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Abstract

Distribution networks—from vasculature to urban transportation pathways—are spatially

embedded networks that must route resources efficiently in the face of pressures induced

by the costs of building and maintaining network infrastructure. Such requirements are

thought to constrain the topological and spatial organization of these systems, but at the

same time, different kinds of distribution networks may exhibit variable architectural features

within those general constraints. In this study, we use methods from network science to

compare and contrast two classes of biological transport networks: mycelial fungi and vas-

culature from the surface of rodent brains. These systems differ in terms of their growth and

transport mechanisms, as well as the environments in which they typically exist. Though

both types of networks have been studied independently, the goal of this study is to quantify

similarities and differences in their network designs. We begin by characterizing the struc-

tural backbone of these systems with a collection of measures that assess various kinds of

network organization across topological and spatial scales, ranging from measures of loop

density, to those that quantify connected pathways between different network regions, and

hierarchical organization. Most importantly, we next carry out a network analysis that directly

considers the spatial embedding and properties especially relevant to the function of distri-

bution systems. We find that although both the vasculature and mycelia are highly con-

strained planar networks, there are clear distinctions in how they balance tradeoffs in

network measures of wiring length, efficiency, and robustness. While the vasculature

appears well organized for low cost, but relatively high efficiency, the mycelia tend to form

more expensive but in turn more robust networks. As a whole, this work demonstrates the
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utility of network-based methods to identify both common features and variations in the net-

work structure of different classes of biological transport systems.

Author summary

Distribution networks such as vasculature systems or urban transportation pathways are

prevalent in our world. Understanding how different kinds of transport systems are orga-

nized to allow for efficient function in their environments and in the presence of con-

straints on material costs is currently an open area of investigation. In this study, we use

methods from network science to compare and contrast the structure of two different

classes of biological distribution networks: mycelial fungi and rodent brain vasculature.

While each of these systems have been studied separately, less work has focused on under-

standing the diversity of their network organization. Here, we first examine several mea-

sures that characterize network connectivity on varying scales, finding that—although

both systems have highly constrained network layouts—there are quantifiable differences

in their architectures. Furthermore, using network analyses that specifically consider the

embedding of these transport networks into real space, we observe that the two types of

systems display distinct tradeoffs in network correlates of material cost, efficiency, and

robustness. Together, our results provide evidence that while different distribution net-

works have general resemblances, they also exhibit variable design features that could

reflect differences in their functions, environmental conditions, or development.

Introduction

Transport networks—which are a subset of complex networks commonly studied using meth-

ods from network science [1]—represent structures throughout which entities are transferred

between different regions of the system. Such networks are prevalent in both the engineered

and natural world. One classic example is an urban transit system, where stations correspond

to network nodes and where physical routes, such as roads or railways, correspond to network

edges along which traffic can flow [2–4]. Examples from biology include vasculature networks,

which allow for the distribution of blood to various parts of an organism, or collections of neu-

rons and larger-scale brain areas connected by physical pathways, which allow for the trans-

mission of electrical signals throughout the network. Importantly, all of these networks are

spatial in the sense that the nodes and edges are embedded into real space [5]. The physical

nature and spatial embedding of these systems often imposes costs associated with building

and maintaining network infrastructure, and these costs can in turn constrain the network’s

topology [6], for example, by making spatially long-distance connections improbable or by

constraining the density of connections in the network. On the other hand, pressures that may

compete against wiring minimization include those driving network efficiency and robustness.

Tradeoffs between these desirable network features can vary across systems, and a quantitative

understanding of such tradeoffs may directly inform the design of optimal spatial transport

networks [7–14].

In this study, we focus on characterizing the network organization of biological distribution

systems, which are indeed subject to the competing pressures of maintaining low material

costs while achieving high efficiency and robustness. However, not all biological distribution

systems are the same. Some can constitute an entire organism—such as mycelial fungi—in
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which the physical cords making up the organism can be represented as edges in a network,

and in which branching, fusion, or end points among those cords can be represented as nodes

in a network [15–19]. Past work has shown that these systems appear to strike an intermediate

balance between cost and efficiency, enabling the organism to achieve competing goals. In

addition, their network architecture can change and adapt over time in ways that can

strengthen beneficial features, such as increased formation of cross-links and loops that aid in

robustness to damage and allow for parallel flow pathways [15, 16, 18, 20–24]. Alternatively,

distribution systems can form only a small part of a larger organism—as is the case with corti-

cal vasculature—in which a pial network on the surface of the brain routes blood to penetrat-

ing arterioles, that in turn supply the underlying tissue [25, 26]. This vasculature system can

also be modeled as a network, in which edges represent surface vessels, and nodes represent

branching points among vessels or penetrating arterioles [27] that connect to and source an

underlying three-dimensional system of microvessels. Previous investigations have found that

the pial network of the middle cerebral artery in rodent brains forms a robust foundation of

interconnected loops that can withstand damage and re-route flow in the presence of occlu-

sions [27, 28].

In both the mycelial and vasculature systems studied here, planar distribution networks—

whose nodes are distributed in two-dimensional space—must transport fluid and nutrients

efficiently in the face of constraints on the total amount of material that they can support. But

in spite of these commonalities, the two networks exist and have evolved in inherently different

environments, which may directly impact the sorts of evolutionary pressures that the different

networks experience. For example, the main role of the surface vasculature network is to trans-

port blood to tissue that is part of a larger organism. On the other hand, for mycelial fungi, the

network is the organism itself and is not necessarily constrained to serve or occupy a set region

of space. Moreover, brain vasculature resides in a controlled environment within the confines

of the skull, whereas mycelial networks live in and must adapt to often unprotected and varied

environmental conditions [17, 29–31]. In addition, while directed flow and growth are known

to be important in both vasculature and fungi, the mechanisms behind long-distance transport

of nutrients and maturation are different in the two systems [17]. However, most past work

has focused on characterizing these two classes of distribution networks separately from one

another (see, for example, [25–27] and [15, 17, 20]), with little attention paid to how the vary-

ing habitats, function, and development of vasculature vs.mycelial systems may directly affect

their network architectures. Thus, in contrast to prior studies, here we carry out a comparative

analysis to make progress in understanding the similarities and differences in network organi-

zation across these two classes of natural transport systems.

To quantitatively compare and contrast the mycelial fungi and vasculature, we consider the

binary network of nodes and edges that represents the structural backbone of connectivity

underlying each system. We then utilize a set of methodologies rooted in network science to

examine the organization of those networks. We first investigate the mycelial and rodent brain

vasculature systems using a set of measures that probe different aspects of network topology,

from those that evaluate local connectivity to those that assess hierarchical organization. We

find that the two types of distribution networks exhibit some similarities, but also many differ-

ences in regard to certain network features across varying topological and spatial scales, despite

the fact that both kinds of systems yield highly constrained, planar network layouts. In the sec-

ond part of our study, we carry out a network-based analysis that purposefully takes into

account the importance of the spatial embedding of the distribution systems, and we examine

network correlates of properties that are more directly relevant to the function of these sys-

tems. In particular, by comparison to a set of spatially-informed null models, we examine rela-

tionships between network measures of wiring length, transport efficiency, and robustness,
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and compare and contrast the associated tradeoffs across the different network classes. This

analysis uncovers some clear distinctions in how the two types of distribution networks bal-

ance competing goals, which we hypothesize may be markers for the systems’ functions or

reflect the environment in which those functions must be performed. Taken together, our

work demonstrates the utility of network science for characterizing and distinguishing differ-

ent kinds of transport networks in biology, and underscores the fact that different systems can

exhibit resemblances as well as important variations in their network structure. We hope that

this study can inform future modeling and empirical work in this area, and that it provides a

useful entry for more complex comparative investigations that consider both connectivity as

well as edge weights (vessel/cord radii), in systems where this information is known.

Materials and methods

Data

Mycelial networks. Progress in image processing and analysis has allowed for automated

extraction of digitized networks from images of mycelium [17]. In this study, we examine such

networks from three different species. For a clean comparison against the rodent vasculature,

we study a subset of networks that were ungrazed and grown without any additional resources

aside from source innocula. In addition, since the vasculature was sampled at only one time

point, for each type of mycelium, we use the most mature (i.e., the oldest) networks. Finally,

we only consider networks with at least 500 nodes, so as to obtain good estimates of Rentian

scaling (see Network measures). In all, we examine 4 different networks formed by Phallus
impudicus (P.I.) grown from a single inoculum and sampled at 46 days, 3 networks from Pha-
nerochaete velutina (P.V. 1) grown from 5 inocula and sampled between 30 days and 35 days, 5

networks from Phanerochaete velutina (P.V. 2) grown from 1 inocula and sampled between

39 days and 46 days, and 1 network from Resinicium bicolor (R.B.) grown from a single inocu-

lum and sampled at 31 days. All of the data for the fungal networks was collected from several

studies and made available online [19]. More information on details of these networks can be

found in [19], the references therein, and in the documentation within the database.

