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Abstract

Despite the key role of the capillaries in neurovascular function, a thorough characterization of cere-
bral capillary network properties is currently lacking. Here, we define a range of metrics (geometrical,
topological, flow, mass transfer and robustness) for quantification of structural differences between brain
areas, organs, species or patient populations and, in parallel, digitally generate synthetic networks that
replicate the key organizational features of anatomical networks (isotropy, connectedness, space-filling
nature, convexity of tissue domains, characteristic size). To reach these objectives, we first construct a
database of the defined metrics for healthy capillary networks obtained from imaging of mouse and hu-
man brains. Results show that anatomical networks are topologically equivalent between the two species
and that geometrical metrics only differ in scaling. Based on these results, we then devise a method
which employs constrained Voronoi diagrams to generate 3D model synthetic cerebral capillary networks
that are locally randomized but homogeneous at the network-scale. With appropriate choice of scaling,
these networks have equivalent properties to the anatomical data, demonstrated by comparison of the
defined metrics. The ability to synthetically replicate cerebral capillary networks opens a broad range of
applications, ranging from systematic computational studies of structure-function relationships in healthy
capillary networks to detailed analysis of pathological structural degeneration, or even to the development
of templates for fabrication of 3D biomimetic vascular networks embedded in tissue-engineered constructs.

Keywords: cerebral cortex; capillary network; capillary loop; capillary network model; biomimetic
network.
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1 Introduction

Archaeologists can understand past human eco-
nomic and socio-political behavior, or resilience of
ancient societies to strong perturbations such as
repeated drought, from the organization of their
infrastructures such as roadways, water supply or
sewage networks [1]. In the same way, the mecha-
nisms of cognition in health and disease might ul-
timately be informed by studying the brain micro-
vascular system.

This system provides a highly integrated and dy-
namic infrastructure for the distribution of blood: it
thus supplies oxygen, nutrients and, in some cases,
drugs to every cell in the brain, while equally en-
suringand ensures the removal of metabolic waste.
Since the brain lacks any substantial energy reserve,
the cerebral microcirculation also acts as a short-
term regulation system, which responds quickly and
locally to the metabolic needs of neurons [2, 3]. In
imaging neuroscience, changes in blood supply are
thus considered as a surrogate for changes in neu-
ronal activity, providing a unique way to observe
the functioning brain.

The brain microvascular system is also involved
in disease, including stroke and neurodegenerative
disease, through vascular damage, such as capillary
occlusions and progressive rarefaction [4, 5], and de-
crease in regulation efficiency [6, 7]. Together, these
act to reduce blood flow and the availability of vital
nutrients, which, on one hand, plays a key role in dis-
ease progression [5, 8] and, on the other hand, makes
it difficult to interpret functional imaging data in
patient populations [9].

Consistent with its functions of distribution and
exchange, the microvascular system includes sev-
eral architectural components. The arterioles form
a quasi-fractal hierarchy of vessels [10, 11, 12, 13]
whose diameter decreases at each successive bifur-
cation, thus minimizing the time for supplying re-
sources as well as the length of distribution path-
ways [11]. These vessels feed into the capillary net-
work, a dense, mesh-like, three-dimensional (3D) in-
terconnected structure, which is space-filling above
a characteristic length scale of order 25−75µm [11].
The physiological hypothesis is that healthy capil-
lary networks are arranged in this way to ensureThis
ensures that no point in the tissue is further than
half this characteristic length from the nearest ves-
sel, due to the diffusion-limited distance of oxygen

transport in oxygen consuming tissue. Their mesh-
like structure gives the capillaries, the smallest ves-
sels in the vasculature with a diameter ∼ 5µm, an
extremely large surface area facilitating their vital
role in nutrient exchange [14]. De-oxygenated blood
then drains into the venules, which broadly mirror
the architecture of the arterioles.

These basic principles apply to a large variety
of mammals, from rodents to humans, where the
main difference in vascular organization seems to
bedescribed so far is the ratio between arterioles and
venules which feed/drain a given region [15]. Be-
yond these principles, thorough characterization of
microvascular structure in the cortex is still lack-
ingincomplete. Thanks to the increasing number of
vascular anatomical datasets in the literature, e.g.
[16, 17, 18, 19, 20, 21], there has been some rigorous
analysis of the arborescent structures of the arteri-
oles and venules both within the cortex [22, 23, 24]
and at the level of the pial surface [12] have been rig-
orously analyzed. However, despite their key role in
supplying neurons with the required nutrients, there
has been much less focus on the dense, complex mesh
of capillaries. Previous studies of 3D cortical cap-
illaries have principally been qualitative, e.g. [25],
or limited to the characterization of global spatial
properties, such as their space-filling nature, den-
sity, or diameter and length distributions [11, 26],
with few insight on topology. One notable excep-
tion [17] studied minimal loops and vessel resistance
distributions to conclude that the capillaries form a
highly interconnected mesh with no structural cor-
relation to the location of cortical columns.

As a result, current understanding of the archi-
tectural organization of healthy brain capillary net-
works within the cortex is limited to a few striking
features:

1. Brain capillary networks are approximately
isotropic anastomosing networks whose vertices
mainly have three connections e.g. [17, 25];

2. They are space-filling above a cut-off length of
order 25− 75µm e.g. [11];

3. They approximately demarcate convex tissue
domains with a characteristic length of similar
order (in contrast to tumor networks whose tis-
sue domains are multi-scale in nature e.g. [27]).

In addition to these universal features, laminar
variations in the depth of the cortex have been con-
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sistently observed, with a higher vascular density
in the central layers, where the neuronal density
and associated metabolism is maximal [7,16,26,68].
Anisotropy in surface layers and structural varia-
tions between cortical regions have also been de-
scribed in humans [25]. While central to their ro-
bustness to vascular damage [13], current knowl-
edge of the topology of the looping, interconnected
structure of brain capillary networks has not yet en-
abled to grasp the essential features governing their
structure. Yet, this is necessary for conceptualiza-
tion of a generic capillary network model (or ‘ge-
ometric archetype’ in the words of [27]. Besides a
better understanding of the fundamental organiza-
tion of the cortical capillaries, a geometric archetype
would guide definition of an appropriate set of met-
rics needed to quantify both the structural and func-
tional properties of brain capillary networks. In the
longer term, a generic network model would also be
useful

This makes it difficult to build a precise mental
representation of these networks that can material-
ize into a relevant generic capillary network model
(or geometric archetype in the words of Baish et al.
[27]). Besides a better understanding of the funda-
mental organization of the cortical capillaries, such
a generic network model is also needed for funda-
mental studies focused on understanding how struc-
tural differences between brain areas, organs, species
or patient populations translate into functional dif-
ferences with regard to blood flow, blood/tissue
exchange and associated imaging signals, e.g. in
BOLD fMRI.

While anatomical datasets can be directly used
in this context in modeling studies (e.g. [65]), this
does not enable variation of the key structural
parameters, e.g. vascular density, in a systematic
way. As a result, oversimplified models of capil-
lary architecture, such as infinite single, parallel or
randomly-oriented cylinders, have often been used
[27,59,60,61],which might lead to flawed estimations
of functional properties at the scale of the capillary
network.

Similarly, implementation of image-guided, bio-
fabrication techniques [28, 29, 30, 31, 32] provides
the ability to generate 3D, biomimetic vascular
networks embedded in tissue-engineered constructs.
These microphysiological systems could be useful
for investigating the impact of capillary architecture
and hemodynamics on complex biological processes

in the brain, e.g. transport across the blood brain
barrier.

Hence, the three goals of this paper are:

1. To introduce a set of metrics for simultane-
ous the characterization of the morphological,
topological and functional properties of healthy
cerebral capillary networks;To thoroughly char-
acterize the structure and function of healthy
cerebral capillary networks in both mice and
humans, thereby identifying the similarities;

2. To thoroughly characterize healthy human and
mouse cerebral capillary networks using this
complete set of metrics, thereby creating the ba-
sis of a cross-species reference database;To gen-
erate synthetic capillary networks with equiv-
alent properties via a generic method which is
not tuned to a specific dataset, thereby evidenc-
ing key common organizational features among
mice and humans.

To generate synthetic capillary networks with
equivalent properties via a generic method
which is not tuned to a specific dataset.

These goals are inherently inter-linked and must
be developed in parallel, to overcome the follow-
ing practical difficultieschallenge. A geometric
archetype is necessary to guide definition and scal-
ing of an appropriate set of metrics for characteriz-
ing both the structural and functional properties of
brain capillary networks. On the other hand, thor-
ough characterization of these properties from real
experimental data is needed to ensure the relevance
of this geometric archetype.

First, the metrics characterizing the architectural,
flow and transport properties of porous or hetero-
geneous media usually vary with the size of the
domain under study until a characteristic size is
reached, known as a Representative Elementary Vol-
ume (REV). Above this REV size, which is not
known a priori, the medium can be considered ho-
mogeneous and finite-size effects become negligi-
ble. However, in anatomical datasets, both arteri-
oles/venules and capillaries are intermingled, which
makes it only possible to extract capillary regions of
limited size, which may be smaller than the REV.
Second, our results will show that the simplest mor-
phometric data, such as the mean capillary length
difference between mice and humans, suggest that
rescaling is needed to accurately compare capillary
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networks between species. This makes it difficult to
choose the appropriate scaling factor and to simulta-
neously ensure that the REV size has been reached
for both species, without comparisons with a refer-
ence network model.

Therefore, after presenting the anatomical capil-
lary datasets from mice and human cerebral cortex
used (Section 2.1; mouse data shown in Figure 1 we
introduce in Section 2.2a constrained Voronoi-based
method for generating 3D synthetic capillary net-
works with the three features above, as summarized
in Figure 2and legend. We postulate that these fea-
tures are sufficient to replicate not only the morpho-
logical and topological properties of cerebral cap-
illary networks, but also their flow and transport
properties, as well as their robustness to occlusions.

Therefore, the present paper is organized as fol-
lows. First, we describe the anatomical capillary
datasets from mice and human cerebral cortex (Sec-
tion 2.1; mouse data shown in Figure 1). Then,
we postulate that the current understanding of
their architectural organization, as described by the
three general features above, is sufficient to generate
model networks replicating not only the morpho-
logical and topological properties of cerebral cap-
illary networks, but also their flow and transport
properties. Based on this postulate, we introduce
in Section 2.2 a constrained Voronoi-based method
for generating 3D synthetic capillary networks with
these three features, as summarized in Figure 2 and
legend. Simpler, periodic grid-like lattice networks
are also introduced (Figure 1d) to enable analytical
derivation of metrics and associated scaling proper-
ties.

In Section 2.3, we present a comprehensive set
of quantitative metrics enabling characterization of
network structure and function, that is: morphome-
trical metrics for the tissue (e.g. mean extravascular
distances) and the capillary network (e.g. mean ves-
sel length, length density); topological metrics (e.g.
number of edges per capillary loop); flow metrics
(e.g. velocity, permeability); mass transfer metrics
(e.g. intravascular transit times, mass exchange co-
efficient) and robustness to occlusions (post vs. pre-
occlusion flow ratio).

In the Results, these metrics are used in combi-
nation to demonstrate that, with appropriate scal-
ing, mice and human capillary networks have similar
properties. Moreover, we show that these properties
can be matched by synthetic networks, and even to

some extent simple lattice networks, demonstrating
that only a few organizational requirements are suf-
ficient to fully reproduce the fundamental properties
of cerebral capillary networks.

2 Materials and Methods

As described above, we first introduce the anatom-
ical datasets used (Section 2.1), then present the
methods for generation of synthetic and lattice net-
works (Section 2.2), before defining the metrics used
to quantify and compare network properties (Section
2.3). For clarity, details of the methods which are
not essential for understanding the present approach
are available in the Appendix. For clarity, in the lat-
ter Sections, we focus on the general strategy and
highlight the main ingredients. Further details not
essential for understanding the present approach are
given in Appendices A and B. Unless otherwise in-
dicated, the procedures described were implemented
in a custom-built C++ code [33].

2.1 Anatomical datasets

Firstly, capillary regions of interest (ROIs) were
manually extracted from the following mouse and
human anatomical datasets as follows.

2.1.1 Mouse data

Mouse data was obtained previously from the vib-
rissa primary sensory cortex by optical sectioning
of thick slabs of mouse brain, where fluorescent gel
had been transcardially perfused to fill the vascu-
lature, using two-photon laser scanning microscopy
(TPLSM), at a resolution of 1 µm3 [16,17].

