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Summary. This chapter constitutes mini-proceedings of the Workshop on Physiol-
ogy Databases and Analysis Software that was a part of the Annual Computational
Neuroscience Meeting CNS*2007 that took place in July 2007 in Toronto, Canada
(http://www.cnsorg.org). The main aim of the workshop was to bring together re-
searchers interested in developing and using automated analysis tools and database
systems for electrophysiological data. Selected discussed topics, including the re-
view of some current and potential applications of Computational Intelligence (CI)
in electrophysiology, database and electrophysiological data exchange platforms, lan-
guages, and formats, as well as exemplary analysis problems, are presented in this
chapter. The authors hope that the chapter will be useful not only to those already
involved in the field of electrophysiology, but also to CI researchers, whose interest
will be sparked by its contents.
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14.1 Introduction

Recording and simulation in electrophysiology result in ever growing amounts
of data, making it harder for conventional manual sorting and analysis meth-
ods to keep pace. The amount of electrophysiological data is increasing as more
channels can be sampled and recording quality improves, while rapid advances
in computing speed and capacity (e.g., in grid computing) have enabled re-
searchers to generate massive amounts of simulation data in very short times.
As a result, the need for automated analysis tools, with emphasis on Com-
putational Intelligence-based techniques, and database systems has become
widespread. The workshop on “Developing Databases and Analysis Software
for Electrophysiology: Design, Application, and Visualization,” organized by
Cengiz Günay, Tomasz G. Smolinski, and William W. Lytton in conjunc-
tion with the 16th Annual Computational Neuroscience Meeting CNS*2007
(http://www.cnsorg.org), provided a venue for researchers interested in de-
veloping and using such tools to exchange knowledge and review currently
available technologies and to discuss open problems.

This chapter constitutes mini-proceedings of the workshop and comprises
of several selected contributions provided by the participants. In Section 14.2,
Thomas M. Morse discusses the current uses and potential applications of CI
for electrophysiological databases (EPDBs). Sections 14.3 by Padraig Glee-
son et al., 14.4 by Horatiu Voicu, 14.5 by Cengiz Günay, and 14.6 by Peter
Andrews et al., describe some currently available data-exchange and analysis
platforms and implementations. Finally, Sections 14.7 by Gloster Aaron and
14.8 by Jean-Marc Fellous present some interesting open problems in elec-
trophysiology with examples of analysis techniques, including CI-motivated
approaches.

14.2 Computational Intelligence (CI)
in electrophysiology: A review1,2

14.2.1 Introduction

There are 176 neuroscience databases listed in the Neuroscience Database
Gateway [7]. Only one of these, Neurodatabase [32], currently has electrical
recordings available, indicating that electrophysiology datasets are currently
rarely publicly available. We review potential applications of electrophysiology
databases (EPDBs) in hopes to motivate neuroscience, computer intelligence,
computer science, and other investigators to collaborate to create and con-
tribute datasets to EPDBs. We hope that some of these applications will

1 Contribution by T.M. Morse.
2 This work was supported in part by the NIH Grant 5P01DC004732-07 and

5R01NS011613-31.
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inspire computational intelligence (CI) investigators to work on real (from fu-
ture EPDBs) and simulated datasets that may then be immediately applicable
to electrophysiology investigations and clinical applications. Currently, there
are many tools available online [55] for the processing of fMRI data, ranging
from simple statistical calculations to CI methods. There are many published
tools available for the electrophysiologist (see below) but as yet there are no
tool databases specifically for electrophysiologists (although the laboratory
developing Neurodatabase also has plans to develop a tool database [33]), so
we advocate tool database construction.

We describe the background for, and present open questions of EPDB
CI tools, first in neuronal networks, then single cells, and finally ion chan-
nel/receptors recordings and analysis.

14.2.2 Neuronal Network recordings: Spike-Sorting

Spike sorting (the process of identifying and classifying spikes recorded in one
or more electrodes as having been produced by particular neurons, by only
using the recorded data) tools have been published since 1996 [27] and CI
methods began to appear in 2002 [49]. Limited comparisons between tools have
been made, for example recordings from an in vitro 2D network were used to
compare wavelet packets decomposition with a popular principle components
analysis method and an ordinary wavelet transform [49]. Spike sort method
comparison studies have been limited by available data and by the subsequent
availability of the data for further study.

The field needs a comprehensive review of spike sorting methods. Such a
review would only be possible if many sets of data (from different laboratories)
were available to use as the input for these methods. Different types of elec-
trodes and preparations from different cell types and brain regions, species,
etc. produce signals with different characteristics (neuronal population den-
sity, levels and types of activity, and levels and shape of noise). Having the
traces available in publicly accessible EPDBs would then allow the methods
to have their domains of applicability tested, as well as noting strengths and
weaknesses of particular methods in particular domains.

The absence of publicly available extracellular recordings likely lead to the
use of neural network model output to compare spike sorting routines, see for
example [66]. ModelDB [47] is an additional source for network models, which
if used as a resource for spike sorting tool comparison’s could extend the test-
ing with simulated epilepsy, trauma, and sleep activity [89, 101]. Comparison
studies would be easier to create if spike-sorting tools were assembled into a
tools database (as in for example those for MRI analysis [55]).

One important application of spike sorting methods are their anticipated
role in neuroprosthetic devices. It has been shown that sorting spikes (which
separates neurons that are being used for detection of neuronal patterns)
increases the accuracy of reaching to a target prediction (a common task in
neuroprosthetic research) between 3.6 and 6.4% [90].
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It is a reasonable conjecture that spike sorting may also play a role in
future understanding and/or treatment of Epilepsy [56]. One paper [87] refer-
ences 10 off-line and only 3 online (real time) spike sorting technique papers
and stresses the need for more research in online spike sorting methods. The
authors of [87] had access to recordings from a chronic electrode implanted in
the temporal lobe of an epileptic patient to test their methods.

The increasing size of recordings is another technical difficulty that elec-
trophysiologists are facing. It is now possible to simultaneously record on the
order of a hundred cells with multi-electrode arrays and on the order of a
thousand cells with optical methods (up to 1300 cells in [53]). We suggest the
online (real time) spike sorting algorithms are needed here to reduce the raw
voltage or optical time series data to event times, thus vastly reducing the
storage requirements for the data.

There is a pressing need for samples of all types of electrical recordings
applicable to comparing spike-sorting methods to be deposited in a publicly
accessible EPDB. If that data was available the following open questions in CI
could be addressed. Does a single spike sorting algorithm outperform others
in all recorded preparations?

If not which spike sorting methods work better in which preparations? Is
there a substantial difference in thoroughness or accuracy between online (real
time) and off-line (unrestricted processing time) spike sorting methods?

14.2.3 CI in single cell recordings

CI methods have been applied since the middle 1990’s to single cell record-
ings to extract model parameters for models which describe the input output
electrical function of the cell or channels or receptors within the cell (see for
example the review in [102]).

