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SUMMARY
In their pioneering study on dopamine release, Romo andSchultz speculated ‘‘...that the amount of dopamine
released by unmodulated spontaneous impulse activity exerts a tonic, permissive influence on neuronal pro-
cessesmore actively engaged in preparation of self-initiatedmovements....’’1 Motivated by the suggestion of
‘‘spontaneous impulses,’’ as well as by the ‘‘ramp up’’ of dopaminergic neuronal activity that occurs when
rodents navigate to a reward,2–5 we asked two questions. First, are there spontaneous impulses of dopamine
that are released in cortex? Using cell-based optical sensors of extrasynaptic dopamine, [DA]ex,

6 we found
that spontaneous dopamine impulses in cortex of naive mice occur at a rate of �0.01 per second. Next, can
mice be trained to change the amplitude and/or timing of dopamine events triggered by internal brain dy-
namics, much as they can change the amplitude and timing of dopamine impulses based on an external
cue?7–9 Using a reinforcement learning paradigm based solely on rewards that were gated by feedback
from real-time measurements of [DA]ex, we found that mice can volitionally modulate their spontaneous
[DA]ex. In particular, by only the second session of daily, hour-long training, mice increased the rate of im-
pulses of [DA]ex, increased the amplitude of the impulses, and increased their tonic level of [DA]ex for a
reward. Critically, mice learned to reliably elicit [DA]ex impulses prior to receiving a reward. These effects
reversed when the reward was removed. We posit that spontaneous dopamine impulses may serve as a
salient cognitive event in behavioral planning.
RESULTS

We measured extrasynaptic dopamine ([DA]ex) in primary so-

matosensory (S1) cortex of mice, which is known to exhibit stim-

ulus-dependent10 and experience-dependent synaptic plas-

ticity.11 Extrasynaptic dopamine is converted into an optical

signal by cell-based neurotransmitter fluorescent-engineered

reporters (CNiFERs).6 The CNiFERs are implanted into cortex

and observed with in vivo two-photon microscopy12 through a

thin-skull craniotomy that minimizes neuroinflammation.13 We

chose this approach for a multitude of reasons. First, we wish

to make a direct measurement at the site of action rather than

infer release from the spiking output of dopaminergic neurons

that project to S1 cortex.14–16 This is particularly important in

light of differences in somatic spiking and dopaminergic

release.17,18 Second, D2-CNiFERs leverage the specificity of

D2 dopamine G-protein-coupled-receptors (GPCRs) and thus

have physiological nanoMolar sensitivity for [DA]ex.
6 This en-

ables D2-CNiFERs to detect small changes in [DA]ex with high

sensitivity and with fast temporal resolution, i.e., <0.25 s. The

same approach of using GPCRs was taken with recent single-
C

wavelength, molecular sensors.19,20 Third, CNiFERs report a

change in [DA]ex through dual-wavelength fluorescence reso-

nant energy transfer (FRET), which is relatively insensitive to

optical bleaching, drift, and motion of the head compared with

single-wavelength detectors. In fact, we compared the use of a

genetically encoded dopamine sensor, GRABDA, against that

of the CNiFERs (Figure S1); while GRABDA was more sensitive

to fast transients, it did not have the long-term stability needed

for the current experiments.

We began with open-loop measurements on naive mice that

had no prior experience with the apparatus (7 mice). The animals

were implanted with D2-CNiFERs below a thinned-skull optical

window, allowed to recover, and studied under head-fixed condi-

tions on a running disk (Figure 1A). For these naive animals, we

observed spontaneous, transient increases, i.e., impulses, in

[DA]ex (Figure1B). Interestingly, there isnegligiblestatistical coher-

encebetween changes in [DA]ex and the speedof locomotion (Fig-

ure 1C). As an average over all animals, spontaneous dopamine

transients occur at a rate of 0.007 ± 0.001 Hz (mean ± SE; Fig-

ure 1D) or about once every 140 s. The peak amplitude of sponta-

neous impulses is distributed across roughly a 3-fold range of
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Figure 1. Characterization of spontaneous

dopamine impulses ([DA]ex) in naive mice

in the absence of reward in an apparatus

without a lick port or overt stimulation

(A) Open-loop measurement of cortical [DA]ex us-

ing D2-CNiFERs with in vivo two-photon micro-

scopy. Increases in [DA]ex are observed as an in-

crease in YFP fluorescence with a concomitant

decrease in CFP fluorescence and vice versa. The

CNiFER signal is reported as the fractional change

in FRET.21 Inset: fluorescence image of D2 CNi-

FER implant in cortex is shown.

(B) Time series shows changes in D2 CNiFER

FRET, reflecting spontaneous transients in [DA]ex,

i.e., dopamine impulses, along with measurement

of the rate of locomotion.

(C) The magnitude of the spectral coherence

magnitude, averaged over all animals (xx mice),

between the locomotion rate and [DA]ex. Data

without lick port in black and with dry port in

maroon are shown; dashed line is 0.95 confidence

level.

(D) Distribution of spontaneous dopamine impulse

rate for all naive animals. Histograms without lick

port (gray) and with port (maroon) are statistically

indistinguishable (KS test; p = 0.99).