Vascular networks from the mouse somators-
ensory cortex were previously obtained using a
morphological-preserving vascular cast protocol [16,
17]. Briefly, the animals where euthanized with
an overdose of pentobarbital. They were transcar-
dially perfused at a rate of 0.5ml/s to match the
mouse heart output, with warm (37◦C) saline un-
til all blood was cleared (∼ 40-50ml) and then with
an excess of 20ml of vascular casting perfusate, pre-
viously prepared by conjugating fluorescein-labeled-
albumin (no. A9771; Sigma) with a 2% (w/v) so-
lution of porcine gelatin (no. G1890; Sigma). The
gel was allowed to solidify for 15min while the an-
imal was tilted down and immersed in an ice-cold
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0 500µm
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Figure 1: a) Section of mouse cerebral cortex from [16], viewed from above the pial surface (upper Section of
cortex and surface vessels removed for visualization purposes) and with vessels color-coded according to
diameter. Three regions of interest (ROIs) of size 240 × 240 × 240µm3 are outlined in fuschia. b) One
ROI in further detail, with the same color scheme. c) The same ROI with vessels straightened. Tortuosity
was ignored in our analysis of network properties. d) Simple, periodic grid-like lattice networks enable
analytical derivation of scaling properties (see Section 2.2.2): CLN with 2× 2× 2 elementary cells (left),
and 1 elementary cell of the PLN (right).
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(a) (b) (c)

Figure 2: 3D extension of the 2D constrained Voronoi method of [11]. a) Example of a 2D Voronoi diagram
(thick black lines) generated from an array of seed points (in blue), one randomly placed in each cell with
side length LC of a square grid (dashed lines). Inset: the distribution of polygonal areas, collected over
80 networks of size (3.2LC)2, followed a Gaussian distribution with mean of approximately L2

C (4473
polygons in total). b) In 3D, a subset of polyhedra of the Voronoi diagram generated from the seed points
in blue, one randomly placed in each cell with side length LC of a cubic grid (not showing all polyhedra for
visualization purposes). c) The same polyhedra with faces merged according to minimum angle and face
area criteria as detailed in §2.2 and Appendix A. Inset: the distribution of polyhedral volumes, collected
over 10 networks of size (3.2LC)3, followed a Gaussian distribution with mean approximately L3

C (4408
polygons in total).

water bath. Next, the head was severed at the
level of the neck and moved overnight for fixation in
4% paraformaldehyde (PFA). The following day, the
brain was removed from the skull under a fluorescent
binocular (Zeiss Discovery 8). In order to preserve
the dura and pial vasculature intact, the dissection
was conducted guided by the fluoresce signal from
the vascular cast which allowed the careful identifi-
cation of dura to skull attachment places that were
crucial to disconnect prior to removal of the cor-
responding skull bone. Importantly, the bone was
removed in small fractions, starting from the dorsal
aspect and working in a circular fashion while pro-
gressing rostral until the whole brain was exposed.
The brain was then moved back to PFA for 24hr.
Images of the pial vasculature were obtained to
serve as reference for subsequent optical sectioning
of thick slabs, using two-photon laser scanning mi-
croscopy (TPLSM), at a resolution of 1 µm3. After
data segmentation and vectorization of the vascular
networks as described by Tsai et al (2009), vessel di-
ameters were corrected to match values observed in
vivo using an histogram matching approach [4, 5].

Arterioles and venules within the cortex were dif-
ferentiated from the capillary mesh by manually
classifying surface arteries/veins and then follow-

ing connecting vessels downstream/upstream while
vessel diameter was above a specified minimum
threshold (6µm), chosen for this dataset so that
the resulting trees did not contain any loops [5].
Seven ROIs were selected from two cortical zones
at cortical depths of over 650µm, to avoid vessels
classified as arterioles and venules and extract the
largest possible sections which only contained cap-
illaries. Nonetheless, ROIs were limited to a size of
240×240×240µm3. The location of three such ROIs
are shown in Figure 1a.

2.1.2 Human data

Multiple 300 µm-thick sections of human cerebral
cortex with ink-injected vasculature, from the col-
lection of Henry Duvernoy, were previously imaged
by confocal microscopy at 1.22× 1.22× 3µm3 res-
olution [18]. For this paper, new regions from the
collateral sulcus of the temporal lobe were selected
and segmented as follows. T

Human data was obtained from the lateral part of
the collateral sulcus (fusiform gyrus) of the tempo-
ral lobe as described in [18]. Briefly, 300 µm-thick
sections of a human brain injected with Indian ink,
from the collection of Henry Duvernoy [25], were im-
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aged by confocal laser microscopy, with a spatial res-
olution of 1.22 µm×1.22 µm×3 µm. The brain came
from a 60 year old female who died from an abdom-
inal lymphoma with no known vascular or cerebral
disease. The procedures used to obtain a complete
automatic reconstruction of the vascular network in
large volumes (1.6 mm3) of cerebral cortex, i.e. mo-
saic M1 in [18] have been described in detail else-
where [18, 34]. The mean radius and length of each
segment were rescaled by a factor of 1.1 to account
for the shrinkage of the anatomical preparation [35].
The main vascular trunks were identified manually
and divided into arterioles and venules according to
their morphological features, following Duvernoy’s
classification [25, 36]. Arteriolar (resp. venular)
trees within the cortex were then differentiated from
the capillary mesh as above, with a threshold value
of 9.9µm [35].

From this classification, the largest possible
capillary-only zones were identified, being limited
in the x and y directions by the need to avoid ar-
terioles and venules, and in the z-direction by the
imaging depth. Since the slice of cortex studied
was originally selected for its many large arbores-
cences, this hinderedmade difficult the extraction
of capillary-only zones. Only four ROIs, of size
264 × 264 × 207µm, were identified, one at a cor-
tical depth of 300µm and three at a depth of over
1 mm. These regions were segmented from the raw
dataimages using DeepVess [37], a 3D deep convo-
lutional neural network architecture for vasculature
segmentation. The segmentation was then manually
corrected by direct comparison with the raw images
in Avizo to ensure that the network connectivity was
well reproduced. Despite this, the final segmenta-
tion was inevitably less reliable for vessels near the
limit of the confocal imaging depth due to the asso-
ciated attenuation.

2.2 Synthetic capillary networks

As summarized in the Introduction, we hypothe-
size that the minimal organizational requirements
of healthy cerebral capillary networks are that
they are isotropic, three-connected and space-filling,
and three-connected with approximately convex ex-
travascular domains.

The physiological hypothesis is that this ensures
that no point in the oxygen consuming tissue is fur-
ther than the diffusion-limited distance of oxygen

transport from the nearest vessel. To generate such
networks, a method was sought to derive a tessel-
lation of space into semi-regular ‘supply regions’,
where capillaries lie along the boundaries separat-
ing these regions. Voronoi diagrams provide a sim-
ple way to achieve this, as illustrated in [38, 39, 40],
and have been previously employed to generate 2D
capillary networks [11]. We first present our this
method and its generalization to 3Dfor generating
Voronoi-like synthetic networks satisfying these re-
quirements, before defining grid-like lattice networks
whose properties can be studied analytically. All
these networks are defined up to a constant factor,
the characteristic length LC , which only controls
the network scaling, and has no impact on topol-
ogy. The exact choice of LC is non-trivial and will
thus be investigated in the Results.

2.2.1 Generation of synthetic capillary net-
works using Voronoi diagrams

To model the cerebral capillaries, a method was
sought to derive a tessellation of space into semi-
regular ‘supply regions’, where capillaries lie along
the boundaries separating these regions. Voronoi di-
agrams provide a simple way to achieve this, and
have been previously employed to simulate flow in
various porous media models [38-40] , and, relevant
to the present context, to generate 2D capillary net-
works [11].

A Voronoi diagram or tessellation is defined as a
the unique graph generated from a set P of n dis-
tinct partitioning the space into polyedra based on
distance to pre-selected ’seed’ points so that each
polyhedra associated to a given seed is the region
consisting of all points closer to that seed than to
any other in a finite region. The Voronoi diagram of
P is the unique tessellation of the region into n poly-
hedra, each of which contains a single seed with the
property that a point q is located in the polyhedron
of seed pi if and only if the distance from q to pi is
less than or equal to the distance from q to all other
pj in P [41]. Here, the edges of the resulting Voronoi
polyhedra (or polygons in 2D) then represent the
capillaries.

2D case The constrained Voronoi-based approach
of Lorthois and Cassot [11] consists of the construc-
tion of a 2D Voronoi diagram from a set of uni-
formly distributed seed points pi under the strong
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constraint that there is only one point in each cell of
size L2

C in a square grid (Figure 2a). The character-
istic length LC , which controls the network scaling,
corresponds roughly to twice the typical maximum
inter-capillary distance. The exact choice of LC is
investigated in the Results, butFrom [11], it is un-
derstood to be at least equal to the mean capillary
length and broadly in the range 50− 100µm.

The constrained spacing of initial seed points re-
sults in yields an isotropic, homogeneous and space-
filling network, which results in with a Gaussian
distribution of Voronoi polygon areas with mean
approximately L2

C (Figure 2a, inset). In contrast,
tumorous microvascular networks, which are not
space-filling, display a non-Gaussian distribution of
extravascular spaces with some very large gaps in
the network, inhibiting tractable drug delivery to
the tissue [27].

The resulting 2D networks are also quasi-regular
in the sense that almost all junctions are bifurcations
i.e. have three-connectivity. The network structure
is randomized but sufficiently ordered that the net-
works are vectorizable [42], i.e. topologically equiv-
alent to a strongly perturbed square grid [43], and
homogeneous at the network scale. In short, the
resulting networks possess all the desired features,
except for being two-dimensional.

Extension to 3D This method can be naively
generalized to 3D by dividing a 3D region into a reg-
ular grid comprising sub-cubes with edges of length
LC (Appendix A.1). The resulting 3D Voronoi tes-
sellation fulfills all the desired properties (isotropic,
space-filling, convex extravascular domains), but has
high connectivity. Many vertices have degree up
to 5 connections (Figure 2b), in contrast to cere-
bral capillary networks. Additionally the networks
contain many unrealistic features, such as closely-
located vertices, short edges, sharp branching angles
and high vascular density. In brief, these networks
are overly-precise tessellations of space with the as-
sociated polyhedra strictly defining convex monodis-
perse extravascular volumes (Figure 2b).

Our hypothesis is that sub-networks with mostly
three-connectivity can be extracted from these ini-
tial networks while retaining the desired charac-
teristics (Figure 2c). As described next, For that
purpose, edge and vertices were randomly merged,
pruned or added under geometrical constraints (to
be defined) as described below, so that the final

3D network retains tissue volumes with a Gaussian
distribution that scales with LC , while also achiev-
ing and also achieves three connectivity (Figure 2c).
This procedure was developed in MATLAB R2018a.

In this approach, we have chosen not to incorpo-
rate tortuous capillaries, but rather to validate the
basic network structure before adding any additional
complexity. For a fair comparison tortuous lengths
were ignored in the anatomical networks and instead
straight vessel lengths were computed directly as the
distance between each pair of connected vertices.

Similarly, although a Gaussian distribution of
capillary diameters has been reported (6.23±1.3µm
in humans [18]), we have not attempted to assign
physiological diameters. To do so would be a com-
plex task due to possible variations along arteriolar-
venular flow pathways, local parent–daughter corre-
lations, and imaging uncertainties (e.g. shrinkage of
vessels) [16, 21, 44]. Instead, uniform diameters of
5µm were imposed in all synthetic, anatomical, and
lattice networks.

Pruning the network Details of these steps
are given in Appendix A.2. Throughout, vertex in-
dices were randomized to avoid any anisotropy aris-
ing from deleting vertices or edges in a preferential
order. Firstly, by considering each polyhedron of the
Voronoi diagram in turn, very small or narrow poly-
hedral faces were merged with neighboring faces,
which greatly reduced the vessel density (Figure 2c).
Despite no longer strictly defining a Voronoi tessel-
lation according to the initial distribution of seed
points, the distribution of polyhedral volumes re-
mained Gaussian with mean approximately L3

C (Fig-
ure 2c, inset), analogous to the distribution of polyg-
onal areas in the 2D case.

Next, pairs of closely-located vertices (less than
a specified distance apart, see Appendix A.2) were
identified and merged, thus reducing the vertex den-
sity and the number of very short capillaries. Excess
edges were deleted, with the criterion that neighbor-
ing vertices still had at least three connecting edges.
For this reason some vertices with more than three
connections may remain because all their neighbor-
ing vertices had only three connections. These ver-
tices were finally split into multiple bifurcations (Ap-
pendix A.3).

A smaller ROI was extracted from a larger
network in order to avoid boundary effects (Ap-
pendix A.4). For a fair comparison, synthetic net-
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works were generated with equal dimensions to the
relevant anatomical (mouse or human) ROIs. A
final check for close-lying vertices was performed,
and vertices merged/removed if necessary. At this
stage, a small percentage of multiply-connected ver-
tices with >3 connections may arise (quantified in
the Results). The final network data was written
in the standard Avizo ASCII format, generating 10
networks for each set of parameter values studied.

2.2.2 Simple grid-like lattice networks

Simpler, grid-like synthetic networks were also stud-
ied to derive analytical formulae for various metrics
introduced in Section 2.3 . This in turn will provide
clues for the scaling properties of the Voronoi-like
synthetic networks as a function of LC and domain
size. Two types of simple lattice networks were gen-
erated following Peyrounette et al. [33]; their ele-
mentary motifs are shown in Figure 1d. Both of
these networks are by design periodic, isotropic and
homogeneous.