Their appearance was a natural evolution in sophistication of early electro-
physiology parameter extraction methods such as those in the famous Hodgkin
Huxley (HH) 1952 paper [48]. In HH the authors use chemical species substi-
tution and voltage clamp to isolate the voltage gated sodium and potassium
channels. They created parameterized functions to describe the voltage and
time dependence of the channels and extracted from their data the best fit
for these functions.

Pharmacological isolation of additional channels, and morphological mea-
surements guided by cable theory [81] enhanced the biological realism and
types of channels and cells these HH-style models described. Passive parame-
ter (membrane resistance, capacitance) extraction is commonly practiced, see
for example [85, 94]. Pre-CI methods were provided by papers which used
either brute force and conjugate descent methods [6] or transformations of
gradient descent into a series of single parameter optimizations or a Cheby-
shev approximation [100].

Early CI methods in single cell model optimizations to electrophysiology
traces are reviewed in [102]. This paper compared gradient descent, genetic
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algorithms, simulated annealing, and stochastic search methods. They found
that simulated annealing was the best overall method for simple models with
a small number of parameters, however genetic algorithms became equally
effective for more complex models with larger numbers of parameters. A more
recent paper incorporated simulated annealing search methods into an opti-
mization of maximum conductances and calcium diffusion parameters with
a hybrid fitness function and a revised (modified from the version in [102])
boundary condition handling method [104].

As the number of model parameters (the dimension of the parameter
space) being determined increased, the complexity of the solution (the set
of points in parameter space for which the error function is small enough or
the fitness function large enough) also increased. Papers [39] have examined
the parameter space that defines real cells or models by criteria of either a suc-
cessful fit, or of the activity patterns of the cell [79], and have found that these
spaces have non-intuitive properties due to the shapes of the solution spaces
(see also Figure 2 of [6] and see also the call to investigate ways of reducing
the parameter size and other issues in discussion in [102]). Tools to examine
or to help describe these high dimensional model parameter spaces are im-
portant open CI research areas, because the (biological) cells parameters are
traversing these spaces throughout the cells life. This is relevant to EPDBs
because the model parameters extracted out of many collected recordings over
different cell ages (embryonic, juvenile, adult) and environments would then
be representative of the solution space of the cell, and hence the desire to view
or to be able to describe that space.

Several of the previously cited papers use model current clamp data as tar-
gets for the search methods [104], single cell electrophysiology current clamp
data [6], or both [102]. In addition, pre-CI paper methods which used model
target data (for example [100]) could also be tested with electrophysiology
data. The public availability of real training data would allow comparing the
reliability and efficiency of model parameter extraction methods from elec-
trophysiology data. The best extraction methods and associated training pro-
tocols would likely be determined per cell-type which would then determine
which electrophysiology protocols would be performed and uploaded to the
EPDBs in iterative improvements.

Voltage clamp caveat and another dataset

Voltage clamp protocols when performed in some cells exhibits what is called
a space clamp error. The voltage clamp method attempts to maintain the
cell at a voltage (a constant determined by the experimenter) and measures
the (usually time-varying) injected current that is required to do so. The
error arises when the voltage in parts of the cell that are distant from the
electrode(s) have more influence from local currents than the electrode(s) due
to either large local currents, small neuronal processes (reducing current flow
from the electrode(s)), or being at a large distance from the electrode(s). In
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these cases membrane voltages drift from the command voltage and this is
called “space-clamp error.” A 2003 paper [91] was able to incorporate this
phenomenon for measuring (the restricted case of) pharmacologically isolated
hyperpolarizing channel densities, however their method is general enough
in this domain to measure heterogeneous conductance density distributions
(for those hyperpolarizing channels). We suggest that the currents recorded
in [91, 92] would be helpful practice datasets if available in an EPDB for other
electrophysiologists learning their method.

In addition to the above mentioned uses of EPDBs we present a speculative
open question in CI; initial work could be done with models, however, it
would only be through the availability of single cell recordings in EPDBs that
the methods could be confirmed. Is it possible to characterize ion channels
in (a well space clamped) experimental cell from a voltage clamp protocol
that was the result of an optimized protocol developed and tested in models?
Such a procedure would again only apply to well space-clamped cells. By
“characterize” we mean to discover conductance densities, reversal potentials,
and/or kinetics.

14.2.4 Single channels/receptors

Ion channel kinetic analysis preparations in experimental model cells (it is
unfortunate that “model” has this ambiguity) such as HEK293, Xenopus egg,
or isolated as single channels in excised membrane patches have had great
success [88]. Voltage clamp errors are not a problem and the effects of super-
positions of nearly similar or different multiple channel types can be elimi-
nated. On the down side differences between native and experimental model
cell intracellular and/or extracellular constituents, or the absence of these
constituents in excised patches might make the native channel function dif-
ferently than the isolated one. The results of the single channel studies are
enormously useful because as it becomes known which channel genes are ex-
pressed (microarrays) at which densities in cells (staining methods or single
channel population surveys) it will be possible to compare increasingly realis-
tic models to nervous systems (see Figure 2 in [67]). What are optimal ways of
deducing the kinetics of channels in single channel excised patch recordings?

Traditionally Markov modeling proceeds by choosing the number of states
(nodes) and the transitions (connections) between them at the outset. The
transition rates are then calculated or derived from experimental recordings
(see [88] or more recently [20, 21, 41, 103]. Providing as many single channel
recordings from each type of channel as possible would be invaluable for in-
vestigators and for developing automated Markov model construction tools.
An open CI question: Is it feasible for optimization routines to search through
different Markov model numbers of states and connections as a first step in
a procedure that subsequently optimizes the transition rates, to find the sim-
plest optimal model?
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14.2.5 From today’s EPDBs to tomorrow’s

Investigators are currently using private EPDBs. We estimate, for example,
there are about 110 papers to date in the Journal of Neurophysiology which
report using their own EPDB locally to store neuronal recordings (145 papers
total result from a free text search of “database neuron record” with about a
75% (actual EPDB) rate estimated from the first 37 papers). Investigators who
are already using databases for their neuronal data might be able to use tools
for making data publicly available like Nemesis [78] or Dan Gardner’s group’s
method [30], or the commercial product Axiope [36] to upload datasets, after
these tools evolve to interoperate with proposed EPDBs, or each other.

A common objection to EPDBs is that they would store large amounts
of data that no one would use. We offer a different path by suggesting that
EPDBs start out with just the samples of data that were suggested in this
paper as immediately useful. Today’s EP data is not too large.

If we estimated the average amount of electrophysiology data recorded for
each paper at 10 GB then 100 papers worth is only one terabyte showing
that the existing storage requirements are not as demanding as, for example,
the fMRI data center faces. An open question is whether investigators will
find this data useful for different reasons than for which it was created (e.g.
useful for reasons not thought of yet); several groups are optimistic about the
possibilities [16, 32].