(E) Two-dimensional histogram of spontaneous

impulses in [DA]ex across all animals without lick

port. Top row is the cumulative of all widths; the

average full width half maximum relative to base-

line was 15.1 ± 1.3 s (blue line). Right column is the

cumulative of amplitudes; 0.1 corresponds to

[DA]ex ~20 nM;6 the average was 0.056 ± 0.002

(blue line).

See also Figure S1.
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values (Figure 1E). These values are far from the saturation level for

dopamine binding by the CNiFERs and correspond to almost an

order of magnitude range in [DA]ex.
6 The lifetime of the impulses

is near-uniformly distributed from 1 s in width up to 100 s with a

mean value of 12 s (Figure 1E). We take 100 s as the operational

break point between dopamine impulses and changes in basal

[DA]ex, which we refer to as tonic events. All told, these data sup-

port the presence of spontaneous [DA]ex impulses in cortex.

We next asked whether spontaneous [DA]ex events could be

subject to volitional control. To address this, we designed an

experiment with three sequential epochs: baseline (day 1), feed-

back ‘‘ON’’ (days 2 and 3), and feedback ‘‘OFF’’ (day 4). To deter-

mine the baseline [DA]ex, we performed open-loop measure-

ments with naive mice. These measurements are identical to

the assay of spontaneous events (Figure 1A) but with the addition

of a dry lick port (Figure 2A). In the feedback ON epoch, we intro-

duced a closed-loop system for reinforcement training.22,23 The

mouse now received a sucrose-water drop reward through the

lick port if there was an increase in [DA]ex above a threshold
2 Current Biology 31, 1–9, September 27, 2021
concentration; the determination was

evaluated every 0.25 s (Figure 2A). Impor-

tantly, there was no external cue; mice

were simply rewarded for elevations

in cortical [DA]ex. To motivate mice

to actively increase the peak level of

[DA]ex, we incorporated an adaptive stair-
case algorithm,24 analogous to a progressive ratio in classical

conditioning, that was based on the [DA]ex level in the feedback

loop. Increases in [DA]ex triggered a progressively higher

threshold for reward, while the threshold was gradually lowered

if [DA]ex was unchanged or decreased. In the feedback OFF

epoch on day 4, the reward was omitted. Additional epochs of

feedback ON and OFF were performed in a subset of mice.

We detect spontaneous impulses in [DA]ex in the absence of

any reward, as seen in the example baseline data of Figure 2B

(left panel). Transient increases in [DA]ex occurred with an

average rate of 0.008 ± 0.001 Hz (18 mice), statistically indistin-

guishable from that of naive animals in the absence of a port

(Figure 1D). Unlike the case without a lick port, however,

running and changes in [DA]ex weakly but significantly co-fluc-

tuated over long timescales (Figure 1C), although the tonic level

of [DA]ex stayed relatively constant over the period of the trial

(Figure 2C, day 1). Lastly, mice naturally lick the dry port

such that [DA]ex and licking very weakly co-fluctuated. In total,

these data confirm the presence of spontaneous [DA]ex
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Figure 2. Closed-loop feedback reinforcement training to volitionally link spontaneous impulses in [DA]ex to reward

(A) The setup for the open loop experiment (Figure 1A) is augmented. We use the measured D2-CNiFER response as a proxy for [DA]ex and drive the delivery of a

liquid reward based on the [DA]ex signal (red) relative to an adaptive staircase threshold (green) updated every 0.25 s. If [DA]ex exceeds the threshold, a drop

(0.1 mL) of sucrose water (10% w/v) is released via the lick port and the threshold is incremented by 0.005 signal units. The value of the threshold also expo-

nentially decreases, in discrete steps of 0.005, with a time constant of 225 s, since the last increment.

(B) Example data show the open-loop naive response on day 1 and an increase of tonic [DA]ex with closed-loop reinforcement on day 3; the adaptive staircase

threshold follows the reward to within the decay time constant. A 130-s segment of data highlighted by the beige band is expanded.

(C) Rolling average of [DA]ex impulses for all mice. The averaging window was 235 s. On day 2, tonic [DA]ex did not significantly increase relative to that of naive

mice (p = 0.69). By day 3, tonic [DA]ex increased significantly (p = 0.01). The increase extinguished when reward was withheld on day 4 (p = 0.73) and reinstated

when reward was restored on day 5 or 7 (p = 0.02) compared to feedback withheld on day 6 or 8.
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impulses in the baseline epochs and add to the results for naive

animals (Figures 1A–1E).

On the 1st day of feedback training (9 mice), cortical [DA]ex re-

mains essentially constant over the 1 h of ON training (Figure 2C,

day 2). By contrast, the closed-loop reinforcement during the 2nd
day of feedback ON training led to a large, statistically significant

increase in [DA]ex over the period of training (p = 0.01; Figure 2C,

day 3). As shown in the example of Figure 2B (center and right

panels), mice tracked the increasing values of the threshold initi-

ated by the adaptive staircase algorithm. Thus, the mice learned
Current Biology 31, 1–9, September 27, 2021 3
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Figure 3. Population-averaged changes in [DA]ex over the course of our reinforcement paradigm

(A) Tonic [DA]ex shows a significant increase relative to naive, baseline animals after feedback training (day 3; p = 0.006); the increase isD[DA]ex = 0.088. Day 2 and

day 4 showed no significant change in tonic [DA]ex, p = 0.37 and 0.66, respectively. Randomly rewardedmice also did not show a significant change in tonic [DA]ex
compared to naive animals (p = 0.61).

