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Details about OpenCV procedure For cell segmentation from brain section
images, we used the adaptive thresholding technique provided by OpenCV. This
process, specifically through the cv.adaptiveThreshold function, computes the
threshold for a pixel based on a small region around it. The parameters used in
this function were as follows:

thresholdType: cv2.THRESH_BINARY,
adaptiveMethod: cv.ADAPTIVE_THRESH_GAUSSIAN_C,
blockSize: 101 (chosen based on the typical cell size),
C: -12 (selected manually based on segmentation quality).

Details about KMeans We applied the Kmeans clustering algorithm on an
extensive dataset of ten million cell patches extracted from a single brain’s seg-
mentation to find around one thousand representative cell patches. The Kmeans
procedure included two key steps: initialization with Kmeans++ and subsequent
refinement. Kmeans++ was used to select 2,000 initial cluster centroids. Then
these centroids were used to aggregate similar cell patches into clusters. The
mean of each cluster was computed as the final set of representative cell patches.
Clusters containing fewer than 5 samples were excluded. Figure 1 shows sam-
ples of the original cell images and of representative cell patches selected using
K-means after normalizing rotation.

Details about Diffusion map We used the public implementation of DM 1.
The parameters used in this function were as follows:

n_evecs – Number of diffusion map eigenvectors: 100,
k – Number of nearest neighbors to construct the kernel: 100,
epsilon: 5000 (chosen based on the typical cell size),
alpha: 1.0, neighbor_params: {’n_jobs’: -1, ’algorithm’: ’ball_tree’}.

Details about RMS-based optimization The mathematical formulation of
finding a linear transformation between two different diffusion maps can be de-
scribed as follows: Given a set of vector pairs (a1, b1), . . . , (an, bn) where each of
the vectors ai, bi are in a d dimensional space Rd, find an offset vector µ ∈ rd

1 https://github.com/DiffusionMapsAcademics/pyDiffMap
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Fig. 1. (a) Original cell patches, (b) Cell patches selected using K-means after nor-
malizing rotation.

and a linear transformation M which is a d×d matrix so that the following cost
function is minimized:
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We first compute the hessian matrix of 1 with respect to µ and M to see if
the problem can be directly solved.
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The results show that both hessian matrices are Positive Semi-definite ma-
trices and thus we can find the solution by setting derivatives to 0. We have:
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Details about 10 manually designed features The 10 manually designed
features encompass the following: width, height, and area of a cell; rotation angle
along with its confidence level; mean and standard deviation of pixel intensities
within the cell image; the size of the cell patch, and standard deviation of hori-
zontal and vertical coordinates of all cell pixels in the cell patch.

Details about XGBoost classifiers The parameters used to train our XG-
Boost classifiers were as follows:

params: {’max_depth’:3, ’eta’: 0.2,
’objective’:’binary:logistic’, ’num_class’:1},

num_boost_round: 100.