14.2.6 Attributes of EPDBs

Every conceivable type of data in EPDBs is enumerated in the widely accepted
Common Data Model [31]. In this framework we mention a couple of metadata
preferences. The raw data could be stored along with (linked to) processing
protocol instructions such as: we removed the artifacts from time steps t1
to t2 by zeroing, we filtered with a 4kHz filter, etc. Raw data is preferable
because it permits the study of artifacts, noise, and the testing of filters. The
explicit documentation of how the data was processed may be useful to other
electrophysiologists. Standard processing methods could also be saved so that
data could just point to the processing method rather than repeating it for
each applicable dataset.

Measured channel densities stored in EPDBs would be highly valued by
modelers. The published experimental conductance densities statistics (for
example [38, 64, 91, 92] and references in [69, 70]) is infrequent and crucial
for understanding synaptic integration and for making biologically realistic
models. Channel densities provide modelers with the range of values that are
realized in the biological system, further constraining the model.
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14.2.7 Additional usefulness of EPDBs

The ability to quantitatively and/or graphically compare new models to ex-
perimental data that had been previously published and uploaded to EPDBs
would be useful.

Comparing models to EP data have been done since at least HH, lending
support to the model; see for example Figure 3 in [45] for a modified HH Na
channel. Investigators must currently request traces from experimentalists, or
retrieve experimental data with “data thief” or equivalent software [40, 51].
It would be nice to avoid that time and effort. See for example [18], where
both experimental data and traces from calculations from experimental data
were Data Thief’ed from 4 publications.

14.2.8 Conclusions

EPDBs could provide invaluable sources for comparisons between, and the
development of new spike sorting tools and also single cell and ion chan-
nel/receptor electrophysiology methods and modeling. The authors hope that
work in EPDBs will provide an exceptional example to this assessment from
[5]: “Despite excitement about the Semantic Web, most of the world’s data
are locked in large data stores and are not published as an open Web of
inter-referring resources.”

We hope that EPDBs will become fertile members of the growing online
population of neuroinformatics databases, fitting naturally among the con-
nectivity, neuronal morphology, and modeling databases to support the study
of the electrical functioning of the nervous system and excitable membranes.

14.3 Using NeuroML and neuroConstruct to build
neuronal network models for multiple simulators3,4

14.3.1 Introduction

Computational models based on detailed neuroanatomical and electrophys-
iological data have been used for many years to help our understanding of
the function of the nervous system. Unfortunately there has not been very
widespread use of such models in the experimental neuroscience community.
Even between computational neuroscientists, there are issues of compatibility
of published models, which have been created using a variety of simulators and
programming languages. Here we discuss new standards for specifying such
models and a graphical application to facilitate the development of complex
network models on multiple simulators.

3 Contribution by P. Gleeson, S. Crook, V. Steuber, R.A. Silver.
4 This work has been funded by the MRC and the Wellcome Trust.
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14.3.2 NeuroML (http://www.neuroml.org)

The Neural Open Markup Language project, NeuroML [22, 35], is an inter-
national, collaborative initiative to create standards for the description and
interchange of models of neuronal systems. The need for standards that allow
for greater software interoperability is driving the current NeuroML standards
project, which focuses on the key objects that need to be exchanged among ex-
isting applications and tries to anticipate those needed by future neuroscience
applications.

The current standards are arranged in Levels (Figure 14.1), with each sub-
sequent Level increasing the scope of the specification. Level 1 of the standards
provides both a framework for describing the metadata associated with any
neuronal model (e.g. authorship, generic properties, comments, citations, etc.)
and allows specifications of neuroanatomical data, e.g. the branching struc-
ture of neurons, histological features, etc. Morphological data from various
sources, e.g. Neurolucida reconstructions, can be converted into this format,
termed MorphML [22, 80] for reuse in compartmental modeling simulators,
etc.

Level 2 allows the specification of models of conductance based multicom-
partmental neurons. Inhomogeneous distributions of membrane conductances,
subcellular mechanisms and passive cellular properties can be described for
cells based on MorphML. Models of voltage and ligand gated ion channels
and synaptic mechanisms can be described with ChannelML. Level 3 of the
specification is aimed at network models. Populations of neurons in 3D can be
defined by providing an explicit list of all neuronal locations, or by providing
an implicit enumeration (e.g. a grid arrangement or a random arrangement).
Similarly, connectivity can be specified using an explicit list of connections or
implicitly by giving an algorithm for defining connectivity rules, cell location
specificity of synaptic types, etc.

The advantage of using XML for the descriptions is that files can be
checked for completeness against a published standard, i.e. any missing fields
in a model description can be automatically detected. Another advantage is
that XML files can easily be transformed into other formats. There are cur-
rently mappings to the GENESIS [11] and NEURON [46] simulators.

The latest version of the NeuroML specifications can be found online at
http://www.morphml.org:8080/NeuroMLValidator along with example files
at each of the Levels described. There is also the possibility of validating Neu-
roML files to ensure their compliance to the current version of the standards.
The NeuroML project is working closely with a number of application devel-
opers to ensure wider acceptance of the standard.

14.3.3 neuroConstruct

One application which uses the NeuroML standards to facilitate model devel-
opment is neuroConstruct [34]. This is a platform independent software tool
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Fig. 14.1. The 3 Levels in the current NeuroML specifications.

for constructing, visualizing and analyzing conductance-based neural network
models with properties that closely match the 3D neuronal morphology and
connectivity of different brain regions (Figure 14.2). A user friendly GUI allows
models to be built, modified and run without the need for specialist program-
ming knowledge, providing increased accessibility to both experimentalists
and theoreticians studying network function. neuroConstruct generates script
files for NEURON or GENESIS which carry out the numerical integration.

Networks of cells with complex interconnectivity can be created with neu-
roConstruct, simulations run with one or both of the supported simulators and
the network behavior analyzed with a number of inbuilt tools in neuroCon-
struct. neuroConstruct is freely available from http://www.neuroConstruct.
org.

14.3.4 Conclusions

The creation of more detailed models of neuronal function will require the
interaction of a range of investigators from many backgrounds. Having a
common framework to describe experimental findings and theoretical mod-
els about function will greatly aid these collaborations. Appropriate tools for
creating models and testing ideas are also needed in this process. The ongoing
work on NeuroML and neuroConstruct can help towards these goals.
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Fig. 14.2. Screenshot of a network model of the granule cell layer of the cerebellum
created in neuroConstruct.

14.4 Time saving technique for developing
and maintaining user interfaces5

Developing computer analyses and simulations for experimental data in neu-
roscience often requires interactive access for most of the variables used in
the computer applications. Most of the time, this interaction is accomplished
by developing a user interface that needs to be maintained and updated as
the application evolves. This section presents a simple approach that avoids
the development of a user interface, yet allows the user full functionality in
manipulating the application. Although this project is targeted for the Win-
dows operating system, the same strategy can be used with other operating
systems.