(B) The amplitude of [DA]ex impulses significantly increased over the course of the trial with feedback training (day 3; p = 0.01). With feedback OFF, there was a

significant decrease in amplitude over the course of the trial (day 4; p = 0.004). The data for day 1 and day 2 and the case of random reward showed no significant

change in [DA]ex impulse amplitude over time; p = 0.43, p = 0.77, and p = 0.67, respectively.

(C) The rate of [DA]ex impulses was significantly higher relative to baseline animals with feedback training (day 3; p = 0.001). Day 2 and day 4 showed no significant

change in [DA]ex impulse frequency; p = 0.65 and 0.37, respectively. The rate for animals with random reward was significantly less than that for naive animals (p =

10�8). Alternating bars along time axis indicate intervals for binned data in (A)–(C).

(legend continued on next page)
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to augment their [DA]ex by approximately 10% on day 2 relative

to the beginning of the session for this example. Remarkably, the

increase in tonic [DA]ex was abolished by disabling the reward,

i.e., feedback OFF epoch, subsequent to the 2 days of training

(Figure 2C, day 4). To confirm that learning to volitionally control

[DA]ex was not extinguished by a single session of no reward

(3 mice), we restored feedback ON training and reward on the

next day (day 5) and observed a significant increase in [DA]ex
(p = 0.02), similar to that on day 3. This increase in tonic [DA]ex
was again absent when feedback was omitted on day 6 (Fig-

ure 2C, days 5 and 6). Taken together, these results imply that

learning is effective and that mice can volitionally control their

cortical [DA]ex when provided with feedback via an immediate

reward.

The feedback-driven increase in [DA]ex consists of a slowly

increasing tonic level peppered with transient dopamine im-

pulses (Figure 2B, middle and right panels). We decomposed

the response into tonic and transient components. On the 2nd

daywith feedback training (day 3), we observed a statistically sig-

nificant (p = 0.006) and approximately monotonic increase in the

tonic level of [DA]ex compared to the relatively flat level in naive

mice (Figure 3A). There was no significant change in [DA]ex for

the feedback OFF epochs. We examined two aspects of the

[DA]ex impulses. First, we find that the amplitude of the

impulses significantly increases (p = 0.01), by a factor of 0.27/

1.00 or approximately 1/3 that of the tonic increase, over the

time of the trial (Figure 3B). There was a significant decrease

(p = 0.01) in the amplitude of the impulses for the feedback OFF

epochs (Figure 3B). Second, we observed a small but significant

increase (p = 7 3 10�5) in the frequency of dopamine impulses

across subjects (Figure 3C). Here, there was no significant

change for the feedback OFF epochs. These reversible changes

in both the tonic level of [DA]ex and the impulses signify the impor-

tance of the feedback reward training during the session.

Feedback-driven impulses of [DA]ex last 43 s on average,

significantly longer than events in the naive mouse (12 s; p =

10�28; cf. Figures 1E and 3D) or when feedback was removed

(p = 10�15; Figure 3D), but well within the 100-s operational defi-

nition of dopamine impulses.

An increase in the tonic level of [DA]ex could, in principle, result

from the summation of multiple, slow, transient events. This pos-

sibility is unlikely for several reasons. First, in numerical tests of

this possibility, we found that integration of dopamine impulses
(D) Distribution of amplitudes and widths of [DA]ex impulses for trained mice with f

(day 3; center), and when feedback reinforcement is OFF (day 4; bottom). The

baseline animals (day 3; p = 10�7) and compared to feedback OFF (day 4; p = 10�

for baseline animals (p = 10�22) and when feedback was OFF (p = 10�15). Reward

1.6 s and were significantly greater than the impulses when feedback was OFF (

(E) Standard boxplot shows the timing of the onset of [DA]ex impulses relative to th

error of the lag times of [DA]ex impulses relative to licking are on +11.0 ± 3.5 s on

allowing for a single outlier, with [DA]ex now leading, and +22.8 ± 11.9 s on day 4. I

sample t test with respect to baseline animals yields p = 0.04 (day 2), p = 0.005 (da

evidence against a null hypothesis to p = 0.6 (day 2) and the still highly significant

impulses versus lag time for individual mice on day 2 and day 3, together with a

(F) Standard boxplot shows the variance explained by an optimal linear filter that

included in the mean. Solid bars indicate median. The values of R2 for days 2 and

random reward, although very small at 0.019, are also significant (p = 0.027; n = 12

(day 3).

See also Figures S2 and S3.
against a range of slow temporal filters, with decay times from

100 to 1,000 s, does not lead to a result with the observed in-

crease in tonic level of [DA]ex (Figures S2A and S2B). Second,

a tonic increase in [DA]ex is not observed with random rewards

or on day 1 of reinforcement.

Could mice have associated an unknown systematic cue from

our experimental setup? To address this, we examined in a sepa-

rate cohort of mice (3 animals) the effect of rewarding at random

intervals during the 1-h training on days 2 and 3 (Figure 2C).

