.  

B  Between-cluster scatter matrix. 

centroids   Matrix of mean waveform for each minicluster. 

colors  [Mx3] color matrix.  Stores color for display of each minicluster.  

iteration_count  Number of iterations of k-means performed on each pass. 

mse    Mean-squared distance of waveforms from minicluster center. 

num_clusters  Number of miniclusters. 

randn_state  Stores random numbers used by kmeans algorithm. 

T   Total scatter matrix (W+B). 

W   Within-cluster scatter matrix. 

 

4.3.5 interface_energy   

[MxM] matrix generated by ss_energy.  Each entry (j,k) specifies the interface energy 
between the jth and kth miniclusters.  This matrix is no longer valid after outliers are 
removed or a minicluster is split. 

4.3.6 tree     

[Mx2] matrix logging the aggregation process.  The first column gives the ID of the 
cluster that was merged into the cluster whose ID is given in the second column.  The 
order of the merge operations is given by the row number. 



 

4.3.7 outliers   

Generated by remove_outliers.  This structure contains bookkeeping information about 
each waveform that was removed as an outlier. 

  
pca      Matrix of PCA components for each outlier event.  

subassigns  Array of original minicluster membership for each outlier 
event.  

spiketimes    Array of spiketime of each outlier event.   

trials                Array of trial of each outlier event.  

unwrapped_times  Arrray of absolute time, after trial concatenation, for each 
outlier event. 

waveforms    Matrix of waveforms for each outlier event. 
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