The gist of the approach is to allow the application to modify internal
variables by receiving real-time commands through the messaging system pro-
vided by the operating system. To achieve this goal the following tasks need
to be completed: (1) inside the application, build a map between the name
of the variables that represent biophysical measures and the actual variables
that represent them, (2) implement a function that receives commands from
other applications (3) build a small interpreter that can take commands of the
form ‘Membrane voltage -80’ meaning update the Membrane voltage variable

5 Contribution by H. Voicu.
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with the value -80, and (4) build a small editor that can send commands to
other applications through the messaging system of the operating system. The
complete project can be downloaded from: www.voicu.us/software.zip.

The first task is the most straightforward and can be easily implemented
in C++ as shown below:

float EL_Ca3_pyr =

make_float("ca3_pyr_cells.var",&EL_Ca3_pyr,"EL_Ca3_pyr",-60);

float make_float(char *fn,float *p, char *s, float val) {

if (u_i_float_var_counter >= NUM_MAX_OF_UI_FLOAT_VARS)

return(val);

u_i_var_float_ptr_array[u_i_float_var_counter] = p;

strcpy(u_i_var_float_str_array[u_i_float_var_counter],s);

strcpy(u_i_var_float_file_name_array[u_i_float_var_counter],fn);

u_i_float_var_counter++; return(val);

}

Let us assume that EL Ca3 pyr represents the resting potential of pyrami-
dal cells in the CA3 subfield of the hippocampus. This variable is initialized
with -60. The function make float builds a map between the location in mem-
ory where the value of EL Ca3 pyr is stored and the string “EL Ca3 pyr.” The
string “ca3 pyr cells.var” defines the name of the file in which EL Ca3 pyr
will be listed with its initial value when the program starts. This is handled
by a separate function generate list of variables which is included in the
source code.

Since the messages we plan to send are short we can use the actual con-
tent of the pointers WPARAM wp, LPARAM lp of the function SendMessage to
contain the information. This feature makes the application compatible with
the GWD editor which we use for sending commands. The function that re-
ceives the command must have two important features. It must be able to
concatenate partial messages and preserve their order. Preserving temporal
order is particularly important since the repeated update of a variable can
make messages corresponding to different commands arrive about the same
time. To discriminate between partial messages that belong to different com-
mands, each partial message is prefixed by a byte representing its identity. The
function OnMyMessage takes the partial message contained in the 4 byte long
variables wp and lp and concatenates it to the current command. When the full
command is received, it is processed using the Process Message From User
function.

LRESULT CMainFrame::OnMyMessage(WPARAM wp, LPARAM lp) {

rm_multiplexer = (unsigned char)(wp & 0xff); wp >>= 8;

if (bool_receiving_message_from_user[rm_multiplexer]) {

for (int i1 =0; i1<3; i1++, rec_msg_cntr[rm_multiplexer]++, wp >>= 8) {

rec_message[rm_multiplexer][rec_msg_cntr[rm_multiplexer]] = wp & 0xff;
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if (rec_message[rm_multiplexer][rec_msg_cntr[rm_multiplexer]]==0)

goto exec_comm;

}

for (int i1 =0; i1<4; i1++, rec_msg_cntr[rm_multiplexer]++, lp >>= 8) {

rec_message[rm_multiplexer][rec_msg_cntr[rm_multiplexer]] = lp & 0xff;

if (rec_message[rm_multiplexer][rec_msg_cntr[rm_multiplexer]]==0)

goto exec_comm;

}} else {

rec_msg_cntr[rm_multiplexer] = 0;

for (int i1 = 0 ; i1<3 ; i1++, rec_msg_cntr[rm_multiplexer]++, wp >>= 8) {

rec_message[rm_multiplexer][rec_msg_cntr[rm_multiplexer]] = wp & 0xff;

if (rec_message[rm_multiplexer][rec_msg_cntr[rm_multiplexer]]==0)

goto exec_comm;

}

for (int i1 =0 ;i1<4; i1++, rec_msg_cntr[rm_multiplexer]++, lp >>= 8) {

rec_message[rm_multiplexer][rec_msg_cntr[rm_multiplexer]] = lp & 0xff;

if (rec_message[rm_multiplexer][rec_msg_cntr[rm_multiplexer]]==0)

goto exec_comm;

}

bool_receiving_message_from_user[rm_multiplexer] = 1;

}

return 0;

exec_comm:

bool_receiving_message_from_user[rm_multiplexer] = 0;

Process_Message_From_User(rec_message[rm_multiplexer]);

return 0;

}

The Process Message From User function is a standard interpreter for
the commands received by the application. It uses the mapping from variable
names to variable content build by the make float function to update vari-
ables the same way a user interface does. The same function can be used to
interpret commands stored in a file provided in the command line.

The most involved task in this project is the development of a supporting
application that can send commands to the analysis or simulation application.
Although rather lengthy, this task can be accomplished in a straightforward
way. The alternative is to use an application that already has this capabil-
ity, like the GWD text editor. Another important feature of the supporting
application is the ability of increasing and decreasing the values of the vari-
ables declared with make float. This ability can be easily implemented in the
GWD editor with the help of macros. The source code shows how the value
of a variable is increased/decreased by a value determined by the position of
the cursor with respect to the decimal point and sent to the application.
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A typical “*.var” file looks like this:

mfc_hippocampus

gL_Ca3_pyr 0.004000

gL_Ca3_pyr 0.004000

min_max 0.001000 0.009000

The first line contains the name of the application where the commands
are sent. Each variable appears in two consecutive lines. The macros in the
GWD program assume that the second line stores the default value. If the two
consecutive lines are followed by a line containing the ‘min max’ keyword than
the macros do not change the variable below or above the values specified on
that line.

There are two important advantages of this technique. First, the introduc-
tion of a new variable does not require adding code to the application except
the declaration itself. Second, a large number of variables can be organized in
different “*.var” files avoiding clutter and the development of additional GUI
windows.

14.5 PANDORA’s Toolbox: database-supported analysis
and visualization software for electrophysiological data
from simulated or recorded neurons with Matlab6

As the amount of data for EPDBs increase, its organization and labeling be-
comes more difficult. It is critical to reduce this difficulty since the analysis
of the results depends on the accurate labeling of the data. For recordings,
the difficulty comes from associating recorded data traces with multiple trials,
different recording approaches (e.g., intracellular vs. extracellular), stimula-
tion protocol parameters, the time of recording, the animal’s condition, the
drugs used, and so on [3, 17]. For simulations, the difficulty comes from the
large number of possible simulation parameter combinations of ion channel
densities, channel kinetic parameters, concentration and flux rates. The dif-
ficulty remains high irrespective of the actual model used, be it a neuron
model containing multiple types of Hodgkin-Huxley ion channels [6, 96, 102]
or a neuron model with Markov channels [86] and detailed morphological
reconstructions, or a model of molecular pathways and processes [95]. Al-
though simpler versions of these models are employed in network simulations,
the number of parameters are still large to account for variances in neuron
distributions, variable connection weights, modulators, time constants, and
delays [50, 58, 97].