Rodent vasculature networks. The rodent vasculature dataset consists of the pial net-

works in the region of the middle cerebral artery from four rats and five mice. To map out the

networks, the vasculature was imaged and then traced by hand (further details can be found in

the original study [27]). The rodent vasculature networks were kindly provided by Pablo

Blinder and the group of David Kleinfeld at the University of California, San Diego.

Network representations

In order to study the vasculature and mycelia using methods from network science, we first

construct an undirected and unweighted adjacency matrix A for each network under consider-

ation, with elements defined as

Aij ¼

(
1 if there is an edge between nodes i and j;

0 otherwise:
ð1Þ

This yields a binary connectivity matrix that captures the topological structure of the underly-

ing system.

For the mycelial systems, the physical cords making up the organism are assigned to edges

of the network represented in the adjacency matrix A, and the branching, fusion, or end points

among those cords (as well as the inocula) are represented as nodes in the network. The net-

works describing the mycelia are 2-dimensional and planar, and all nodes have corresponding
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spatial coordinates in 2D. An example of an unweighted network from P.I. is shown in Fig 1A.

Red points correspond to network nodes and gray lines correspond to the location of edges.

See Fig. A in the S1 Text for additional examples of the unweighted network representations

from the other species of mycelial fungi.

For the vasculature systems, edges of the network represented in the adjacency matrix A

correspond to the location of vessel segments through which blood flows, and nodes are either

junctions where surface vessels merge, or are penetrating arterioles that dive into and source

Fig 1. Distribution networks from mycelial fungi and rodent vasculature. (A)An example of a network from the fungus Phallus impudicus (P.I.). The cords

making up the mycelial network are represented as edges (gray lines) and connect to form branching, fusion, or end points (red nodes). The top left node is the

inoculum. (B)An example of a vasculature network from the surface of a rat brain in the region of the middle cerebral artery. Vessel segments are represented as

edges (gray lines) and connect to form branching points on the surface backbone (red nodes) or connect to penetrating arterioles (blue nodes). In both (A) and

(B), the figures on the right are magnified sections of the full networks.

https://doi.org/10.1371/journal.pcbi.1006428.g001
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the underlying neocortical microvasculature. In this study, we include both types of nodes in

the network representation so that we can account for the vessels forming the surface back-

bone of loops as well as the many vessels that branch off the backbone and lead to penetrating

arterioles, both of which are important functionally [27]. Furthermore, modeling the full net-

work rather than just the subset of edges in loops allows for a fairer comparison with the myce-

lial systems, and a more complete quantification of network wiring lengths and other network

measures involving pathways of edges. The vasculature networks are also 2-dimensional and

planar, and all nodes have 2D spatial coordinates. We note that vessel radii information was

not available for this data set, so we therefore focus on characterizing and comparing the

unweighted network connectivity. An example of the entire vasculature network of the middle

cerebral artery from a rat brain is shown in Fig 1B. Red nodes are branching points among the

surface vessels and blue nodes are penetrating arterioles; gray lines represent the locations of

edges. See Fig. B in the S1 Text for an example vasculature network from a mouse brain. In

Table 1, we give the number of nodes (N) and number of edges (M) in each network.

It is important to note that because transport systems are physical in nature, there is often

additional information that can be incorporated into analyses due to the embedding of their

networks into real space. This is useful to consider, because in such spatial networks, the con-

nectivity and the geometric layout of network elements are likely to be interwined and con-

strained by one another. The networks studied here are embedded in two dimensions, so a

given node i has a spatial coordinate, {xi, yi}, which allows the Euclidean distance between

nodes i and j,Dij, to be computed. In reality, the cords or vessels also have some radius rij, and

one could thus construct a weighted network representation of the system, in which edges of

Table 1. The number of nodes and edges for all studied networks. The first grouping corresponds to the mycelial

networks and the second grouping corresponds to the vasculature networks.

Network type Number of nodes (N) Number of edges (M)

P.I. 1 1357 1858

P.I. 2 543 725

P.I. 3 1029 1317

P.I. 4 1519 2057

P.V.1 1 1212 1564

P.V.1 2 1384 1851

P.V.1 3 1209 1527

P.V.2 1 986 1351

P.V.2 2 551 627

P.V.2 3 553 670

P.V.2 4 948 1088

P.V.2 5 1204 1468

R.B. 602 850

Rat 1 1712 1823

Rat 2 2043 2168

Rat 3 2158 2296

Rat 4 2650 2775

Mouse 1 826 855

Mouse 2 1449 1481

Mouse 3 672 700

Mouse 4 967 994

Mouse 5 947 973

https://doi.org/10.1371/journal.pcbi.1006428.t001
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the corresponding adjacency matrix are weighted by a function of both length and radius [15,

17, 19–21, 25, 26]. However, since cross-sectional area information was not available in the

rodent vasculature experiments, we consider only the edge length in this study. Although the

spatial coordinates of nodes and edge lengths do not encompass the full geometric structure of

the underlying system, they still capture important information about how the system is laid

out in space. Furthermore, in conjunction with the network connectivity, incorporating spatial

information about inter-node distances allows one to estimate quantities such as wiring length

and more relevant assessments of network efficiency (see Network measures for details). These

kinds of metrics complement and augment network-based analyses that consider only network

topology with no regard to spatial embedding. However, we do acknowledge that radial infor-

mation is crucial for understanding distribution systems, and this will be important to include

in future work.

Network measures

Network science provides a powerful mathematical foundation for the principled study of

diverse complex networks. Within this framework, there are many different methods and met-

rics that one can use to quantify network properties. Below (and in more detail in the S1 Text),

we describe the measures utilized in this study.

Standard topological graph metrics. In our analysis, we begin by first characterizing the

different distribution networks using a set of widely-utilized graph metrics that quantify the

connectivity—or topology—of a network, without utilizing information about the physical

locations of nodes and edges. In particular, we will examine themean degree hki, the average
clustering coefficient C, the alpha index α, the topological efficiency Et, and the topological edge
betweeness centrality Bte. In short, the mean degree measures the average number of edges inci-

dent to nodes in a network, the clustering coefficient quantifies the occurrence of fully con-

nected triplets of nodes in a network, the alpha index measures the density of elementary

cycles of all lengths in a planar network, the topological efficiency is defined as the average of

the inverse of the shortest topological path lengths between all pairs of network nodes, and the

topological edge betweenness centrality measures the number of shortest topological paths

that go through a given edge. As these are widely used measures in the network science litera-

ture, we leave more detailed descriptions and definitions to the S1 Text.

Rentian scaling. We also investigate Rentian scaling [32–37] in the distribution systems,

which is an empirical scaling relationship between the number of nodes n in a partition of a

network and the number of edgesm crossing the boundary of that partition, such thatm/ nr

where 0� r� 1 is the Rent exponent. Since its initial discovery in very large scale integrated

(VLSI) circuits [38], this phenomena has been observed in biological neural systems [39, 40]

and in urban transportation networks [3]. As described further below, Rentian scaling can be

examined in both the topological and physical space of a network, and the presence of Rentian

scaling indicates a type of hierarchical organization and can be used to assess network

complexity.

Topological Rentian scaling is indicated by a relationship of the form,m/ nt, where n is the

number of nodes inside a topological partition of the network,m is the number of edges cross-

ing the partition boundary, and 0� t� 1 is the topological exponent. More specifically, one

asks whether this relationship holds across partitions of varying sizes. Here, we assess networks

for topological Rentian scaling using the hyper-graph partitioning package hMETIS [41, 42],

in which a recursive min-cut bi-partitioning algorithm recursively splits the network into

halves, quarters, etc. in a way that attempts to minimize the number of edges passing from one

partition to another (see Fig. D(i) in the S1 Text). After each round of partitioning, we track
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the number of nodes n in each partition, and the number of edgesm crossing the partition

boundaries; if the relationship between these quantities obeys the formm/ nt, then the net-

work is said to show topological Rentian scaling, and we can estimate the scaling exponent t
from the slope of a best-fit line through logm vs. log n (Fig. D(ii) in the S1 Text). See the S1

Text for further details on how this analysis is carried out. Rather than considering t in isola-

tion, it is also useful to recall the relationship between topological scaling and network com-

plexity, as developed in VLSI theory. In particular, the topological dimension of a network dT
is related to t via t � 1 � 1

dT
; thus, higher topological exponents indicate higher dimensional

network topologies [33, 36].