The cubic lattice network (CLN) is a regular 3D
cubic grid with side length L and 6-connectivity.

The periodic lattice network (PLN) is also com-
posed of a periodically repeating motif but with 3-
connectivity, a characteristic topological feature of
cerebral capillaries (see Section 3.3.3). Thus, it is
expected that this PLN will more closely mimic the
anatomical and synthetic networks than the CLN.
This network was generated by connecting regularly-
placed cubes of side length 2L with one capillary link
of length 0.5L on each edge of the cube, inspired by
the simple foam model of Gibson and Ashby [45].

By analogy with the characteristic length LC , de-
fined above as the length of the cells used to con-
strain the Voronoi diagrams, we use here LC to re-
fer to the length of the elementary motifs in lattice
networks, thus LC = L in the CLN and LC = 3L in
the PLN.

2.3 Definition of quantitative metrics for
characterizing cerebral capillary net-
works

Next, we define the quantitative metrics that were
used in combination to characterize and compare
capillary networks. These metrics can be classi-
fied into two types: the architectural metrics asses
their space-filling nature (Section 2.3.1), morphol-
ogy (Section 2.3.2) and topology (Section 2.3.3).

The functional metrics asses flow (Section 2.3.4),
blood/tissue exchange (Section 2.3.5) and robust-
ness to capillary occlusions (Section 2.3.6). Many
of these metrics have been previously used to an-
alyze capillary networks. Others ones are inspired
from other fields, e.g. porous media physics (Section
2.3.5) or constitute novel additions to the literature
(Section 2.3.6).

2.3.1 Space-filling nature of capillary net-
works

A key feature of cerebral capillary architecture that
we wish to replicate in the synthetic networks is
that they are homogeneous i.e. space-filling at scales
above a cut-off length of 25 - 75 µm [11]. In con-
trast, arterioles and venules are quasi-fractal and
thus scale-invariant [11, 46]. Following [11], the non-
fractal, space-filling nature of the capillary networks
in all ROIs was tested via a multiscale box-counting
analysis of the local maxima of extravascular dis-
tances (EVDs), see Appendix B.1.

Additional metrics were extracted from the EVDs,
starting with the mean EVD and the mean of the lo-
cal maxima, i.e. the mean of EVD values computed
for all local maxima. The EVD is also related to
mass transfer properties, which are strongly depen-
dent on the local spatial arrangement of the capillar-
ies, among other factors (see §2.3.5). Indeed, Baish
et al. [27] showed that both the maximum EVD and
the ‘convexity index’ reveal distinct properties for
tumor vs. healthy networks. The convexity index
was defined as the slope of a linear fit to the log-
log scale histogram of EVDs at small scales (Ap-
pendix B.1). Baish et al. showed that the maximum
EVD was inversely (non-linearly) correlated to the
convexity index. Here, both metrics were calculated.

2.3.2 Morphometrical metrics

The following metrics were computed to quanti-
tatively compare the morphometrical properties of
networks:

1. Distribution, mean and SD of vessel lengths,

2. Edge density (number of vessels per volume),

3. Length density (sum of vessel lengths per vol-
ume),

4. Interior vertex density (number of non-
boundary vertices per volume),
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5. Boundary vertex density (number of boundary
vertices per surface area of the region of inter-
est).

2.3.3 Topological metrics

1

2

3

4

5

6

7

8

(a) (b)

Figure 3: a) Schematic illustration of a Section of
network containing three capillary loops (identified
in red, green and blue) centered around a ‘root ver-
tex’ labeled 1. b) Four individual loops (in thick
red) identified in a synthetic network (in dark blue).

For a simple topological metric, the percentage of
interior vertices with more than three connections
was calculated.

For a more thorough quantitative assessment, an
algorithm to identify the shortest loops in a network
was developed. The loops associated with each ver-
tex were defined as the set of shortest closed loops
starting at this vertex that also pass through a pair
of neighboring connected vertices, considering each
possible pair in turn. The procedure for identifying
capillary loops is illustrated in Figure 3a and de-
scribed in Appendix B2.

The shortest loops associated with each vertex vi
were defined as the set of closed loops starting at vi
that also pass through neighboring connected ver-
tices vneighj and vneighk , for all values of j = 1,. . . ,n
and k = 1,. . . ,n, k 6= j, where n is the number of
neighboring vertices. The procedure for identifying
capillary loops is illustrated in Figure 3a. Identi-
fying the neighbor vertices 2, 3, and 5 directly con-
nected to the root vertex 1, each of the three possible
pairs of these vertices was considered in turn. The
shortest path between each pair of vertices without
passing through the root vertex was computed using
Dijkstra’s algorithm. Here, each edge was assumed
to have unit weight for simplicity, but in practice
edges were weighted by their length. The short-

est path between vertices 3 and 5 without passing
through vertex 1 is 3–4–5. This path was then added
to the edges linking vertices 3 and 5 with the root
vertex to obtain the final loop path 1–3–4–5–1. For
this ‘root vertex’, two other loops, 1–5–7–6–2–1 and
1–2–8–3–1, were also found. For each root vertex,
there are a maximum of C2(n) loops, where n is nor-
mally 3. However, each loop was identified multiple
times (once for each vertex in the loop) and repe-
titions were identified and deleted.. Selected loops
identified in a synthetic network are shown in Fig-
ure 33b. The mean number of edges per loop, mean
total loop length and mean number of loops per edge
were calculated for all networks.

2.3.4 Flow metrics

As discussed in Section 2.2.1, for simplicity, uniform
vessel diameters of 5µm were assigned in all ROIs
for the purpose of blood flow simulations. Flow so-
lutions were computed using an in-house 1D network
flow solver [33], which takes a classical network ap-
proach i.e. assumes a linear relationship between
flow and pressure drop in vessels, and conservation
of flow at vertices (Appendix B.3). For brevity, all
flow results are presented for a pressure gradient in
the x-direction onlyfor brevity.

The velocity in each capillary was calculated by
dividing the flowrate by the vessel cross-section, and
the mean and SD of velocities in each ROI was com-
puted.

Next, the permeability was computed. This ef-
fective parameter captures the capacity for blood to
flow through a representative portion of the network.
The permeability is commonly derived by model-
ing the capillary network as a porous medium and
applying volume-averaging/homogenization tech-
niques to derive Darcy flow. If divided by the ef-
fective viscosity, the permeabilityit is sometimes re-
ferred to as the network conductance [47, 48]. Fol-
lowing [49], the permeability was calculated by ap-
plying a pressure gradient across the ROI. By anal-
ogy with the theoretical value obtained by applying
volume-averaging/homogenization techniques to de-
rive Darcy flow [48], the permeability is then given
by:

Kx =
µ

∆Px/Lx

Qx
Ax

, (1)

where Kx, ∆Px and Lx are the permeability, pres-
sure drop and length of the domain respectively
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in the x-direction. Qx is the corresponding global
flowrate, defined as the sum of the flows entering
the domain through the face perpendicular to the
x-direction, and Ax is the area of this face. Because
all diameters are uniform, the effective viscosity µ is
simply the viscosity in all vessels. Note that in con-
trast to the velocity, the permeability is independent
of the magnitude of ∆P .

2.3.5 Mass transfer metrics

Firstly, the transit time (i.e. the time spent by blood
traversing each capillary) was calculated as the ves-
sel length divided by the mean vessel velocity, to
yield the distribution of transit times, and the me-
dian transit time was recorded.

Secondly, in a similar way to the permeability cal-
culation, averaging techniques were employed to de-
rive a macro-scale effective parameter h, known as
the mass exchange coefficient [50]. For details of
this method see Appendix B.4. This coefficient cap-
tures the network-specific capability for mass trans-
fer between the capillaries and the surrounding tis-
sue. The value of h characterizes the network archi-
tecture and the diffusion properties of both blood
and tissue. Here, we consider the diffusion of a non-
reactive, non-metabolic tracer, which is highly dif-
fusible through the blood brain barrier. Under these
assumptions, and for space-filling networks, h is cor-
related with the surface area available for mass ex-
change and hence also with the vessel length density,
given the uniform distribution of diameters assigned
here. The mass exchange coefficient h wasis reported
for a specified ratio of tissue and to vessel diffusion
coefficients of 0.25 (Appendix B.4).

2.3.6 Robustness to occlusions

The robustness of the capillary networks to occlu-
sions was quantified by applying a single occlusion in
turn to each edge upstream of a three-connected ver-
tex. Numerically, occlusions were imposed via a di-
ameter reduction factor of 100 in the occluded edge
[5]. Because of their different behaviour, converg-
ing (two inflows, one outflow) and diverging (one
inflow, two outflows) vertices were considered sepa-
rately as in [51]. The ratio of post- to pre-occlusion
flowrates in the outflow edge(s) was computed, with
the criterion that baseline i.e. pre-occlusion absolute
flowrates in all inflow and outflow edges were greater
than a specified tolerance (qtol = 0.001% of the total

inflow), otherwise the edge was ignored. The final
metric reported was the mean of these flow ratios
for each case, averaged over all ROIs.

3 Results

In this Section, we first assess the architecture of
mice and humans capillary networks using the sim-
plest morphometrical and topological metrics. As
wee shall see in Section 3.1, the results suggest that
rescaling is needed to accurately compare capillary
networks between species. This implies that the
characteristic length LC of the synthetic networks
developed here needs to be independently chosen
for both species. To guide this choice, we study
their scaling properties, as well as those of the sim-
pler grid-like networks, as a function of domain size
and LC in Section 3.2. Finally, the structure and
function of these networks with LC = 75µm and
LC = 95µm is compared to those of the mouse and
human data in Sections 3.3 and 3.4, respectively.

Results of investigations into the scaling of prop-
erties for the anatomical and synthetic networks are
discussed in Sections 3.1and 3.2, which then informs
the appropriate choice of LC values for the subse-
quent generation of 3D Voronoi-like synthetic net-
works scaled to match the mouse and human data
(Sections 3.3and 3.4).

3.1 A simple re-scaling accounts for
inter-species differences in anatomi-
cal networks

A preliminary comparison between the mouse and
human anatomical networks was conducted using
the simplest morphometric metrics (Tables 1 and
S1). These showed that capillaries in the human
ROIs were longer (mean capillary length 34.4%
higher) and spaced further apart (mean EVD 15.8%
higher) than in mice. Nonetheless, loop metrics
were very similar, with the mean number of edges
per loop almost identical between species. The his-
tograms of this metric were also similar, although
with more variance for humans (Figure 4a) suggest-
ing that this distribution was not statistically con-
verged with N = 4 samples (compared to N = 7
for mice). Thus, the underlying topology of the net-
works is comparable but that the scaling of the hu-
man network is increased relative to the mouse.
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(a) (b)

Figure 4: Histograms of a) number of edges per loop, and b) capillary lengths on a log-scale, in mouse and
human ROIs. The human length distribution rescaled to match the mean length for mice is superimposed
in dashed lines. For all plots, frequencies were collected over all ROIs for each species. Error bars show
the SD between ROIs.

This hypothesis was supported by down-scaling
the human capillary lengths by the cross-species dif-
ference in mean lengths. The rescaled length his-
tograms for humans (red dashed lines in Figure 4b),
coincided closely with the histogram for mice. Thus,
we hypothesize that the synthetic networks devel-
oped here can be generated to model either mouse
or human cerebral capillary networks by an appro-
priate choice of characteristic length LC for each
species.

However, although synthetic domain size
was eventually fixed at 240× 240× 240µm3 or
264× 264× 207µm3 to match the ROIs from mice
or humans respectively, we have not yet identified
the REV size for the networks. As the domain size
of the synthetic networks is not limited, it was
possible to study the convergence properties of the
defined metrics with domain size, and hence define
an REV.

3.2 Scaling and convergence of metrics
in synthetic networks

Scaling properties of the synthetic networks with
domain size and LC were investigated. For the fol-
lowing studies Metrics characterizing the architec-
tural, flow and transport properties of porous or
heterogeneous media usually vary with the size of
the domain under study until a characteristic size is

reached, known as a Representative Elementary Vol-
ume (REV) [52]. Above this REV size, the medium
can be considered homogeneous and finite-size ef-
fects become negligible. Here, convergence of prop-
erties of the synthetic networks with domain size is
first studied to determine their REV. This enables
overcoming the difficulty associated to anatomical
datasets, where both arterioles/venules and capil-
laries are intermingled, which makes it only possible
to extract capillary regions of limited size, may be
smaller than the REV. The scaling properties of the
synthetic networks with LC are then investigated.
For that purpose, some metrics were normalized by
an appropriate power of LC , guided by the deriva-
tion of analytical expressions for these metrics in the
lattice networks, which was possible thanks to their
simple architecture. As detailed in Appendix C.1,
the mean loop length, length density and perme-
ability scaled with LC , 1/L2

C and d4

L2
C

respectively,
where d is the vessel diameter.