Random rewards were delivered following a Poisson distribution

at a rate equal to the mean frequency of transients in [DA]ex, i.e.,

0.017 Hz, for mice trained on feedback. Mice that received re-

wards at random times did not show an increase in tonic [DA]ex
or in the frequency, amplitude, or width of [DA]ex transients (Fig-

ures 3A–3C), in comparison with naive mice over the same time

period (Figures S2C and S2D). Importantly, the onset of licking

did not correlate with increases in [DA]ex (Figure 3E). Lastly, the

extent of locomotion (Figures 1B and 2B), which has no overt

function in the learning paradigm, is poorly predicted by [DA]ex
(Figure S3), consistent with an incidental role.

Changes in timing of dopamine release are a hallmark of

dopamine reinforcement learning. In classical reinforcement

learning with liquid rewards, anticipatory licking is triggered

by the conditioned stimulus, i.e., cue. However, in our experi-

ments, there is no overt cue. Nonetheless, a critical test is to

determine whether animals alter the timing of their dopamine

dynamics with training. The expectation is that impulses of

[DA]ex will occur prior to a reward after training, as opposed

to following a reward. Indeed, we found this timing of [DA]ex im-

pulses relative to the onset of licking shifts over the course of

training. Naive mice naturally lick the dry port such that [DA]ex
and licking weakly co-fluctuated with the increase in [DA]ex, lag-

ging that of licking by 11.0 ± 3.5 s (Figure 3E). In contrast, with

feedback ON, the timing of the onset of dopamine has signifi-

cantly advanced; p = 0.04 and p = 0.005 for days 2 and 3,

respectively. For day 3, the advance is by 16 s, with the onset

of [DA]ex impulses now occurring ahead of licking, i.e., lag of

�5.1 ± 1.4 s (Figure 3E). Thus, feedback reinforcement

reversed the temporal order of [DA]ex impulses and licking in

trained mice so that the enhanced dopamine signal now pre-

dicts the outcome of a movement, i.e., licking.

In addition to changes in timing, we calculated the predictabil-

ity of licking by [DA]ex under all conditions in terms of
eedback ON (day 3; top), a subset of rewarded impulses when feedback is ON

amplitudes with feedback training ON were significantly larger compared to
29). The widths were significantly greater with feedback ON compared to those

ed impulses had an amplitude of 0.078 ± 0.002 and an average width of 44.2 ±

day 4; p = 10�8 and p = 10�29, respectively).

e onset of licking; the solid bars are the median times. The mean and standard

day 1, +0.6 ± 0.9 s on day 2 allowing for a single outlier, �5.1 ± 1.4 s on day 3

mpulses also lagged licking for randomly rewarded mice (+10.9 ± 7.9 s). A two-

y 3), p = 0.9 (day 4), and p = 0.3 (random); including the single outliers drops the

value p = 0.02 (day 3). The inset shows a scatterplot of the number of rewarded

fit of the model (Equations 6 and 7 in STAR Methods) to the data.

predicts licking from the measured [DA]ex. ‘‘+’’ indicates an outlier that was not

3 are significantly different than zero, with p = 0.030 and p = 0.037. The data for

) as a result of the large sample. Note 6-fold increase on 2nd day of feedback ON

Current Biology 31, 1–9, September 27, 2021 5
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the variance-explained (R2), a metric for the strength of the pre-

dictability of licking from dopamine events. We found that there

is a 6-fold increase in R2with feedbackON for day 3 compared to

the case of random feedback (Figure 3F; cf. 3rd with 5th column).

This increase in R2 was absent when feedback was removed,

i.e., feedback OFF on day 4 (Figure 3F; cf. 4th with 5th column).

Is there a theoretical means to understand how reinforce-

ment can alter the rate and timing of stochastically occurring

impulses of dopamine? We constructed a minimal theory that

posits a generator of impulses and a hypothetical integrator

of impulses above threshold (model in STAR Methods). The

arrival of impulses is modeled as a shot effect with a Poisson

rate and a stochastic distribution of amplitudes.25,26 A set of

coupled, leaky integrator equations ties the shift in lag time of

impulses relative to a reward with the increase in rate of dopa-

mine transients that may lead to impulses that cross a

threshold. The model has two parameters that are numerically

fit to data, i.e., a temporal scale for the impact of the lag time,

which is fit with a full width at half maximum of 3 s, and a scale

for the change in rate. We compared the predicted rate of re-

warded impulses versus the lag time for the individually re-

warded trains on day 2 and day 3 (inset in Figure 3E). The pre-

dicted relation, which is not monotonic, is in qualitative

agreement with the data.

DISCUSSION

Dopamine is a ubiquitous neurotransmitter in the brain that sig-

nals many aspects of cognitive processing.9 Early studies

showed that a fraction of dopaminergic neurons in the

midbrain produce impulses of spiking activity in response to

a novel stimulus, even one that is not associated with a

reward.27 Further, such impulses may occur as a precursor

to self-generated motion.28,29 Most famously, unexpected re-

wards produce a transient increase in the spike rate of dopa-

minergic neurons that project to cortex and lead to increases

in the concentration of [DA]ex in the midbrain and in cortex.8

With repeated pairing of a neutral cue with a delayed reward,

dopaminergic neurons shift their firing from the time of the

reward to the time of the cue.6,8 The increase in [DA]ex now

represents the expectation of an upcoming reward, and the

amplitude of this increase signals the probability of the

reward.9,20,30 A final twist is that the meaning of dopamine sig-

nals may change with experience.31

Here, we focused on the type of dopamine release in the cor-

tex and report on a different behavior of dopamine impulses. In

now classic literature, brief impulses of dopamine, in the

context of Pavlovian conditioning, have been shown to repre-

sent reward prediction errors.7 Notably, phasic dopamine firing

and release advance in time from the presentation of reward to

that of the earliest reward-predicting cue as animals learn to

associate the cue with reward.6,8 We observed spontaneous

dopamine impulses in the absence of both sensory stimuli

and reward in naive, head-fixed, awake animals on a treadmill.