The presence of physical Rentian scaling can be examined by testing for a relationship of the

formm/ np, wherem is the number of network edges crossing the boundary of a contiguous

physical partition of the network, n is the number of nodes inside the partition, and p is the

physical Rent exponent. More specifically, one examines whether this relationship holds over

many partitions across different length scales in real space. To empirically test for this relation-

ship in a network, we consider 5000 square partitions of the network, where the side length

and center position of each partition is chosen at random (see Fig. D(iii) in the S1 Text). In

order to avoid boundary effects due to the finite size of the network, we only sample boxes con-

tained within the network’s convex hull. We then compute the number of nodes n inside each

partition and the number of edgesm crossing the partition boundary (Fig. D(iv) in the S1

Text), and test whether these quantities are related by a power law of the formm/ np, where

p is the physical Rent exponent (see Fig. D(v) in the S1 Text). If such a relationship holds, then

the exponent p can be estimated from the slope of a best-fit line through logm vs. log n (see S1

Text for more details on how this analysis is carried out). The existence of physical Rentian

scaling signifies hierarchical structure in the spatial layout of the network, and furthermore,

because the scaling is determined from a random sampling of the network, its existence signi-

fies a degree of spatial homogeneity and space-filling capacity. Importantly, physical Rentian

scaling extends ideas of self-similarity (such as the fractal dimension [43]), which are agnostic

to the spatial positioning of network elements. Moreover, the theoretical minimum value for

p is related to the Euclidean dimension dE into which a network is embedded and the topologi-

cal Rent exponent t via pmin ¼ max 1 � 1

dE
; t

� �
[34, 39]. The theory of VLSI circuit design pre-

dicts that low values of p (i.e., values close to the theoretical minimum) are associated with

networks that have been cost-efficiently embedded into physical space, in terms of wiring

length [32, 34, 39].

Biophysically-motivated network measures. In addition to standard measures of net-

work topology, we can also compute measures of network organization that are more directly

related to the functional requirements of and constraints on biological distribution networks.

We describe these biophysically-motivated network metrics in the remainder of this section.

Wiring length. For spatially embedded networks such as the transport systems considered

in this study, one can approximate the total wiring length of the networks, which in turn pro-

vides an estimate of material cost. Given a distance matrix Dij that encodes the Euclidean dis-

tance between all pairs of nodes, and an undirected, unweighted adjacency matrix Aij that

represents network connectivity, we define the total wiring length of the network as

W ¼
X

i>j

AijDij: ð2Þ

Note that this definition of wiring length assumes that vessels or cords are straight, and

neglects additional wiring length that may result from tortuosity.
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Physical efficiency. For spatial networks, we can also examine paths along network edges

using physical distances, rather than topological distances. In particular, the shortest physical

path between a pair of nodes i and j is taken to be the path that minimizes the sum of the

lengths of the edges traversed in a path connecting nodes i and j. This is in contrast to the

shortest topological path between the same nodes, which neglects geometric information.

Using physical path lengths rather than topological path lengths, we can compute the average

physical efficiency Ep
avg. This quantity is defined as

Ep
avg ¼

1

NðN � 1Þ

X

i;j

1

lpij
; ð3Þ

where lpij is the length of the shortest physical path along network edges between nodes i and j.
Dividing Ep

avg by the corresponding value for a fully connected network with the same number

of nodes yields the global physical efficiency Ep, where 0� Ep� 1. Shortest path and efficiency

measures that explicitly incorporate the geometric layout of a network have previously been

used to study spatial networks such as ant galleries [44], street patterns in cities [45, 46], brain

networks [47], slime mould [48], and fungal networks [17, 20–23], but to the best of our

knowledge, have not yet been used to quantify animal vasculature networks.

Physical edge betweenness centrality. From the shortest physical paths between all node

pairs, we can also calculate a physical edge betweenness centrality Bp
e . Letting

c
p
qr ði;jÞ

c
p
qr

be the frac-

tion of shortest paths (measured in physical units of distance) between q and r that pass

through edge (i, j), we compute

Bp
e ði; jÞ ¼

X

q;r

c
p
qrði; jÞ
c

p
qr

: ð4Þ

For an edge (i, j), this quantity is thus the fraction of shortest physical paths between all node

pairs that traverse the edge (i, j).
Network robustness. Finally, we note that a desirable feature for both natural and artifi-

cial networks is robustness. Here, we consider structural robustenss in the sense of how well-

connected a network remains when subjected to damage. We probe this by removing a frac-

tion of the total number of edges at random from a network, and then track how the size of the

largest connected component evolves as the fraction of removed edges increases. In particular,

we define the robustness R of a network to be the percentage of edges removed in order for the

size of the largest connected component to drop to half of its original value [44, 45]. Since

edges are removed at random, there can be some variation in the results when the same proce-

dure is run again on the same network. We thus compute R a total of 20 times for each net-

work in order to generate a representative ensemble average. We again note that in our

analysis, we consider the robustness of the entire vasculature network, rather than just the

backbone, as considered in [27]. This allows for a cleaner comparison between the vasculature

and fungi, and takes into consideration the many vessels that branch directly off of the back-

bone to penetrating arterioles.

Null models

In order to place various measures of network organization into context, or to compare and

contrast empirical networks of varying size, it is useful to normalize network properties com-

puted on a given network G by their corresponding values in null model networks that have

the same number of nodes as G. Null models are often canonical networks that preserve certain
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features of the original network (e.g., density) or are networks that have idealized or extreme

topological and/or spatial organization (e.g., lattice-like, random, or fully connected) [49].

Randomly-rewired benchmarks. One null model we consider is a type of random

graph—sometimes called the configuration model—constructed by randomly rewiring a given

empirical network while preserving its degree distribution. To generate these randomized

benchmarks, we use the Brain Connectivity Toolbox [50], which contains a function based on

the algorithm introduced in [51], and that also maintains the connectedness of the rewired

network. Each edge is rewired approximately 15 times. This null model is employed in the first

part of our analysis, in order to better compare certain topological metrics across the set of

empirical distribution networks. In particular, for each empirical network, we generate an

ensemble of 10 randomly rewired networks. We then compute the mean value hXrewirei of a

given metric across the ensemble of randomly rewired networks, and normalize the empirical

value X by the reference value hXrewirei. We can then compare the normalized values X
hXrewirei

.

This allows us to ask if different kinds of distribution networks exhibit differences in specific

network properties, while controlling for variability in network size and degree distribution.

Note that while this null model preserves certain topological features of an empirical network,

it is agnostic to spatial features.

Spatial null models for wiring, efficiency, and robustness. In spatial networks, the nodes

and edges exist in real space, and this physical embedding often has significant consequences

for the network topology [5]. An important constraint for biological systems in particular is the

material and energetic costs associated with building and maintaining the physical structure of

the network. But a competing constraint stems from the fact that distribution networks must be

able to move resources efficiently and be robust to damage. In order to gain an understanding

of how the spatial embedding of these networks might affect their architecture, and how distinct

types of biological transport systems may differentially balance certain pressures, in the second

part of our analysis we compare the empirical networks to two idealized planar null model net-

works: the minimum spanning tree (MST) and the greedy triangulation (GT). The same or sim-

ilar null models have previously been used in the analysis of fungal systems, [17, 20–23], slime

mould [48], networks of ant galleries [44], and urban street networks [45, 46].

TheMST is a graph that connects all of the nodes in a network such that the sum of the

total edge weights is minimal. By construction, theMST also contains the minimum number

of edgesM needed to connect a network (M = N − 1, where N is the number of nodes). In the

biological distribution networks studied here, the relevant edge weights are their physical

lengths. Therefore, for theMST null model, we preserve the true spatial locations of all nodes

in the empirical network, and compute theMST on the matrix of Euclidean distances, Dij,
between all node pairs. The resulting network is planar and minimizes the total wiring length

W of the network (Eq 2), given the spatial distribution of nodes. The GT represents the oppo-

site extreme, and is a maximally connected—in terms of the number of edges—planar net-

work. In particular, following [44–46], we compute GTs on the true node locations of all real

networks by iteratively connecting pairs of nodes in ascending order of their distance while

ensuring that no edges cross. As with theMST, this null model is also constructed under a geo-

metric constraint, but since it contains many more edges, it represents an effective upper

bound on the wiring length of a planar network with given node locations. In Fig 2, we show

theMST and GT for the mycelial and vasculature networks depicted in Fig 1.

Relative measures of wiring length, spatial efficiency, and robustness. In the second

part of our analysis, we examine a set of network measures that explicitly take into account

spatial constraints and that are more directly pertinent to the function of transport networks.