3.2.1 ScalingConvergence of metrics with
domain size

The scalingconvergence of metrics in the synthetic
networks was studied for domain sizes from L3

C to
(9LC)3, with metrics normalized by the appropriate
power of LC (Figure 5). Focus was placed on the
convergence of loop metrics since, in the lattice net-
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Metric Mice S75 Periodic lattice Cubic lattice

N 7 10 1 1
Mean EVD (µm) 18.4 ± 0.9 20.2 ± 0.6 18.9 19.3
Mean local max EVD (µm) 29.4 ± 1.5 34.5 ± 1.4 36.0 47.4
Max EVD (µm) 50.1 ± 3.7 53.4 ± 2.6 57.3 47.4
Convexity index 0.9 ± 0.1 0.9 ± 0.0 0.8 0.8
Mean length (µm) 44.8 ± 2.4 36.0 ± 1.5 41.0 67.0
SD length (µm) 28.1 ± 2.3 18.5 ± 1.5 0.0 0.0
Edge density (103 mm−3) 17.0 ± 1.4 21.3 ± 0.8 17.7 12.5
Length density (mm−2) 673 ± 58 674 ± 20 661 668
Vertex density (103 mm−3) 8.2 ± 0.6 11.4 ± 0.4 10.7 3.3
Boundary vertex density (mm−2) 351 ± 46 317 ± 23 132 223
% multiply-connected vertices 7.2 ± 0.9 2.2 ± 1.0 0.0 100.0
Mean no. edge/loop 11.2 ± 1.2 10.3 ± 0.6 9.0 5.1
Mean loop length (µm) 486 ± 60 368 ± 35 369 345
Mean no. loop/edge 5.1 ± 0.3 4.9 ± 0.4 4.0 9.0
Mean velocity (µm/s) 197 ± 43 204 ± 29 286 268
SD velocity (µm/s) 258 ± 31 233 ± 18 273 380
Permeability (10−3µm2) 1.57 ± 0.38 1.38 ± 0.26 2.03 3.42
Median transit time (s) 0.14 ± 0.04 0.13 ± 0.02 0.10 0.08
Exchange coefficient h 24.9 ± 3.31 21.3 ± 0.83 31.5 33.1
Post-occlusion flow ratio (converging) 0.77 ± 0.01 0.76 ± 0.01 0.69 -
Post-occlusion flow ratio (diverging; branch A) 0.26 ± 0.03 0.29 ± 0.02 0.07 -

Table 1: The geometrical, topological and functional metrics calculated here, for mice, synthetic with
LC = 75µm (‘S75’), and lattice ROIs. Results are presented as mean ± S.D. over the N ROIs studied
for each network type (i.e. for the metric ‘Mean length’, the mean length was calculated for each ROI,
and the mean and S.D. of these mean lengths over all ROIs are presented in the table). Colors indicate
values that are within 10% (green), more than 10% lower (blue) or more than 10% higher (red) than the
corresponding values for the mice ROIs. Permeabilities, velocities and transit times were calculated with
uniform diameters of 5µm. Some key metrics are represented (as percentage errors relative to values for
the mice data) in Figure 10.

works (Appendix C.1), these were sensitive to finite-
size effects. For example, the number of loops per
edge was higher in vessels nearer the center of the
domain than near the boundary (Figure 9a in Re-
sults), explaining the dependence of this metric on
domain size.

The convergence of metrics was defined as:

Mk −Mk−1

Mk
, (2)

where Mk is the value of the metric in question at
size k. Each metric was considered converged once
this value was less than 0.05. The convergence plots
of loop metric with domain size are shown in the
insets of Figures 5 and S1. Loop metrics in par-
ticular were highly sensitive to finite-size effects, as
expected from the analytical results obtained in the
lattice networks (Appendix C.1). For example, the

number of loops per edge was higher in vessels nearer
the center of the domain than near the boundary
(Figure9a in Results), explaining the dependence of
this metric on domain size.

With a domain size of (9LC)3, the mean vessel
length converged to 0.49LC , while the mean num-
ber of edges per loop and loops per edge converged
to 9.9 and 5.7 respectively. The mean permeability
converged to 10.4/L2

Cµm
4 with vessels of diameter

5µm, or 0.017d4/L2
C . The mean length, mean num-

ber of edges per loop and mean number of loops per
edge all converged for domain sizes between (3LC)3

and (4LC)3. This is much faster than in the lat-
tice networks, suggesting that the introduction of
randomness to network structures reduces the sen-
sitivity of loop metrics to finite-size effects. By con-
trast, the permeability converged somewhat slower,
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(a) (b)

(c) (d)

Figure 5: Results of scaling domain size for the metricsConvergence of metrics with domain size: a) mean
loop length, b) mean number of loops per edge, c) mean number of edges per loop, d) mean permeability.
Metrics were normalized by the appropriate power of LC . Insets: the convergence of each metric as defined
in Equation 2. The converged size xconv is the size from which the convergence was less than 0.05.

by sizes of (5.5LC)3.
This is slower than the results recently presented

by our group [33], where a range of network sizes
were obtained by extracting sub-regions from the
largest network studied; in contrast, here networks
were stochastically re-generated independently for
each size, leading to more variance. Interestingly,
the permeability converged immediately in the lat-
tice networks (Appendix C.1), showing that simple
lattice networks cannot be used as an analogy to
define appropriate REV sizes for more disordered
Voronoi-like networks.

In these networks, for all of these the considered
metrics to converge to within 5%, the domain size
should be at least (5.5LC)3, which defines the size
of the REV.

Above, e.g. with a domain size of (9LC)3, the
mean vessel length converged to 0.49LC , while the
mean number of edges per loop and loops per edge
converged to 9.9 and 5.7 respectively. The mean
permeability converged to 10.4/L2

Cµm
4 with vessels

of diameter 5µm, or 0.017d4/L2
C .

Note that the permeability converged more slowly
than the results recently presented by our group [33],
where a tolerance of 1% was imposed. This is be-
cause Peyrounette et al. [33] obtained a range of
networks by extracting sub-regions from the largest
network studied; in contrast, here networks were
stochastically re-generated independently for each
size, leading to more variance.

Interestingly, while the permeability converged
immediately in the lattice networks (Appendix C.1),
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the mean number of loops per edge converged much
more slowly than in the synthetic networks, sug-
gesting that the introduction of randomness to net-
work structures reduces the sensitivity of this metric
to finite-size effects. Thus, simple lattice networks
cannot be used as an analogy to define appropri-
ate REV sizes for more disordered networks such as
these Voronoi-like networks.

3.2.2 Scaling with characteristic length LC

The scaling of metrics was studied for LC between
60µm and 100µm, with fixed domain size (240µm)3

corresponding to the size of the mouse ROIs (Fig-
ures 6 and S2). As expected from the scaling anal-
ysis for the lattice networks ( Appendix C.1), mean
capillary length, mean EVD and mean loop length
were linearly proportional to LC , while length den-
sity and permeability both scaled with 1/L2

C . For
reference, linear fits to these graphs are given in Ta-
ble S2. The mean number of edges per loop did not
change with LC for the range of values considered
(Figure S2c), which is not surprising since this is a
purely topological metric.

We chose to derive appropriate values of LC by
matching the length densities in the synthetic net-
works and the anatomical data. Since uniform di-
ameters were imposed in all networks, the length
density is linearly proportional to both the poros-
ity i.e. volume fraction of the domain occupied by
vessels, which is important for the flow properties of
the network, and also to the vessel surface area per
volume, which is a key determinant of mass transfer
properties. To best match the mean length density
in the mouse ROIs, we chose LC = 75µm, while for
humans we set LC = 90µm (Figure 6a). By match-
ing length density, we obtain a compromise between
matching mean length and mean loop length, which
were too low, and the mean EVD and edge density
which were too high. With these choices of LC , the
mean permeability was lower than mice and higher
than humans, but nonetheless fell within or just out-
side the error bands for both species. The SD was
particularly high for the permeability and of the
same order for synthetic and anatomical networks
(Figure 6b to c).

Since this study was conducted with variable
LC at a fixed domain size, the number of unit
cells decreases with increasing LC , implicitly pos-
siblyintroducing finite-size effects. In the range con-

sidered, the number of cells varied from 43 with
LC = 60µm to 2.43 with LC = 100µm. The decrease
in the mean number of loops per edge as a function
of LC (Figure S2d) demonstrates this effect: it was
shown in the previous section, that this metric con-
verges from 43 unit cells, and does not depend on
LC for larger domain sizes above this size. Nonethe-
less, the length density converged very quickly with
domain size, for 23 unit cells or more (Figure S1b),
thus the choice of LC via the length density was
unaffected by finite-size effects. Finite-size effects
also had a small influence on the linear fits shown in
Table S2; if keeping the number of cells fixed to e.g.
33, a maximum difference of approximately 14% was
found in the predicted slope.

Final synthetic networks were thus generated in
the same domain sizes as the corresponding anatom-
ical ROIs. Synthetic networks matched to the mouse
data thus had domain size (240µm)3; with LC =
75µm, this size is equivalent to (3.2LC)3, or (0.58)3×
the REV size. The error in the calculated metrics
due to the finite domain size was estimated using
the previous convergence study. For example, the
number of edges per loop converged quickly with
increasing domain size, and, in the ROI sizes stud-
ied, was predicted to deviate only 4% from the con-
verged value. However, the predicted permeability
with ROIs of (240µm)3 was expected to be approxi-
mately 25% lower than its converged value. REV
sizes and corresponding convergence trends could
not be determined for the anatomical datasets, due
to the limited size of capillary ROIs. However if
we assume that metrics converge in a similar way,
similar finite-size related errors can be expected.

Similar to the synthetic networks, the lattice net-
works were scaled to match the mean length density
in the anatomical networks, to minimize any differ-
ences due to scaling. However, as lattice networks
did not have equivalent properties either to mice or
humans, results for the lattice networks scaled to
match the mouse data only are presented in Ap-
pendix C.

3.3 Synthetic networks with LC = 75µm
effectively replicate mouse capillary
networks

Metrics computed for synthetic networks with LC =
75µm and domain size (240µm)3 were compared to
their values in the mouse networks. The mean and
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(a) (b)

(c) (d)

Figure 6: Results of scaling the characteristic length LC on the metrics: a) length density, b) mean EVD,
c) permeability, d) mean length. Errorbars show mean ± S.D. for the synthetic networks. Shaded bands
in blue and red show mean ± S.D. of mouse and human values respectively.

SD across all ROIs of all metrics are listed in Table 1.

3.3.1 Space-filling metrics: Synthetic net-
works have equivalent space-filling
properties as mice ROIs

Slices of the EVD map with the corresponding
synthetic network superimposed are shown in Fig-
ure 7a. Applying box-counting methods to the lo-
cal maxima of EVDs confirmed the homogeneous i.e.
space-filling nature of the synthetic networks as well
as that of the mouse networks studied (Figure 7b).
Lattice networks are also shown for reference. There
was no linear domain but rather a continuous varia-
tion in slope, characteristic of 3D space-filling struc-
tures, until reaching a slope of −3 for scales on the
order of LC or larger.

The mean EVD in the synthetic ROIs was slightly
(less than 10%) higher than in the mouse ROIs,
while the mean of the local maxima of EVDs was
17% higher. The histograms of EVD on a log-log
scale (see Figure 7c) also showed a similar distri-
bution between all networks, including the lattice
networks.

Convexity indices were very close, and the max-
imum EVD was between 47 and 58µm for all net-
works (Figure 7d). Both metrics were well within
the range of what was classified as ‘normal’ rather
than ‘tumorous’ by Baish et al. [27].
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(a) (b)

(c) (d)

Figure 7: Results of space-filling metrics for the mouse ROIs, synthetic networks with LC = 75 and
domain size (240µm)3 (‘S75’), and lattice networks, collected over all ROIs. a) A S75 synthetic network
in blue, superimposed on three cross-sections of the corresponding EVD field in grayscale, computed for
voxels of size 1µm3. b) Results of a box counting analysis of the local maxima of EVDs: the number of
boxes containing at least one local maxima, N(r), against box size, r. For boxes approximately equal to
LC = 75µm and above, the slope converged to -3. c) Histogram of EVDs on a log-log scale. d) Maximum
EVD against the convexity index defined by Baish et al. [27]. Normal and tumor network data points
taken from [27].

3.3.2 Morphometrical metrics: length den-
sities were well-matched but mean
lengths were lower in synthetic net-
works

The log scale distribution of straight vessel lengths
collected over all ROIs was qualitatively similar in
the synthetic networks to that of mice (Figure 8a).
However, mean vessel lengths in the synthetic net-
works were overall 19.4% lower while the SD was
34% lower (Table 1).

As discussed above, LC was chosen to match
length densities between synthetic and mouse ROIs.
Due to the shorter mean capillary length, this re-
sulted in a 25% higher edge density in the synthetic
networks than the mice. Similarly, the vertex den-
sity was higher (≈ 39%) in the synthetic networks,
while the boundary vertex density was similar (less
than 10% fewer in the synthetic ROIs).

