

UltraMegaSort 2000 Manual

By

Daniel N. Hill
Samar B. Mehta
David Kleinfeld

February 23, 2012

Please send questions or bug reports to ultramegasort2000@gmail.com.

Table of Contents
1 Introduction to UltraMegaSort2000..4

2 Automatic spike sorting..5

2.1 Filtering..5

2.2 Defining parameters ..6

2.3 Spike event detection..7

2.4 Waveform alignment ...8

2.5 Over-clustering with K-means ...9

2.6 Cluster similarity and interface energy ..10

2.7 Aggregation...10

3 Manual inspection of sorted spikes..12

3.1 Plots to examine single clusters ..13

3.1.1 plot_waveforms(spikes, which) ...13

3.1.2 plot_residuals(spikes, which) ..16

3.1.3 plot_detection_criterion(spikes, which) ...17

3.1.4 plot_isi(spikes, which) ...18

3.1.5 plot_stability(spikes, which)...20

3.1.6 plot_distances(spikes, which)..21

3.2 Plots to compare two clusters ...22

3.2.1 plot_fld(spikes, which1, which2)...22

3.2.2 plot_xcorr(spikes, which1, which2)..23

3.3 Plots to inspect aggregation tree...24

3.3.1 plot_cluster_tree(spikes, clusID) ..24

3.3.2 plot_agg_tree(spikes)..25

3.4 Figures to browse all data ...26

3.4.1 show_clusters(spikes, clusterIDs) ...26

3.4.2 compare_clusters(spikes, clusterIDs) ..27

3.4.3 plot_features(spikes, which)..28

3.5 Merge/Split/Outlier Tool...30

3.5.1 Merge tool ...30

3.5.2 Split tool...32

3.5.3 Outlier tool ...35

3.5.4 SliderFigure ...36

3.6 Quality measures ..36

3.6.1 False negative estimate based on inter-spike interval distribution37

3.6.2 False negative and positive estimates based on waveform distribution..................37

3.6.3 False negative estimate based on spike detection errors38

3.6.4 False negative estimate based on censored period..38

4 Data structure reference ..39

4.1 Fields of the “spikes” object...39

4.2 Fields of spikes.params...40

4.2.1 Spike sorting parameters ..40

4.2.2 Display parameters ...40

4.3 Fields of spikes.info...43

4.3.1 detect...43

Generated by ss_detect. Contains information relevant to extracting spikes from
electrophysiology data. ..43

4.3.2 pca...43

Generated by ss_detect. Contains the principal components (SVD) of the waveforms.43

4.3.3 align...44

Generated by ss_align. Contains only a flag to show whether alignment was called.........44

4.3.4 kmeans..44

4.3.5 interface_energy..44

4.3.6 tree ..44

4.3.7 outliers...45

5 References ..46

1 Introduction to UltraMegaSort2000

Congratulations on downloading UltraMegaSort2000! You are about to experience the world’s
finest software package for spike sorting, featuring:

 Fully automated initial spike sorting

 An efficient implementation that allows for data sets containing many 10s of thousands
of spike events

 Easy manual correction tools implemented in a sophisticated GUI

 Flexible data structures that allow for multi-electrode, multi-trial data sets

 Quality metrics to verify the completeness and purity of your spike trains

 The convenience and customizability of the MATLAB analysis environment

To get the most out of your UltraMegaSort2000 experience, please read the following manual
carefully.

This software contains MATLAB code for spike sorting of extracellular neurophysiological data.
The code performs automatic detection and sorting of putative single-unit spike trains from
filtered data. The requirements on the data set are very general. The data can be taken with
multi-channel electrodes and include multiple trials. This package also contains tools for the
manual inspection and correction of automated spike sorting. The user can manually
manipulate spike clusters by merging or splitting them and removing outliers. Finally, there is
also included a set of quality metrics that allow the user to quantify the contamination and
completeness of a cluster of spikes.

The spike sorting process has 4 major steps, and this manual presents these steps in this order:

(1) Format data set
(2) Automated detection of spike waveforms and clustering
(3) Manual inspection and correction
(4) Quality metrics

As a quick reference, this package also includes a file called demo_script. This script contains
example code for a spike sorting session, a list of all the major visualization functions, and code
to generate a simulated data set.

This software was written in the Kleinfeld lab at the University of California, San Diego. For a
review of spike sorting, see (Lewicki 1998).

2 Automatic spike sorting
In this software, the spike sorting process begins with an automated algorithm that turns filtered
extracellular data into sorted spikes. A typical spike sorting session is run with the following
block of code:

spikes = ss_default_params(Fs);
spikes = ss_detect(data,spikes);
spikes = ss_align(spikes);
spikes = ss_kmeans(spikes);
spikes = ss_energy(spikes);
spikes = ss_aggregate(spikes);
splitmerge_tool(spikes)

where Fs is the sampling rate in Hz, data is a data block containing the filtered extracellular
data, and the last line initiates the manual inspection of the sorted spikes. The spikes object
contains all the parameters, spike data, cluster assignments, and processing information for the
spike sorting session. A full reference on the fields of this structure are given in section 4. This
section explains how to format your data and what the sorting functions do. For reference, the
automated algorithm is based largely on the method of (Fee 1996b).

