
 

 

 
Abstract 

 
All optical histology (AOH) uses femtosecond pulse 

plasma mediated laser ablation in conjunction with two-
photon laser scanning microscopy (TPLSM) to produce 
large anatomical volumes at micrometer-scale resolution. 
Specifically, we use AOH to produce ~1mm3 datasets of 
cerebral vasculature with the goal of modeling its 
structural and physiological relationship to neuronal 
cells.  Generating a binary mask of the cerebral 
vasculature is a first step towards this goal, and many 
methods have been proposed to segment such 3D 
structures. However, many analyses of the tubular 
vascular network (e.g., average vessel segment length, 
radii, point-to-point resistance and cycle statistics) are 
more efficiently computed on a vectorized representation 
of the data, i.e. a graph of connected centerline points. 
Generating such a graph requires sophisticated upstream 
algorithms for both segmentation and vectorization. 
Occasionally, the algorithms form erroneous gaps in the 
vectorized graph that do not properly represent the 
underlying anatomy.  We present here a method to connect 
such gaps via local threshold relaxation. The method A) 
fills gaps by relaxing a binarization threshold on the 
grayscale data volume in the vicinity of each gap (found 
using the vectorization), B) computes a “bridging” strand 
for each gap, and C) produces a confidence metric for 
each “bridging strand”. We show reconnection results 
using our method on real 3D microvasculature data from 
the rodent brain and compare to a tensor voting method. 

1. Introduction 
Understanding the fine details of the brain’s vascular 
structure has recently received renewed interest [1-3]. 
Positron emission tomography (PET), magnetic resonance 
imaging (MRI), and intrinsic imaging exploit the 
neurovascular coupling between neurological activity, the 
ensuing oxygen and energy consumption, and increased 
blood perfusion to the activated brain regions. Although 
this relationship between neuronal activity and blood 
perfusion has been used to image brain activity, the 
microscopic details of the vascular response remains 
poorly understood, and investigators continue to debate 
which specific aspects of the neuronal activity elicits these 

observable changes [4, 5].  Furthermore, it has been found 
that the spatial extent of the imaged response extends 
beyond the anatomical limits of its corresponding neuronal 
origin[6, 7], a phenomenon likely related to the anatomical 
properties of the nearby vasculature. 
 

  
Figure 1: A 1mm x 1mm x 1mm section of mouse 
cortical microvasculature. The pia is at the top and the 
white matter is at the bottom. The local branching of 
one “Penetrating Arteriole” is shown in yellow. 
 

A set of stroke studies provides an example of this link 
between vascular topology and its function; these studies 
demonstrate distinct topological organizations across the 
cortical vasculature. Three distinct networks could be 
distinguished (Figure 1): a network of surface arterioles, a 
set of penetrating arterioles, and a subsurface network of 
microvasculature that includes the capillary beds. The 
surface arterioles (40-150 µm diameter vessels) 
constituting the surface branches of the anterior, posterior 
and middle cerebral arteries, form a 2-D network at the 
pial surface of the brain.  Here, the presence of 
anastomoses, i.e., interconnections between vessels to 
form loops, ensures that blood flow can be re-routed to 
bypass potential blockages, thus providing a robust 
continuous blood supply [8]. From the surface a set of 
penetrating arterioles (~30-100 µm diameter vessels) 
plunge into the brain and connect the surface arterioles to 
the subsurface microvasculature. Some of these 
penetrating arterioles can traverse the entire depth of the 
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cortex with little to no branching (preliminary 
observation) as they provide blood to the deep layers of 
cortex.  Penetrating arterioles form “bottlenecks” to flow, 
in that an occlusion of a single penetrating arteriole has 
devastating consequences as blood supply is drastically 
diminished in a ~500 µm diameter cylinder around the 
vessel [9]. The third network consists of microvessels 
(<7µm in diameter) that form a densely-packed, 3-D 
subsurface network.  As in the surface arterioles, loops 
within the microvasculature network allow for rerouting of 
blood flow around an occlusion [10]. 
 

F
igure 2: Vectorized network of a small part of the 
volume in Figure 1 (strand endpoints and bifurcations 
are marked with black spheres). The white polylines 
indicate the “strands” defined between the black 
spheres. The vessel mask is the blue isosurface. 

 
A detailed knowledge of both the cellular and vascular 

spatial organization at the micrometer scale is crucial to 
understanding the neurovascular dynamics both under normal 
and pathological conditions. More precisely, a complete high 
resolution –gap-free♠– vectorized (i.e. graph) representation 
of the vasculature accompanied by all cell nuclei locations 
(both neurons and non-neurons) in a sufficiently large cortical 
volume would enable such a study.  The vectorized 
representation is required to move from more rudimentary 
morphological statistics to a system level approach where 
network properties per se can be measured, not estimated 
from isolated pieces of information. For example, such a 
study could identify the presence of repeating microvascular 
motifs and establish whether the microvasculature is 
organized as a continuum or as a set of connected 
microdomains. 

