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Õ
(k)
i ( f ) R̃

(k)
i ( f )

[ ]∗
�����������������������������������������
1

K

∑K
k=1

Õ
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FIGURE 3. Analysis of voltage-sensitive dye imaging experiments to find followers of Tr2. (A) Cartoon of the leech
nerve cord; input to Tr2 forms the drive signalU(t). (B) Fluorescence image of ganglion 10 stainedwith dye. (C ) Ellipses
drawn to encompass individual cells and define regions whose pixel outputs were averaged to form the optical signals
Vi(t). (D) Simultaneous electrical recording of Tr2 (i.e.,U(t)), and optical recordings from six of the cells shown in panel
C (T = 9 sec) (i.e., V1(t) through V6(t)), along with C̃i( fDrive)

∣∣∣ ∣∣∣ (Equation 17 with p = 6). (E) Polar plot of C̃i( fDrive) between
each optical recording and the cell Tr2 electrical recording for all 43 cells in panel C. The dashed line indicates the
α = 0.001 threshold for significance (Equations 24 and 25); error bars one standard error (Equations 18–25). (Modified
from Taylor et al. 2003.)
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To calculate the standard errors for the coherence estimates, we again use the jackknife (Thomson
and Chave 1991) and compute delete-one averages of coherence, denoted by C̃

(n)
i ( f ), where n is the

index of the deleted taper, that is,
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. (18)

Estimating the standard error of the magnitude of C̃i( f ), as with the case for the spectral power,
requires an extra step because C̃i( f )

∣∣ ∣∣ is defined on the interval [0, 1], whereas Gaussian variables exist
on (−1, 1). The mean value of the magnitude of the coherence for each postsynaptic cell (i.e.,
C̃i( f )
∣∣ ∣∣) and the delete-one estimates, C̃

(n)
i ( f )

∣∣∣ ∣∣∣, are replaced with the transformed values

g C̃
(n)
i ( f )

∣∣∣ ∣∣∣{ }
= ln
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∣∣∣ ∣∣∣ = 1������������������
1+ e−g C̃

(n)
i ( f )

∣∣ ∣∣{ }√ . (20)

The means of the transformed variables are

m̃i;Mag( f ) =
1

K

∑K
n=1

g C̃
(n)
i ( f )

{ }
(21)

and their standard errors are
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The 95% confidence interval for C̃i( f )
∣∣ ∣∣ corresponds to values within the interval

���������������������
1+ e− m̃i;Mag−2s̃i;Mag

( )−1

√
,

���������������������
1+ e− m̃i;Mag+2s̃i;Mag

( )−1

√[ ]
.

For completeness, an alternate transformation for computing the variance is

g C̃i( f )
{ } = tanh−1 C̃i( f )

{ }
.

We now consider an estimate of the standard deviation of the phase of C̃i( f )
∣∣ ∣∣. Conceptually,

the idea is to compute the variation in the relative directions of the delete-one unit vectors (i.e.,
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C̃i( f )/ C̃i( f )
∣∣ ∣∣). The standard error is computed as

s̃i;Phase( f ) =

����������������������������������
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⎛
⎝

⎞
⎠

√√√√√ . (23)

Our interest is in the values of C̃i( f ) for f = fDrive and the confidence limits for this value. We
choose the resolution bandwidth so that the estimate of C̃i( fDrive)

∣∣ ∣∣ is kept separate from that of the
harmonic C̃i 2 fDrive

( )∣∣ ∣∣; the choice Δf = 0.4fDrive works well. We graph the magnitude and phase of
C̃i( fDrive) for all neurons, along with the confidence intervals, on a polar plot (Fig. 3E).

Finally, we consider whether the coherence of a given cell at fDrive is significantly >0 (i.e., larger
than one would expect by chance from a signal with no coherence) as a means to select candidate
postsynaptic targets of Tr2. We compared the estimate for each value of C̃i( fDrive) with the null
distribution for the magnitude of the coherence, which exceeds

C̃i( fDrive)
∣∣ ∣∣ = ��������������

1− a1/(K−1)
√

(24)

only in a fraction α of the trials (Hannan 1970; Jarvis and Mitra 2001). We used α = 0.001 in our
experiments to avoid false positives. We also calculated the multiple comparisons α level for each trial,
given by

amulti = 1− (1− a)N , (25)

whereN is the number of cells in the functional image, and verified that it did not exceed αmulti = 0.05
on any trial (Fig. 3E).