2.1 Filtering
This software assumes that extracellular data has already been properly filtered, but here we
include a few tips on sorting data. The goal of filtering is to increase the signal-to-noise ratio of
your data without distorting spike waveforms.

This is most easily described in the frequency domain where the specification for the filter is that
it is zero-phase and removes frequency components where the spike waveform has little or no
spectral power. As spike waveforms are typically no longer than 1.5 ms, any signal below 700
Hz can be removed safely. On the high frequency end, noise tends to dominate signal around
8000 Hz [Ref]. Show below is the frequency and phase response for a Butterworth filter with
these cut-offs.

Note that the phase response is non-zero and non-linear. This can be remedied by running the
filter both forwards and backwards using a Matlab function called filtfilt. It should be noted that
running the filter in both directions means that the gain of the function is squared. The following
fragment of code implements this filter:

Wp = [700 8000] * 2 / Fs; % pass band for filtering
Ws = [500 10000] * 2 / Fs; % transition zone
[N,Wn] = buttord(Wp, Ws, 3, 20); % determine filter parameters
[B,A] = butter(N,Wn); % builds filter
data = filtfilt(B, A, data); % runs filter

The 2nd line of code specifies a transition zone between the stop and pass bands of the filter.
This transition should not be instantaneous because it would produce an unstable filter. In the
3rd line is specified the tolerances of the filter. The filter will have 3 dB of tolerance in the pass-
band, or roughly a gain that can vary between 0.5 and 2. The filter will have an attenuation of at
least 20 dB in the stop-zone, or a factor of 100. When desigining your own filter, you can see its
frequency and phase response by using the function freqz.

2.2 Defining parameters
All parameters for spike sorting are stored in spikes.params as described in section 4. The
default values for these parameters are defined in the function ss_default_params. This
function creates an empty spikes object with a fully populated params field. The user should
edit this file or make their own copy. One parameter, the firing rate in Hz (Fs), is taken into
ss_default_params as an argument.

2.3 Spike event detection
First the user must put the data set into the proper format. The input data for ss_detect can
either be in a matrix format of the form [trials x sample x channels] or as a cell array of the
form {trials}[samples x channels]. If a data set is too large to fit into memory, ss_detect can
be called multiple times with new data sets. Trials in the new data set will be concatenated to
the trials from the previous data set.

Spike detection is performed by setting a negative threshold and identifying events that cross
this threshold. The user can either set this threshold manually or set a number of standard
deviations above the mean. In the latter case, the standard deviation is calculated for each
channel, then multiplied by spikes.params.thresh and then used as the threshold. Note that if
ss_detect is called multiple times, the standad deviations will be based only on the first data
set. When there are multiple channels, an event is detected when any channel crosses
threshold. In order to avoid one event triggering multiple threshold crossings, there is a period
of time set by spikes.params.shadow (ms) that turns off detection for a short period of time
after every threshold crossing. This is also called “censoring”.

For every detected event, ss_detect extracts a window from each channel. Two parameters
determine this window. The total length of the window is set by spikes.params.window_size
(ms). The position of the threshold crossing event within the window is set by
spikes.params.cross_time (ms). These waveforms are stored in spikes.waveforms with the
format [event x sample x channel]. The time of the event and its trial number are stored in
spikes.spiketimes (s) and spikes.trials respectively. The array spikes.spiketimes stores the
time of the spike event within a trial. The absolute time of the spike event is stored in
spikes.unwrapped_time by appending each trial. A short buffer time is imposed between each
trial as specified in spikes.params.trial_spacing (s).

2.4 Waveform alignment
In order for spike waveforms to be compared fairly, they must be well aligned. Aligning a
waveform on its sampled threshold crossing is problematic because the exact moment of
threshold crossing is sensitive to noise. Therefore, the next step in spike sorting is to re-align
waveforms on their peak.

This is accomplished by looking for the peak of the waveform after the threshold crossing, and
sliding the waveform window by this amount. The maximum time range that the window can
slide is set by spikes.params.max_jitter (ms). Alignment is performed on the channel with the
most significant peak and all other channel waveforms are slid by the same amount. Spline
interpolation is used to find the true peak which may occur in between samples. Note that the
size of the window after alignment is set by spikes.params.window_size. The actual size of
the window before alignment is spikes.params.window_size + spikes.params.max_jitter.

2.5 Over-clustering with K-means
The next step in the spike sorting algorithm is to split the waveforms into many “miniclusters”. A
minicluster is a group of waveforms that’s small enough that it is likely to contain a subset of
waveforms produced by exactly 1 neuron. Later these miniclusters will be combined to form
full-fledged clusters representing all the waveforms from 1 neuron. The K-means algorithm is
used to quickly break the data set into many miniclusters. A single parameter,
spikes.params.kmeans_clustersize, determines how small the miniclusters will be. It is
guaranteed that no minicluster will contain more spikes than
spikes.params.kmeans_clustersize by more than a factor of 2.

2.6 Cluster similarity and interface energy
It is difficult to form a statistical model of a single-unit waveform cluster a priori. Here we only
assume a single-unit cluster should form a continuous cloud of data points. We define
continuity using a quantity called the interface energy. The details of this calculation can be
found in (Fee 1996b). In brief, the interface energy is a non-linear similarity. The similarity
metric was designed to only produces large values when 2 clusters are very close to each other,
such as when 2 clusters really represent a single cluster that was cut in half. In this case, the 2
clusters will have a large energy because of their common interface. In this step of the
algorithm, the interface energy between every possible pair of miniclusters is calculated. The
logic of creating a set of miniclusters and then combining them is that this interface energy is
more easily calculated on miniclusters than on every pair of spikes contained in the entire data
set.