18

In review



(a) (b)

(c) (d)

(e)

X

X

{
{

Diverging

Diverging

Converging

(f)

Figure 8: Morphometrical, topological and functional results for the mouse ROIs, synthetic networks with
LC = 75 and domain size (240µm)3 (‘S75’), and lattice networks. In all plots except c), data points
represent the mean over all ROIs for each network type, and errorbars indicate the SD between ROIs.
a) Histogram of lengths on a log-scale. b) Histogram of number of edges per loop. c) Mean number
of edges per loop vs mean loop length, µm, for each ROI. d) Histogram of number of loops per edge.
e) Histogram of capillary transit times, on a log-scale. f) Histograms of post- to pre-occlusion absolute
flow ratios in vessels one branch downstream from the occlusion, where the vertex downstream of the
occlusion has 3-connectivity, and divided into converging and diverging bifurcations as illustrated in the
schematics. In the diverging case, flow ratios are plotted for the outflow branch without change in flow
direction post-occlusion (branch A). The CLN does not appear because all its vertices had connectivity
greater than three. 19
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3.3.3 Topological metrics: synthetic net-
works had very close loop topology
and distribution

There were fewer multiply-connected interior ver-
tices in the synthetic networks compared to the mice
networks. The mean number of edges per loop com-
pared well, and the distributions were very similar
(Figure 8b). An early topological study in the rat
cerebral cortex found lower values for this metric
(between 4 and 7 capillaries per loop), perhaps due
to the difficulty of manually tracing long loops, or
species differences [53]. Consistent with the rel-
atively small heterogeneity of vessel length, loop
lengths were correlated with the number of edges
per loop (Figure 8c) but were on average 24% lower
in the synthetic networks, consistent with the lower
mean vessel length. The mean number of loops per
edge also compared well with mice (within 3%) and
the distributions matched very closely (Figure 8d).
Both the mean number of edges per loop and loops
per edge were independent of LC , and show that the
underlying network topology was very well matched
between synthetic and mouse networks.

3.3.4 Flow metrics: synthetic networks had
slightly higher permeability

The simulated pressure distributions are visualized
in synthetic and mouse networks in Figures 9b and
c, and showed a qualitatively similar distribution.
With a pressure gradient in the x-direction, the
mean blood velocity in the synthetic networks was
very close to that in mice. The mean permeabil-
ity in the synthetic networks was 12% lower. It
was verified that for a large number of samples (e.g.
N = 500), the distribution of permeability values
was Gaussian.

3.3.5 Mass transfer metrics: synthetic net-
works had slightly lower exchange co-
efficient

The distribution of capillary transit times were very
similar between synthetic and mouse ROIs (Fig-
ure 8e), as were the median transit times. For all
networks, the exchange coefficient h followed a lin-
ear relationship with Dratio, the ratio between tis-
sue and vessel diffusion coefficients (Appendix B.4).
WithDratio = 0.25, h was 14% lower in the synthetic
vs. mouse networks.

3.3.6 Robustness metrics: synthetic and
mouse networks were similarly robust
to occlusions

Three-connected vertices were split approximately
evenly into two cases: converging (2 inflows, 1 out-
flow) and diverging (1 inflow, 2 outflows), each with
distinct behaviour due to their specific configura-
tions.

In the converging case, the flow in the out-
flow branch necessarily decreased post-occlusion and
did not change direction, leading to post- to pre-
occlusion flow ratios between 0 and 1. Since in this
case only one of two inflows was cut, the mean flow
reduction was moderate (approximately 25%).

In the diverging case, the post-occlusion flowrate
was of equal magnitude in both outflow branches due
to mass conservation, and reversed in one branch
(branch ‘B’). This yielded a flow ratio between 0
and 1 in branch ‘A’ and a negative (or zero) flow
ratio in branch ‘B’. In 70-75% of cases for the mice
and synthetic ROIs, branch A had the higher pre-
occlusion flow, while in 13-18% of cases the post-
occlusion flow in both branches was zero. Since in
this case the only inflow was blocked, the flow re-
duction in branch A was much more significant on
average (70 - 75%) than for the converging case.

The distributions of flow ratios for both converg-
ing and diverging (branch A only) cases were almost
superimposed for synthetic and mice networks (Fig-
ure 8f), and the mean flow ratios were also very close
(Table 1).

3.4 Synthetic networks with LC = 90µm
compared to human ROIs

Results for the synthetic networks with LC = 90µm
and size 264 × 264 × 207µm3 compared to humans
were very similar, although the agreement was not
as good. This may be partly because fewer hu-
man ROIs were extracted (4, rather than 7 for
the mouse), thus metrics were less statistically con-
verged in terms of the number of samples. The
regions were also smaller in the z-direction, al-
though larger in the other two directions. With the
larger LC , the ROI size was equivalent to 2.93LC ×
2.93LC×2.3LC , further from the REV size than the
synthetic networks matched to the mouse ROIs, and
thus more susceptible to finite-size effects. Key re-
sults are discussed next, while complete results of
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(a) (b) (c)

Figure 9: Visaulizations of one synthetic ROI with LC = 75µm (a,b) and one mouse ROI (c), both of size
(240µm)3, color coded by the following quantities: (a) number of loops per edge, (b,c) pressure.

the mean and SD across all ROIs are found in Table
S1.

The mean and maximum EVD were 13% and 19%
longer respectively in the synthetic ROIs than the
humans. The mean length was 30% lower, while
the edge density was 42% higher. The density of
boundary vertices was close, and there was a simi-
lar percentage of multiply-connected vertices. There
were slightly fewer edges per loop in the synthetic
vs. humans, although loop results in the human
ROIs were noisy (Figure S4b and c). Similar to the
mean length, the mean loop length was 32% lower
in the synthetic ROIs. There were 42% more loops
per edge in the synthetic networks, although again
the frequency distribution for humans in Figure S4d
was not statistically converged. These metrics indi-
cate that the synthetic networks were more closely
inter-connected than the human ROIs. This was
confirmed by the flow metrics: the mean velocity
and permeability were 36% and 39% higher respec-
tively. In terms of mass transfer, the median tran-
sit time was 26% lower, while the mass exchange
coefficient h was 43% lower than in humans. Fi-
nally, when subject to occlusions, the mean post- to
pre-occlusion flow ratio was very close between the
synthetic and human ROIs, and the distributions of
flow ratios in converging and diverging bifurcations
were also similar (Figure S4f).

4 Discussion

Although the capillaries are the smallest vessels in
the brain, their extremely large surface area allows

them to fulfill their key function of supply of oxygen
and other nutrients and removal of toxic metabolic
waste to/from the tissue. Their crucial role of brain
capillaries in healthy neurovascular function and ro-
bustness to vascular damage in disease is becoming
increasingly recognized [4, 5, 7, 13]. Although they
are the smallest vessels, their extremely large sur-
face area allows them to fulfill their key function of
supply of oxygen and other nutrients and removal
of toxic metabolic waste to/from the tissue. The
capillary network is especially dense in the brain,
where metabolic demands are high and exhibit lo-
calized, dynamic changes [7]. However, quantitative
anatomical data specifically focused on the spatial
organization of cerebral capillary networks are ex-
tremely scarce, which has made difficult to identify
the minimal organizational principles that underly
their structure and function. This has, until now,
limited the development of synthetic network mod-
els built on such principles and prevented their thor-
ough, quantitative validation.

Various models of synthetic cerebral capillary net-
works have been proposed [54,56-58]to understand
the link between structure, blood flow, transit times,
and oxygenation in states of hypoperfusion or high
metabolic demand [56,57,62], or the impact of vessel
occlusions or radiation damage on capillary function
[47,54,58].These models pave the way for theoreti-
cal studies and numerical simulations of a range of
neurovascular pathologies, such as stroke, dementia,
and Alzheimer’s Disease and aid interpretation of
functional imaging [62]. However, despite the criti-
cal importance of an efficiently functioning capillary
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bed, the lack of quantitative anatomical data specif-
ically focused on the spatial organization of capil-
lary networks has, until now, limited the develop-
ment of synthetic network models built on physio-
logically-derived principles and prevented their thor-
ough, quantitative validation.

4.1 Summary of key results

In light of this shortage among previous studiesthis
context, the key contributions of this paper were:

• to define a complete range of metrics that can
be used in combination for thorough character-
ization of of the structure and function cerebral
capillary networks;

• to provide a database of these metrics for
healthy mouse and human capillary networks,
thereby identifying the similarities and differ-
ences in scaling;

• to present a novel method for generating 3D
synthetic capillary networks with equivalent
properties, based on a few simple organizational
principles, which can be scaled depending on
the species under study.

Relevant quantitative metrics capturing together
the key information for characterizing cerebral capil-
lary networks were identified. Many of these metrics
had been previously used to analyze the morphology
and flow properties of cerebral capillary networks.
To the best of our knowledge, however, the topol-
ogy of their looping, interconnected structure had
not been described in detail, nor their mass trans-
fer properties or robustness to occlusions. In par-
ticular, we showed for the first timÒe that differ-
ences in scaling play a key role in the comparison of
anatomical capillary networks, and that this can be
evidenced via scale-independent loop metrics that
evaluate topological equivalence. This will be useful
in future studies to distinguish between structural
differences due to scaling, and those due to more fun-
damental discrepancies such as vascular rarefaction
in pathological scenarios such as stroke, dementia,
and Alzheimer’s Disease [5]. These metrics will thus
facilitate comparison between anatomical data ex-
tracted from different samples, cortical depths, brain
regions, ages, or species [7].

The number of ROIs extracted from both the hu-
man and mouse data was limited; nonetheless, these

have produced valuable results. All mouse ROIs were
at a cortical depth of 650µm or more, to maximize
ROI size while avoiding vessels of diameter > 10µm
(assumed to be the maximum capillary diameter).
In this zone, corresponding roughly to layer IV, the
capillary network is approximately isotropic; in con-
trast in both mice and humans, we observed more
anisotropy near the cortical surface, consistent with
previous observations [7,18,25].

Although only the permeability in the x-direction,
Kx, was presented in the Results, this metric was
indeed highly anisotropic in humans, even though
3 out of 4 were from depths > 1 mm. Preferential
alignment of capillaries perpendicular to the corti-
cal surface led to a≈ 260% higherKy. In contrast, in
the confocal imaging direction, Kz was roughly 80%
lower than Kx probably due to signal reduction in
the deepest images.

Manual correction of the automatic segmentation
of the human data was necessary to remove various
artefacts (small capillary loops, broken capillaries in-
dicating loss of network connectivity) present in the
original segmentation [18]. For the same zones, the
newly-segmented networks had 50%, 187% and 76%
higher mean vessel length, loop length and perme-
ability Kx respectively compared to the original seg-
mentation, with a 17% lower edge density (mainly
due to the removal of short artefactual edges).

Even with manual correction, there are inevitably
errors and artefacts introduced during any image ac-
quisition and processing protocol (e.g. unfilled ves-
sels, sample shrinkage or distortion, low signal-to-
noise ratio, artefactual removal or addition of short
or small diameter vessels). This means that anatom-
ical data may not be an exact representation of
the in vivo microvasculature. Promising methods to
quantitatively evaluate different segmentations [19]
are nonetheless hindered by the lack of a ground
truth. Physiologically-based synthetically-generated
networks, combined with models of the artefacts en-
gendered by specific imaging processes, may help
quantify the imaging-associated uncertainty inher-
ent in anatomical datasets.

Here Moreover, 3D synthetic networks were
stochastically generated by exploiting fundamen-
tal physiological concepts of the spatial organiza-
tion of cerebral capillary networks i.e. that the
intrinsic spacing of the cerebral capillaries is con-
trolled by the limited diffusion distance of oxygen.
Spatially-constrained Voronoi diagrams yielded tes-
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sellations that were locally randomized, but with ho-
mogeneous properties at the network scale. This
approach produced networks that complied with
the desired global features i.e. they were three-
connected, isotropic, space-filling, and with convex
extravascular domains of a characteristic size. Im-
portantly, this simple algorithm was not tuned to
match specific anatomical statistics such as length
distributions, in contrast to others [54]. Rather, our
model relied on one single important parameter with
physiological significance, LC , which controls the
size of extravascular domains associated with each
Voronoi polygon.

The characteristic length LC was chosen by
matching the length density in the anatomical ROIs.
The resulting difference in key metrics is summa-
rized in Figure 10 for synthetic networks with LC =
75µm relative to mouse ROIs, and with LC = 90µm
relative to humans. It is clear that the synthetic net-
works performed better in comparison to the mouse
networks than the human, which may be at least in
part due to issues with the human dataset (residual
imaging artefacts, fewer ROIs, network anisotropy),
see Section 4.2as mentioned above.

Scaled to the mouse data, the mean vessel length
was lower in the synthetic networks, but the mean
EVD was slightly higher. Two topological metrics
(the mean number of edges per loop and the num-
ber of loops per edge) were very close to mice. In
terms of functional metrics, the mean permeability
was slightly lower, while the mean velocity and me-
dian transit times were close. In terms of mass trans-
port and robustness, the mass exchange coefficient
was slightly lower in the synthetic networks, while
the post-occlusion downstream flow ratios in con-
verging and diverging bifurcations were very close.