The result of the above procedure was the discovery of three postsynaptic targets of cell Tr2, two of
which were functionally unidentified neurons (Taylor et al. 2003).

CASE THREE: SPACE–TIME SINGULAR-VALUE DECOMPOSITION AND DENOISING

A common issue in the analysis of optical imaging data is the need to remove “fast” noise, that is,
fluctuations in intensity that occur on a pixel-by-pixel and frame-by-frame basis. The idea is that the
imaging data contains features that are highly correlated in space, such as underlying cell bodies,
processes, etc., and highly correlated in time, such as long-lasting responses. The imaging data may
thus be viewed as a space–time matrix of random numbers (i.e., the fast noise) with added correlated
structure. The goal is to separate the fast, uncorrelated noise from the raw data so that a compressed
image file with only the correlated signals remains (Fig. 4A,B shows single frames; for the complete
movies, see Movies 1 and 2 online at http://cshprotocols.cshlp.org). With this model in mind, we
focus on the case of intracellular Ca2+ oscillations in an organotypic culture of rat cortex, which
contains both neurons and glia. All cells were loaded with a fluorescence-based calcium indicator, and
spontaneous activity in the preparation was imaged with a fast-framing (Δt = 2 msec), low-resolution
(100 × 100 pixels) confocal microscope (Fig. 4A).

Imaging data is in the form of a three-dimensional array of intensities, denoted V(x, y, t). We
consider expressing the spatial location in terms of a pixel index, so that each (x, y)� s and the data is
now in the form of a space–time matrix (i.e., V(s, t)). This matrix may be decomposed into the outer
product of functions of pixel index with functions of time. Specifically,

V (s, t) =
∑rank{V}
n=1

ln Fn(s) Gn(t), (26)

Cite this introduction as Cold Spring Harb Protoc; doi:10.1101/pdb.top081075 257

Spectral Methods for Functional Brain Imaging

 Cold Spring Harbor Laboratory Press
 at SERIALS/BIOMED LIB0175B on March 6, 2014 - Published by http://cshprotocols.cshlp.org/Downloaded from 

http://cshprotocols.cshlp.org/
http://cshprotocols.cshlp.org/
http://www.cshlpress.com
http://www.cshlpress.com


where the rank ofV(s, t) is the smaller of the pixel or time dimensions. For example, data of Figure 4A,
there areNt = 1200 frames or time points andNs = 10,000 pixels, so that rank{V(s, t)} =Nt. The above
decomposition is referred to as a singular-value decomposition (Golub and Kahan 1965). The tem-
poral functions satisfy an eigenvalue equation, that is,

∑Nt

t ′=1

Gn(t ′)
∑Ns

s=1

V (s, t)V (s, t ′) = l2n.Gn(t), (27)

where the functions Fn(s) and Gn(t) are orthonormal. The spatial function that accompanies each
temporal function is found by inverting the defining equation, so that

Fn(s) = 1

ln

∑Nt

t=1

V (s, t) Gn(t). (28)

E

CA

B

D

1

FIGURE 4. Denoising of spinning-disk confocal imaging data on Ca2+ waves in organotypic culture. (A) Selected
frames from a 1200-frame sequence of 100 × 100-pixel data. (B) The same data set after reconstruction with 25 of the
1200 modes (Equation 29). Denoising is particularly clear when the data are viewed as video clips. (C ) Singular value
decomposition of the imaging sequence in (A). The spectrum for the square of the eigenvalues for the space and time
modes. Note the excess variance in the roughly 25 dominant modes (Equations 27 and 28). (D) The top 15 spatial
modes, Fn(s), plus high-order modes. Light shades correspond to positive values and dark shades negative values. The
amplitude of the modes is set by the orthonormal condition

∑Nt
t=1 Fm(t)Fn(t) = dnm. (E) The top 15 temporal modes of

Gn(t). The amplitude of themodes is set by the orthonormal condition
∑Nt

t=1 Gm(t)Gn(t) = dnm ( JT Vogelstein, unpubl.).
Fields in A, B, and D are 115 µm on edge.
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For completeness, note that this is equivalent to determining the principal components of re-
sponses recorded from a single location across multiple trials, as opposed to multiple locations in a
single trial, where s labels the trial rather than the location.

