












RBCs exclude the fluorescently labeled plasma, the two outermost half-maximum points are used.
Linear interpolation is used to add subpixel accuracy to the diameter measurement.

We now consider combining the velocity and diameter measurements to calculate flux. In
laminar flow, the velocity v(r) of the fluid through the pipe with radius R measured at a distance r
from the center has a quadratic profile, with a maximal velocity v(0) in the center and tapering to 0
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FIGURE 2. Simultaneous measurement of diameter and velocity in multiple vessels using spatially optimized line
scans. (A) Image of fluorescently stained vessels in the somatosensory cortex of a SpragueDawley rat. The forelimb and
hindlimb representations across the cortex were mapped using intrinsic optical imaging. (B) Image of a surface
arteriole and venule, with scan pattern superimposed. Portions of the scan path along the length are used to calculate
RBC velocity, while portions across the diameter of the vessels are used to calculate diameter. Scans were acquired at a
rate of 735 lines per second. (C ) Scan path, colored to show the error between the desired scan path and the actual path
the mirrors traversed. The error along linear portions of the image is �1 µm, and increases when the mirrors undergo
rapid acceleration. The error between successive scans of the same path is <0.15 µm, several times lower than the
point-spread function of a TPLSM. (D) Mirror speed as a function of time. Note that portions used to acquire diameter
and velocity data are constant speed (top). The line scans generated from the path can be stacked sequentially as a
function of time to produce a raw cascade image (bottom). (E) Vessel diameter is calculated as the full width at half-
maximumof a time average of several scans across thewidth of a vessel (left). RBC velocity calculated from the angle of
the RBC streaks. (F ) Data traces of diameter, velocity, and flux for the arteriole and venule, processed to remove heart
rate and smoothedwith a runningwindow. Both vessels show an increase in flux in response to forelimb stimulation. In
the arteriole, this flux increase is caused by simultaneous increase of lumen diameter and RBC velocity. In contrast,
flux increase in the venule is due only to an increase in RBC velocity, as diameter is unchanged by stimulation.
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at the edges, that is

v(r) = v(0) 1− r2

R2

( )
. (1)

Measurements of RBC velocity as a function of distance from the vessel center show that this
model is a close approximation (Schaffer et al. 2006), although systematic deviations result from the
non-negligible size of the red blood cells. This tends to flatten the profile, and prevents the velocity
from reaching 0 at the edges of the vessel. Neglecting these effects, the integrated flux through the
vessel is given by (Helmchen and Kleinfeld 2008)

F = (1/2)v 0( )pR2. (2)

In our example, both vessel diameter and RBC velocity in the arteriole respond to somatotopic
stimulation. The flux through the arteriole increases by �100% over baseline, compared with 35%
and 40% for diameter and velocity measurements alone, respectively (Fig. 2F). Because the scan path
runs at 733 Hz in this example, the diameter and RBC velocity traces are collected nearly simulta-
neously from both the penetrating arteriole and ascending venule.

Generation of Spatially Optimized Line Scans

The microscope laser is directed by a pair of fast x–y scan mirrors (Cambridge Technology, 6210H
galvometer optical scanner withMicroMax 673xx dual-axis servo driver). Themirror controller uses a
closed loop position feedback system to accurately map control voltage to mirror position. The
position accurately tracks the control voltage, with �90 µsec delay.

To create an arbitrary scanning path, several full-frame images of the region containing the desired
vessels are first acquired and averaged together to increase the signal-to-noise ratio. This image is
loaded by custom software written in MATLAB (MathWorks), which allows users to interactively
create lines of interest (i.e., scans across or along vessels) on the full frame image.

The mirror voltages used to acquire the original full frame image are known, so that positions on
the image can be mapped one-to-one to mirror voltages. Linear portions of the scan path, such as
those used to track along a vessel to measure RBC speed and those that span the vessel to measure
diameter, are given by

P = P0 + V lineart, (3)

where P and V are two-dimensional vectors that contain x and y coordinates.
Linear portions of the scan path, scanned at constant velocity, must be connected by a function

that creates a physically realistic path for themirrors to follow (Lillis et al. 2008). Although there are an
arbitrary number of such functions, the simplest is a third-order polynomial given by

Pspline = Pi + Vit + Ct2 + Dt3. (4)

For computational convenience, the connecting spline is taken to start at t = 0, and end at t = t.
The initial position Pi and velocity Vi of the spline are set to match the position and velocity of the end
of the linear region preceding the spline.

The additional spline parameters depend on the length (in time) of the spline, t, and the final
position and velocity of the spline, and are given by

C = 3Pf
t2

− 3Pi
t2

− 2Vi

t
− Vf

t
(5)
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and

D = Vf

3t2
− Vi

3t2
− 2C

3t
. (6)

The value of t used should be the smallest positive real value that does not subject the mirrors to an
acceleration larger than a user-defined maximal value, m, typically 100 V/msec2. Because the accel-
eration of the spline is a linear function of time, the extreme values of acceleration occur at the
beginning and the end of the spline.

Candidate values for the shortest possible spline length are found by setting themirror acceleration
to ±m at the beginning and end of spline, and finding all positive real values for t:

0 = +m t2 + (2Vi,x + 4Vf ,x) t+ (6Pi,x − 6P f ,x), (7)

0 = +m t2 + (2Vi,y + 4Vf ,y) t+ (6Pi,y − 6Pf ,y), (8)

0 = +m t2 + (4Vi,x + 2Vf ,x) t+ (6Pi,x − 6P f ,x), (9)

0 = +m t2 + (4Vi,y + 2Vf ,y) t+ (6Pi,y − 6Pf ,y). (10)

The actual time used is the smallest value that keeps the acceleration within limits at the beginning
and end of the spline; that is, all of |2Cx| <m, |2Cy| <m, |2Cx + 6Dxt| <m, and |2Cy + 6Dxt| <m
are true.

Summary

Two-photon laser scanning microscopy offers a means to obtain high-resolution images of RBC
velocity and vessel diameter in vivo. These measurements can be combined to calculate the flux for
a given vessel, which is a more accurate metric of the oxygen- and nutrient-carrying capability of
blood.

Velocity and diameter measurements can change independently (Fig. 2F) and thus they must be
measured nearly simultaneously to accurately access flux. This can be achieved with the spatially
optimized line-scan algorithm described above. This technique can be extended to image other types
of fluorescent signals, for instance, neural activity as indicated by calcium-sensitive dyes. In principle,
this technique can be readily extended to scan in three dimensions as well. However, the speed of
current mechanical z-axis scanners is currently much slower than what can be achieved when scan-
ning in the x–y plane alone (Göbel and Helmchen 2007; Göbel et al. 2007).

RECIPE

Modified Artificial Cerebrospinal Fluid (mACSF)

Reagent Final concentration

NaCl 125 mM

Glucose 10 mM

HEPES 10 mM

CaCl2 3.1 mM

MgCl2 1.3 mM

Adjust the pH to 7.4. This mACSF is free of carbonate and phosphate. The recipe is
taken from Kleinfeld and Delaney (1996).
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