In contrast to the Voronoi-like synthetic networks,
the lattice networks did not replicate the anatomi-
cal networks so well (Figure 10). The CLN per-
formed worst, notably with very high mean length,
number of loops per edge and permeability, very few
edges per loop, and zero SD of lengths. Errors for
the PLN were of a similar order of magnitude to
those for the synthetic networks scaled for the hu-
man data, except notably the SD of vessel lengths
was zero due to its highly ordered construction, lead-
ing to a large error relative to the mouse data. This
demonstrates that the naive approach of construct-
ing simple grid-like networks was not sufficient to
replicate the geometrical or functional properties of

cerebral capillary networks, and highlights the need
for introducing a sufficient level of randomness in
the generation scheme. Nonetheless, the PNL per-
formed surprisingly well, perhaps due to having a
similar connectivity to the anatomical networks.

The excellent results in the Voronoi-like synthetic
networks show that we have identified the minimal
organizational requirements of the cerebral capillary
networks which are key to replicating their archi-
tectural and functional properties, including flow,
transport and robustness to occlusions.

4.2 Limitations and perspectives

The first limitation comes from the limited number
of ROIs extracted from both the human and mouse
data. All mouse ROIs were at a cortical depth of
650µm or more, to maximize ROI size while avoid-
ing vessels of diameter > 10µm (assumed to be the
maximum capillary diameter). In this zone, corre-
sponding roughly to layer IV, the capillary network
is approximately isotropic; in contrast, we observed
more anisotropy near the cortical surface, consis-
tent with previous observations [7, 18, 25]. In hu-
mans, however, whatever the depth of the ROI (3
out of 4 were at depths > 1 mm), the permeability
was highly anisotropic: only the permeability in the
x-direction, Kx, was presented in the Results, but
preferential alignment of capillaries perpendicular to
the cortical surface led to a ≈ 260% higher Ky. In
contrast, in the confocal imaging direction, Kz was
roughly 80% lower than Kx probably due to signal
reduction in the deepest images.

Manual correction of the automatic segmentation
of the human data was necessary to remove various
artefacts (small capillary loops, broken capillaries in-
dicating loss of network connectivity) present in the
original segmentation [18]. For the same zones, the
newly-segmented networks had 50%, 187% and 76%
higher mean vessel length, loop length and perme-
ability Kx respectively compared to the original seg-
mentation, with a 17% lower edge density (mainly
due to the removal of short artefactual edges).

Even with manual correction, there are inevitably
errors and artefacts introduced during any image
acquisition and processing protocol (e.g. unfilled
vessels, sample shrinkage or distortion, low signal-
to-noise ratio, artefactual removal or addition of
short or small diameter vessels). This means that
anatomical data may not be an exact representation
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Figure 10: Web chart showing the percentage error for synthetic networks with LC = 90µm relative to the
human ROIs (S90, in red), and LC = 75µm relative to the mouse ROIs (S75, in blue), and for the PLNs
and CLNs vs. the mouse ROIs (in green and turquoise respectively), for 6 key metrics. Percentage error
calculated in terms of the mean of values across all ROIs. Length density error was less than 2% for all
cases.

of the in vivo microvasculature. Promising meth-
ods to quantitatively evaluate different segmenta-
tions [55] are nonetheless hindered by the lack of
a ground truth. Physiologically-based synthetically-
generated networks, combined with models of the
artefacts engendered by specific imaging processes,
may help quantify the imaging-associated uncer-
tainty inherent in anatomical datasets.

Another limitation comes from the simplified ap-
proach taken for generating the Voronoi-like syn-
thetic networks. Previously, various even sim-
pler models have been introduced digitally gener-
ated synthetic networks to mimic the capillary bed.
For example, infinite single, parallel or randomly-
oriented cylinders, have often been used [27, 59, 60,
61], which might lead to flawed estimations of func-
tional properties at the scale of the capillary net-
work. Baish et al. [27] constructed a range of artifi-
cial networks e.g. cylindrical arrays, spherical holes,
quasi-fractal structures and randomized networks at
the percolation limit, to derive metrics (i.e. the max-

imum EVD and convexity index calculated here)
which differentiate tumor-like from healthy struc-
tures, and hence deduce scaling laws for drug de-
livery times. Here, the convexity metric confirmed
that our synthetic networks were representative of
healthy as opposed to tumorous tissue. However,
since results were very close for all ROIs, including
lattice networks, this metric alone could not reliably
evaluate the similarity of model networks to anatom-
ical data. Another model [49] employed a regular
capillary grid connected to fractal trees to study the
effect of capillary dilation on flow and transport.

More physiologically-realistic network models
have been developed [54, 56, 57, 58] to model
the cerebral capillaries and to understand the link
between structure, blood flow, transit times, and
oxygenation in states of hypoperfusion or high
metabolic demand [56, 57, 62] , or the impact of ves-
sel occlusions or radiation damage on capillary func-
tion [47, 54, 58]., the Their main features of which
are summarized next; the difference between met-
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Figure 11: A range of metrics expressed as a percentage of values in the human ROIs, for the synthetic
networks with LC = 90µm (‘S90’), and reported by Su et al. [54]/El-Bouri and Payne [47], Safaeian et al.
[56], Linninger et al. [57], and Merrem et al. [58]. The permeability in the S90 networks and reported
by El-Bouri and Payne [47] were calculated for N = 500 networks in a domain size of (375µm)3, with
a Gaussian distribution of diameters (6.23 ± 1.3µm), a uniform hematocrit of 0.45, and dividing by an
assumed effective viscosity of 5.84 cP to obtain units of µm2. The permeability in the 4 human ROIs was
calculated using the same diameter distribution, hematocrit and effective viscosity. The mean EVD of [57]
was estimated from their histogram of EVDs. Where tortuous capillaries were studied, their mean length
or length density was compared to the equivalent values in the human ROIs.

rics reported in these key articles and those in the
human ROIs are visualized in Figure 11.

Su et al. [54] generated two minimum spanning
trees which were merged at their end-points, before
applying filters to match human capillary length dis-
tributions [18]. This approach may not replicate
the characteristic interconnectedness of the cere-
bral capillaries; nonetheless, El-Bouri and Payne [47]
found a similar permeability (13% higher) in these
networks to that in the synthetic networks developed
here (Figure 11 and legend).

Other models, like the present work, employed
Voronoi diagrams to generate synthetic capillary
networks. Safaeian et al. [56, 63] constructed
2D Voronoi tessellations from uniformly distributed
seed points. This was extended to 3D by assign-
ing random angles of deviation, which may pro-
duce anisotropic networks. Small sub-networks were
stitched together via randomly-placed anastomoses,

which could lead to low inter-connectedness. Al-
ternatively, Linninger et al. [57] generated Voronoi
diagrams as the dual of a tetrahedral Delaunay tri-
angulation. After removing excess connections, 86%
of vertices were of degree 3, implying that many
multiply-connected vertices remained. Finally, Mer-
rem et al. [58] took a similar approach to the present
one with a 3D extension of [11], although no pruning
of excess vessels was reported, and it was not clear
if a three-connected network was obtained.

Until a thorough set of metrics, such as those de-
fined in the present paper, is computed for these dif-
ferent model networks, it is difficult to fully compare
the generated structures or validate against anatom-
ical data. Nevertheless, some of these models went
further by including additional features to make the
networks more physiologically realistic, e.g. a corti-
cal depth-dependent capillary density; capillary tor-
tuosity; links to arborescent arterioles and venules;
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and a capillary-free zone surrounding larger arteries
[57, 58]. These features could in future be incorpo-
rated into the current model.

For example, vessel tortuosity could be added in
future studies following [57]. For flow simulations,
its contribution could be assessed by increasing effec-
tive vessel lengths by approximately 20%, based on
mean tortuous lengths in mice. However the exact
spatial location of vessels becomes important when
considering EVDs or mass transport [64]. To give
a quantitative idea, EVDs were computed for one
mouse ROI with and without tortuosity. The maxi-
mum EVD was almost 24% lower with tortuous ves-
sels, suggesting that cerebral capillaries are arranged
to avoid large avascular tissue volumes that would
be at risk of hypoxia.

Many hemodynamic modeling and simulation
studies of brain microvascular structure/function re-
lationships at large scales exploit 3D digital re-
constructions of anatomical microvascular networks
[16, 18, 19, 33, 35, 65]. However, this does not en-
able variation of the key structural parameters, e.g.
vascular density, in a systematic way. Besides, these
models are volume-limited: it is extremely difficult
and costly to obtain datasets which resolve all cap-
illaries in very large volumes. This problem could
be addressed by generating synthetic capillary net-
works with LC tuned to represent distinct brain re-
gions. These could be coupled to anatomical vas-
cular data resolved down to arterioles and venules
[19, 20, 21] to possibly achieve whole brain flow sim-
ulations in mice. Incorporating a parent-daughter
diameter correlation and a variation in capillary ge-
ometry and topology along flow pathways [66], and
eventually simulating network remodeling and struc-
tural adaptation, or neuro-vascular coupling [67, 68],
would constitute interesting extensions.

The effect of changing microstructural features in
pathological scenarios could thus be investigated.
The inter-cortical capillary network is highly robust,
providing multiple ‘back-up routes’ if a vessel is oc-
cluded, whereas the penetrating arterioles are the
most ‘fragile’ to occlusions [5, 10, 13, 24]. The ini-
tial study presented here showed that synthetic and
mouse capillary networks were similarly robust to
single occlusions. Previously, Nishimura et al. [51]
found a mean post- to pre-occlusion red blood cell
(RBC) speed ratio of only 7% in the first down-
stream branches, considering mainly diverging bi-
furcations. Although RBC speed and blood flow ra-

tios may differ due to post-occlusion vessel dilation,
this suggests a more important flow reduction than
predicted here (flow ratios of 26-29% in diverging bi-
furcations). Extrapolating from [69], this could be
explained by our focus on purely capillary networks
rather than vessels further up the vascular hierarchy
(small arterioles or post-arteriole capillaries). Once
again, coupling synthetic networks with arterioles
and venules will help understand the link between
the site of occlusion within the vascular hierarchy
and the resulting impact on downstream flows.

Alternately, for larger species for which compu-
tational limitations hinder full network simulations,
synthetic networks may be used to parameterize con-
tinuum models representing the capillary network as
a porous medium [33, 48, 70, 71]. Effective proper-
ties such as the permeability or mass exchange co-
efficient could be computed, examining their con-
vergence with domain size and number of networks
[33, 47]; this is not possible for anatomical datasets
(here, capillary ROIs were limited to a size of at
most (240µm)3).

Furthermore, the generation of synthetic vascu-
lar networks that recapitulate the architecture, flow,
and transport of in vivo capillary beds could signif-
icantly impact the field of tissue engineering. There
has been great interest over the last decade in the
generation of large-volume, tissue-engineered con-
structs. These constructs must contain fluidized vas-
cular networks for transport of nutrients, oxygen,
and waste to promote long-term cell survival and
function and to mimic physiological and pathologi-
cal processes [72, 73, 74, 75]. Our synthetic networks
could be adapted to model different organs (heart,
liver, kidney, etc) according to their specific archi-
tecture: the initial Voronoi cell could be modified to
introduce variable density or anisotropy. Alternative
approaches to controlling the randomness of Voronoi
networks [76] could be investigated. This would
greatly facilitate the fabrication of biomimetic vas-
culature embedded in tissue-engineered constructs
via fabrication approaches that rely on 3D image
stacks or CAD models to define network geometry
[28, 29, 30, 31, 32]. Additionally, the ability to com-
pare the engineered architecture to a ground truth
in vivo architecture provides a much needed bench-
mark to quantify the physiological relevance of en-
gineered microvasculature.

In conclusion, this study has for the first time
provided a comprehensive cross-species database of
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metrics for characterizing the cerebral capillaries.
The ability to synthetically replicate cerebral cap-
illary networks, which have equivalent properties
according to these metrics, opens a broad range
of applications, ranging from systematic compu-
tational studies of structure-function relationships
in healthy capillary networks to detailed analysis
of pathological structural degeneration, or even to
the development of templates for fabrication of 3D
biomimetic vascular networks embedded in tissue-
engineered constructs.

Competing interests

We have no competing interests.

Authors’ contributions

SL conceived the study following inspiring discus-
sions with FL, CS, NN, JHS and PB. AS, VD, MB,
MP, AEL, MHJ, developed the methods and associ-
ated software for synthetic network generation (AS
and AEL), extraction of vascular networks from hu-
man data (AS and MHJ), computing blood flow in
networks (MP and MB), computing exchange coef-
ficients (VD), computing distance maps (VD) and
other metrics (AS). AS generated, post-processed
and analyzed all data in the manuscript, including
preparing figures and conducting validation studies,
with contributions of MB (loop and robustness anal-
ysis) and VD (exchange coefficients). AS and SL
wrote the manuscript with contributions from VD,
YD, MHJ, PB and AEL. All authors critically re-
viewed the manuscript and gave final approval for
publication.