When this decomposition is applied to the Ca2+ imaging data (Fig. 4A), we see that the eigenvalue
spectrum has large values for the low-order modes and then rapidly falls to a smoothly decreasing
function of index (Fig. 4B); theoretical expressions for the baseline distribution have been derived
(Sengupta and Mitra 1999). The spatial and temporal modes show defined structure for the first�20
modes; beyond this the spatial modes appear increasingly “grainy” and the temporal modes appear as
fast noise (Fig. 4D,E).

The utility of this decomposition is that only the lower-order modes carry information. Thus we
can reconstruct the data matrix from only these modes and remove the “fast” noise, that is,

Vreconstructed(s,t) =
∑largest significantmode

n=1

ln Fn(s) Gn(t). (29)

Compared with smoothing techniques, the truncated reconstruction respects all correlated fea-
tures in the data and thus, for example, does not remove sharp edges. Reconstruction of the intra-
cellular Ca2+ oscillation data highlights the correlated activity by removing fast, grainy variability
(Fig. 4B).

CASE FOUR: SPECTROGRAMS AND SPACE-FREQUENCY
SINGULAR-VALUE DECOMPOSITION

The final example concerns the characterization of coherent spatiotemporal dynamics, such as waves
of activity. We return to the use of voltage-sensitive dyes, this time to image the electrical dynamics of
turtle visual cortex in response to a looming stimulus. Early work had shown that a looming stimulus
led to the onset of �20-Hz oscillations, the g-band for turtle, in visual cortex (Prechtl and Bullock
1994, 1995). The limited range of cortical connections led to the hypothesis that this oscillation might
be part of wave motion. We investigated this issue by direct electrical measurements throughout the
depth of cortex at selected sites (Prechtl et al. 2000) and, of relevance for the present discussion, by
imaging the spatial patterns from cortex using voltage-sensitive dyes as the contrast agent (Prechtl
et al. 1997).

The electrical activity is expected to evolve between prestimulus versus poststimulus epochs and
possibly over an extended period of stimulation. Thus the spectral power is not stationary over long
periods of time and we must consider a running measure of the spectral power density, denoted the
spectrogram, that is a function of both frequency and time. We choose a restricted interval of time,
denoted Twindow, withNwindow data points, compute the Fourier transforms Ṽ

(k)( f ; t0), and spectrum
S̃( f ; t0) over that interval, where t0 indexes the time at the middle of the epoch, and then step forward
in time and recalculate the transforms and spectrum. Thus

Ṽ
(k)( f ; t0) = 1���

N
√

∑t0+(1/2)Nwindow−1

t=t0−(1/2)Nwindow

e−i2pft w(k)
t Vt (30)

and

S̃( f ; t0) ; 1

K

∑K
k=1

Ṽ
(k)( f ; t0)

∣∣∣ ∣∣∣2. (31)

The resolution half-bandwidth is now p/Nwindow and, as a practical matter, the index is shifted in
increments no larger thanNwindow/2. For the case of the summed optical signal from turtle cortex, we
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observe low-frequency activity before stimulation and multiple bands of high-frequency oscillations
on stimulation (Fig. 5A). A particularly pronounced band occurs near 18 Hz; this is clearly seen in a
line plot of the spectral power density for the 1-sec epoch centered in the middle of the stimulation
period (inset in Fig. 5B).