These are the wiring length, physical efficiency, and robustness (see Biophysically-motivated
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network measures). It is important to note that these kinds of metrics have previously been

used to quantify and compare the structure of mycelial networks [17, 20–23]. Here, we will

build on and extend prior analyses by examining tradeoffs and relationships between these

quantities, and most importantly, we focus on comparing the wiring length, network effi-

ciency, and structural robustness across the vasculature and mycelial networks.

While useful measures to consider in the context of distribution systems, when considered

in isolation, it is difficult to understand how these metrics are related to one another and how

they compare across similar networks of different size or of completely different type. In order

to better understand how the network architecture of the vasculature and mycelial systems

might be differentially organized for each of these measures, we thus use a set of normalized

quantities that characterize how the wiring length, efficiency, and structural robustness of a

given empirical network compare to approximate limiting values for a network of the same

size and with the same node locations. In particular, following [44–46], we define a relative
cost, physical efficiency, and structural robustness using theMST and GT null models.

The relative cost is

Wrel ¼
W � WMST

WGT � WMST
; ð5Þ

whereW,WMST, andWGT denote the total wiring length of the real,MST, and GT networks,

respectively. In a similar manner, the relative global physical efficiency, Ep
rel, is given by

Ep
rel ¼

Ep � Ep
MST

Ep
GT � E

p
MST

; ð6Þ

and the relative robustness Rrel is

Rrel ¼
R � RMST

RGT � RMST
: ð7Þ

Fig 2. Construction of spatial null model networks. (A,B)The minimum spanning treeMST and (C,D) the greedy triangulation GT for the mycelial network

and vasculature network shown in Fig 1.

https://doi.org/10.1371/journal.pcbi.1006428.g002
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By definition, theMST is minimally wired, but since it contains no redundancy or shortcuts,

we also expect it to have low efficiency. It is also clear that the removal of any edge will break

theMST into disconnected components. In contrast, the GT is a highly expensive network to

build, but this increase in network density for the same set of nodes should improve the

robustness as well as the efficiency of the network, since it allows for shortcuts between pairs of

otherwise more distant nodes. Thus, theMST is an effective lower bound for wiring length,

efficiency and robustness, and the GT is a good approximation for a planar network that

achieves upper bounds with respect to the same measures. The relative measures are normal-

ized between 0 and 1 for theMST and GT, respectively. This normalization allows for a direct

quantification of where the real distribution networks lie in comparison to the limiting values

achievable for a fixed spatial distribution of nodes. Furthermore, the relative quantities can be

used to understand and properly contrast the tradeoffs between wiring, efficiency, and resis-

tance to random damage between the vasculature and fungi.

Statistical comparisons

In order to make statistical comparisons between the two types of distribution networks—

mycelial fungi vs. vasculature—we first group all mycelial networks together and all vascula-

ture networks together, and use two-sample t-tests to compare network measures between the

two groups. Statistically significant differences between the two groups with respect to the

mean value of a particular measure (which we denote using an overbar symbol and subscripts

“F” or “V” for fungi and vasculature, respectively) are indicated by a p-value< 0.05. Because

there are only a small number of networks in the individual subgroups of fungi (i.e., P.I., P.V.

1, P.V. 2, R.B.) and vasculature (i.e., rat, mouse), rather than making comparisons at the level

of each subgroup—which would not permit a robust statistical analysis—we use the method of

first grouping the data and then examining overall differences or similarities between the

broad classifications of network type.

Results

We now examine the vasculature and mycelial networks using the metrics and null models

outlined in the previous section. The overarching goals of the following analysis are to charac-

terize the network structure of the two types of distribution systems, and to compare and con-

trast their network architectures. Our study is decomposed into two main sections:

Characterization of network architecture with graph-theoretical measures and Comparative

analysis of network organization using biologically-motivated measures. In the first section,

we begin by considering a set of standard graph-theoretical metrics that describe topological

features of a network (i.e., those which are connectivity-based and that can be computed

regardless of a spatial embedding). The different measures within this set can be classified

based on the topological scale they assess, ranging from, for example, degree (which quantifies

structure in the local neighborhood of nodes) to topological efficiency (which probes network

organization on a more global scale). We will see that the vasculature and mycelia are distin-

guishable in terms of each topological graph metric considered. Next, we investigate the rela-

tionship between topological and physical edge-betweenness centrality, finding that the extent

of the overlap between the spatial and non-spatial version of centrality differs across the two

classes of distribution systems. Finally, inspired by notions of hierarchical and cost-efficient

organization in transport networks more broadly, we close the first part of our analysis by

examining topological and physical Rentian scaling in the vasculature and mycelia. The afore-

mentioned analyses then lead into and motivate the second main portion of the results, in

which we turn from a description of the two distribution networks with classic graph measures
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to a more biophysically-informed characterization of the vasculature and mycelia using the

spatial null models and a set of biologically-inspired network measures that may be more

directly relevant to the function of these systems. In particular, this latter analysis uncovers dis-

tinctions in how the two kinds of systems balance network-based estimates of material cost,

efficiency, and robustness. For easy reference, the main results of our analyses are summarized

in Table 2.

Characterization of network architecture with graph-theoretical measures

Standard network metrics. To begin, we characterize the vasculature and mycelia using a

series of standard topological network metrics.

Focusing first on measures that assess local connectivity in the immediate neighborhood of

nodes in a network, we found that themean degree hki was highly constrained, falling between

2 and 3 for all networks. This is expected for biological flow networks, in which junctions typi-

cally develop from the branching, fusion, or anastomosis of vessels or cords [17, 52]. However,

even within this narrow range, we observed statistically significant differences in hki for the

vasculature vs. fungi (p-value = 7.8 × 10−8, Fig 3A), with the mycelial networks having larger

mean degrees (hkiF ¼ 2:57) than the vasculature systems (hkiV ¼ 2:09). We also examined the

clustering coefficient, which measures transitivity in a network (i.e., the density of the shortest

possible cycles in a network—those of length three). Considering, in particular, the normalized

clustering coefficient C=hCrewirei (Fig 3B), we found that most of the empirical networks tended

to have larger clustering relative to their randomly-rewired null models, although two of the

vasculature networks had C = 0. We note that, especially for the vasculature, many instantia-

tions of the randomly rewired networks also yielded clustering coefficients of zero, pointing

out that triangles are generally rare in randomized networks of the same size and degree

Table 2. Comparison of various network properties between the mycelial and vasculature networks. The first column indicates the network property. The second and

third columns give the mean ± the standard error of the mean for each network property, averaged over the population of fungal networks and the population of vascula-

ture networks, respectively. The last column indicates the level of significance from a two-sample t-test used to assess statistical differences in the mean values of each net-

work property between the two types of distribution networks; ��p-value<0.001, ���p-value<0.0001.

Network property Mycelial fungi Vasculature Significance level

Mean degree hki 2.57 ± 0.05 2.09 ± 0.01 ���

Normalized clustering C
hCrewirei

54.67 ± 7.88 6.44 ± 1.61 ���

Alpha index α 0.144 ± 0.012 0.022 ± 0.003 ���

Normalized topological efficiency
Et

hEt
rewirei

0.60 ± 0.02 0.84 ± 0.03 ���

Spearman correlation between

topological and physical

edge betweenness centrality ρ

0.65 ± 0.03 0.94 ± 0.01 ���

Normalized physical

Rent exponent
p

hprewirei

0.609 ± 0.007 0.533 ± 0.002 ���

Normalized topological

Rent exponent t
htrewirei

0.44 ± 0.01 0.59 ± 0.04 ��

Ratio of theoretical minimum

physical Rent exponent to

true physical Rent exponent
pmin

p

0.826 ± 0.007 0.949 ± 0.004 ���

Relative wiringWrel 0.302 ± 0.013 0.080 ± 0.004 ���

Relative physical efficiency Erel 0.43 ± 0.03 0.36 ± 0.03 —

Relative robustness Rrel 0.38 ± 0.02 0.15 ± 0.01 ���

https://doi.org/10.1371/journal.pcbi.1006428.t002
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distribution. Nevertheless, in total across the two kinds of distribution systems, we found that

the mycelial networks had higher normalized clustering coefficients (CF=hCrewirei¼ 54:67)

than the vasculature networks (CV=hCrewirei¼ 6:44), and this difference was statistically signifi-

cant (p-value = 6.8 × 10−5). This result indicates that compared to an ensemble of size and

degree-distribution preserving null models, the mycelial networks tend to have a higher den-

sity of 3-edge cycles than the vasculature networks.