Acknowledgements

Part of this work was performed while SL was the
Mary Upson Visiting Professor at the Meinig School
of Biomedical Engineering, Cornell University. The
authors gratefully acknowledge J.-P. Marc-Vergnes,
F. Cassot and A. Mancini. They also thank the COS-
INUS department of IMFT for help with computa-
tional aspects.

Funding

Research reported in this publication was sup-
ported by the European Research Council under the
European Union’s Seventh Framework Programme
(FP7/2007-2013) / ERC grant agreement 615102
(https://erc.europa.eu/), and by the National In-
stitutes of Health National Cancer Institute IMAT
Program under Award Number R21CA214299. It
was performed using HPC resources from CALMIP
(Grant 2016-P1541). MP was the recipient of a doc-
toral fellowship from Institut National Polytech-
nique de Toulouse (http://www.inp-toulouse.fr/).
MP and MB received an international mobility grant
from Ecole Doctorale MEGeP, Toulouse (www.ed-
megep.fr/). JHS was funded by a National Science
Foundation CAREER Award, Number 1751797. The
funders had no role in study design, data collection
and analysis, decision to publish, or preparation of
the manuscript.

0

In review



Appendices

A Generation of 3D synthetic net-
works

A.1 Generation of Voronoi diagram

Each cell of length LC was divided into 16× 16× 16
pixels, and one seed was placed at a random pixel.
The 3D Voronoi diagram was extracted using the
MATLAB function voronoin, which returns the co-
ordinates of vertices and the list of vertices belonging
to each polyhedron, from which the network connec-
tivity matrix was constructed.

A.2 Pruning the network

Very small or narrow polyhedral faces (with area
< 75 pixels or with any interior angle < 30°) were
merged with the neighboring face sharing the longest
edge of the current face ie. this edge was deleted.
Similarly, neighbouring faces lying almost in a plane
(solid angle < 15°) were merged. If any triangles
with area < 75 pixels remained, the longest edge was
removed. Final networks were not very sensitive to
the choice of face area or angle criteria.

Vertices were then removed or merged in two
stages:

1. Boundary vertices. If two boundary vertices vb,1
and vb,2 were located within some minimum dis-
tance Dmin of each other, vb,1 was arbitrarily
deleted, but only if it was connected to an inte-
rior (i.e. non-boundary) vertex vi,1 which had
more than three connections. If both boundary
vertices were connected to the same interior ver-
tex vi,1, which itself only had three connections
(vb,1 and vb,2 plus one other interior vertex vi,2),
then vb,1 and vi,1 were deleted, and vb,2 was in-
stead connected to vi,2. If neither of these cases
applied, vb,1 was moved a distance Dmin along
the boundary away from vb,2 in the direction of
the vector between the two vertices.

2. Interior vertices. To minimize the computa-
tionally heavy task of calculating the distance
between all vertices, the domain was divided
into sub-cubes of size LC × LC × LC (solid
lines in 2D in Figure 12a). These cubes were
shifted by 0.5LC in each direction yielding an

off-set grid, to avoid missing vertex pairs span-
ning neighboring cubes (dashed lines in Fig-
ure 12a). Running through cubes in random-
ized order, the distance between each pair of
vertices within the same cube was calculated. If
a pair of vertices (v1 and v2) lay < Dmin from
each other, as in Figure 12b, v1 was arbitrarily
deleted and its connections were re-attached to
v2 (Figure 12c), but only if v2 still had at least
three connections. Otherwise, v1 was moved a
distance Dmin away from v2 in the direction of
the vector between the two vertices.

Final networks were not very sensitive to the choice
of Dmin, and thus its value was fixed at 2.5 pixels
(for LC = 75µm, Dmin = 11.7µm).

Next, excess edges between internal vertices were
removed in random order according to the following
criteria. An interior vertex could not have more than
one connecting edge with a boundary vertex, except
if it only had one internal connection, in which case
it may be connected to two boundary vertices. If an
internal vertex was not connected to any boundary
vertices, it should have three connections to internal
vertices.

A.3 Splitting multiply-connected ver-
tices

Vertices with more than 3 connections were treated
in random order. For each multiply-connected ver-
tex, the shortest connected edge was kept, as well
as the edge with smallest solid angle relative to that
edge (see e.g. the two edges in bold in Figure 12d).
The center of mass of the remaining vertices was
calculated (the cross in blue in Figure 12e), and a
new vertex was placed on the vector between the
initial vertex and the center of mass, at a distance
of half the shortest length of the remaining edges,
or Dmin, whichever is smaller (see the blue arrow
in Figure 12e). This process was repeated until all
interior vertices had only three connections (Fig-
ure 12f and g). This step introduced more short
vessel lengths, but since there were typically only a
small percentage of multiply-connected vertices, this
did not have an important effect on overall network
properties.

1

In review



(d) (e)

(f) (g)

Figure 12: a) Schematic diagram illustrating the division of the domain into a grid of length LC (solid
lines) and an off-set grid shifted by 0.5LC (dashed lines), for efficient detection of vertices (black dots) less
than distance Dmin apart. b) Illustration of two vertices v1 and v2 separated by less than Dmin; c) vertex
v1 and its connections are merged into vertex v2; d) - g) Sequence of schematic diagrams illustrating the
division of a multiply-connected vertex with five connections into three bifurcations. See text for further
details.

A.4 Domain size

To avoid any boundary effects associated with the
generation of these synthetic networks, for a desired
domain size of Lx × Ly × Lz, a larger network was
initially generated in a domain of 2(Lx + 2LC) ×
2(Ly + 2LC) × 2(Lz + 2LC) (with Li rounded up
to the nearest multiple of LC). At the end of the
process, the desired sub-network in a domain of size
Lx × Ly × Lz was extracted from the center of the
large domain.

B Definition of metrics

B.1 EVD

EVDs were calculated using a Python algorithm to
explicitly compute the distance from each 1 µm3

voxel in the tissue to the nearest vessel centerline.
The local maxima were defined as voxels with a dis-

tance greater than or equal to that of every sur-
rounding voxel in a 26-neighborhood. A standard
box-counting analysis was conducted by dividing the
domain into cubes of length r and counting the num-
ber N(r) of boxes containing at least one local max-
ima. Berntson’s procedure was applied to test for
linear regimes in the log-log scale plot of N(r) vs r
by searching for at least 4 consecutive points which
tested negative for curvilinearity [11, 77]. If a lin-
ear regime with slope −df is found, the set of local
maxima is fractal with fractal dimension df . If it is
homogeneous, there is no linear regime before con-
verging to a slope of −3 at large scales.

To compute the convexity index, Bernston’s pro-
cedure was again applied to search for a linear
regime in the log-log scale histogram of EVDs
at small-scales i.e. below xmax, the maximum-
frequency bin of the histogram. The convexity index
was the slope of this linear fit.
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B.2 Loops

The shortest loops associated with each vertex vi
were defined as the set of closed loops starting at vi
that also pass through neighboring connected ver-
tices vneighj and vneighk , for all values of j = 1, . . . , n
and k = 1, . . . , n, k 6= j, where n is the number of
neighboring vertices. The procedure for identifying
capillary loops is illustrated in Figure 3a. Identifying
the neighbor vertices 2, 3, and 5 directly connected
to the root vertex 1, each of the three possible pairs
of these vertices was considered in turn. The shortest
path between each pair of vertices without passing
through the root vertex was computed using Dijk-
stra’s algorithm. Here, each edge was assumed to
have unit weight for simplicity, but in practice edges
were weighted by their length. The shortest path
between vertices 3 and 5 without passing through
vertex 1 is 3–4–5. This path was then added to the
edges linking vertices 3 and 5 with the root vertex to
obtain the final loop path 1–3–4–5–1. For this ‘root
vertex’, two other loops, 1–5–7–6–2–1 and 1–2–8–3–
1, were also found.

-For each root vertex, there are a maximum of
C2(n) loops, where n is normally 3. However, each
loop was identified multiple times (once for each ver-
tex in the loop) and repetitions were identified and
deleted.

B.3 Flow solution

Flow simulations were conducted assuming conser-
vation of flux at vertices and a linear pressure drop
along vessels, with an effective blood viscosity de-
termined by the in vivo viscosity law of [78] with a
uniform discharge hematocrit of 0.45. For the hu-
man ROIs and synthetic networks modeling human
networks, the diameter appearing in the viscosity
formulation was divided by 0.86 to account for the
difference between red blood cell volumes in humans
and rodents [79].

A pressure drop ∆P was imposed on opposing
faces of each ROI with a no-flow condition at bound-
ary vertices on the other four faces. El-Bouri and
Payne [47] enforce ∆P = 18 mmHg [35] over a cap-
illary path length L = 340µm [66]. Here ∆P was
scaled for each network to obtain that same pres-
sure gradient ∆P/L e.g. in the mouse ROIs which
have side length 240µm, ∆P = 12.7 mmHg. The re-
sulting linear sparse system of equations was solved
via an in-house code [33].

B.4 Mass exchange coefficient

The two-equation volume averaging method [50] was
applied to derive a system of two coupled advection-
diffusion equations in terms of the volume-averaged
concentrations of a given molecule in vessel and tis-
sue domains, 〈Cv〉v and 〈Ct〉t respectively. These
macro-scale equations contain classical advection
and diffusion terms, for which we can compute ef-
fective diffusion coefficients and effective velocities.
Additionally, an exchange term S = h(〈Cv〉v −
〈Ct〉t), where h is the mass exchange coefficient, ap-
pears as a source (+S) in the tissue-domain equa-
tion and a sink (−S) in the vessel-domain equation.
The effective properties of this upscaled model were
obtained by solving a system of Partial Differential
Equations (PDEs) on a REV of the domain [80].
These equations were solved by finite element meth-
ods, using the library Feel++ [81]. The geometry
of the domain was taken into account by a fictitious
domain method (the level-set method).

Considering the diffusion of a non-reactive, non-
metabolic tracer which is highly diffusible through
the blood brain barrier, the microscopic adimen-
sional parameters were reduced to the Péclet num-
ber, Pe, and the ratio between diffusion coefficients
in the tissue and vessel domains, Dratio = Dt/Dv.
For given Pe and Dratio, the mass exchange coeffi-
cient h characterizes the mass transfer properties of
the network. The diffusion coefficient in the vessels,
Dv, was assumed to be 400µm2/s [82, 83]. Having
confirmed that h was largely insensitive to Pe for
a physiological range of velocities, h was calculated
for Pe = 0 and Dratio = 0.25. Finally h was non-
dimensionalized by multiplying by the characteristic
time for diffusion for each ROI, i.e. L2

x/Dv, where
Lx is the length of the ROI in the x-direction.

C Results in lattice networks

Results for the two ordered, regular lattice networks
introduced in Section 2.2.2 and shown in Figure 1
are presented. These networks are referred to re-
spectively as the CLN (with 6-connectivity) and the
PLN (with 3-connectivity). After a study of the
scaling properties of these networks, we present the
results of metrics for chosen domain size and scaling.
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C.1 Scaling of lattice networks

We first present an analytical investigation into the
scaling of these networks with domain size or with
mean length L. Recall that in both lattice networks,
the length of the elementary cubes, LC , is linearly
proportional to L (LC = L in the CLN and LC = 3L
in the PLN).

The Voronoi-like synthetic networks, despite ex-
hibiting greater randomness, also follow a similar
semi-ordered structure controlled by the character-
istic length LC . Thus we make the hypothesis that
these metrics scale with LC in the same way, and
use this to inform the scaling studies in Section 3.2.

C.1.1 Morphometrical metrics

The mean vessel length was L for both lattice net-
works. The length density was 3L/L3 for the CLN
and 30L/(3L)3 for the PLN. Obviously, none of
these metrics depended on domain size, in contrast
to the loop metrics studied below.

C.1.2 Topological metrics

The scaling of topological metrics with domain size
was derived analytically. Loop metrics computed for
lattice networks generated for the range of domain
sizes shown in Figure 13 agreed perfectly with the
analytical expressions derived in this section.

For both networks, we suppose that i, j and k
are the number of unit cells in the x, y, and z di-
rections respectively. Both lattice networks had two
modes of loops, α = 1, 2, with mα edges per loop.
We then define the mean number of edges per loop,
N edge/loop(i, j, k), as the total number of loop edges,
divided by the total number of loops, i.e.:

N edge/loop =

∑2
α=1mαN

α
loop(i, j, k)∑2

α=1N
α
loop(i, j, k)

, (3)

where Nα
loop(i, j, k) are the number of loops corre-

sponding to mode α.
Similarly the mean loop length, Lloop, was given

by:
Lloop = L×N edge/loop,

and thus converged with domain size in the same
way as N edge/loop(i, j, k), but also scaled with L.

The mean number of loops per edge,
N loop/edge(i, j, k), is the total number of loop

edges divided by the number of interior (i.e.
non-boundary) edges, Nedge,int(i, j, k):

N loop/edge =

∑2
α=1mαN

α
loop(i, j, k)

Nedge,int(i, j, k)
. (4)

These metrics were derived for the specific geome-
tries of the CLNs and PLNs as follows.