 
♠ Artificial gaps can be introduced by the stitching, segmentation or 

vectorization algorithms, but gaps may also reflect ongoing angiogenesis 
–the process of new vessel formation– yet a qualitative survey of our in 
vivo data on animals of the same age range as the ones used here does not 
support this hypothesis. 

In addition to interest by neuroscientists, 3D tubular 
structures in general are of interest for many applications, 
including finding/measuring vessels and airways in lung 
Computer Aided Detection (CAD) for lung abnormalities, 
estimation of stenoses in medical images, generating virtual 
colonoscopy fly-through paths, generating 3D articulable 
models for graphics, and nonrigid anatomical registration 
using vessel trees as fiducials [11]. 

1.1. 3D Vectorized Tubular Networks 
Many methods exist to segment 3D vessels from raw data 

[12]. Multiscale eigenanalyses of local Hessian operators can 
enhance local rod-like shapes of varying radii [13,14], e.g.. 
Many methods also exist to extract centerlines from binary 
images of tubes. Skeletonization methods can accomplish 
this, but due to noise or real bulges and the ill-conditioned 
medial axis transform (MAT), many small branches develop 
which are unrelated to the larger objects the MAT is meant to 
represent. In 3D, MATs can also develop “medial surfaces” 
which are not centerlines at all. Curve evolution methods and 
morphological operators, e.g., have been introduced to 
mitigate these issues [15,16,17]. 

Recent work in vectorizing 3D microvascular networks 
includes [1,3,15,18]. Related work in connectomics also 
requires strategies to connect gaps [19]. Though vectorization 
methods differ, all resulting vectorizations consist of a set of 
“strands” (called segments in [20]). As in [20] a strand is a 
1D graph “defined between two bifurcations, between one 
bifurcation and one [endpoint], or between two [endpoints]” 
(see Figure 2). Note that all endpoints are connected to 
exactly one strand. 

Though both 3D segmentation and vectorization of tubular 
networks are fairly well-studied, as noted in [20], the post-
processing step of connecting gaps in the vectorization is not. 
The focus of this paper is finding and connecting such gaps. 
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Figure 3: Gaps G1 and G2 (left: unconnected, right: 
illustrating the desired output “bridging strands” in 
white. The original mask, BV, is shown in blue. 

1.2. Gaps in Graphical Representations of 3D 
Tubular Networks 

The left panel of Figure 3 illustrates gaps G1 and G2 in a 
small volume of interest interior to the volume in Figure 2. 
Due to one or more upstream causes including staining, 
imaging, segmentation, and/or vectorization, the vectorization 



 

 

is not a single connected graph of circuits as would be 
anatomically expected (modulo edge effects). In the right 
panel of Figure 3, gaps are connected by “bridging strands” 
(in thicker white). Thus our goal is to find gaps, Gi, and 
compute a bridging strand, Si, for each. 

1.3. Published Gap-connection Methods 
The problem of connecting gaps is well-studied in 2D as 

weak edge linking downstream of edge detection has 
frustrated automated edge detection and image analysis for 
decades [21, 22]. Some recent results on edge linking 
highlighting different linking strategies can be found in the 
references [23,24,25,26], but because the literature on 2D 
edge linking (especially for road network inference) is 
enormous, we omit the references and assert some 
combination of 2D methods may conceptually map to the 3D 
method presented here.  

Though the problem is well studied in 2D, far fewer results 
have been collected for the analogous 3D problem [27,28]. 
One promising connection method grounded in the formalism 
of tensor voting uses the vectorized graph alone to infer gap 
connections [20]. More recently, the method has been shown 
to perform favorably to mathematical morphology and an 
Ising model for the same task [29]. Though promising, the 
method in [29] relies only on the graph, and thus cannot use 
the underlying grayscale vessel data to inform the gap filling 
method. 

2. Gap Connection via Threshold Relaxation 
The gap connection method presented here 1) exploits both 

the topology of the vectorized graph for gap-finding as well 
as the underlying grayscale data to infer connections, 2) is not 
limited in connection size, 3) prevents backtracking, 4) is 
conceptually simple, modular, and extensible. 