Although accurate labeling of data is critical, often custom formats and
tools are used for data storage and analysis. These formats range from keeping

6 Contribution by C. Günay.
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data in human-readable text files to proprietary or ad-hoc binary formats. It is
rare that a proper database management system is employed. Using database
management systems has the advantage of automatically labeling the data.
This “metadata,” which is created when the experimental data is inserted
into a database, remains with the data during different analysis steps and it
may reach the final plots. Even though for small datasets, the consistency of
the experimental parameters can be maintained by manual procedures, hav-
ing automated systems that keep track of data becomes invaluable for larger
datasets. Furthermore, a database system provides formal ways to manage,
label and query datasets, and it maintains relationships between dataset ele-
ments.

The question is, then, to find the most optimal type of database system
for storing and analyzing electrophysiological data. Storing experiment or sim-
ulation parameters in a database is simpler compared with storing the raw
outputs of the experiments (e.g., voltage traces). Preserving the raw recorded
data is essential for analyzing and understanding the results of an experiment.
Especially with large datasets, with several hundred gigabytes (billion bytes),
it becomes difficult to store, search and process the raw data quickly and effi-
ciently for answering specific questions. But questions can be answered much
faster if features that pertain to the possible questions in hand are extracted
and placed in a more compact database format. Then, once interesting en-
tries are found from the features and parameters in the database, the raw
data can be consulted again for validation, visualization and further analysis.
This database of parameters and extracted features can be subject to several
types of numerical and statistical analyses to produce higher-level results.

The Neural Query System (NQS) [62] provided such a database system
for analyzing results of neural simulations. NQS is a tool integrated into the
Neuron simulator [46] to manage simulations and record their features in a
database for further analysis. Here, we introduce PANDORA’s toolbox7 that
provides this type of database support for both simulated and recorded data. It
currently offers offline analysis within the Matlab environment for intracellu-
lar neural recordings and simulations in current-clamp mode, stimulated with
a current-injection protocol. PANDORA provides functions to extract impor-
tant features from electrophysiology data such as spike times, spike shape
information, and other special measurements such as rate changes; after the
database is constructed, second tier numerical and statistical analyses can be
performed; and both raw data and other intermediate results can be visual-
ized.

PANDORA was designed with flexibility in mind and we present it as a
tool available for other electrophysiology projects. PANDORA takes a sim-
plified approach providing a native Matlab database that has the advantage
of being independent of external applications (although it can communicate

7 PANDORA stands for “Plotting and Analysis for Neural Database-Oriented Re-
search Applications.”
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with them) and thus requires no additional programming in a database lan-
guage. However, it inherits limitations of the Matlab environment in terms
of being not as well optimized for speed and memory usage. In particular, a
database table to be queried must completely fit in the computer’s memory.
PANDORA is distributed with an Academic Free License and can be freely
downloaded from http://senselab.med.yale.edu/SimToolDB.

14.6 Chronux: A Platform for Analyzing Neural
Signals8,9

14.6.1 Introduction

Neuroscientists are increasingly gathering large time series data sets in the
form of multichannel electrophysiological recordings, EEG, MEG, fMRI and
optical image time series. The availability of such data has brought with it
new challenges for analysis, and has created a pressing need for the develop-
ment of software tools for storing and analyzing neural signals. In fact, while
sophisticated methods for analyzing multichannel time series have been de-
veloped over the past several decades in statistics and signal processing, the
lack of a unified, user-friendly, platform that implements these methods is a
critical bottleneck in mining large neuroscientific datasets.

Chronux is an open source software platform that aims to fill this lacuna
by providing a comprehensive software platform for the analysis of neural
signals. It is a collaborative research effort currently based at Cold Spring
Harbor Laboratory that draws on a number of previous research projects
[8–10, 27, 60, 71, 77, 98]. The current version of Chronux includes a Matlab
toolbox for signal processing of neural time series data, several specialized
mini-packages for spike sorting, local regression, audio segmentation and other
tasks. The eventual aim is to provide domain specific user interfaces (UIs)
for each experimental modality, along with corresponding data management
tools. In particular, we expect Chronux to grow to support analysis of time
series data from most of the standard data acquisition modalities in use in
neuroscience. We also expect it to grow in the types of analyses it implements.

14.6.2 Website and Installation

The Chronux website at http://chronux.org/ is the central location for
information about the current and all previous releases of Chronux. The home
page contains links to pages for downloads, people, recent news, tutorials,

8 Contribution by P. Andrews, H. Bokil, H. Maniar, C. Loader, S. Mehta,
D. Kleinfeld, D. Thomson, P.P. Mitra.

9 This work has been supported by grant R01MH071744 from the NIH to
P.P. Mitra.
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various files, documentation and our discussion forum. Most of the code is
written in the Matlab scripting language, with some exceptions as compiled
C code integrated using Matlab mex functions. Chronux has been tested and
runs under Matlab releases R13 to the current R2007a under the Windows,
Macintosh and Linux operating systems. Extensive online and within-Matlab
help is available.

As an open source project released under the GNU Public License GPL
v2, we welcome development, code contributions, bug reports, and discus-
sion from the community. To date, Chronux has been downloaded over 2500
times. Questions or comments about can be posted on our discussion forum
at http://chronux.org/forum/ (after account registration). Announcements
are made through the Google group chronux-announce.

14.6.3 Examples

This section contains examples of Chronux usage, selected to show how it can
handle several common situations in analysis of neural signals. We focus on
spectral analysis, and local regression and likelihood since these techniques
have a wide range of utility.

Spectral Analysis

The spectral analysis toolbox in Chronux is equipped to process continuous
valued data and point process data. The point process data may be a sequence
of values, such as times of occurrence of spikes, or a sequence of counts in suc-
cessive time bins. Chronux provides routines to estimate time-frequency spec-
trograms and spectral derivatives, as well as measures of association such as
cross-spectra and coherences. Univariate and multivariate signals may be an-
alyzed as appropriate. Where possible, Chronux provides confidence intervals
on estimated quantities using both asymptotic formulae based on appropriate
probabilistic models, as well as nonparametric bands based on the Jackknife
method. Finally, Chronux includes various statistical tests such as the two-
group tests for the spectrum and coherence, nonstationarity test based on
quadratic inverse theory, and the F-test to detect periodic signals in a colored
background. The latter is particularly useful for removing 50 or 60 Hz line
noise from recorded neural data.

Space constraints preclude covering all of spectral analysis here, but the
functions generally have a uniform function calling signature. We illustrate
three canonical routines below.

mtspectrumc

As a first example, we show how to estimate the spectrum of a single
trial local field potential measured from macaque during a working mem-
ory task. Figure 14.3 shows the spectrum estimated by the Chronux function
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Fig. 14.3. Comparison of a periodogram (black) and multitaper estimate (red)
of a single trial local field potential measurement from macaque during a working
memory task. This estimate used 9 tapers.

mtspectrumc. For comparison we also display the ordinary periodogram. In
this case, mtspectrumc was called with params.tapers=[5 9].