These dopamine impulses do not appear to report a reward

prediction error, as there are no cues in the apparatus that

would indicate the presence of reward. Furthermore, we find

that these transients are not causally linked to the initiation of

motor activity, i.e., licking or running (Figures 1C and 3F), as
6 Current Biology 31, 1–9, September 27, 2021
would be suggested by previous studies.32,33 While we only

measure licking and running behavior, it should be noted that

dopamine appears to invigorate rather than initiate motor

behavior,33,34 and spontaneous motor behavior is, in fact, asso-

ciated with a reduction in the firing rate of midbrain substantia

nigra pars compacta neurons in the absence of cues or

reward.32,35

The striatum receives extensive input from dopaminergic

neurons from substantia nigra pars compacta and the ventral

tegmentum area (VTA) of the basal ganglia. Past studies

have almost exclusively focused on measuring dopamine dy-

namics of neurons in this region. However, anatomical studies

have shown that a fraction of dopaminergic neurons in VTA

project to all layers of somatosensory cortex, albeit with a

bias to layer 5/6,14 and that these neurons do not extend pro-

cesses to striatum.15 Furthermore, neurons in somatosensory

cortex broadly express dopamine receptors; while the density

of such receptors is highest in deep layers, a significant frac-

tion of cells in the superficial layers express dopamine recep-

tors.36,37 Global activation of these receptors by the iontopho-

retic application of dopamine to somatosensory cortex leads

to inhibition of activity in approximately half of the neurons

measured.38 Our work suggests the importance of further ex-

tending studies of dopamine dynamics to a cortical region

with known plasticity.11

Our feedback scheme for reinforcement learning is modeled

after schemes used in brain-machine interface (BMI) experi-

ments.39–41 Yet we did not supply cues related to the feedback

signal other than the reward. In typical BMI experiments, animals

are provided a real-time sensory feedback signal, e.g., an audi-

tory tone,41 that is modulated by the neuronal activity of interest.

In particular, one BMI study found that animals were unable to

modulate the neuronal activity toward the reward target in the

absence of such cues.41 In another study that involved learning

to move a cursor based on neuronal activity in motor cortex,

monkeys first needed to learn the task using their hands to con-

trol a physical joystick that moved a cursor on the screen. They

then transferred this capability to pure control by neuronal activ-

ity. Unlike these BMI studies, we did not supply cues related to

the feedback signal other than the reward (Figure 2A). Yet ani-

mals were able to perform our task and receive reward. This sug-

gests that animals have an internal sense of [DA]ex, most likely

derived from the normal functioning of DA-GCPRs on cortical

cells.

Our results highlight the potential role of internal brain dy-

namics in modulating as well as creating the spontaneous dopa-

mine events. We observed that reinforcement learning may be

used to train animals to initiate extrasynaptic impulses of dopa-

mine in return for a reward (Figures 2 and 3). Pairing of a self-initi-

ated increase of [DA]ex to a sucrose drop award is learned

without a cue across two sessions (Figures 2B and 2C) and is

readily unlearned and relearned across sessions (days 4 and 5

in Figure 2C). A minimal theory that posits a generator of im-

pulses with stochastically assigned amplitudes and a hypothet-

ical integrator of impulses above threshold can account for the

data. These are judged to be physiologically plausible processes

(inset in Figure 3E). We further conjecture that an animal’s sense

of spontaneous dopamine impulses may motivate it to search

and forage in the absence of known reward-predictive
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stimuli.18,42 In this scenario, dopamine serves as a false, albeit

stochastic, reward prediction error that motivates search

through the role of dopamine as an anticipation signal for a future

reward. Successful forages serve to amplify this motivational

process. The broad temporal range of spontaneous events (Fig-

ures 1F and 3D) is consistent with search strategies.43

In contrast to dopamine impulses, tonic dopamine appears

to affect how animals interact with their environment and

explore. In particular, manipulations of tonic levels of [DA]ex
modified how animals examined novel stimuli in various oper-

ant conditioning tasks44–47 and the effort that animals were

willing to exert to receive reward.48,49 It is not clear whether

tonic and phasic dopamine signals are independently

controlled from one another.50,51 A previous study52 found

that explicitly modeling tonic dopamine as a separate signal

in the reward prediction error signal could reproduce the results

of dopamine depletion on the response rate of rats rewarded

on a fixed ratio reward schedule. While the authors used the

average reward rate as an estimate of tonic dopamine, they

note ‘‘...we should expect the tonic average reward signal to

be used predictively and not only reactively, which would

require it to be somewhat decoupled from the actual obtained

phasic reward signal.’’52 Therefore, our results suggest that

tonic dopamine can be volitionally modulated independently

of sensory stimuli.

