
Supporting Text

Signal Conditioning.  Electrode impedances in physiological saline were typically 1 M!

at 10 Hz for both reactive and resistive components.  All electrical signals, i.e., those for

the mystacial electromyogram (EMG), the cortical local field potential (LFP), and the

EMG reference signals from the nose and the LFP reference signal from an unrelated

region of cortex, were impedance-buffered at the head of the animal (Fig. 7).  We used

n-channel field effect transistors (FETs) (SST4118; Vishay Siliconix) with matched

transconductances (gm = 180 µS) that were configured as common source

transconductance amplifiers.  The FETs were built into each of two 10-pin headstage

connectors (nos. SMS-110-01-G-S and TMS-110-01-G-S-RA, Samtec); 16 pins for EMG

or LFP signals and 2 pins for a reference signal, plus a system ground that was tied to

bolts in the animals skull.  The buffered signals traversed approximately 1 m of cable

(no. NEF34-1646; Cooner Wire) to a precision load resistor (39.2 k!), followed by a

1 Hz high-pass single-pole filter.  We measured the difference between each filtered

channel and the filtered reference signals with a FET-input instrumentation amplifier with

a fixed gain of 100 (V/V) (no. INA101, Burr Brown, Texas Instruments).  The appropriate

reference was chosen for each channel through a set of switches.  Although we later

compute differences between pairs of EMG signals and pairs of LFP signals, which

should cancel the value of any reference signals, we employ separate EMG and cortical

references as an additional precaution against possible unbalanced common input to the

two sets of signals.

The low-impedance differential EMG and LFP signals pass through a commutator and

5 m of cable to high-pass filters, amplifiers, and antialias filters.  The EMG signals were

high-pass filtered at 200 Hz (no. UAF42 configured as a 4-pole Bessel filter; Burr Brown)

and amplified between 32- and 128-times.  The LFP signals were high-pass filtered at

1 Hz (single pole filter) and amplified between 32- and 128-times.  All signals were then

band-limited to 10 kHz with an 8-pole constant-phase low-pass filter (no. D68L8D –

10.0kHz, Frequency Devices) and digitized at 25 kHz with a 12-bit digital-to-analog

converter (no. AT-MIO-16E-1, National Instruments).  The difference between any two

brain signals, rectification for the EMG signals, low-pass filtering of the difference, and

subsampling of the difference were performed numerically (MatLab; The MathWorks).



Spectral estimates.  Spectral methods provide a means to characterize the response

and the variability in that response as an average across trials.  Spectra power densities

of individual epochs, denoted S(f), were calculated with the direct multi-taper spectral

estimation techniques of Thomson (1, 2); this procedure minimizes the leakage between

neighboring frequency bands.  We denote the measured time-series for the i-th trial,

either "EMG or "LFP, as V(i) #  
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is the discrete Fourier transform of the product of the mean-subtracted time-series, $V(i),

with the k-th Slepian taper, w(k) #  
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.  The parameter N is the number of

instances of the waveform and K is the number of tapers in a given spectral estimate.

The spectral coherence between pairs of time-series, denoted C(f), is defined

analogously to the spectral power, with
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˜ U (i,k)  are the Fourier transforms of the two respective time-series.  In

these estimates, the spectrum is averaged over a half-bandwidth of %f = (K+1)/(2T); this

value ranged from 2.5 to 3 Hz in the present studies.  Numerically,     
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computed as the fast Fourier transforms of the respective product after it is padded to at

least 4-times the initial length.

Standard deviations of the spectra are reported as jackknife estimates across all

degrees of freedom (3).



Interpretation of |C(f)|.  We consider a model that relates a signal y(t) to an underlying

variable x(t) by the convolution y(t) = 
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transfer function, x(t) is considered as a random variable, and '(t) is an underlying noise

source, with zero mean, that is uncorrelated with x(t).  In the frequency domain,   
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we make no assumption about the spectral content of the noise.  Similarly, the cross
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signal to that in the underlying noise is 
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.  This expression is

analogous to the variability captured by the square of the correlation coefficient, r, in

regression analysis (4), where |C(f)|2 within a defined spectral band plays the role of r2.

The spectral power in the underlying variable beyond that in the noise, which forms a

signal power, can be used to define a “Signal-to-Noise” ratio in a given frequency band

for the above model of noise, i.e.,
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When |C(f)|2 << 1, as occurs for the measured data in this study (Figs. 3C and 5C), the

above expression simplifies to
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Thus the reported magnitude of the coherence may be interpreted as a signal-to-noise

ratio for predicting vibrissa position, i.e., the "EMG, from the cortical signal, i.e., the

"LFP.

Caption

Figure 7.  Abbreviated schematic of the recording electronics.
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