The Matlab calling signature of the mtspectrumc function is as follows:

[S,f,Serr] = mtspectrumc( data, params );

The first argument is the data matrix in the form of times × trials or
channels, while the second argument params is a Matlab structure defining
the sampling frequency,10 the time-bandwidth product used to compute the
tapers, and the amount of zero padding to use. It also contains flags con-
trolling the averaging over trials and the error computation. In this exam-
ple, params.tapers was set to be [5 9], thus giving an estimate with a time
bandwidth product 5, using 9 tapers (For more details on this argument, see
below).

The three variables returned by mtspectrumc are, in order, the estimated
spectrum, the frequencies of estimation, and the confidence bands. The spec-
trum is in general two-dimensional, with the first dimension being the power
as a function of frequency and the second dimension being the trial or channel.
The second dimension is 1 when the user requests a spectrum that is aver-
aged over the trials or channels. The confidence bands are provided as a lower
and upper confidence band at a p value set by the user. As indicated by the
last letter c in its name, the routine mtspectrumc is applicable to continuous
valued data such as the local field potential or the EEG. The corresponding
routines for point processes are mtspectrumpt and mtspectrumpb, applicable

10 The current version of Chronux assumes continuous valued data to be uniformly
sampled
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to point processes stored as a sequence of times and binned point processes,
respectively.

mtspecgramc

Fig. 14.4. The effect of changing the components of the time-bandwidth product
TW. a) T = 0.5s, W = 10Hz. b) T = 0.2s, W = 25Hz. Data from macaque monkey
performing a working memory task. Sharp enhancement in high frequency power
occurs during the memory period.

The second example is a moving window version of mtspectrumc called
mtspecgramc. This function, and mtspecgrampt and mtspecgrampb, calculate
the multitaper spectrum over a moving window with user adjustable time
width and step size. The calling signature of this function is:

[S,t,f,Serr] = mtspecgramc( data, movingwin, params );

Note that the only differences from the mtspectrumc function signature
are in the function name, the additional movingwin argument and the addi-
tion of a return value t which contains the centers of the moving windows.
The movingwin argument is given as [winsize winstep] in units consistent
with the sampling frequency. The returned spectrum here is in general three
dimensional: times × frequency × channel or trial.

The variable params.tapers controls the computation of the tapers used in
the multitaper estimate. params.tapers is a two-dimensional vector whose first
element, TW , is the time-bandwidth product, where T is the duration and W
is the desired bandwidth. The second element of params.tapers is the number
of tapers to be used. For a given TW , the latter can be at most 2TW − 1.
Higher order taper functions will not be sufficiently concentrated in frequency
and may lead to increased broadband bias if used.

Figure 14.4 shows the effect on the spectrogram of changing the time-
bandwidth product. The data again consists of local field potentials recorded
from macaque during a working memory task.
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coherencycpt

Fig. 14.5. The spike-field coherence recorded from visual cortex of monkey, showing
significant differences between the attended and unattended conditions. In addition
to the coherence in the two conditions, we also show the 95% confidence bands
computed using the Jackknife.

Figure 14.5 [105] shows significant differences in the spike-field coherence
recorded from the primary visual cortex of monkeys during an attention mod-
ulation task. The coherences were computed using coherencycpt. This func-
tion is called with two timeseries as arguments: the continuous LFP data and
the corresponding spikes which are stored as event times. It returns not only
the magnitude and phase of the coherency, but the cross-spectrum and indi-
vidual spectra from which the coherence is computed. As with the spectra,
confidence intervals on the magnitude and phase of the coherency may also
be obtained.

Locfit

The Locfit package by Catherine Loader [61] is included in Chronux. Locfit
can be used for local regression, local likelihood estimation, local smooth-
ing, density estimation, conditional hazard rate estimation, classification and
censored likelihood models. Figure 14.6 is an example of Locfit local smooth-
ing with a cubic polynomial compared to a binned histogram. Locfit enables
computation of both local and global confidence bands. In this case, the figure
shows 95% local confidence bands around the smoothed rate estimate.
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Fig. 14.6. A traditional binned histogram and a Locfit smoothed estimate of the
same data set. The Locfit estimate shown uses a nearest-neighbor fraction of 35%
when calculating the distribution.

14.7 Repeating synaptic inputs on a single neuron:
seeking and finding with Matlab11

A single neuron in the mammalian cortex receives synaptic inputs from up
to thousands of other neurons. Whole-cell patch-clamp electrophysiological
recordings of single neurons reveal many of these synaptic events to the in-
vestigator, allowing analyses of the large and active neuronal network that
impinges on this single neuron. The goals of the analyses are twofold: to find
patterns in this barrage of synaptic inputs, and then determine whether these
patterns are produced by design or chance.

While we do not know a priori the patterns to search for, we can still
attempt to find patterns. One approach is to search for repeats-that is, se-
quences of synaptic inputs that repeat later in the recording with significant
precision (Figures 14.7, 14.8, 14.9). This is analogous to a study of language
by a completely naive observer: a language has a finite vocabulary and set
of phrases that can be identified through a search for repeats. This search
involves comparing all segments of the recording with itself in an iterative
process.

The cross-correlation function is at the heart of this analysis. This function
quantifies the temporal similarities of those waveforms and can initially iden-
tify whether or not two segments of a long recording might be significantly
similar. This initial identification of a repeat is tentative, but the interval at
which the repeat is found is stored and examined more carefully in subsequent
analyses. Segments that do not pass a minimum threshold are passed over and
not analyzed further, saving some time in the subsequent intensive analysis.

11 Contribution by G. Aaron.
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Fig. 14.7. Cartoon of a single neuron recorded within a 4 neuron network. Imag-
ine that the 3 neurons connected to this one recorded neuron fire a sequence of
action potentials. This sequence may be reflected in the synaptic currents recorded
intracellularly (blue trace). If this same sequence is repeated some time later, the
intracellular recording may reflect this repeat of synaptic activity (red trace).

Fig. 14.8. Searching for repeats. A continuous 10 second stretch intracellularly
recording postsynaptic currents (PSCs) is displayed. The program scans this record-
ing, comparing every one second interval with every other one second interval. Here,
the blue and red brackets represent these 1 second scanning windows. These one
second segments are compared against each other via a cross-correlation equation
(Eq. 1). If there were a perfect repeat of intracellular activity, then the correlation
coefficient at the zeroth lag time would be 1.0.
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Fig. 14.9. Motif-repeat segments that yield a minimum threshold h(0) value are
remembered and subsequently analyzed via a high resolution index (HRI). The 1
second segments are aligned according to the best h(0) value, and then they are
scanned with a 20 msec time window that computes many cross-correlation values.
These correlation values are then adjusted according to the amplitude differences
between these short segments (Eq. 2), and values passing a threshold are recorded
and used in Eq. 3. The idea of this process is to find very similar PSCs recurring
in a precise sequence. Finally, the number of precisely occurring PSCs in a long
segment and the precision of those repeats are calculated in the HRI equation (Eq.
3), yielding an index of repeatability.