2.7 Aggregation
Finally, miniclusters are aggregated. The pair of clusters that has the highest interface energy
are merged together and the then its interface energies are recalculated. The stop criterion for
aggregation is set by spikes.params.agg_cutoff. Higher values of this cutoff allow for more
aggregation. It is difficult to know what this value should be, but it is easy to merge or split
clusters manually in splitmerge_tool, so spikes.params.agg_cutoff does not need to be set
precisely.

3 Manual inspection of sorted spikes
It is critical to examine the results of automated spike sorting as there are many ways in
which clustering can fail.

 The threshold for spike detection may be inappropriate.

 Spike waveforms from the same neuron may be separated into multiple clusters.

 Waveforms from multiple neurons may be combined into a single cluster.

 Waveforms may represent non-neuronal events such as electrical noise.

 A cluster may be inconsistent over time, dropping in or dropping out of the recording
session.

Manual inspection must be used to fix errors in waveform aggregation, determine which
clusters represent single units, and to quantify the quality of a sorted cluster. The plots and
statistics described below are provided to facilitate this process by allowing the user a
variety of informative views into their data.

Several functions listed below have parameters that are set in ss_default_params and are
defined in section 4.

Note that in the following functions, the argument which defines which events are displayed
in a flexible manner as defined in get_spike_indices.

Data type of “which” Interpretation

List of unsigned integers Plots all waveforms of the listed cluster IDs. If waveforms
have not yet been assigned to clusters, then minicluster
IDs are used.

Boolean array Must be same length as number of event. All indices for
true values (1) are plotted.

‘all’ All waveforms are plotted.

For example, plot_waveforms(spikes, 1) plots the waveforms of cluster #1.

3.1 Plots to examine single clusters

3.1.1 plot_waveforms(spikes, which)
This is the primary function to view waveforms.

The vertical and horizontal lines are colored to match the color associated with the given cluster.
Vertical lines separate waveforms from different electrodes. The horizontal line is a time scale
bar whose length is set in spikes.params.display. The y-axis gives the number of waveforms
in this cluster as well as the number of interspike intervals shorter than the defined refractory
period (RPVs). The limits of the y-axis are set to cover the largest event in the entire spikes
object. There is a context menu that can be accessed by right-clicking inside the plot. When
the plot showsa 2D histogram, one must right-click slightly outside the axes. Via this context-
menu, the user can select how to display and color the waveforms.

The choice of how to plot the data can either be shown as a 2D histogram, as bands
representing 95% of the waveform data, or as the raw waveforms. The user can also choose
whether to separate and color the data by cluster ID, minicluster ID, all different, or all same.
Different options will be available depending on whether the data has been clustered yet and on
how the data is being displayed. When bands or raw waveforms are displayed, the user can
left-click (right-click) a band or waveform to raise (lower) all data of the same color. A final
option in the context-menu allows the current view to be applied to all instances of
plot_waveforms in the same figure.

3.1.2 plot_residuals(spikes, which)
Residuals are the standard deviation of the mean waveform as a function of sample. In the
ideal case, the residuals are equal to the standard deviation of the background noise. Although
sometimes difficult to interpret, plot_residuals can be used to diagnose whether there is
unusual structure in the variability of a cluster.

This plot shows the residuals as a function of sample. The red vertical lines separate data from
different channels. The dashed line is the standard deviation of all data for that channel. The
pink band around the dashed line is the 95% confidence interval.

3.1.3 plot_detection_criterion(spikes, which)
It is important to check whether a cluster is well-separated from the threshold for spike
detection. This function plots a histogram of the value of the negative peak of each waveform.
This value is normalized by the threshold for detection so that a value of -1 is just at threshold.
For multi-channel data, only the waveform on the channel with the largest negative peak is
used. A cluster is well-separated from threshold if its distribution is far from -1. The estimated
% of spikes that did not cross threshold is given above the plot. This value is estimated by first
fitting the histogram with a Gaussian distribution (red line). Then the % of the Gaussian that is
above -1 is easily calculated. Note that this estimate is only meaningful if the peaks are truly
Gaussian distributed. See quality measures for more information on estimating detection errors.

3.1.4 plot_isi(spikes, which)
By definition, a real neuron cannot fire spikes during its absolute refractory period. Therefore,
the number of interspike intervals in a cluster that are less than the refractory period can
indicate how contaminated the cluster is. Further, a real neuron typically has a longer relative
refractory period where the probability of firing is reduced from the normal mean firing rate. This
function allows the user to examine the firing statistics of a cluster on both time scales.

On the left is the interspike interval distribution for a cluster. On the right is the autocorrelation
function of the spike train. The user can access a context menu by right clicking the
background of the plot. There the user can switch between these two modes or apply the
current mode to all instances of plot_isi in the current figure. The red vertical band represents
the absolute refractory period. The gray region is the “shadow” region. No interspike interval
can be shorter than this limit because of the way that spike detection is performed. The width of
the histogram bars and the range of the x-axis are settable parameters.