Fig 3. Comparison of topological network metrics between the mycelial and vasculature systems. In each panel, the x-axis labels the kind of network, with the

curly braces grouping the mycelia (first 4 networks) and vasculature (last 2 networks). The y-axis measures the value of a given property for each network. A

p-value is displayed if we found a statistically significant difference (as determined by a two-sample t-test) in the mean value of the given property between the

population of mycelial networks and the population of vasculature networks. (A) The mean degree hki was significantly larger in the fungi compared to the

vasculature. (B) The normalized clustering coefficient C=hCrewirei was significantly larger in the fungi compared to the vasculature. (C) The alpha index α was

significantly larger in the fungi compared to the vasculature. (D)The normalized topological efficiency Et=hEt
rewirei was significantly larger in the vasculature

compared to the fungi. See the main text for more details on each measure.

https://doi.org/10.1371/journal.pcbi.1006428.g003
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While the clustering coefficient assesses a network for the existence of cycles of length

three, we can also consider loops (or cycles) on larger topological length scales. This is particu-

larly relevant for distribution systems, as past work on empirical vasculature networks [27]

and models of flow networks [53] have found that loops can serve to protect the system from

occlusions or damage to veins. To quantify the presence of cycles of all lengths in the mycelial

and vasculature networks, we computed the alpha index α [5, 45], which is equal to 0 for a net-

work that is a tree (no cycles) and is equal to 1 for a maximal planar network. The alpha index

is plotted for all networks in Fig 3C. One observes that the vasculature networks tend to have

lower alpha indices (aV¼ 0:02) compared to the fungal networks (aF¼ 0:14), and we found

that this difference was statistically significant (p-value = 7.4 × 10−8). Thus, compared to maxi-

mal planar networks of the same size, the mycelial networks have relatively more loops than

the vasculature networks. As expected [5], the alpha index gives similar information to the

mean degree.

We next examined the topological efficiency Et, which—in contrast to the previous

metrics—evaluates larger-scale organization in a network by considering the shortest (topolog-

ical) pathways between all pairs of nodes. To compare the topological efficiency across the vas-

culature and fungi, for each network we computed the normalized quantity Et=hEt
rewirei that

measures how the global topological efficiency of each distribution network compares to a col-

lection of rewired networks of the same size and degree distribution (Fig 3D). We found a sta-

tistically significant difference in the population averages of the normalized topological

efficiencies of the vasculature vs.mycelial networks (Et
V=hEt

rewirei¼ 0:84, Et
F=hEt

rewirei¼ 0:60;

p-value = 9.8 × 10−6). This result suggests that the two kinds of distribution networks can also

be distinguished in terms of this measure of their global organizational structure.

As previously noted, for spatially embedded networks, we can also measure path lengths in

terms of Euclidean distances. An interesting question one can then ask is: how much overlap is

there between counterpart physical and topological measures of network organization? Do

they contain the same (or similar) information, or measure something distinct about the sys-

tem? Here, we examine the relationship between the topological edge betweenness centrality

Bt
e and the physical edge betweenness centrality Bp

e , which measure the fraction of shortest

topological and physical paths, respectively, that pass through a given edge in a network. For

each distribution network, we computed the Spearman rank correlation coefficient ρ between

Bt
e and Bp

e to assess the strength and direction of a monotonic relationship between the two

quantities (see Fig 4A). Interestingly, while there was a significant, positive rank correlation

between Bt
e and Bp

e for all networks, we also observed a clear and statistically significant differ-

ence (p-value = 7.5 × 10−8) in the average rank correlation coefficient of the population of

mycelial networks compared to that of the vasculature networks. In particular, we found

that the mycelial networks had smaller ρ values than the vasculature networks (rF¼ 0:65,

rV¼ 0:94). Thus, in the vasculature networks, the topological and physical edge betweenness

centralities contain similar information in that edges that participate in many of the shortest

topological paths also participate in many of the shortest physical paths through the network.

But this overlap is not nearly as strong in the mycelial networks, suggesting that topological

and physical correlates of network architecture need not necessarily be redundant. Fig 4B and

4C show Bt
e vs. B

p
e for the networks with the highest (Mouse 5) and lowest (R.B.) Spearman cor-

relations, respectively. These findings motivate the second major part of our analysis (Compar-

ative analysis of network organization using biologically-motivated measures), in which we

characterize and compare and contrast the vasculature and mycelial networks using spatial

and more biologically-motivated measures of network structure that take into account the

physical nature of these systems.
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Rentian scaling. Important questions regarding biological transport systems are whether

distribution networks of different types or from different organisms exhibit universal charac-

teristics that allow for high functionality, and in particular if and how they achieve embeddings

into physical space that are energetically favorable while maintaining topologies that support

efficiency and robustness. For example, it is thought that across technological [32], neural [39,

40], and distribution [54, 55] networks alike, one such common feature is hierarchical struc-

ture. To begin investigating these questions here, we next assessed each network for the pres-

ence of topological and physical Rentian scaling, following the methods described in Rentian

scaling.

Fig 4. Topological vs. physical edge-betweenness centrality. (A) For each kind of network (displayed on the x-axis), the data shows the Spearman rank

correlation coefficient ρ for the relationship between the topological edge betweenness centrality Bt
e and the physical edge betweenness centrality Bp

e . The curly

braces group the fungi (first 4 networks) and vasculature (last 2 networks). All networks exhibited significant positive rank correlations, but the displayed p-value

from a two-sample t-test indicates that the mean rank correlation coefficient of the mycelial networks was significantly smaller than the mean rank correlation

coefficient of the vasculature networks. (B) Topological edge betweenness centrality Bt
e vs. physical edge betweenness centrality Bp

e for the network with the

highest Spearman correlation between these quantities (Mouse 5). (C) Topological edge betweenness centrality Bt
e vs. physical edge betweenness centrality Bp

e for

the network with the lowest Spearman correlation between these quantities (R.B.). See the text for more details on these measures.

https://doi.org/10.1371/journal.pcbi.1006428.g004
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We first computed topological Rentian scaling. Fig 5A and 5B show examples of logm vs.
log n obtained from a min-cut bi-partitioning method applied to a rat vasculature network

and a mycelial network, respectively. (Fig. F in the S1 Text shows examples from the other dis-

tribution networks as well). Visual inspection suggested thatm and n scale with one another in

log-log space, permitting the estimation of a topological Rent exponent t. We also calculated

the linear correlation coefficient and a linear regression between logm and log n (depicted as

the black lines through the data in the examples of Fig 5A and 5B) for each distribution net-

work. When averaged over several runs of the topological partitioning process, we found

r� 0.991 and r2 > 0.981 for all networks, providing further evidence of Rentian scaling in

topological space. (See S1 Text for further details regarding this analysis).

Fig 5. Rentian scaling analysis of the distribution networks. (A,B) Examples of logm vs. log n computed from a topological partitioning of a network from the

mycelium P.V. 1 and from a topological partitioning of an arterial network from a rat brain, respectively. (C,D) Examples of logm vs. log n computed from a

physical partitioning of a network from the mycelium P.V. 1 and from a physical partitioning of an arterial network from a rat brain, respectively. In panels

(A–D) the black lines correspond to a simple linear regression, from which we estimate the displayed scaling exponents t or p, describing either the topological or

physical Rentian scaling relationships, respectively. The r-value is the Pearson correlation coefficient and the r2-value is the coefficient of determination.

Additional examples of these relationships for other networks are shown in Fig. F and Fig. H in the S1 Text.

https://doi.org/10.1371/journal.pcbi.1006428.g005
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We turn next to physical Rentian scaling. In the context of the distribution networks, this

analysis evaluates whether the spatial layout of a network is such that the numberm of vessels

or cords passing into or out of a given contiguous region of a network scales with the number

of nodes n inside that region, and whether such a relation is conserved over different length

scales and spatial domains of a network. Fig 5C and 5D show examples of logm vs. log n in a

mycelial system and a vasculature system, respectively, and Fig. H in the S1 Text shows exam-

ples from each of the other kinds of distribution networks as well. Visual observation provided

initial evidence for the existence of physical Rentian scaling in the distribution networks, and

to further assess each network for this relationship, we also computed a linear correlation and

a linear-regression between logm vs. log n (displayed as the black lines over the data in Fig 5C

and 5D). For all networks, we found Pearson’s correlation coefficients of r> 0.9 and coeffi-

cients of determination r2 > 0.82, which further indicated that the functional formm/ np was

a relatively good fit to the data and that we could estimate physical Rentian scaling exponents

p for each network from the linear-regression. (See S1 Text for further details on this analysis).

The presence of physical Rentian scaling suggests that the connectivity of the distribution net-

works exhibits a type of hierarchical organization and space-filling capacity in terms of their

physical arrangement and embedding into real space.