We used these search programs in analyzing long voltage-clamp intracel-
lular recordings (8 minutes) from slices of mouse visual cortex. These were
spontaneous recordings, meaning no stimulation was applied to the slices.
Thus, the currents identified in the recordings were presumably the result
of synaptic activity, created in large part by the action potential activity of
synaptically-coupled neurons. The search algorithms described here were able
to find instances of surprising repeatability, as judged by eye (Figure 14.10).

What occurs after the initial identification of putative repeats depends
on the hypothesis being tested as well as the recording conditions. If the
search is for repeating sequences of postsynaptic currents from a voltage-
clamp recording, then the average time course of a single postsynaptic current
becomes a critical parameter. Many cross-correlation analyses are performed
at these smaller time windows, increasing the sensitivity of the measurement.

Given a long enough recording (several minutes) and many synaptic events,
it should be expected that some repeating patterns emerge. The question is
then whether the patterns we find are beyond a level that could be expected
to occur by chance. In fact, it is undetermined as to whether the specific
examples shown in Figure 14.10 are deterministically or randomly generated,
although there is strong evidence that non-random patterns do emerge in
these recordings ([53], however, see also [72]). The development of surrogate
recordings-artificial data that is based on the real-is one way to deal with this
issue. These surrogate data can then be compared to the real to see which
produces more putative repeats (repeats being judged by the index methods
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Fig. 14.10. Apparent repeats of synaptic events found. A: Two segments from a
voltage-clamp recording are displayed, superimposed on each other. The blue trace
occurred some time before the red trace, and yet the sequence of synaptic events
appear similar. Arrows indicate time points where these synaptic events appear to
repeat, and the brackets indicate segments that are temporally expanded below. B:
Another example of a repeat.

in Figures 14.7 through 14.9). If the real data produces more putative repeats
than a large number of generated surrogate data sets, then some evidence is
given for a non-random generation of these repeats. The study of this issue is
ongoing and involves more than the scope of this chapter. In short, attention
must be given to the specific hypothesis tested, as well as the limits and
sensitivity of the detector itself (described in Figs 14.7 through 14.9). Perhaps
a more convincing method is to perturb the cortex in a biologically relevant
manner and see how such manipulations affect or even produce the repeatable
patterns (as shown in [63]).

14.8 A method for discovering spatio-temporal spike
patterns in multi-unit recordings12

14.8.1 Introduction

In previous work we have shown that neurons in vitro responded to the re-
peated injections of somatic current by reliably emitting a few temporal spike
patterns differing from each other by only a few spikes [29]. The techniques
used to find these patterns were applied to data obtained in vivo from the
Lateral Geniculate nucleus in the anesthetized cat [82] and from area MT in
the behaving monkey [15]. In these two preparations, the animals were pre-
sented with repeated occurrence of the same visual stimulus. Single neurons
were recorded and spiking was found to be very reliable when time-locked to
the stimulus. In both datasets, however, groups of temporally precise firing

12 Contribution by J.-M. Fellous.
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patterns were identified above and beyond those that were reported. These
patterns could last a few hundreds of milliseconds (monkey) to several seconds
(cat), and were the result of the complex but largely deterministic interactions
between stimulus features, network and intrinsic properties [29]. In principle,
this clustering technique can be used on any ensemble of spike trains that have
a common time scale: either time locked to the same event (repeated stimulus
presentations for one recorded neuron, as above), or recorded simultaneously
as in multi-unit recordings. In the first case, groups of trials are determined
that share common temporal structures relative to stimulus presentation. In
the second case, groups of neurons (called here neural assemblies) are identi-
fied that show some temporal correlations.

Finding neural assemblies can be thought of a dimensionality reduction
problem: out of N neurons recorded (N-dimensions) how many ‘work to-
gether’? Standard methods for dimensionality reduction such as principal
or independent component analysis have been used on populations of neu-
rons [19, 57]. Such dimensionality reduction however does not typically result
in the selection of a subset of neurons, but on a linear combination of their ac-
tivity (population vector). The weighting of these neurons may or may not be
biologically interpretable. Another approach is that of peer prediction, where
the influence of N − 1 recorded neurons onto a single neuron is captured by
N − 1 weights that are ‘learned’ [44]. The focus of this approach, like that
of many information theoretical approaches [74, 84], is to explain a posteri-
ori the firing pattern of neurons, rather than to study their spatio-temporal
dynamics. Another approach is that of template matching where the raster-
gram of multi neuronal activity is binned to generate a sequence of population
vectors (a N-dimensional vector per time bin) [23, 73]. A group of T consec-
utive population vectors is then chosen (NxT matrix, the ‘template’) and is
systematically matched to the rest of the recording. Other methods use the
natural oscillations present in the EEG (theta cycle or sharp waves) to define
the length of the template [54]. These methods however require the choice of
a bin size and the choice of the number of consecutive population vectors (T,
another form of binning). We propose here a general method for the detection
of transient neural assemblies based on a binless similarity measure between
spike trains.

14.8.2 Methods

To illustrate the effectiveness of the technique, we built a biophysical sim-
ulation of a small network of neurons using the NEURON simulator [46].
Neurons were single compartments containing a generic leak current, sodium
and potassium currents responsible for action potential generation [37], a
generic high voltage calcium current [83], a first order calcium pump [25] and a
calcium-activated potassium current to control burst firing [25]. In addition,
two generic background synaptic noise currents (excitatory and inhibitory)
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were added to recreate in vivo conditions [26, 28, 75]. Synaptic connections
were formed with AMPA synapses.

14.8.3 Results

Figure 14.11A shows the typical recording and modeling configuration con-
sidered here. Extracellular recording electrodes are lowered near a group of
cells. Neurons in this area are interconnected (thin lines, only a few repre-
sented for clarity), but some of them form sparse groups linked by stronger
synaptic connections (thick black lines). Two of these putative assemblies are
depicted in gray and black. The extracellular recording electrodes have typi-
cally access to only a fraction of these assemblies (ellipse, 3 neurons each). To
illustrate this configuration further, we built a biophysical simulation of fifteen
principal neurons containing 2 different assemblies of 5 neurons each. Figures
14.11B and 14.11C show representative traces of the membrane voltage of
two neurons: One that does not belong to an assembly and one that does (top
and bottom respectively). No difference can be detected in the statistics of
the membrane potential between these neurons (average, standard deviation,
coefficient of variation of spiking and firing rate were tested).

