Supplemental Information for "Theory of hierarchically-organized neuronal oscillator dynamics that mediate rodent rhythmic whisking"

Supplemental Figure 1. Dynamics of the rate model for the pBötC-vIRt^{ret}-vFMN circuit.

Time courses of $g^{rB}g^{B}$, M^{r} , a^{r} , M^{F} and a^{F} are plotted for the six cases by representing values of g^{rB} . The time traces are calculated using numerical simulations of the rate model, with $\Delta T_{pBotC} = 70 \text{ ms}$, $T_{pBotC} = 700 \text{ ms}$. The time constant τ_{s} is reduced to 0.1 ms to make the condition $\tau_{s} \ll \tau_{a}^{r}$, τ_{a}^{F} , under which the rate-based analytical theory is developed, more accurate.

(A1) $g^{rB} = 0.07 \text{ mS/cm}^2$. (A2) $g^{rB} = 0.15 \text{ mS/cm}^2$ (B1.1) $g^{rB} = 0.32 \text{ mS/cm}^2$. (B1.2) $g^{rB} = 0.4 \text{ mS/cm}^2$. (B2) $g^{rB} = 0.55 \text{ mS/cm}^2$.

(C) $g^{\rm rB} = 0.75 \,\mathrm{mS/cm^2}$.

Supplemental Figure 2. Dynamical properties of circuits without pBötC input to the vIRt and $g_{intra} = 0$.

(A) Schematic of the circuit. The dynamics are calculated for $g_{intra} = 0$, $g_{adapt}^r = 7$ mS/cm², $g_{adapt}^F = 0.3$ mS/cm² and $I_{ext}^F = 3.1 \ \mu$ A/cm². The excitatory input is fixed at $I_{ext}^r = 20 \ \mu$ A/cm² and g_{inter} is varied for the data in panels B, D, F, H, and J. The conductane g_{inter} is fixed at 6 mS/cm² (black arrow in in panel J) with I_{ext} varying for the data in panels C, E, G, I, and K. Properties are computed using three modeling strategies, as in Figure 3F-G, and we use the same notation.

(B,C) The average spike rate $\langle M \rangle_i$. The rate model exhibits three dynamical regimes. For $0 \leq g_{inter} \leq g_{tr}$, the neuronal subpopulations are constantly spiking. For $g_{tr} < g_{inter} \leq g_{det}$, the two subpopulation oscillate in a symmetric manner and are alternately active. The values of $\langle M \rangle_i$ for the vIRt^{ret} and vIRt^{pro} subpopulations are equal in the uniform and oscillatory states. For $g_{inter} > g_{det}$, one subpopulation is constantly active and the other one is silent. The values of g_{tr} and g_{det} are defined in the Star Methods. The regime $g_{tr} \leq g_{inter} \leq g_{det}$ is denoted grey in panels B, D, F, H, J. The values of $\langle M \rangle_i$ for the two vIRt subpopulations, computed from simulations of the conductance-based model, are similar to those computed from the rate model for $g_{inter} \leq g_{det}$. As of g_{inter} increases beyond g_{det} , one subpopulation of conductance-based neurons becomes more active than the other. The less active subpopulation becomes silent at large values of g_{inter} . Therefore, the actual transition to the bistable state in the conductance-based model occurs for a g_{inter} value larger than the transition value for the rate model, g_{det} .

(D,E) The average whisking amplitude $\langle \theta^{amp} \rangle_t$. Analytical results are computed in panel D for the uniform and the bistable state.

(F,G) The whisking frequency $1/T_{vIRt}$.

(H,I) The whisking set-point $\langle \theta^{set} \rangle_t$. Analytical results are computed in panel H for the uniform and the bistable state.

(J,K) The coefficient of variation $(CV_2)_i$ calculated solely from the conductance-based equations.

Supplemental Figure S3. Effects of the onset time of pBötC activity on the amplitude of the subsequent whisk.

Values of the amplitude θ_1^{amp} (Figure 7B) of vIRt^{ret} neurons are plotted as a function of $\Delta t_{\text{Bw},1}$. Each circle represents an amplitude of one whisk after the onset of pBötC activity. Parameters:

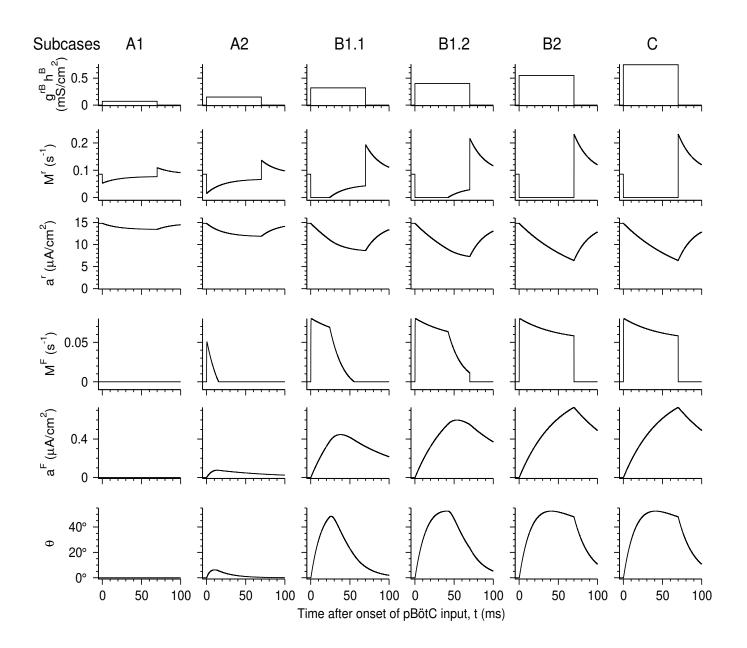
(A) $T_{\text{pBotC}} = 250 \text{ ms}, T_{\text{rand}} = 150 \text{ ms}.$