 
Threshold Relaxation Summary 

The method accepts as input a grayscale image volume, 

EV, the corresponding binary segmentation, BV, and its 
vectorization, GV. The vectorization is a graph, GV=(VGv,EGv).  
Specifically, VGv={P0,P1,…,PN}, where each vertex, Pi, is a 
3D location. Edges, EGv, indicate which vertices are 
connected to which other vertices. The method can be 
summarized as a 2-step process, which we discuss next. 

 
Figure 4: Algorithm accepts as input a binary mask of 
the microvasculature, BV, a continuous-valued volume, 
EV, and a graph, GV and produces a set of “bridging 
strands”, Si, and their confidence levels, Ci. 
Step 1: Finding a Connecting Point 

Every gap presumably originates at an endpoint vertex, PEi, 
in the graph, GV. In a local bounding box about PEi, we relax 
a threshold, Tz, on the grayscale volume, EV to produce a new 
binary mask, Bz (defined as EV > Tz).  Bz is then trimmed to 
disallow backtracking to centerline points that fall “behind” 
PEi, including those on the originating strand. The threshold, 
Tz, is relaxed until a connection is made between PEi and at 
least one other point in GV through Bz. If more than one 
vertex becomes connected, then the connection point PCi, is 
chosen so as to minimize the pathlength, constrained along 
Bz, between PEi and PCi. This process is illustrated in Figure 
4. 
Step 2: Computing the Bridging Strand 

The revised binary mask, Bz, can be large and include 
many points irrelevant to finding the 3D path between PEi and 
PCi. Therefore, we further refine Bz. using a binary search 
over thresholds to tighten the mask to include the fewest 
voxels while still linking PEi and PCi. We then use a “paired 
pathlength distance transform” to eliminate all points in the 
mask except those most likely to participate in the path, 
producing a new, smaller mask in the vicinity of the gap, BG. 
Dijkstra’s algorithm then produces the output strand, Si, 
connecting PEi to PCi constrained to BG.  

BV ,EV 
GV = (VGv,EGv) 

Find Bridging 
Strands 

S={(S1,C1), 
           (S2,C2),…,(SN,CN)} 

Figure 3: An illustration of the threshold relaxation process. The original mask with a gap is shown with a blue 
isosurface. The neighborhood of the endpoint to connect, PEi, is shown with a red isosurface. Points in GV on the 
same strand as PEi are highlighted with a green isosurface. The yellow isosurface separates points that are closer 
to PEi than to other points on the same strand. The resulting candidate connection points in GV are shown with 
red *’s; excluded points in GV are shown with black o’s. On the far left, the threshold, Tz, admits no points in the 
gap connecting mask, Bz. Moving right, the threshold is relaxed (lowered) and the mask contiguous with PEi (Bz) 
is illustrated with a black isosurface. Moving right, as the threshold is relaxed further, more points near PEi are 
added to Bz. At the far right, PEi is connected to a number of candidate points  in GV by Bz. 



 

 

In § 2.1 we discuss the two different distance transforms 
used in the algorithm. We sketch both steps of the gap 
connection algorithm as pseudocode in § 2.1 and § 2.2. 

2.1. Distance Transforms 
Euclidean Distance Transform 

A 2D binary mask, B, consisting of bright and dark pixels, 
with values 1 and 0 respectively, is shown in the left panel 
Figure 6.  The standard Euclidean distance transform, Dr(B), 
yields the distance from every bright pixel to its closest dark 
pixel, as shown in the center panel of Figure 6. Note that the 
distance transform is 0 everywhere outside the mask.   
Pathlength Distance Transform 

The pathlength distance transform, Dp(B,s), from a chosen 
starting point, s, is shown in the right panel of Figure 6. The 
pathlength distance, Dp, is defined as the geodesic, e.g., 
shortest path, from one point in the mask to another point in 
the mask constrained such that all intervening edges are also 
in the mask. By definition, the pathlength distance between 
points on the mask and points outside the mask is ∞, i.e., they 
are not connected. Many methods can be used to compute the 
pathlength distance transform, including fast marching 
methods and Chamfer methods, e.g.. In this work, we use the 
Chamfer3,4,5 method for pathlength computation as defined in 
[15]. 

 
Figure 5: A 2D binary mask, B (left), its Euclidean 
distance transform, Dr(B) (middle), and a pathlength 
distance transform, Dp(B), where the pathlength 
distance is computed from the “Start Point”, s (right). 

2.2. Finding a Connection via Local Threshold 
Relaxation 

A small 2D cross section through the enhanced grayscale 
volume, EV, is shown in Figure 7. In the same figure, the blue 
overlaid outline indicates the corresponding binary mask, BV.  
See Figures 2&3 for examples of a corresponding 3D graph, 
GV.  
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Figure 6: Continuous-valued “vessel network” volume, 
EV, cross-section (grayscale) and outline of in-slice 
vessel network mask, BV, (blue contour). 