The y-axis label gives the number of refractory period violations, along with 3 numbers that
estimate the percent contamination of the cluster. Spikes that occur less than a refractory period
apart are assumed to be misclassified spikes. We use the rate of such events to determine the
overall rate of contamination. This requires the assumption that misclassified events occur at
random, i.e., their event times are not correlated with the event time of correctly classified
spikes. See the description of ss_rpv_contamination below or its comments for more
information.

In the parentheses on the y-axis, the 2nd number is the estimate of percent contamination based
on refractory period violations. The 1st and 3rd numbers are a 95% confidence interval on this
estimate. Note that the confidence interval makes an additional assumption of Poisson
statistics for the contaminating spikes.

3.1.5 plot_stability(spikes, which)
The statistics of a cluster may not be stationary over time such as occurs during electrode drift.
This function displays the amplitude (min to max voltage) and firing rate of a cluster over the
duration of the experiment. If the experiment consists of multiple trials, the absolute time of a
spike during the experiment is modeled by adding a constant time delay between trials. For
economy of space, the amplitude and the firing rate are shown on the same plot. If the cluster
is large, only a subset of amplitude data is shown in the scatter plot.

3.1.6 plot_distances(spikes, which)
If a cluster is well-described by a Gaussian distribution, then the Mahalanobis distance from the

mean of the cluster to each waveform will follow a 2 distribution. This function plots a

histogram of the Mahalanobis distance of all waveforms. The green line is the expected

distribution assuming a 2 distribution. Histogram values that are far out in the tail of the

distribution can be interpreted as outliers.

3.2 Plots to compare two clusters

3.2.1 plot_fld(spikes, which1, which2)
This function plots histograms of the projection of two clusters onto their Fisher linear
discriminant. The Fisher linear discriminant is the projection that most separates two multi-
variate Gaussian distributions. This projection is a quick way to see how well separated two
clusters are from each other. In general, two clusters will be more separate than they appear in
this dimension because two clusters may be more separable in a higher dimensional space. A
context menu can be accessed by right-clicking the background of the plot. It toggles whether
the legend is shown and whether the histograms should use the cluster colors or the default
colors (red and blue). Left (right) clicking on either histogram will send it to the front (back).

3.2.2 plot_xcorr(spikes, which1, which2)
If two clusters contain waveforms from the same neuron, their spike trains should show some
structure in their cross-correlation. This function plots the cross-correlation between the spike
trains of two clusters. As an alternative, the data can be plotted as an auto-correlation of a
spike train formed by merging the two spike trains. A context-menu allows the user to switch
between these two modes. The user can also apply the current mode to all instances of
plot_xcorr in the current figure.

The label of the y-axis indicates how many events are in each cluster. The title indicates how
many refractory period violations (RPVs) there are in the merged spike train (TOT), how many
additional RPVs were created by merging the two spike trains (NEW), and how many would be
expected if the two trains were uncorrelated (EXP). The vertical red band indicates the RPV
region while the gray vertical band represents the “shadow” used in spike detection.

3.3 Plots to inspect aggregation tree

3.3.1 plot_cluster_tree(spikes, clusID)
This function plots the aggregation tree for a particular cluster. During each iteration of the
aggregation procedure, a pair of subclusters is merged. This is represented on the graph by
two nodes being joined by black lines at a higher node. The “Aggregation step” of the y-axis
gives the iteration number when the merging occurred. Therefore, the aggregation procedure
progresses from bottom to top. Nodes are labeled by their minicluster ID. The color of the node
is the color associated with the cluster ID. So in the example below, every merge produced a
cluster with an ID of 1.

3.3.2 plot_agg_tree(spikes)
This function allows you to see all aggregation trees simultaneously. The top of each tree
shows the final cluster ID and the total number of member waveforms.

3.4 Figures to browse all data

3.4.1 show_clusters(spikes, clusterIDs)
This function generates a figure that allows you to see several important plots for all clusters
indicated in a list. From left to right, each cluster is plotted using plot_waveforms,
plot_residuals, plot_detection_criterion, plot_isi, and plot_stability.

3.4.2 compare_clusters(spikes, clusterIDs)
This function generates a figure that allows you to compare the waveforms and spike times
pairs of clusters indicated in a list. The row and column determine which two clusters are being
compared. The plots along the diagonal are instances of plot_isi. The plots in the lower left
are generated by plot_xcorr. The plots in the upper right are generated by plot_fld.

3.4.3 plot_features(spikes, which)
This function shows a scatter plot of two statistics from the indicated spike events. The statistic
plotted for each axis can be change by clicking on the axis label. Some statistics even require a
parameter.

Statistic Description Parameter

Signal Voltage value at a particular sample Which sample

PC Principal component Which component

Cluster Cluster ID

Minicluster Minicluster ID

Event Time Absolute time of event (s)

ISI Preceding Interspike interval before spike (ms). Cutoff at some threshold.

Total Energy Sum of squares of waveform

Amplitude Range of waveform values

Width Time difference between maximum and minimum value of waveform (ms)

Similar to plot_waveforms, there is a context menu where the user can set how the data points
should be grouped and colored. The user can also choose whether to show the legend, show
outliers as black dots, or to replace the scatter plot altogether with a 2D histogram. Finally, the
user can left (right) click a data to bring all data points of that color to the front (back).