A final point is that our focus has been on dopamine because

of its well-known role in reward and prediction and the mallea-

bility of dopaminergic transmission with training. Yet our exper-

iments do not speak to the possibility that other modulatory

systems may also have spontaneous release in cortex. Other

modulatory systems may be similarly or even more malleable

in terms of volitional control of extrasynaptic neuromodulator

concentration via feedback reinforcement training. The current

results should be seen as a springboard to motivate and

advance studies on the stochastic nature of neuromodulatory

systems in general. In as much as the stochastic nature of syn-

aptic release and that of random neuronal firing play a role in

all aspects of brain function, including decisionmaking, foraging,

and attention,53 the stochastic nature of neuromodulation may

add a new dimension to brain dynamics.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

AAV-hSyn-DA4.4 Yulong Li Laboratory N/A

Chemicals, peptides, and recombinant proteins

Isoflurane Henry Schein Cat. No. 1182097

Buprenorphine Hydrochloride, Injection MWI Veterinary Supply Cat. No. 60969

Cyclosporine Teva Generics Cat. No. 00093-5742-65

Sucrose Sigma Aldrich Cat. No. S0389

Experimental models: cell lines

Human: Cell line HEK293: M1-CNiFER David Kleinfeld Laboratory N/A

Human: Cell line HEK293: D2-CNiFER David Kleinfeld Laboratory N/A

Experimental models: organisms/strains

Mouse: C57BL/6J The Jackson Laboratory RRID: IMSR_JAX:000664

Software and algorithms

MATLAB MathWorks RRID: SCR_001622

ScanImage Vidrio RRID: SCR_014307

Chronux Cold Spring Harbor Laboratory RRID: SCR_005547

Other

Optical Lickometer Sanworks Cat. No. 1020

Rotary Encoder Koyo Electronics Cat. No. TRD-S360BD

National Instruments USB board National Instruments Cat. No. USB-6211

PowerLab/8SP AD Instruments RRID: SCR_018833

Solenoid Valve Parker Instrumentation Cat. No. 003-0137-900
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by Dr. David Kleinfeld (dk@

physics.ucsd.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The datasets supporting the current study, and an associated ‘‘read me’’ file, are available at https://datadryad.org/stash/share/

He3oAHCTB6W0fUlaULv2i-WtySJu3LqkQJavqKsLBSo.

The code for the model is available at https://github.com/aljdf/DopamineTransients_Foo2021.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The Institutional Animal Care andUseCommittee at the University of California San Diego approved all protocols. Adult, male C57BL/

6 mice, age P30 to P45, were maintained in standard cages on a natural light-dark cycle. For surgery, mice were anesthetized with

isoflurane (Butler Schein). Body temperature wasmonitored andmaintained at 37�C. Subcutaneous injections of 5% (w/v) glucose in

saline were given every 2 h for rehydration. Buprenorphine (0.02 mg/kg, Butler Schein) was administered i.p. for post-operative

analgesia.
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METHOD DETAILS

Choice of dopamine indicator
CNiFERs are dual-wavelength sensors. This helps ensure that our measurements were relatively insensitive to motion and bleaching

of fluorophores. D2-CNiFERs provide sensitivity from [DA]ex »2 to 200 nM and have a 2 s temporal resolution.6 While single-wave-

length genetically-encoded fluorescent probes whose optical properties depend on [DA]ex, have been developed,19,20 these are all

single wavelength so that it is difficult to compensate for drift. Further, we found that the signal from a current single-wavelength

sensor substantially diminished over the multi-day period of our experiments, while that from CNiFERs was stable (Figure S1).

Injection of mice for CNiFER measurements and/or GRABDA expression
CNiFER cells were implanted for imaging as described.6 GRABDA expression was induced by injection of 0.5 - 1.0 uL of 1013 mg/ml of

an AAV2 virus containing the GRABDA sequence under the synapsin promoter.20 The injections were made in frontal somatosensory

cortex, 1.5 M/L, 1.5 R/C using a quartz glass pipette. At least three weeks were allowed for expression of the virus. A thin skull crani-

otomy13 was made for animals that did not express GRABDA, whereas an open craniotomy was made for animals that expressed

GRABDA. The craniotomies were 3 - 4 mm in diameter. In GRABDA expressing animals, CNiFER cells were injected as close as

possible to the GRABDA expression area without overlapping or rupturing pial vessels, typically 60 - 100 mm away.

TPLSM imaging
In vivo imaging12 was performed with a custom-built two-photon laser-scanning microscope.54 Two-photon imaging was need to

image through the thin skull to minimize the potential for inflammation consistent with high signal to noise ratio.13 Control of scanning

and data acquisition was achieved through the ScanImage software platform (Vidrio). Excitation light at 840 nm was used to excite

the CFP portion of TN-XXL. Fluorescence was collected by a 25X dipping objective (HCX-IRAPO, Leica). The fluorescent signal was

split into two channels using a 506 nm long-pass dichroic mirror. Each channel was further bandpass filtered: 465 ± 20 nm for mea-

surement of emission by CFP (F465 nm) and 520 ± 20 nm for emission by YFP (F520 nm) and the change in FRET signal, denotedDR(t)/R,

was calculated as

DRðtÞ
R

=
F520 nmðtÞ=F520 nm

F465 nmðtÞ=F465 nm

� 1 (Equation 1)

where áF520 nmñ and áF465 nmñ refer to the baseline values determined from a LOWESS fit (see Quantification and statistical analysis).