Time (sec)

Frequency, f (Hz)

A

B

C D

F G

E

FIGURE 5. Analysis of single-trial voltage-sensitive dye imaging data to delineate collective excitation in visual cortex
of turtle. (A) Spectrogram of the response averaged over all active pixels in the image (Equations 30 and 31). (B) Space–
time response during the period when the animal was presented with a looming stimulus. The data were denoised
(Equation 29), low-pass filtered at 60 Hz, and median filtered (400-msec width) to remove a stimulus-induced depo-
larization. We show every eighth frame (126 Hz); note the flow of depolarization from left to right. The inset is the
spectrum for the interval 4.7–5.7 sec and is the power spectrum over the T = 1 sec interval that encompasses this epoch
(black band in A). (C ) Coherence, C̃( f0), over intervals both before and after the onset (T = 3 sec; K = 7) estimated at
successive frequency bins; C̃( f0) . 0.14 indicates significance (Equations 33–35). (D–G) Spatial distribution of am-
plitude (red for maximum and blue for zero) and phase (π/12 radians per contour; arrow indicates dominant gradient)
of the coherence at f0 = 3, 8, 18, and 22 Hz, respectively, during stimulation. Fields in B and D–G are 3.5 mm in
diameter. (Modified from Prechtl et al. 1997.)
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The image data, even after denoising (Equation 29) and broad-band filtering, appears complex
(Fig. 5B), with regions of net depolarization sweeping across cortex, but no simple pattern emerges.
One possibility is that cortex supports multiple dynamic processes, each with a unique center fre-
quency, that may be decomposed by a singular value decomposition in the frequency domain. In this
method, proposed by Mann and Park (1994), the space–time data V(s, t) is first projected into a local
temporal frequency domain by transforming with respect to a set of tapers, that is,

Ṽ
(k)(s, f ) = 1���

N
√

∑N
t=1

e−i2pft w(k)
t Vt(s). (32)

The index k defines a local frequency index in the band [f0 − Δf/2, f0 + Δf/2]. For a fixed frequency,
f0, a SVD is performed on the complex matrix

Ṽ (s, k; f0) ; Ṽ
(1)(s, f0), . . . , Ṽ

(K)(s, f0) (33)
to yield

Ṽ (s, k; f0) =
∑rank{Ṽ}
n=1

ln F̃n(s) G̃n(k), (34)

where the rank is invariably set by K. A measure of coherence is given by the ratio of the power of the
leading mode to the total power (Fig. 5C), that is,

C̃( f0) = l21( f0)∑K
k=1

l2k( f0)
. (35)

A completely coherent response leads to C̃( f0) = 1, whereas for a uniform random process
C̃( f0) = 1/K. Where C̃( f0) has a peak, it is useful to examine the largest spatial mode, F̃1(s).
The magnitude of this complex image gives the spatial distribution of coherence that is centered at
frequency f0, whereas gradients in the phase of the image indicate the local direction of propagation.

For the example data (Fig. 5B), this analysis revealed linear waves as the dominant mode of
electrical activity. Those with a temporal frequency centered at f0 = 3 Hz are present with or
without stimulation (Prechtl et al. 1997) (Fig. 5D), whereas those centered at f0 = 8, 18, and 23 Hz
are seen only with stimulation and propagate orthogonal to the wave at 3 Hz (Fig. 5E–G). It is of
biological interest that the waves at f0 = 3 Hz track the direction of thalamocortical input, whereas
those at higher frequencies track a slight bias in axonal orientation (Cosans and Ulinski 1990) that was
unappreciated in the original work (Prechtl et al. 1997).

CONCLUSION

This introduction covers a number of key applications of spectral methods to optical imaging data.
The choice of topics is representative but by no means exhaustive. An additional application that is
likely to be of utility is the fitting of line spectra to signals with relatively pure periodic contributions,
such as may occur from physiological rhythms, from the response to a periodic stimulus, or from
environmental contaminants like line power (Mitra et al. 1999; Pesaran et al. 2005). A second
application of note is demodulation of a spatial image in response to periodic stimulation either at
the fundamental drive frequency (Borst 1995; Kalatsky and Stryker 2003; Sornborger et al. 2005) or
the second harmonic of the drive (Benucci et al. 2007). Demodulation also is valuable for delineating
wave dynamics in systems with rhythmic activity (Kleinfeld et al. 1994; Prechtl et al. 1997). In general,
spectral techniques are an essential tool for the statistical analysis of imaging data.
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