3.5 Merge/Split/Outlier Tool
The above graphical tools are useful ways of examining data, and the splitmerge_tool brings
these plots together while allowing the user to manipulate the results of automated spike
sorting. Within this tool, the user can merge multiple clusters into a single cluster, split a single
cluster into multiple parts, and remove spike events that have outlier waveforms.

3.5.1 Merge tool
The splitmerge_tool is initiated by calling splitmerge_tool(spikes). The tool begins with the
merge_tool which allows the users to combine several clusters. This tool displays all clusters
in a series of panels. These panels can be selected by left-clicking them with the mouse which
causes them to turn white. The panel at the top of the tool is initially blank, but can be
populated by selecting cluster panels and hitting the eye button. This will show instances of
plot_waveforms, plot_detection_criterion, plot_isi, and plot_stability for the set of spike
events represented by all the clusters in the selected panels.

The selected clusters can be merged into a single cluster by clicking the go button. Individual
clusters can be further manipulated via a context menu that can be accessed by right-clicking its
panel. This menu allows the user to open split_tool and outlier_tool (see below). It also
allows the user to label clusters as defined in the parameters (see below) causing the panel to
change color. Several buttons allow additional functionality.

Buttons (with hotkeys)

 (s) Saves changes to spikes object to the MATLAB workspace.

 Saves spikes object to a file.

 Loads spikes object from a file. File must be .MAT file containing a variable called
spikes.

 Opens an instance of show_clusters for the selected clusters.

 Opens an instance of compare_clusters for the selected clusters.

 Opens an instance of plot_features for the selected clusters.

 (e) Populates top panel with information about the combined spike events from all of the
selected panels.

 (x) Merges the clusters from the selected panels.

 (a) Selects all panels.

 (d) De-selects all panels.

 (h) Hides the selected panels.

 (r) Reveals any hidden panels.

 (p) Rearrange the panels to fit the width of the figure.

3.5.2 Split tool
Every cluster is formed by aggregating miniclusters together. This process can be described by
a tree where each node in the tree represents the merging of two sets of miniclusters. The
split_tool allows the user to examine the branches of this tree and remove any branches that
may have been included erroneously.

The top-left panel of this tool displays the tree for the given cluster using plot_cluster_tree. A
red horizontal line on this tree determines which sub-branches of this tree are viewable.
Wherever this line cuts the tree, the node immediately below can be viewed. The tree is colored
so that all sub-branches have nodes of the same color. The user can change the level of the
red line by clicking elsewhere in the tree plot.

At the bottom of the figure is displayed an instance of plot_waveforms for the spike events of
each subcluster currently highlighted in the tree. These panels can be selected and deselected
the same way as in the merge_tool. The two wide panels in the middle of the tool each can
show an instance of plot_waveforms, plot_detection_criterion, plot_isi, and plot_stability.
The upper one shows these plots for all unselected panels. The bottom one shows these plots
for all selected panels. These two panels can be updated by hitting the EYE button.

When the eye button is hit, the upper-right panel is also updated. This panel displays plot_fld
and plot_xcorr comparing the spike events from the selected and unselected panels.

If the user determines that the selected panels contain subclusters that should not have been
included in the main cluster, then the GO button can be pushed to remove the selected
subclusters from the main clusters. They will become full clusters in the spikes object and will
appear in the merge_tool after the SAVE button is pressed. If the green GO button is pressed,

the removed subclusters will each become their own cluster. If the yellow GO button is pressed,
the removed subclusters will be merged into a single cluster.

Finally, it can occur that a minicluster itself needs to be split. This option can be selected by
right-clicking in the panel of a minicluster, which is indicated by red title for the panel. The
minicluster is then split exactly in half along its 1st principal component. It is suggested that the
user view every minicluster of cluster to determine whether the minicluster was included by
accident or whether the minicluster contains waveforms from multiple units.

Buttons (with hotkeys)

 (s) Closes the split_tool and saves any changes made to the merge_tool.

 Opens an instance of show_clusters for the selected subclusters.

 Opens an instance of compare_clusters for the selected subclusters.

 Opens an instance of plot_features for the selected subclusters.

 (e) Divides the set of waveforms into those from selected panels and those from
unselected panels. The top panels are updated to show various plots showing and
comparing the two sets of spikes.

 (x) Removes the subclusters from the selected panels from the overall cluster. Each
selected panel becomes its own cluster.

 (m) Removes the subclusters from the selected panels from the overall cluster and then
merges them.

 These buttons act similarly to the ones described above for the merge_tool. They
allow the user to select all, deselect all, hide, show, and rearrange subcluster panels.

3.5.3 Outlier tool
Unusual waveforms, such as noise events or overlapping waveforms, are assigned to the
nearest cluster. Therefore, the user must remove these events manually at the end of
automatic spike sorting. This is accomplished by opening the cluster in the outlier_tool.