Cubic lattice network The CLN had two modes
of loops with 4 and 6 edges respectively (m =
{4, 6}). The number of loops with 4 edges,
N1
loop(i, j, k), followed:

N1
loop(i, j, k) = i(j − 1)(k − 1) + (i− 1)j(k − 1)

+ (i− 1)(j − 1)k,

for i, j, k > 0. Similarly, the number of loops with 6
edges, N2

loop(i, j, k), obeyed:

N2
loop(i, j, k) = R (i(j − 1)(k − 2))

+R (i(k − 1)(j − 2))

+R (j(i− 1)(k − 2))

+R (j(k − 1)(i− 2))

+R (k(i− 1)(j − 2))

+R (k(j − 1)(i− 2)) .

where R(x) is the ramp function, defined as:

R(x) =

{
x, x ≥ 0;

0, x < 0.

Using Equation 3, the mean number of edges per
loop for a cube of side length n = i = j = k and
n ≥ 2 was given by:

N edge/loop =
4× 3n(n− 1)2 + 6× 6n(n− 1)(n− 2)

3n(n− 1)2 + 6n(n− 1)(n− 2)

→ 51/3 as n→∞.

The mean number of edges per loop converged to
within 5% of the converged value for networks of 43

unit cubes (Figure 13a).
In this network, the number of interior (i.e. non-

boundary) edges, Nedge,int(i, j, k), was given by:

C := R ((i− 1)jk) +R (i(j − 1)k) +R (ij(k − 1)) .
(5)
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(a) (b)

Figure 13: Scaling of lattice networks with domain size. a) Mean number of edges per loop, N edge/loop,
and b) mean number of loops per edge, N loop/edge, in the CLNs and PLNs as a function of the number
of unit cells. Analytical and numerical results agreed exactly. The converged values for each metric and
network, computed analytically, are plotted in gray lines.

This quantity C will also be used later. Then,
substituting this expression into Equation 4 with
n = i = j = k and n ≥ 2, N loop/edge becomes:

N loop/edge =
4× 3n(n− 1)2 + 6× 6n(n− 1)(n− 2)

3n2(n− 1)

→ 16 as n→∞.
Convergence was slow: this metric was only con-
verged to within 5% of this value for networks of
363 unit cubes or greater (Figure 13b).

Periodic lattice network Next, analytical ex-
pressions for the same loop metrics were derived for
the PLN, which had two modes of loops with 8 and
10 edges respectively (m = {8, 10}). The number of
loops with 8 edges, N1

loop(i, j, k), followed:

N1
loop(i, j, k) = 6ijk,

while the number of loops with 10 edges,
N2
loop(i, j, k), obeyed:

N2
loop(i, j, k) = 4C,

where C is defined in Eqn. 5. Using Equation 3,
when n = i = j = k and n ≥ 2, N edge/loop becomes:

N edge/loop =
8× 6n3 + 10× 12n2(n− 1)

6n3 + 12n2(n− 1)

→ 91/3 as n→∞.

N edge/loop quickly converged to within 5% of this
value for networks of 23 unit cubes (Figure 13a).

In this network, Nedge,int(i, j, k) here was given by:

Nedge,int(i, j, k) = 24ijk + 2C.

Then, using Equation 4, and with n = i = j = k
and n ≥ 2, N loop/edge becomes:

N loop/edge =
8× 6n3 + 10× 12n2(n− 1)

24n3 + 6n2(n− 1)

→ 5.6 as n→∞.

N loop/edge converged more quickly for the PLN than
the CLN, and was within 5% of its converged value
for networks of 113 unit cubes or more (Figure 13b).

Thus, in both lattice networks the number of loops
per edge was especially sensitive to finite-size effects.
Nonetheless, none of the loop metrics except the
mean loop length depended on the choice of L (or
equivalently LC), and thus are purely topological
metrics.

C.1.3 Permeability

Cubic lattice network In the CLN, imposing a
pressure gradient in the x-direction yields zero flow
in vessels orientated parallel to the y- or z-axis: the
network is reduced to an array of tubes of length Lx
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where Lx is the ROI size in the x-direction. The
global flowrate Qx is:

Qx =
Nπd4

128µ
× ∆P

Lx
(6)

where µ is the effective viscosity, d is the diame-
ter (which here is uniform), and ∆P is the pressure
drop. N is the number of boundary vessels on the
face x = 0, expressed in terms of L, the edge length:

N =
Ly
L
× Lz

L
. (7)

From Equation (1), this yields:

Kx =
µ

∆P/Lx
× LyLz
AxL2

× πd4

128µ

∆P

Lx
. (8)

Rearranging and using the definition for the domain
area perpendicular to the x-axis, Ax = LyLz, gives:

Kx =
πd4

128L2
. (9)

Figure 14: Flow distribution in an elementary motif
of the PLN with a pressure gradient from left to
right. The magnitude of the flow in the green vessels
was half of that in the red vessels, and zero in the
dark blue vessels.

Periodic lattice network In the PLN, imposing
a pressure gradient in the x-direction with uniform
diameters also yields a simple flow distribution (Fig-
ure 14 and legend). The global flowrate obeys the
same law in Equation 6, but N follows:

N =
2Ly
3L
× Lz

3L
. (10)

In the minimal example shown in Figure 14, Ly =
3L and Lz = 3L giving N = 2. Substituting this
expression into Equation (1) yields:

Kx =
2

9
× πd4

128L2
. (11)

Thus, to obtain the same permeability in both lat-
tice networks, L in the PLN would have to be
√
2/3 = 0.47 times that of the CLN.
Finally, for both lattice networks, the permeabil-

ity scaled with d4 and 1/L2 (or equivalently 1/L2
C)and

did not depend on domain size (assuming uniform
diameters).

C.2 Lattice networks scaled to match
mouse ROIs

In the CLN, L = 67µm was chosen to match the
length density in mice. A network of 4× 4× 4 unit
cubes was generated with dimensions 268 × 268 ×
268µm3, to be as close as possible to the size of the
mouse ROIs will containing whole unit cubes. In
the PLN L = 41µm; with the unit cube side length
being LC = 3L, a network of 2 × 2 × 2 unit cubes
was generated with dimension 246× 246× 246µm3.
Results in these networks are given in Table 1.

Space-filling metrics In the box-counting anal-
ysis, the cut-off lengths for both lattice networks
were of a similar order of magnitude to the other
networks, but in contrast, both had linear regimes
at small scales. The mean EVD was very close to
the mouse data for both lattice networks, while the
maximum EVD was lowest in the CLN, and high-
est in the PLN. The mean local maxima of EVDs
were 22% and 61% higher in the PLNs and CLNs
respectively.

Morphometrical metrics The PLN had a sim-
ilar mean length to that in mice, while that in the
CLN was almost 50% higher. By construction, the
length distributions in these networks were drasti-
cally different to the mouse and synthetic networks,
with only one mode for each network, and hence
zero SD. Due to the choice of L as described above,
the mean length density in both networks was very
close to that in mice. As a result, in the PLN both
the edge density and vertex density were close to
those in mice, whereas the CLN had a much lower
edge and vertex density. Both lattice networks had
a much lower density of boundary vertices (36% and
62% respectively).

Topological metrics By construction the PLN
had no multiply connected vertices, while all junc-
tions in the CLN had 6 connections. The distri-
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bution of loops was very different for the lattice
networks, with fewer edges per loop (9 and 5.14
respectively) on average, with values restricted to
two modes per network, as described above in Sec-
tion C.1.2. The mean loop length was also lower in
both lattice networks than in mice.

Flow metrics The mean velocity was 45% higher
in both the lattice networks. Similarly, the mean
permeability in the PLNs and especially the CLNs
was much higher than in mice (almost 30% and
120% higher respectively), and completely isotropic
due to their regular construction.

Mass transfer metrics Unsurprisingly, the dis-
tribution of capillary transit times for lattice net-
works were very different to those in the synthetic
and mouse ROIs (Figure 8e). The exchange coef-
ficient h was 26.5% and 32.9% higher in the PLNs
and CLNs respectively compared mice.

Robustness metrics For the PLN, the histogram
of pre- to post-occlusion flow ratios was very differ-
ent to the distributions for the mice and synthetic
networks, due to its highly organized architecture
(Figure 8f), and was restricted to 3 modes. The
mean flow ratio was approximately 10% lower than
in mice. The CLN was not included because none
of its vertices were converging bifurcations.

In conclusion, while some simple morphometri-
cal metrics in the lattice networks aligned well with
those in mice, their highly organised structure meant
that the distribution of metrics was completely dif-
ferent, and topological and functional metrics also
differed greatly from the more randomized networks.
Thus, such simple networks cannot be used to make
accurate predictions of functional properties in the
cerebral capillaries.
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Supplementary Tables and Figures

(a) (b)

Figure S1: Results of scaling domain size for the metrics: a) mean vessel length, b) length density. Metrics
were normalized by the appropriate power of LC . Insets: the convergence of each metric as defined in
Equation 2. The converged size xconv is the size from which the convergence was less than 0.05.
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(a) (b)

(c) (d)

Figure S2: Results of scaling the characteristic length LC on the metrics: a) mean loop length, b) edge
density, c) mean number of edges per loop, d) mean number of loops per edge. Errorbars show mean ±
S.D. for the synthetic networks. Shaded bands in blue and red show mean ± S.D. of mouse and human
values respectively.
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(a) (b)

Figure S3: Space-filling results for human and synthetic with LC = 90µm networks. a) Box counting
results for local maxima of EVDs. For a regular grid of cubic elements of side r, N is the number of
square elements containing at least one local maxima. Dotted vertical lines show the value of xcut for each
species, above which the slope is -3. b) Histogram of EVDs, collected over all ROIs, on a log-log scale.

Metric Human S90

N 4 10
Mean EVD (µm) 21.4 ± 0.6 24.1 ± 1.0
Mean local max EVD (µm) 33.3 ± 1.0 40.2 ± 3.1
Max EVD (µm) 52.9 ± 0.7 63.2 ± 2.7
Convexity index 0.8 ± 0.1 0.7 ± 0.2
Mean length (µm) 60.2 ± 3.1 41.9 ± 1.8
SD length (µm) 41.7 ± 0.8 21.4 ± 2.0
Edge density (103 mm−3) 8.4 ± 0.4 11.9 ± 0.9
Length density (mm−2) 461 ± 19 442 ± 28
Vertex density (103 mm−3) 3.9 ± 0.2 6.3 ± 0.5
Boundary vertex density (mm−2) 207 ± 8 186 ± 16
% multiply-connected vertices 2.9 ± 1.7 2.6 ± 1.6
Mean no. edge/loop 11.2 ± 0.6 10.2 ± 0.6
Mean loop length (µm) 635 ± 73 429 ± 34
Mean no. loop/edge 3.1 ± 0.6 4.4 ± 0.5
Mean velocity (µm/s) 148 ± 34 202 ± 26
SD velocity (µm/s) 223 ± 34 228 ± 18
Permeability (10−3µm2) 0.62 ± 0.21 0.86 ± 0.13
Median transit time (s) 0.19 ± 0.06 0.14 ± 0.02
Exchange coefficient h 27.7 ± 3.71 15.7 ± 1.12
Post-occlusion flow ratio (converging) 0.77 ± 0.03 0.76 ± 0.01
Post-occlusion flow ratio (diverging; branch A) 0.28 ± 0.05 0.28 ± 0.04

Table S1: The geometrical, topological and functional metrics calculated here, for human and synthetic
with LC = 90µm (‘S90’) networks. Results are presented as mean ± S.D. over the N ROIs studied for
each network type. Permeabilities, velocities and transit times were calculated with uniform diameters of
5µm.
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(a) (b)

(c) (d)

(e)

Converging {
Diverging{Diverging

Converging

(f)

Figure S4: Results for human ROIs and synthetic networks (‘S90’) with LC = 90µm and domain size264×
264×207µm3. a) Histogram of lengths on a log-scale. Frequencies collected over all ROIs for each network
type. b) Histogram of number of edges per loop. c) Mean number of edges per loop vs mean loop length,
µm, for each ROI. d) Histogram of number of loops per edge. e) Histogram of capillary transit times, on
a log-scale. f) Histograms of post- to pre-occlusion absolute flow ratios in vessels one branch downstream
from the occlusion, where the vertex downstream of the occlusion has 3-connectivity, and divided into
converging and diverging bifurcations. In the diverging case, flow ratios are plotted for the outflow branch
without change in flow direction post-occlusion.
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Metric Unit n α β R2

Length density mm−2 -2 3.70×106 0.61 0.996
Mean EVD µm 1 0.26 0.33 0.991
Permeability µm2 -2 9.43 -2.05×10−4 0.995
Mean loop length µm 1 4.45 23.23 0.971
Mean length µm 1 0.41 4.27 0.991
Edge density mm−3 -3 8.20×109 1.21×103 0.998

Table S2: Results of a standard linear regression on a range of metrics as a function of LC to the appropriate
power, i.e. following the expression: αLnC + β, where n is the power appropriate for each metric. The
coefficient of determination, R2, was very good for all fits.
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