Though we can estimate physical and topological Rent exponents for the empirical net-

works from best-fit lines to logm vs. log n, it is important to note that because the networks

considered here are relatively small, the values of the exponents should be considered carefully,

as should a direct comparison across different networks. In order to give context and meaning

to the exponent values, we thus compared the scaling relationships from the empirical net-

works to those of their randomly rewired benchmarks (see Null models). Keeping the node

locations for the randomly-rewired null models the same as the corresponding empirical net-

work, we considered the ratios ~t ¼ t=htrewirei and ~p ¼ p=hprewirei. Comparing ~t between the vas-

culature and mycelial systems (Fig 6A) revealed a statistically significant distinction between

the two kinds of networks (p-value = 1.2 × 10−4). In particular, the population average of the

topological Rent exponent ratio was smaller for the set of mycelial networks compared to the

set of vasculature networks (~tF¼ 0:44, ~tV¼ 0:59), suggesting that in terms of topological com-

plexity, the vasculature networks are on average more similar to their randomly-rewired

benchmarks. We also found a clear relative difference in the physical Rent exponent ratios of

the vasculature vs. fungal networks (Fig 6B), with the population of vasculature networks hav-

ing smaller mean physical Rent exponent ratio (~pV¼ 0:53, ~pF¼ 0:61). The difference between

the two groups was statistically significant (p-value = 2.0 × 10−8), and indicates that, compared

to the mycelial networks, the physical Rent exponents of the vasculature networks are even

smaller than the mean exponent from their ensemble of random null models.

Because we could estimate physical and topological Rent exponents for each empirical net-

work and their randomly rewired null models, we also examined how the physical Rent expo-

nent of each network compared to its theoretical minimum value (see Rentian scaling). We

first considered the quantity pmin=p � hpmin
rewire=prewirei for each network, where p is the true

physical Rent exponent of an empirical network and pmin is its theoretical minimum value,

and where prewire is the true physical Rent exponent of a corresponding randomly rewired

benchmark network and pmin
rewire is its theoretical minimum value; the angled brackets indicate

an average over the ensemble of null-model networks. As perhaps expected, we found

pmin=p � hpmin
rewire=prewirei > 0 for all networks. Thus, the empirical distribution networks have

physical Rent exponents closer to their minimum possible values, indicating that they achieve

more efficient spatial layouts relative to their set of randomly-rewired null-models. We next

compared the quantity pmin/p across the vasculature and mycelial networks (Fig 6C), finding a
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statistically significant difference between the two groups (pmin
F =pF¼ 0:83, pmin

V =pV¼ 0:95,

p-value = 1.8 × 10−11). The vasculature networks yielded values of pmin/p closer to one (i.e.,

had physical Rent exponents closer to their theoretical minimum) compared to the fungal net-

works, suggesting that they may be especially efficiently embedded. We explore this idea fur-

ther in the next section. Also see the S1 Text for an analysis of topological and physical Rentian

scaling in simulated networks developed from biologically inspired optimization principles

Fig 6. Comparison of Rentian scaling analysis in the mycelial networks and vasculature networks. In each panel, the x-axis labels the kind of network, with

the curly braces grouping the mycelia (first 4 networks) and the vasculature (last 2 networks). The y-axis measures the value of a given property for each network.

A p-value is displayed if there was a statistically significant difference (as determined by a two-sample t-test) in the mean value of the given property between the

population of mycelial networks and the population of vasculature networks. (A) The normalized topological Rent exponent ~t ¼ t=htrewirei was significantly

smaller in the population of mycelial networks compared to the population of vasculature networks. (B) The normalized physical Rent exponent ~p ¼ p=hprewirei

was significantly larger in the population of mycelial networks compared to the population of vasculature networks. (C) The ratio pmin/p of the theoretical

minimum physical Rent exponent to the true physical Rent exponent was signficantly smaller in the population of mycelial networks compared to the population

of vasculature networks. See the main text for more details on each measure.

https://doi.org/10.1371/journal.pcbi.1006428.g006
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[53], in which we also find evidence of these relationships as well as exponent values similar to

those obtained from the empirical data.

Comparative analysis of network organization using biologically-motivated

measures

While there are some general similarities between the vasculature and mycelial networks, dif-

fering habitats or environmental pressures could lead to distinct structural features. Indeed,

we quantified some of these distinctions in the previous section, Characterization of network

architecture with graph-theoretical measures. Here we conduct further network-based analy-

ses that more explicitly take into account the spatial embedding of these systems, and we com-

pare the vasculature and fungi using a set of network properties motivated specifically by the

functional requirements of biological distribution networks.

Tradeoffs between physical network efficiency and wiring. We begin by examining

the physical efficiency Ep and the wiring lengthW of each network. The physical efficiency

(Eq 3) is a measure that reflects the routing capabilities of a network [56], and importantly,

because Ep is defined from the Euclidean lengths of network edges—rather than topological

distances—it takes into account the spatial layout of a system. Intuitively, higher efficiencies

may allow for improved transport of fluid and nutrients throughout a network, which are

desirable capabilities for both vasculature and mycelial systems. In general, it is expected that

increases in the number of connections between the same set of nodes will improve network

efficiency by creating shortcuts between pairs of otherwise more distant regions. But, an addi-

tion of edges will in turn increase the amount of material used to construct the network. Note

that here we estimate the material cost—or more precisely, the wiring length—to be the sum of

the physical lengths of all edges in the system (Eq 2). As noted previously and in the discussion

section below, an improved quantification of network cost would also include radial informa-

tion as well, but this data was unavailable for the vasculature systems.

In order to quantify the extent to which each network was organized for low wiring length

or high physical efficiency—and to compare and contrast the balance between these competing

network features across the two types of distribution networks—we considered the relative

quantitiesWrel (Eq 5) and Ep
rel (Eq 6). These measures reflect how close a given network is to

two spatially-informed null models [44–46], the minimum spanning treeMST and the greedy

triangulation GT. Given a set of node locations, theMST represents a low cost but also low effi-

ciency planar graph, and the GT represents a high cost but also high efficiency planar graph

[44]. Recall that Ep
rel andWrel are bounded between 0 and 1 to reflect the similarity of the

empirical networks to theirMST (where the relative measures are equal to zero) and the GT
(where the relative measures are equal to one), respectively (see Null models for more details

on the null models and relative measures).

The relative wiring lengthWrel (Fig 7A) satisfiedWrel < 0.4 for all networks, suggesting the

presence of general constraints on the structure and wiring usage in these systems. Grouping

together all mycelial networks into one set and all vasculature networks into another set, we

used a two-sample t-test to further determine whether there were statistical differences in the

mean ofWrel between the two populations. We found that the mean relative wiring was indeed

significantly different between the two groups (p-value = 1.5 × 10−11), with the population of

vasculature networks having a lower mean relative wiring compared to that of the population

of mycelial networks (Wrel;V¼ 0:08,Wrel;F¼ 0:30). We next examined the relative physical effi-

ciency Ep
rel, which was intermediately valued for all networks (Fig 7B), ranging between 0.25

and 0.61. Interestingly, we found that the difference in the mean relative efficiency measure

was not statistically significant across the two groups (Ep
rel;F¼ 0:43, Ep

rel;V¼ 0:36, p-value
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Fig 7. Mycelial and vasculature networks exhibit distinct tradeoffs between wiring, physical efficiency, and structural robustness. In panels (A-C) the x-
axis labels the kind of network, with the curly braces grouping the mycelia (first 4 networks) and the vasculature (last 2 networks). The y-axis measures the

value of a given property for each network. A p-value is displayed if there was a statistically significant difference (as determined by a two-sample t-test) in the

mean value of the given property between the population of mycelial networks and the population of vasculature networks. (A) The mean relative wiring for
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>0.05). Thus, while both sets of networks appear more similarly optimized for physical effi-

ciency, our results indicate that the wiring constraints are stronger for the vasculature net-

works than for the fungi. This suggests that there may be different kinds of pressures driving

the network organization of the two types of distribution systems.

To further investigate the tradeoffs between the relative efficiency and relative wiring, we

plotted Ep
rel vs. Wrel (Fig 7D). We observed that the vasculature consistently satisfied

Wrel < E
p
rel, with a significant margin between the two quantities. A similar finding held for

several of the fungi, but we also found that some of the mycelial networks sat just above, on, or

sometimes below the line of equality (Wrel ¼ E
p
rel). This result implies that for a given wiring,

the vasculature networks can achieve a relatively greater physical efficiency—suggesting an

economical, well-organized architecture—compared to several of the fungal networks, which

appeared to have a less-optimal use of extra wiring, as measured by the ability of that wiring to

increase the relative efficiency of the network. Moreover, for significantly lowerWrel, the rat

vasculature achieved similar or higher Ep
rel values than many of the fungi, indicating an espe-

cially beneficial use of material in the vasculature systems. Finally, we note that the rodent data

was much more tightly clustered in this phase space compared to the more varied fungal data;

this points to consistent, regularized network structure in the vasculature in contrast to more

diversity in the mycelial networks.