In the outlier_tool, the cluster itself is displayed at bottom in an instance of plot_waveforms.
The main tool for removing outliers is the plot at top left which is a special instance of
plot_distances. It contains a histogram of the Mahalanbois distance of each waveform from
the cluster center. A context-menu that can be accessed with a right-click controls whether the
covariance matrix used in this calculation arises from the statistics of the cluster or the statistics
of background noise. Overlaid on this is a green line representing the prediction of the

histogram by the 2 distribution. When the histogram exceeds this prediction, that is evidence
these waveforms are statistical outliers. Also shown is a scatter plot of x’s representing the
location of spikes that contribute a refractory period violation. This is included to indicate
whether cutting outliers will reduce the number of refractory period violations.

The striped vertical line in this plot is used to select a cutoff for outliers. Its position can be
changed by left-clicking within the plot. When its position is updated, the plot below and the plot
to the right are also updated. The plot labeled “Outlier waveforms” shows all of the waveforms
to the right of the cutoff line. The thick black trace is the mean waveform for the cluster. The
title indicates how many outliers were identified out of how many waveforms total. The right-

most plot is an instance of plot_features. The waveforms to the right of the cutoff line are
represented by black dots.

The indicated outlier waveforms can be removed by hitting the GO button. All information about
the waveforms is then stripped from the main fields of the spikes object and stored in the
structure, spikes.info.outliers. If needed, these waveforms can be reintegrated into the main
spikes structure by calling the function reintegrate_outliers.

Note: It is not recommended to remove an entire cluster as outliers as this makes it difficult to
determine whether a valid cluster is well-separated from other events.

Buttons (with hotkeys)

 (s) Closes the outlier_tool and saves any changes to the merge_tool.

 (x) Marks as outliers any waveforms beyond the current cutoff.

3.5.4 SliderFigure
SliderFigure.m is a utility that allows the user to zoom in and out of the figure itself. The
normal MATLAB zoom function only allows one to zoom in on the data of a single set of axes.
The SliderFigure tool adds sliders to the figure if zooming the plots causes axes to not fit on
screen. This tool can be used in any figure in MATLAB simply by calling SliderFigure. The
figure must only contain uipanels and axes. See the m-file for more details on the parameters
to this tool.

 Zoom in to figure by 10%.

 Zoom out of figure by 10%.

 Fit plots to figure size.

 Fit plots to figure height.

 Fit plots to figure width.

 Return figure to 100% zoom.

3.6 Quality measures
Quality measures estimate the percent contamination of a cluster. The functions below estimate
the faction of spikes in a cluster that were included in as false positive events or omitted as false
negative events. While this can be very useful in assessing the quality of a spike sorting

session, the user should be aware that each measure makes certain statistical assumptions.
The descriptions below are meant to be brief. See the comments of the specific functions or our
review paper on quality measures (J. Neurosci., in review) for more details.

For each quality measure listed below, there are two functions in the quality_measures
directory that implement it. .One is designed to work with the spikes struct. and has the prefix
ss_. The other was designed independently of the spikes struct and has the same file name but
without the prefix. This was done so that those who do not use the other functions in the
toolbox can still have simple access to the quality measures. For more information about how
to use the un-prefixed functions, see the comments in those files.

3.6.1 False positive estimate based on refractory period violations
Implemented by ss_rpv_contamination(spikes, clusterID). A real neuron has a brief period after
each spike when it cannot fire again, called the refractory period. This function uses the number
of inter-spike intervals (ISIs) that are less than the refractory period to estimate a contamination
rate.

The logic of this function is detailed in rpv_contamination, but the essential statistical
assumption is that contaminating spikes which cause refractory period violations occur at times
that are uncorrelated with the spike times of true spikes in the cluster. This function also returns
95% confidence levels on the estimate which make the further assumption of Poisson statistics.

3.6.2 False negative and positive estimates based on waveform distribution of
pairs of clusters

Implemented by ss_gaussian_overlap(spikes, clusterID1, clusterID2). This function estimates
false positives and false negatives from the spike waveforms of two different clusters. An error probability
is estimated by assuming that the two clusters were generated by a mixture of 2 multivariate Gaussian
distributions. The parameters of this distribution are fit using the Statistics toolbox function
gmdistribution.fit.

Be aware when using this function that a two Gaussian model may not be suited to your pair of clusters.
Non-Gaussian variability occurs during electrode drift, bursting, poor clustering, etc… Use the
visualization tools to diagnose this.

Based on the Gaussian models, this function outputs a confusion matrix that gives an estimate of the
false negative and positive errors for each of the two clusters. If C is the confusion matrix, then

C(1,1) is the probability of a false positive for cluster 1
C(1,2) is the probability of a false negative for cluster 1
C(2,1) is the probability of a false negative for cluster 2
C(2,2) is the probability of a false positive for cluster 2

This function should be applied to every pair of clusters to get an overall estimate of false positive and
negative rates. All false positive probabilities for a particular cluster are independent and so should be

combined by multiplying the compliments, (i.e., j
j

1 (1 p) ). The same is true for the false negative

probabilities.

Note that the false positives events estimated from refractory period violations is not independent from
the false positive events estimated from Gaussian overlap. Therefore, it is recommended to use which
ever estimate is larger.

3.6.3 False negative estimate based on spike detection errors
Implemented by ss_undetected(spikes, clusterID). This function estimates false negative
errors due to a detection threshold that is too high for the cluster. The function assumes that
detection was performed using a simple negative voltage threshold. A histogram is created of
the peak voltage for each waveform and is fitted with a Gaussian. A special fitting function is
used since the tail of the Gaussian distribution is assumed missing due to the detection
threshold. The integral of the missing tail is returned as an estimate of the probability of false
negatives.