Running activity was recorded using a rotary encoder (TRD-S360BD, Koyo Electronics) attached to the underside of a rotation plat-

form (Figures 2A and 3A). Licking activity was recorded using an optical lickometer (Sanworks LLC). The analog signals were re-

corded using a PowerLab 8.35 device (ADInstruments) acquiring at 1 kHz and synchronized with the two-photon imaging data using

the frame trigger output of ScanImage.

Naive only
After one day of recovery from surgery, mice were water deprived (24h/day). Imaging began the following day. The animals were

placed in a stationary head-frame fixed on top of a wheel; no lick port pas present nor was a reward or cues were given. The animals

were allowed to locomote freely. Each imaging session lasted for one hour, after which the animals were returned to their home ca-

ges. Animals were given unrestricted access to water for one hour after imaging. Animals were imaged under identical conditions for

four successive days.

Adaptive threshold feedback training
After one day of recovery from surgery, mice were water deprived (24h/day). Imaging began the following day. During the first day of

imaging, the animals were placed in a stationary head-frame fixed on top of a wheel with a lick port. No reward or cues were given,

and the animals were allowed to lick and run freely. For imaging trials with feedback reinforcement, animals were placed in the same

head-frame, but given a reward, 0.1 mL of 10% (v/v) sucrose water, for increasing their measured neuromodulator concentration.

Real-time readout of neuromodulator concentration and reward administration were done using custom written ScanImage user

functions. Each imaging session lasted for one hour, after which the animals were returned to their home cages. Animals were given

unrestricted access to water for one hour after imaging. Animals were imaged once a day for 4 - 6 consecutive days, depending on

the optical quality of the CNiFER implants.

Rewards were dispensed using a gravity fed solenoid (VAC-100 PSIG, Parker Instrumentation) system. A 50 mL reservoir of 10%

(v/v) sucrose water was hung from a stand, and a solenoid was used to control the flow of liquid coming out of the reservoir. The

output of this solenoid was routed to the input of the lick port. A second solenoid controlled the vacuum which was connected to

the output of the lick port. The timing and control of both solenoids used a National Instruments board (USB-6211, National Instru-

ments) interfaced with ScanImage. The initial threshold for reward was determined by taking 80% of the average amplitude of spon-

taneous neuromodulator transients from the first day of imaging data, and the threshold increment was 50% of this initial reward

threshold. Reward administration occurred 0.25 s after the detection of the neuromodulator concentration rising above the threshold

level, with aminimum delay of 3.5 s between rewards. At a time of 0.5 s after reward administration, a vacuumwas activated for 1 s to

remove any leftover sucrose water. The reward threshold was increased by the threshold increment whenever a reward was
Current Biology 31, 1–9.e1–e4, September 27, 2021 e2
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administered. If animals did not receive a reward within 225 s of the previous reward, the reward threshold was decreased by the

threshold increment, down to a minimum of the initial threshold.

MODEL
To study the learning dynamics related to stochastic dopamine impulses, we built a phenomenological model of the dopamine tran-

sients and their relationship to reward seeking behavior, i.e., licking. In our model, the dopamine concentration, denoted D(t) in the

equations rather than the observed [DA]ex, are taken as a shot noise process. Here, pulses of dopamine follow a Poisson processwith

rate l; they decay with timescale t; and the average amplitude of discrete jumps in D(t) is A. For mathematical tractability we assume

the amplitude of each pulse follows an exponential distribution. We write

t
d

dt
DðtÞ = � DðtÞ+

X
k

akdðt� tkÞ; (Equation 2)

where tk is the time of impulse k, ak � ExpðAÞ, and d($) is the Dirac delta function. At steady-state, the dopamine concentrations follow

a gamma distribution for this process25,26

PðDÞ =
Dtl�1

GðtlÞAtl
e�D=A; (Equation 3)

The probability that the dopamine concentration lies above a threshold, denoted q, is then

PðD > qÞ =

ZN

q

dD PðDÞ =
gðtl; q=AÞ

GðtlÞ ; (Equation 4)

where we have used G($) for the gamma function and g($,$) for the incomplete gamma function.

Next we consider the effect of transiently crossing threshold on the rate of dopamine pulses. We assume that there is some stable

steady state rate of pulses, denoted l0. When the transient dopamine exceeds a threshold, the rate is increased by an amount l1, if

the pulse arrives in close proximity to a reward. We denote the lag between dopamine pulse and reward by D and the width of the

learning window by Dw. The equation for the change in the dopamine pulse rate reads

d

dt
lðtÞf ðl0 � lÞ+ l1QðD� qÞ e�jDj=Dw ; (Equation 5)

where Q($) is the Heaviside function. We are interested in the steady state behavior of the system, so the timescale of changes in l,

i.e., the proportionality constant in Equation 5, will not enter our analysis.