Differences in network robustness. To better understand the implications of the wiring-

efficiency tradeoff, we also considered the structural robustness of each network, which—like

efficiency—should be facilitated by increased wiring. Robustness is an important consider-

ation in both mycelial and vasculature networks. In mycelia, damage can occur from factors

such as rough environmental conditions or from predation [17, 29–31], and in vasculature, a

common source of damage is from the formation of blood clots that block vessels and prevent

flow, leading to stroke. Previous work on fungal networks has shown that these organisms can

achieve high levels of robustness to attack [17, 21]. In a study on rodent vasculature [27], inter-

connected loops were found to provide robustness to the backbone of surface vessels under

edge deletion, and after occlusion to a surface arteriole, the backbone was able to re-route

blood flow and preserve the surrounding neuronal tissue.

Here, we let the robustness R of a network be the percentage of edges removed in order for

the size of the largest connected component to drop to half of its original value [44, 45], and

we considered the relative robustness Rrel (see Biophysically-motivated network measures for

details) for comparison of the fungi and vasculature. Fig 7C shows the relative robustness for

all networks, which ranged between 0.08 and 0.50. Using a two-sample t-test to compare Rrel

between the population of fungal networks and the population of vasculature networks, we

found that the means of the two groups were significantly different (Rrel;F¼ 0:38, Rrel;V¼ 0:15;

p-value = 9.4 × 10−9). This clear separation between the mycelial networks and the vasculature

networks suggests that the mycelia may be better optimized for resistance to damage, and fur-

ther points to the fact that although comparable in certain ways, the two types of transport net-

works indeed exhibit different structural organization and tradeoffs. We also observed a

positive trend between Rrel andWrel across all networks (Fig 7E), indicating that increasing the

all networks was significantly larger for the population of mycelial networks compared to the population of vasculature networks. (B) The difference in the

mean relative physical efficiency of the mycelial networks and the vasculature networks was not statistically significant. (C) The mean relative structural

robustness was significantly larger for the population of mycelial networks compared to the population of vasculature networks. (D)A scatterplot of the

relative physical efficiency vs. the relative wiring for each network. (E)A scatterplot of the relative structural robustness vs. the relative wiring for each

network. For all plots, the relative quantitiesWrel, E
p
rel, and Rrel were determined by normalizing each network with respect to its own spatial null models,

which then allowed for a meaningful comparison of the different types of distribution networks to one another.

https://doi.org/10.1371/journal.pcbi.1006428.g007
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amount of wiring used to connect a given set of nodes strongly correlates with improved resis-

tance to network damage. (As might be expected, we additionally found a positive trend

between Rrel and a relative measure of network density, where instead of using the total wiring

length in Eq 5, we used the total number of edges in each network). There was not such a

strong relationship between Ep
rel andWrel, suggesting that while increased connectivity may

partially improve network efficiency, the specific placement of additional wiring in the net-

work can play a role as well.

Given that both the vasculature and fungal systems are subject to certain forms of

impairment, another important question is how the physical efficiency of the underlying net-

works changes as a result of random damage. In other words, how functional does the topol-

ogy of these networks remain when edges are removed? In order to examine this question, we

tracked the change in the global physical efficiency of each network as a function of edge frac-

tion removed. More specifically, if we let f represent the fraction of edges removed, we consid-

ered a range f = 0 to f = 0.6, in steps of Δf = 0.004. At each step, we removed the corresponding

fraction of edges at random from each network, and computed the global physical efficiency

(Eq 3) Ep(f ) of the perturbed system and also the ratio Ep(f )/Ep(0). This process was repeated

20 times for each fraction f, and we considered the ensemble average hEp(f )/Ep(0) i over the 20

trials. The structure of the resulting curves of hEp(f )/Ep(0)i vs. f (see Fig 8A) provides insight

into how the transport capabilities of each network are altered under random damage.

We observed that the efficiency of the vasculature networks falls off more rapidly than the

efficiency of any of the mycelial networks (Fig 8A). In order to help visualize the effect of the

edge removal, we show an example of a robust fungal network (Fig 8C) and more delicate vas-

culature network (Fig 8D); in each case, the red lines correspond to a fraction f = 0.15 of edges

selected at random. To quantify the steepness of the decline in physical efficiency for realistic

removal fractions, we considered the slope of linear fits to hEp(f )/Ep(0)i vs. f between f = 0 and

f = 0.1. Then, we asked whether the steepness of the fall-off (estimated by the slope of the linear

fit to each curve) was related to the relative wiring of the network. We found thatWrel was

indeed a good predictor of the decay in physical efficiency (Pearson correlation r = 0.95,

p-value = 2.85 × 10−11; Fig 8B). This analysis highlights the fragility of the vasculature systems,

whose ability to maintain their transport efficiency is impaired quickly with damage compared

to the fungal networks, which appear better able to maintain this function in the face of edge

loss.

Discussion

In this study, we examined the structural networks formed by two classes of biological distribu-

tion systems: lab-grown mycelial networks and vasculature networks extracted from the sur-

face of rodent brains. While each of these networks have been analyzed independently, these

systems also have different environmental conditions, growth processes, and transport mecha-

nisms, which may differentially impact their network organization. Thus, our goal here was to

quantitatively compare and contrast the mycelia and vasculature using methods from graph

theory and network science, in order to gain insight into possible variabilities that may exist

across the two systems. Though the two types of distribution networks share common organi-

zational constraints—such as two-dimensional planar topologies—we indeed uncovered a

number of distinctions in the architectures of the two families of biological transport networks.

The first part of our investigation focused primarily on characterizing the structure of the

fungi and vasculature networks with a collection of classic network-theoretic measures that

assess different kinds of organization across a range of scales, from local metrics such as

degree, to diagnostics that probe paths of connectivity globally throughout a network. When

Comparing two classes of biological distribution systems using network analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006428 September 7, 2018 23 / 31

https://doi.org/10.1371/journal.pcbi.1006428


necessary, we controlled for differences in network size and density by normalizing measures

to their values in an ensemble of randomly rewired null models that preserved both the size

and degree distribution of each empirical network. Our analysis revealed statistically signifi-

cant differences in topological properties including mean degree, clustering coefficient, and

alpha index—indicating variability of local structure and loop density between the mycelial

Fig 8. Decline of physical efficiency with random edge removal. (A) Ensemble average of the ratio of the physical efficiency of damaged networks to the

physical efficiency of the original network, as a function of the edge fraction removed. The efficiency of the vasculature networks declined more rapidly than that

of the fungal networks. (B) The drop-off in physical efficiency was approximated for each network as the slope of a linear fit to Ep(f)/Ep(0) vs. f, computed

between f = 0 and f = 0.1. There was a positive correlation between the slope and the relative wiring of the networks. (C)An example of a network from P.V. 2,
where the red lines correspond to a random selection of f = 0.15 of the total number of edges, and the gray lines correspond to the remaining edges in the

network. (D)An example of a network of a mouse vasculature system, where the red lines correspond to a random selection of f = 0.15 of the total number of

edges, and the gray lines correspond to the remaining edges in the network.

https://doi.org/10.1371/journal.pcbi.1006428.g008
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and vasculature networks. A crucial feature of the distribution networks studied here is that

they are also embedded into real space, and thus Euclidean distances and the spatial layout of

the networks are important considerations. While many network measures are agnostic to the

spatial organization of nodes and edges, there are some measures—such as path efficiency and

edge betweenness centrality—that have both topological (i.e. based only on connectivity infor-

mation) and physical (i.e. also incorporate spatial information) counterparts. One interesting

result was that the vasculature tended to exhibit a greater degree of similarity between topolog-

ical and physical edge betweenness centrality as compared to the fungal networks, a finding

that motivated the more physically and biologically informed network analysis carried out in

the latter portion of this study.

We also analyzed the mycelial and vasculature networks for Rentian scaling, which is a kind

of hierarchical structure that can exist in both the physical and topological space of a network.