In the case of multi-channel data, the waveform on each channel is normalized by the detection
threshold on that channel. Then only the most negative value across all channels is saved for
the histogram.

The Gaussian fit should be checked visually using plot_detection_criterion.

3.6.4 False negative estimate based on censored period (collisions)
Implemented by ss_censored(spikes, clusterID). Every detected event is followed by a brief
“censored” or “shadow” period where no further spike can be detected. This feature is included
in ss_detect so that a single spike event does not trigger multiple detection events. However, if
events are detected at a high rate (> 50 Hz) then these shadow periods can become a
significant percentage of the data set. This function calculate what percent of the experiment is
censored by events outside of the given cluster, thus giving another false negative probability.

Note that “censored” events, “undetected” events, and the overall false negative probability
estimated by Gaussian overlap are mutually exclusive. Therefore, these 3 estimates of false
negative errors can be simply added to get a final estimate of false negative errors.

4 Data structure reference
This section describes the “spikes” object and all of its fields. This structure contains all
waveform, timing, and assignment information for each detected spike as well as the
parameters and scratch information used during the sorting process. Fields that are
potentially large are set as “single” precision floating point numbers in order to save
memory space. In the following text, symbols are used to represent the following values.

C = number of clusters

E = number of electrophysiology channels

N = number of detected spikes

S = number of samples in a waveform

4.1 Fields of the “spikes” object
Fields are added at different points during the spike sorting process. The spikes object
contains the following fields.

assigns [1 x N] Array of integer cluster IDs for each spike event.

info Structure containing internal information automated spike sorting. See
below.

labels [C x 2] Matrix of cluster labels. The first column contains the ID of a
cluster. The second column contains the ID of the label for that cluster.
Label IDs are defined in the params structure. See below.

params Structure containing parameters used for processing and display of spike
data.

spiketimes [1 x N] Array of time of spike event within its trial (seconds).

trials [1 x N] Array of trial membership for each spike event.

unwrapped_times

[1 x N] Array of absolute time of spike events (seconds). The absolute
time is approximated by concatenating trials and assuming a fixed time
interval between each trial.

waveforms [N x S x E] Matrix of waveforms on each channel for each spike event.

4.2 Fields of spikes.params
The params field is created when ss_default_params() is called. See this function for
default values.

4.2.1 Spike sorting parameters
These parameters are found as subfields of the spikes.params structure. They affect
the procedure of spike sorting.

agg_cutoff Sets termination criterion for cluster aggregation. Higher values
allow less aggregation. Lower values allow more aggregation.

cross_time Time within waveform window to place threshold crossing (ms).
This value becomes the location of the peak after alignment.

detect_method Either “manual” or “auto”. If “auto” is used, then the thresh field is
interpreted as the number of negative standard deviations to set
the detection threshold for each channel. If “manual” is used, then
thresh must contain the actual threshold values used on each
channel

Fs Sampling rate of data (Hz).

kmeans_clustersize Target size for miniclusters. See k-means section above.

max_jitter Maximum amount by which a waveform can be shifted during
alignment (ms).

refractory_period Period used to count refractory period violations (ms).

shadow Period after a threshold crossing until the next spike can be
detected (ms). Used to avoid the same spike triggering multiple
events.

thresh Determines the value of the negative-going threshold for spike
detection. See detect_method above.

window_size Length of waveform window (ms).

4.2.2 Display parameters
These parameters are found as subfields of the spikes.params.display structure. They
affect how the results of spike sorting are displayed.

4.2.2.1 Parameters used by plot_waveforms
cmap [Mx3] RGB color map used for 2D histograms. M can be any

unsigned integer.

default_waveformmode

Default method for displaying waveforms. Choose 1 to see raw
waveforms. Choose 2 to see bands representing 95% of
waveform values. Choose 3 to see a 2D histogram.

time_scalebar Length of scale bar (ms).

4.2.2.2 Parameters used by plot_features
show_outliers Sets whether outliers should be displayed by default. (0 or 1)

xchoice Specifies what statistic is plotted as the x-axis value. Valid
choices are Signal, PC, Cluster, Minicluster, Event Time, ISI
Preceding, Total Energy, Amplitude, and Width.

xparam Specifies a parameter for the statistic specified by xchoice. See

documentation for plot_features.

ychoice Similar to xchoice but for y-axis.

yparam Similar to yparam but for y-axis.

4.2.2.3 Parameters for plotting spike train correlations
correlations_bin_size Bin size used for cross- or auto-correlation plots (ms).

default_xcorr_mode Sets whether plot_xcorr initially shows the cross-
correlation of the two spike trains (1) or the auto-correlation
of the spike train formed when the two trains are merged
(0).

isi_bin_size Bin size used to plot interspike interval histograms (ms)

max_autocorr_to_display Extent of x-axis for all correlation plots (s).

max_isi_to_display Extent of x-axis for interspike interval histograms (s).

show_isi Sets whether plot_isi initially shows the interspike interval
histogram or the auto-correlation plot (0 or 1).

trial_spacing Sets the amount of time to pad between trials when
concatenating spike trains for the field
spikes.unwrapped_times (s).