We similarly assume that the delayD relaxes to a baseline valueD0 and that every time the dopamine exceeds threshold it changes

by some amount D1. This gives,

d

dt
DðtÞf ðD0 �DÞ+D1QðD� qÞ (Equation 6)

At steady state we set all time-derivatives to zero and use the probability of exceeding threshold to obtain,

D = D0 +D1

gðtl; q=AÞ
GðtlÞ (Equation 7)

and

l = l0 + l1

gðtl; q=AÞ
GðtlÞ e

�

����D0 +D1
gðtl;q=AÞ
GðtlÞ

����
�

Dw

(Equation 8)

Equation 8 is a nonlinear equation for the rate of dopamine impulses at steady state as a function of itself, the model parameters, and

the threshold q. We stress that q should be related to, but is not identical to, the threshold on dopamine set experimentally. The reason

is that that threshold changes transiently during learning, and the experiments include baseline changes of the dopamine concen-

tration that are beyond the scope of the model. We therefore solve the equation for l numerically over a broad range of values for q.

Once l = l(q) is obtained, we compute D = D (l, q) by substituting into Equation 7.

We are interested in the qualitative behavior of the model. Thus four of the six parameters were chosen based on averaging the

experimental results over animals without studying the effects of varying the parameter systematically. Specifically, we set l0 =

0.01 Hz (Figure 1D), t = 30 s (Figure 1E),D0 = 5 s (Figure 3E), andD1 =�21 s (Figure 3E); the final assignment is based on the argument

that if threshold is exceeded ‘‘easily,’’ the dopamine pulse rate will decay to D0 - D1 (Equation 6). The earliest delay we measured for

an animal averaged over one day of the experiment was �16 s, so we set D1 = �21 s. This parameter choice is based on the animal

with largest delay since we want the model to apply to all animals during the closed loop learning of Day 2 and Day 3. The remaining

two parameters, l1 and Dw, were fit numerically to data. We focused on positive values of l1 because the dopamine rate increases

when threshold is crossed, although nontrivial solutions of Equation 7 exist when l1 is negative.
e3 Current Biology 31, 1–9.e1–e4, September 27, 2021
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We fit the parameters (Du, l1) across the dataset of each animal at Day 2 and Day 3 (insert, Figure 3E) by minimizing the sum of the

squared error over all data. We used 1000 values of q between 10�7 and 103 that were equally spaced on a logarithmic scale. The

lowest sumof squared errorswas found forDw = 1.6 s and l1 = 0.087Hz.We note that for some value of the parameters the solution of

l = l(D) is discontinuous, i.e., for some values of D there is no corresponding rate l that solves Equation 8. For the purposes of fitting

we linearly interpolated l = l(D) between the points of discontinuity since the model equations are solved at steady-state while in-

dividual animals are measured during the transient process of learning (interpolation indicated by dashed line in inset to Figure 3E).

QUANTIFICATION AND STATISTICAL ANALYSIS

All data analysis was done using MATLAB. TN-XXL fluorescence traces were normalized to baseline intensities measured from an

initial period of 600 s at the beginning of each imaging trial during which no reward was given. The neuromodulator concentration

was calculated as the fractional change in the FRET ratio.6 The FRET response was separated into a baseline and phasic component

by performing a LOWESS fit on the data using a window size of 470 s and a step size of 4.7 s. The fitted curve was defined as the

baseline (low-frequency) component, and the residual (high-frequency) was defined as the transient component. GRABDA fluores-

cence traces were also normalized to baseline intensities measured from the initial 600 s period without reward. Baseline trends

in the GRABDA fluorescence traces were corrected using the same method as the FRET response; a LOWESS fit using the same

parameters was subtracted from the trace and the residual was used.

Licks were detected from the lickometer data by low pass filtering the lickometer signal, subtracting a 3-sample median filter of the

signal and detecting the subsequent rising edges. The licking frequency was calculated by taking a 1 s window around the sample

point and counting the number of licks in the window. Running speed was similarly calculated from the encoder signal by detecting

both rising and falling edges and counting the number of edges in a 0.235 s window around the sample point.

Significant transient were detected from the transient component of the FRET response as those epochs whose amplitude ex-

ceeded 2-times the root-mean-square level of the noise. The amplitude was calculated as the maximum value in each detected tran-

sient epoch, and the width was the full width at half maximum amplitude (FWHM) of the transient.

The onset of neuromodulator transients was defined as the point at which the ratio DR/R increased by 2-times the root-mean-

square level of the baseline noise. The onsets of licking and running bouts were calculated in a similar manner. Onset times were

calculated separately for each imaging trial from the average transient-triggered response. The lags of the FRET signal behind the

licking and running signals were defined as the difference in the onset time.

All statistics were calculated with a one-sided Student’s t test. Standard box plots were used; the box held themiddle quartiles, the

colored line indicates the median value, the whiskers denote the full range of the data except for outliers, which are determined by

Chauvener’s criterion and shown as separate points. <br>A linear model was used to fit the FRET response to the licking and running

traces.55 The transfer function of the model was calculated directly from the power spectra of the respective traces as the cross po-

wer divided by the input power. New models were fit for each imaging trial, and the variance explained, i.e., R2, was calculated

directly from the predicted FRET. Spectral power density and spectral coherence were calculated using multi-taper methods56

with a time-bandwidth product of 10 and the Chronux package.57
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