The pseudocode to find the connection points from the 
mask and graph inputs is given below.  

 
ThresholdRelaxation 

 

 
 

The following notation applies to the 
ThresholdRelaxation pseudocode: Interior vertices are those 
vertices further from the edges of V by a distance ≥ ΔE. XV → 
XB restricts the volume X to only the bounding box, B, from 
the entire volume, V. BW\Pj means the binary mask of all 1s 
except at locations Pj. The function µ(E|B) returns the mean 
of E where B is true; similarly, σ(E|B) returns the standard 
deviation of E where B is true. The vertices of graph G are 
located at VG.  

In ThresholdRelaxation:7-8, the mean and standard 
deviation of the local volume, EB, is computed where BB=0. 
An example of the background and vessel distributions for 
one bounding box is shown in Figure 8. 
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Figure 7: Separation of EB “on/off” histograms by z-
score. The blue curve is a histogram of EB(BB = 0) and 
the red curve is a histogram of EB(BB = 1). 

2.3. Computing a Bridging Strand 
Using the endpoint, connection point, thresholds, and local 

volumes found in ThresholdRelaxation:1-20, step 2 of the 
algorithm is ThresholdRelaxation:21, which can be written 
functionally as in GetBridgingStrand below. 

In GetBridgingStrand:1, the tight threshold, TT, is chosen 
via a binary search of thresholds between TCi and TUi such 
that BT(PEi) = 1, BT(PCi) = 1 and DP(BT,PEi,PCi)<∞ (i.e. PEi and 
PCi are connected via BT). 

 

 
* step omitted in results presented here 

 
In the above pseudocode, DG is the continuous-valued 

“paired pathlength distance” in the gap between PEi and PCi. 
BG is a binary mask indicating where that distance, DG, is 
smaller than the minimum paired pathlength distance plus 
some tolerance, Δ. An example of BG is shown in Figure 9 as 
a green isosurface — note that BG was derived from BT, 
shown as a gray isosurface. The ith “bridging strand”, Si, is 
computed via Dijkstra’s shortest path algorithm from PEi to 
PCi constrained to BG, and is depicted as a thick black 
polyline in Figure 9. The paired pathlength distance 
transform reduces Dijkstra’s search space from the larger 
volume, BT  — depicted in gray,  to the smaller volume, BG 
— depicted in green.  Lattice edges available to the search are 
shown in red in Figure 9. 

The outputs of the algorithm are: {(S1,C1), (S2,C2), 
…,(SN,CN)}, where each Si consists of a list of coordinates 
that bridges a single gap between one vertex in VG (PEi, e.g.) 
to another vertex in VG.  The coordinates in each strand, Si, 
are compiled in sequential order, i.e, the first coordinate is 
connected to the 2nd, the 2nd to the 3rd, etc.. This produces a 

monofilament graph with n points and n-1 edges. The 
confidence metric, CN, is the z-score for the tight threshold, 
TT, connecting all those points. 

 

Figur
e 8: The tight mask that bridges the gap between PEi 
and PCi (red dots) is shown in gray. The gap mask, BG, 
is shown in green. The candidate voxel lattice edges for 
the Dijkstra bridging strand search are shown in red, 
and the minimum path from PCi to PEi constrained to 
that lattice, the bridging strand, Si, is shown in black. 

3. Gap Connection Results 
An example bridging strand, as computed by the 

algorithm described above, is shown in Figure 10 (in 
magenta).  Additional results can be found at the end of 
the paper in Figure 11. 

 
 
 
 

 
Figure 9: Outputs: Bridging strand, Si (magenta). Only 
adjacent strands to the bridging strand are shown in 
black. The original mask, BB, is shown in blue, the gap 
mask, BT, is shown in gray. 
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Figure 10: Precision-Recall comparison of tensor 
voting and threshold relaxation methods for gap 
connection. 
 

Gaps were closed using both the threshold relaxation 
method and the tensor voting method in [20]. Run times were 
~1 hour on a 2GHz machine for Threshold Relaxation and ~4 
hours for Tensor Voting. For both algorithms, we visually 
examined the gap-connected graphs and classified the gaps 
visually. If either algorithm found a bridging strand in the 
vicinity of a real gap, it was given credit for a “true positive”. 
Otherwise that gap was scored as a miss. Spurious 
connections outside the locations of real gaps were scored as 
false positives. Because only interior endpoints are connected 
in threshold relaxation, only misses in the interior were 
counted (and all false alarms were counted). Tensor voting 
was scored similarly, although it was given credit (true 
positives counted) for connections made near edges if it 
found them. Tensor voting requires two parameters, a 
characteristic gap length and an angle that controls allowable 
gap curvature; we screened parameters between 20 and 100 
for each input parameter. We also requested a parameter set 
chosen by the author of the tensor voting method; the author 
was given access to our graph with gaps to determine how to 
set parameters. The resulting Precision-Recall curve is shown 
in Figure 11. 