4.2.2.4 Parameters used by plot_stability
max_scatter Maximum number of data points to show in scatter plot of

spike amplitude.

stability_bin_size Bin size used to calculate firing rate over time (s).

4.2.2.5 Parameter used by outlier_tool
default_outlier_method Sets how the outlier tool determines the covariance matrix of a

cluster. Use 1 to estimate the covariance matrix from the cluster
itself. Use 2 to estimate it from the background noise.

4.2.2.6 Parameters for labeling clusters
label_categories Cell array of strings for possible labels that can be applied in

splitmerge_tool. The first string is used as the default.

label_colors [Mx3] matrix of colors for the corresponding labels in
label_categories. There must be one entry for each category.

4.2.2.7 Parameters for layout of tool figures
default_figure_size [1x4] Default figure position in ‘normalized’

coordinates.

figure_font_size Default font size used in figures.

initial_split_figure_panels Initial number of subclusters shown in split_tool.
The aggregation tree for the cluster will be cut at a
level so that this many subclusters can be viewed.

4.2.2.8 Parameters for color of tool figures
merge_fig_color [1x3] Background color of splitmerge_tool figure.

split_fig_color [1x3] Background color of split_tool figure.

outlier_fig_color [1x3] Background color of outlier_tool figure.

4.2.2.9 Parameters for layout of clusters within tools
aspect_ratio Ratio of height to width of plots in tools.

margin Number of pixels between adjacent plots (with no zoom).

outer_margin Number of pixels for figure margin.

width Number of pixels for width of a plot (with no zoom).

4.3 Fields of spikes.info
This structure is mainly for internal use by the spike sorting software. It contains detailed
information about how the data was sorted. The structure spikes.info contains the
following fields, listed in order of when they are added during the spike sorting process.

4.3.1 detect

Generated by ss_detect. Contains information relevant to extracting spikes from
electrophysiology data.

align_sample Index of sample within waveform that corresponds to
threshold crossing.

cov Estimated covariance matrix by sampling random data
windows.

dur Array of duration of each trial (s).

event_channel Array of channel IDs for each waveform indicating which
channel had the largest event.

stds Array of standard deviations for each channel.

thresh Array of negative thresholds used to detect events on each
channel.

4.3.2 pca

Generated by ss_detect. Contains the principal components (SVD) of the waveforms.
s Diagonal matrix containing singular values.

u Matrix satisfies the equation spikes.waveforms(:,:) = u*s*v’

v Matrix containing the principal component vectors.

4.3.3 align

Generated by ss_align. Contains only a flag to show whether alignment was called.
aligned Set to 1 when alignment has been performed.

4.3.4 kmeans

Generated by ss_kmeans. Contains information used during the k-means algorithm.
Importantly, the minicluster IDs for each spike event are stored here.

assigns Array of minicluster membership IDs for each spike event.

B Between-cluster scatter matrix.

centroids Matrix of mean waveform for each minicluster.

colors [Mx3] color matrix. Stores color for display of each minicluster.

iteration_count Number of iterations of k-means performed on each pass.

mse Mean-squared distance of waveforms from minicluster center.

num_clusters Number of miniclusters.

randn_state Stores random numbers used by kmeans algorithm.

T Total scatter matrix (W+B).

W Within-cluster scatter matrix.

4.3.5 interface_energy

[MxM] matrix generated by ss_energy. Each entry (j,k) specifies the interface energy
between the jth and kth miniclusters. This matrix is no longer valid after outliers are
removed or a minicluster is split.

4.3.6 tree

[Mx2] matrix logging the aggregation process. The first column gives the ID of the
cluster that was merged into the cluster whose ID is given in the second column. The
order of the merge operations is given by the row number.

4.3.7 outliers

Generated by remove_outliers. This structure contains bookkeeping information about
each waveform that was removed as an outlier.

pca Matrix of PCA components for each outlier event.

subassigns Array of original minicluster membership for each outlier
event.

spiketimes Array of spiketime of each outlier event.

trials Array of trial of each outlier event.

unwrapped_times Arrray of absolute time, after trial concatenation, for each
outlier event.

waveforms Matrix of waveforms for each outlier event.

5 References

Fee, M. S., P. P. Mitra, et al. (1996). "Automatic sorting of multiple unit neuronal signals in the
presence of anisotropic and non-Gaussian variability." J Neurosci Methods 69(2): 175-88.

Fee, M. S., P. P. Mitra, et al. (1996). "Variability of extracellular spike waveforms of cortical
neurons." J Neurophysiol 76(6): 3823-33.

Hill, D.N., Kleinfeld D., Mehta, S.B. (2007). “Spike sorting.” In Observed Brain Dynamics by P.P.
Mitra and H. Bokil. Oxford Press, 9:257-270.

*Hill, D.N., Mehta S.B., Kleinfeld D. (2011) “Quality metrics to accompany spike sorting of
extracellular signals.” J Neurosci 31: 8699-8705.

Lewicki, M. S. (1998). "A review of methods for spike sorting: the detection and classification of
neural action potentials." Network 9(4): R53-78.

Pouzat, C., O. Mazor, et al. (2002). "Using noise signature to optimize spike-sorting and to
assess neuronal classification quality." J Neurosci Methods 122(1): 43-57.

* Please cite in publications.