Fig. 14.11. Simulations of neural assemblies. A: Schematic representation of a
recording configuration in CA3. Panels B and C show the simulated membrane
potential of a cell outside an assembly (B) and of a cell within one of the two
assembles (C, black neuron).

Figure 14.12A shows a rastergram of 2 seconds of spontaneous activity of
all 15 neurons. The simulation is tuned so that all neurons have the same mean
firing rate (7.5 Hz). Again, no difference can be seen between the spike trains
of neurons belonging to an assembly (filled circles labeled on the left of the
Y-axis), and those that do not (white circles). Such rastergrams are typically
the only neurophysiological information available from multi-unit recordings
in the behaving animal. Experimentally, the labels are of course unknown and
the goal of this work is to identify the ‘hidden’ assemblies on the basis of
unlabeled rastergrams.
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To do so, we first build a similarity matrix computed on the basis of a
binless correlation measure used previously [93] (Figure 14.12B). Each square
i,j of this 15x15 matrix represents the similarity between the spike trains of
neurons i and j (similarities vary between 0 (dissimilar-black) and 1 (identical-
white)). A fuzzy clustering method is then applied to this matrix and rows and
columns are re-ordered under the constraint that the matrix remains symmet-
ric [29] (Figure 14.12C). Groups of highly similar neurons are now apparent
(white regions in the upper left and lower right corners of the matrix). The
algorithm identified 3 areas in this matrix (dashed lines). Since each row rep-
resents the similarities of one neuron to the 14 others, the matrix reordering
can be applied to the spike trains themselves, and the re-ordered rastergram is
shown in panel D. The assemblies are correctly identified as evidenced by the
grouping of the symbols on the left (assemblies: filled circle, other neurons:
white circles). Cluster strengths were 2.4 (black circles), 2.2 (gray circles) and
1.2 (white circles), making the first two clusters significant (above 1.5 [29]).
In this simulation, and for illustrative purposes, the two assemblies were im-
plemented in a different manner. The first assembly (gray neurons in Figures
14.11 and 14.12) contained neurons that were correlated because of slightly
stronger AMPA intrinsic connections between them. This assembly formed
transient assembly-wide correlations (ellipses in Figure 14.12D). The second
assembly (black neurons in Figures 14.11 and 14.12) contained neurons that
were correlated because they received a common modulation of their mean
excitatory background inputs. Unlike with the first assembly, this assembly
did not form assembly-wide correlations.

The algorithm successfully identified the assemblies in both cases, show-
ing that it was not sensitive to the source of the correlations and did not re-
quire all the neurons within an assembly to be simultaneously correlated. The
performance of the clustering algorithm in detecting functionally connected
cells, when the connection strength is systematically varied was assessed. The
network is analogous to that of Figure 14.11 with gray neurons only. Our
simulations (50 independent simulations per connection strength) show that
the detection is significantly above chance for connection values that yield
probability of postsynaptic firing due to a single presynaptic spike as low as
10%.

The performance of the clustering algorithm was also assessed in the case
where the neurons in Figure 14.11A are interconnected by weak synapses (2%)
but receive part of their average background inputs from a common source
(i.e. black neurons only). The common input was simulated as a modulation
of X% of the mean background excitatory synaptic noise, where X is sys-
tematically varied. The time course and frequency content of the modulation
is obtained from white-noise filtered by AMPA-like alpha-function [65]. Note
that in these simulations, the overall firing rate of all cells in the assembly
were kept constant and identical to that of the cells outside the assembly, so
as to not bias the algorithm into clustering cells by firing rates rather than
by temporal correlations. Previous work has however shown that a properly
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Fig. 14.12. Detection of cell assemblies using Spike Train Clustering. A: Original
rastergram obtained from a biophysical simulation of 15 neurons. Two assemblies
of five neurons are ‘hidden’ (filled circles). B: Similarity matrix based on the whole
rastergram. C: Reordering of the similarity matrix after fuzzy clustering with 3
clusters [29]. Two significant clusters are apparent in the upper left and lower right
corners. Similarity gray scale applies to B and C. D: The same reordering in C is
applied to the rastergram. The hidden assemblies are completely recovered (grouping
of labels).

tuned similarity measure can make the clustering algorithm relatively insen-
sitive to heterogeneous baseline firing rates [29]. Simulations (50 independent
simulations per X) show that a modulation of 15% of the background inputs
can be effectively detected above chance.

14.8.4 Conclusions

Various methods for multiple spike train analysis have been reviewed else-
where [12, 14]. In general, the detection of neural assemblies can be accom-
plished in two steps: 1) Computation of the similarity between the spike trains
of the recorded neurons, 2) Use of these similarities to detect eventual groups
of neurons that are more similar to each other than they are to the other
neurons.

The traditional measures of similarity between spike trains include the
cross-correlation coefficient, its generalization with the Joint Peristimulus
Time Histograms (where Pearson correlations between two neurons are com-
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puted at different time lags) [2, 107] and the cross-intensity function (where
estimation of the firing rate of one neuron is made relative to that of another
at different time lags) [12]. These methods require some form of binning which
involves the a priori choice of a time scale of integration (bin size) and the
choice of bin boundaries (with or without overlaps), both of which may in-
troduce artifacts. There is some evidence that computing correlation in the
frequency domain (i.e. cross coherence) may help reduce the sensitivity to bin
size [76, 99].

Two other concerns arise 1) Correlation coefficients may introduce artificial
correlations due to bursting, which is common in many brain areas and 2)
correlations are computed on the basis of pairs of neurons, and are unable
to capture spike patterns which consist in P neurons firing in one of several
possible orders (i.e. in an assembly of P neurons, one neuron may fire before
a second at one point in time, or after that neuron later on depending on
the firing of the other P-2 neurons) [29]. Because the order of firing between
two neurons may not be always the same, the pair wise correlation coefficient
could become insignificant.

A few methods have attempted to go beyond pairwise assessments by ac-
counting for correlations between 3 or 4 neurons [1, 24, 52], but those methods
are not easily generalizable to 50-100 neurons, which is the typical number
of neurons recorded simultaneously. Other methods such as Bayesian estima-
tions [4, 13, 68, 106] or unitary event analysis (statistical detection of spike
coincidences that occur above chance) [42, 43] are statistical in nature, and
are not suitable for the dynamic assessment of patterns in time. The work
we presented here however has that potential [59]. In sum, new methods for
detecting spike patterns (i.e. high order correlations) such as that proposed
here and ways of comparing their similarities are sorely needed.

14.9 Summary

The authors of this chapter hope that these mini-proceedings will be useful
to all those who are already involved in the field of electrophysiology and are
looking for currently available data analysis tools and techniques. However,
we also hope that Computational Intelligence researchers will find it valuable
as their interest will be sparked by the presented discussion of the challenges
prevalent in electrophysiology.

The organizers of the workshop would like to thank all the contributors
and participants for their invaluable input and involvement in the creation of
these mini-proceedings.
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