In general, both methods perform well on precision, but 
the threshold relaxation method outperforms on recall, 
meaning it does a better job of connecting all gaps. For some 
gaps, the threshold relaxation method connected true gaps 
larger than 30 voxels which the tensor voting method did not 
connect—these are false negative connections (i.e. misses) 
for the tensor voting method. In the PR curve shown, all 
bridges found by threshold relaxation bridges were allowed, 
regardless of the confidence score.  In a small number of 
cases, this resulted in spuriously connected endpoints that did 
not correspond to real gaps (i.e. threshold relaxation false 
positives).  This false positive rate can be reduced, e.g., by 
applying an acceptance limit to the confidence metric 
discussed  above in § 2.3. 

4. Discussion 
The threshold relaxation method presented here enjoys a 

number of desirable characteristics: 1) It exploits the 
topology of the vectorized graph for gap-finding, 2) It 
exploits the underlying intensity data to guide connections, 3) 
It prevents backtracking, 4) It can connect potentially large 
gaps, 5) It is conceptually simple, 6) It is modular, and 7) it 
can be extended to incorporate more sophisticated search 
strategies (e.g., tensor voting). By visual examination, the 
algorithm performed well on reconnection tests with real 
data. In practice, most gaps can be connected by choosing a 
marginally relaxed (lower) threshold in the vicinity of the 
gap. In these cases, the gap connection algorithm intuitively 
finds that new lower threshold that will connect the gap 
through a vessel segment that is, in fact, represented in the 
original grayscale data, albeit at a lower intensity. 

Though empirical tests bear out the relaxation method, the 
current implementation of the algorithm has limitations: The 
algorithm can only connect gaps in the vicinity of at least one 
endpoint. Conversely, if there is an endpoint associated with 
a “true” gap that does not merit reconnection, the relaxation 
process may lower the threshold excessively, leading to a 
spurious bridging of the gap through noise voxels.  However, 
in the case where the threshold is lowered excessively, the 
confidence on the bridging strand can be used to reject such 
connections (not shown). Furthermore, since spurious 
endpoints are the ultimate cause of spurious connections, 
upstream improvements to vectorization that recognize 
morphological noise (i.e. “bumps” in the vessel mask) also 
mitigate this limitation. 

Compared to a more sophisticated gap connection method 
like tensor voting [20], threshold relaxation method presented 
connected nearly all the gaps that tensor voting connected.  It 
also connected larger gaps that were missed by tensor voting, 
but it also erroneously added some small loops. Theoretically, 
the tensor voting formalism is attractive because it takes into 
account the direction of vessels and makes incremental 
extensions in the direction of vessel axes more likely. The 
backtracking rejection mask, BR, in the threshold relaxation 
method serves a similar purpose, but cannot discriminate 
small variations in direction. 

Finally, the method presented both requires and exploits 
the underlying continuous-valued volume, EV, corresponding 
to the vectorized graph, GV, whereas the tensor voting method 
only requires the downstream vectorization, GV.  This final 
consideration, that the algorithm preferentially form bridges 
that are supported by grayscale data, represents either a 
limitation or a benefit, depending on the application at hand; 
our results clearly indicate that using the grayscale data helps.  
Hybrid methods, involving threshold relaxation and tensor 
voting or other methods are obviously attractive extensions. 

5. Conclusion 
The gap connection via threshold relaxation method is a 

simple tool to connect potentially large gaps in vectorizations 
of tubular networks. The method presented only computes the 
bridging strand, but moving forward, the bridging strand must 



 

 

be incorporated into the larger vectorization, GV. We have 
tested the straightforward method of using the bridging strand 
to generate a “gap connecting mask” which should then 
connect the original mask, BV. This new reconnected mask is 
then revectorized. Of course, only one vectorization step is 
necessary, and one can also incorporate all Si directly into GV 
and make the corresponding adjustments to other strand 
definitions via a low level re-indexing of GV.  

With accurate vectorizations, as discussed in §1, 
downstream tasks like microdomain identification, 
vascular network topology quantification, and anatomical 
statistic generation become tenable.  
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Figure 10: An illustration of the method on a small number of real gaps. Original mask is shown in blue, gap-
filling mask in gray, bridging strand in magenta, and adjacent strands in black. 


