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FIG. 4. Two examples of cell segmentation and fast scanning for functional imaging of neurons and astrocytes in rat parietal cortex. A: a full-field image of
a region with 68 cells, obtained at 4 frames/s, with a scan path superimposed on it in which all cells are sampled at 70 Hz. The green channel shows the
fluorescence from Oregon Green Bapta-1, whereas the red channel shows fluorescence from Sulforhodamine 101. White shows the outlines of cells as determined
by our algorithm. B: part of the raw data output from consecutive scans, including a hindlimb stimulation. C: activity of 10 cells, 9 neurons, and 1 astrocyte as
indicated in A and B, during the same time interval as shown in B. The traces shown in the order of the cells that were scanned and represent typical results.
D: distribution of onset times for changes in intracellular [Ca?*] in all 68 cells after stimulation across 9 trials. E: a full-field image of 19 neurons, 1 astrocyte,
and 3 blood vessels scanned at 110 Hz with a scan path superimposed on it. F: part of raw data output that includes a hindlimb stimulation event. G: activity
of cells, neurons, and an astrocyte indicated in £ and F' during the same time interval as shown in F. H: the calcium response of the astrocyte (A1), the average
neuronal response (N1-N19), and the speed of red blood cells in one capillary (V1).

cost of obtaining and annotating training data. At the same time, our
approach can make use of specialized filters, such as automatic spike
train deconvolution (Vogelstein et al. 2010), to provide a fuller
analysis of TPLSM data. Last, the use of compiled languages or
specialized hardware may greatly decrease the computational time to
segment the image data and compute an optimized scan path.

APPENDIX

The portions of the scan path that pass through the ROIs are created
as straight lines, given by
P= PO + Vlinear -t

where P is a two-dimensional vector of voltages that specifies the
deflection of the scan mirrors that in turn directs the beam. The

parameter P is the initial voltage and the parameter Vi, .., 1S the
slew (in V/ms), whose magnitude determines the time spent cross-
ing the cell and whose direction is set by the diagonal of the
bounding box. The paths through each ROI are connected by
third-order polynomial splines that are constructed so that the scan
path is continuous in both voltage and slew. This creates a
physically realizable path that is followed by the scan mirrors with
a constant delay, typically 80 us for our scanners. The connecting
paths between the ROIs are described by

Pspline:Pi+Vi't+C't2+D't3

where for computational convenience, the spline is taken to start at t =
0 and end at ¢ = 7, the initial voltage P; and slew V, are set to match
the position and velocity of the end of the ROI preceding the spline,
and the parameters C and D are found from
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and

The value of 7 is the smallest positive real value that does not
subject the mirrors to an acceleration larger than a hardware limit,
denoted m, where typically m = 100 V/ms?. Candidate values for the
shortest possible spline length are found by setting the acceleration to
+m at the beginning and end of each spline, and finding all positive
real values for T, i.e.

0= *mr+(4V; + 2V)T + (6P, — 6P,
for acceleration at the start of a spline and
0= *m7 + 4V, + 2V)7 + (6P, — 6P,

for acceleration at the end of a spline. This leads to multiple values for
7; we choose the smallest value that bounds the acceleration at the
beginning and end of the spline but allows the mirrors to make
positional errors on other parts of the spline (Supplemental Fig. S2).
Thus 2C, | <m, 2C| <m, 12C, +6D, 7 < m, and I2C, +6D 1l < m.

The total time spent scanning across the regions between ROIs was
minimized by estimating the optimum order in which to scan the
ROIs. This is a “traveling salesman” problem in terms of minimizing
the time between ROIs, for which the ANT System algorithm (Di
Caro and Dorigo 1998) provides a robust and easily implemented
approximate solution. Finally, the vector along the diagonals through
each ROI is iteratively adjusted to further minimize the total time
spent scanning across connecting sections.
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