(B) $T_{\text{pBötC}} = 200 \text{ ms}, T_{\text{rand}} = 70 \text{ ms}.$

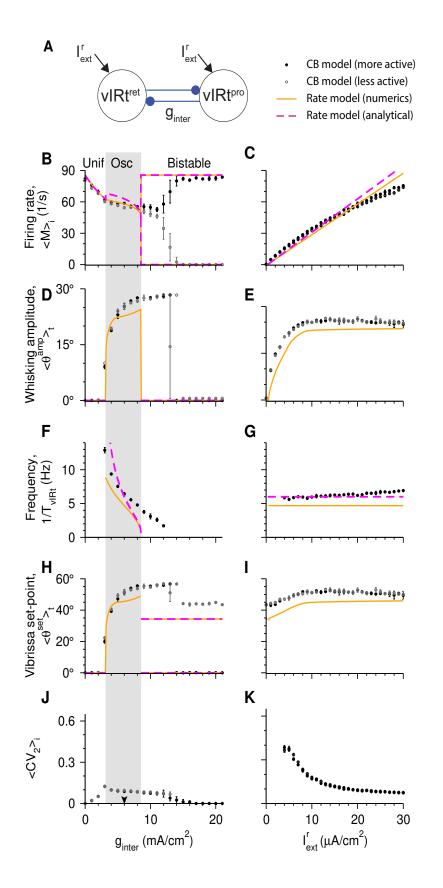
(C) $T_{\text{pBötC}} = 250 \text{ ms}$, $T_{\text{rand}} = 70 \text{ ms}$.

Explanation and relation to Figure 7F:

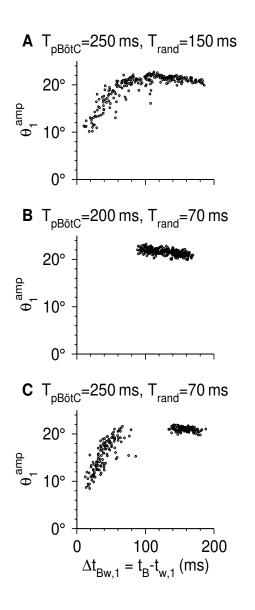
The difference $\Delta t_{\text{Bw},1} = t_{\text{B}} - t_{\text{w},1}$ affects the amplitude of the following whisk, θ_1^{amp} (Figure 7B). The onset of pBötC activity at time $t_{\rm B}$ initiates a new protraction. For $\Delta t_{\rm Bw,1} \ll T_{\rm vIRt}$, the vibrissae starts this new protraction at the beginning of the retraction phase, when it is already protracted (Figure 7B, top). As a result, the following θ_1^{amp} is small. In contrast, when $\Delta t_{\text{Bw},1}$ is close to T_{vIRt} (here $T_{\text{vIRt}} = 157 \text{ ms}$), the vibrissae are already protracting just before $t_{\rm B}$, and the pBötC input enhances the protraction angle ((Figure 7B, bottom). If the pBötC onset is randomized, for example, when $T_{\rm rand} \sim T_{\rm vIRt}$, values of $\Delta t_{\rm Bw,1}$ are spread over almost the entire range from 0 to $T_{\rm vIRt}$, and $\theta_1^{\rm amp}$ values increase with $\Delta t_{\rm Bw,1}$ and eventually saturate (panel A). For smaller values of T_{rand} , $\Delta t_{\text{Bw},1}$ values are restricted to a narrower interval of $\Delta t_{\text{Bw},1}$. For example, if $T_{\text{pBötC}} \gtrsim T_{\text{vIRt}}$, $t_{\text{Bw},1}$ is about $\Delta T_{\text{pBötC}}$ after the last onset of pBötC activity, and $\Delta t_{\text{Bw},1}$ is between $T_{\text{pBotC}} - \Delta T_{\text{pBotC}} - T_{\text{rand}}/2$ and $T_{\text{pBotC}} - \Delta T_{\text{pBotC}} + T_{\text{rand}}/2$. Panel B depicts such a case, where $\Delta t_{\mathrm{Bw},1}$ values are not near zero and θ_1^{amp} is around its maximal value. Smaller $T_{\rm pB\"otC}$ entails smaller $\Delta t_{\rm Bw,1}$ and small $\theta_1^{\rm amp}$. For larger T_{pBotC} beyond that of panel B, intervening whisks appear, leading to the appearance of small $\Delta t_{Bw,1}$ values that follow the peaks of these intervening whisks and that lead to small θ_1^{amp} values (panel C). This means that as $f_{\text{pBotC}} = 1/T_{\text{pBotC}}$ decreases, the average θ_1^{amp} , $\langle \theta_1^{\text{amp}} \rangle_t$, reaches a maximal value at about $T_{\text{pBötC}} = T_{\text{vIRt}}$ (Fig. 7F).



Supplementary Figure 1. Golomb et al.



Supplementary Figure 2. Golomb et al.



Supplementary Figure 3. Golomb et al.