This property has previously been found in the London Underground transportation network

[3] and in biological neural systems [39, 40], but has yet to be examined in biological transport

networks. It has been suggested that biological distribution networks, including blood vascula-

ture, respiratory systems, and mycelia, are fractal-like and space filling [54, 57, 58], and these

properties have been proposed to validate and explain scaling laws that relate metabolic rates

to body mass [59]. More recently, hierarchical organization in the form of nested loops has

been studied in leaf venation [55], and this structure has been shown to arise in networks opti-

mized for resistance to damage and fluctuations in load [53, 60, 61]. Providing quantitative

measures of what it means to have hierarchical organization is thus an important line of

inquiry for spatially embedded and biological networks. We found that common design fea-

tures of both the mycelial and vasculature networks were physical and topological Rentian

scaling, which imply conserved relationships across length scales between the number of

nodes in a given region of the network, and the number of cords or vessels crossing the region

boundary. We also found evidence of Rentian scaling in simulated networks optimized for

transport efficiency in the presence of fluctuations and constraints on network “cost”, provid-

ing some insight into how such structure might arise. Importantly, without the space-filling

nature that arises in the model networks, one could still uncover topological scaling, but large

spatial inhomogeneities in either the distribution of nodes or edges would destroy the scaling

in real space. Computing ratios of the empirical Rent exponents to their values in randomly-

rewired size and density preserving benchmarks, we found that the vasculature exhibited

lower physical Rent exponent ratios, but on average larger topological Rent exponent ratios.

These results suggest that the vasculature have particularly constrained layouts, but maintain

relatively high topological complexity, given their size and degree distribution. Moreover, we

found that the vasculature networks achieved physical Rent exponents closer to their theoreti-

cal minimum values, further indicative of an especially efficient placement of network compo-

nents into real space.

In the second part of this study, we carried out a network-based analysis that more purpose-

fully considered the spatial embedding of the distribution systems, and we examined network

properties more directly motivated by the structural and functional requirements of these sys-

tems. Specifically, we examined three desirable but often competing characteristics—wiring

costs, transport efficiency, and structural robustness—finding some clear constrasts in how the

vasculature and fungi balance network-based measures of these quantities. In particular,

though both kinds of networks had comparable physical efficiencies, the vasculature had lower

wiring length and robustness than the mycelial networks. One hypothesis is that the differen-

tial tradeoffs observed in mycelial vs. vasculature networks may reflect their differing func-

tional requirements and environmental settings. To be effective, the vasculature networks

must supply a fixed area with blood, and thus experience a notion of boundary conditions and
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minimum requirements that may constrain the possibilities or necessity for further growth. In

contrast, the growth of mycelial networks is not constrained by a pre-allocated or bounded

region of space that they must supply. One hypothesis for the more minimal wiring in the vas-

culature may be that it is energetically necessary and that more cost-efficient networks are sus-

tainable due to the confined and protected setting of these networks. Perhaps the vasculature

can afford to devote less material to the network because it resides in a regulated and highly

controlled setting, whereas the mycelial systems typically grow under more heterogeneous

environmental conditions.

In particular, environmental changes and patchy habitats (e.g., the soil and availability of

water and nutrients) are likely to play a large role in the supply of nutrients to the fungi and

can impact network development [62]. On the other hand, the supply of oxygenated blood

through the carotids to the brain is well regulated and near constant; thus, we might expect

less load variation in the vasculature compared to the fungal systems. Importantly, these differ-

ences could lead to the observed variability of the networks’ robustness and relationships

between wiring length and efficiency. The vasculature systems are able to achieve relatively

high efficiency with low wiring, suggesting standardized network architectures that are struc-

tured in order to utilize a small amount of wiring redundancy in a way that significantly

improves the capabilities of the network to route resources. In contrast, the mycelial networks

strike a different balance, having larger wiring lengths and not always consistent organization

such that higher relative wiring directly yields relatively greater efficiencies. This indicates less

standardized and perhaps less optimized network architectures. Notably, however, the tradeoff

of greater material cost in the mycelial systems directly yields improved resistance to damage,

and the ability to maintain higher functionality under perturbation of the network. This fea-

ture may be demanded for survival or driven by the more varied and unprotected environ-

mental conditions in which these systems reside and have evolved.

Methodological considerations and future directions

There are a number of methodological considerations—especially concerning the construction

of the network representations of the vasculature and fungi—that are useful to comment on.

First, it is crucial to point out that we have used a simplified network representation of the dis-

tribution systems in that information about cord or vessel radii was neglected. The main rea-

son for this was that these details were unavailable for the vasculature. However, it is known

that tube area is important functionally, and can significantly alter transport in distribution

networks since it affects flow resistance. Including this additional physical property would

thus yield a more complete analysis, both in terms of quantifying network construction costs

as well as measuring network properties such as physical efficiency. Indeed, past studies on

mycelial networks have found that the presence of radial thicknesses confers improved trans-

port characteristics to the system [16, 18, 20]. It would be interesting to take this into account

in future work to investigate whether the inclusion of radial information in the weighting of

the network reduces or enhances the differences found between the vasculature and mycelial

systems. It is also important to point out that the definition of wiring length employed in this

study assumes a linear relationship between edge length and edge “cost”. In reality this might

not be the case. For example, longer connections might be disproportionately more expensive

to build and maintain, or there might be an offset cost to create connections at all. Further-

more, we note that the network property of physical efficiency quantifies transport capabilities

only in terms of shortest paths, and in the case studied here, assumes bi-directionality of flow;

an understanding of transport along indirect walks is also relevant in distribution systems, as

is the notion of directed transport that allows for the movement of nutrients through long
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distances. The extension of traditional network measures and null models to include this type

of information may lead to considerable insight into structure-function relationships in bio-

logical transport networks more generally. For example, network communicability [63] natu-

rally includes information on walks of all lengths between pairs of nodes, and could be one

valuable candidate for further analyses. In addition, it is worth noting that the completeness of

the network representations are also subject to the resolution at which fine-scale edges can be

traced or digitized.

We also note that in the network representation of the mycelial networks, the food source

itself was considered as an imposed ‘super-node’ that connects to the cords incident on its

boundary. Since the mycelial networks grow outward from the inocula, the density of edges

around that node may be higher compared to more peripheral regions of the network, which

could introduce some heterogeneity in the architecture. In terms of Rentian scaling in particu-

lar, we would then expect partitions that surround the ‘super-node’ to have a higher number

of boundary-crossing edges. These partitions might be a cause for some spread or disruption

in the spatial scaling relationship, or perhaps bias the exponent towards higher values. How-

ever, at least upon visual inspection of the examples of logm vs. log n in Fig 5 and Fig. H in the

S1 Text, this does not appear to be a salient effect. Since we sample the network numerous

times to compute the scaling, most of the partitions will not include the inocula, and this likely

prevents the ‘super-node’ from dominating the scaling. However, it is important to be aware

of the issues that the ‘core-like’ structure in the network can induce.

In regard to the vasculature networks, it is important to remark on the fact that nodes cor-

respond to either branching points among surface vessels or places where penetrating arteri-

oles descend into the underlying tissue. Furthermore, many of the penetrating arterioles

originate from offshoots that stem from the network of surface vessels and that terminate at

the end of a surface edge in a single point [27]. Though this is a meaningful organizational fea-

ture of the vasculature that we chose to include in our primary examination, it is still interest-

ing to consider whether results hold if we consider a “reduced” network that does not contain

the stubs leading to single penetrating arterioles. To this end, we carried out an analysis com-

paring the complete vasculature networks to reduced versions in which isolated penetrating

arterioles (and the corresponding surface edges connecting to them) were removed, and we

also compared the reduced vasculature networks to the mycelial networks in order to test the

robustness of the main results of this study (full details are provided in the S1 Text). In sum-

mary, we found that though a number of network properties differ between the full and

reduced vasculature networks, these differences are slight and do not change the conclusions

or significance of the main results in terms of how the organization of the vasculature networks

compare to that of the mycelial networks.

Aside from those already mentioned, there are several other directions for future work. For

example, one could try to further understand the observed differences between the structure of

the vasculature and fungi, but perhaps more importantly, investigate the causes and actual

functional consequences of those differences. We suggested that some of the observed variabil-

ities in network organization may be due to the different environmental habitats or function

of the two kinds of transport systems. However, to more solidly establish this will certainly

require both further experimental work, as well as more extensive theoretical models. For

example, it would be interesting to build off of prior work [9, 14, 16, 19, 20, 25, 27, 29–31, 55,

61, 64] and continue to design experiments and construct models that describe how a distribu-

tion network evolves in a physically unbounded and dynamically variable environment, vs. in
a spatially constrained and more regulated environment, and investigate how these differences

affect network adaptation and the resulting network architecture. Furthermore, while this

work considers only the static network structure, an improved analysis should also consider

Comparing two classes of biological distribution systems using network analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006428 September 7, 2018 27 / 31

https://doi.org/10.1371/journal.pcbi.1006428


the relation of that structure to experimental data on flow throughout the network, or should

investigate the functional consequences of certain structural network properties using models

of flow and transport. Understanding how transport in turn affects network development is

also important [16, 61]. Another intriguing direction would be to further examine the proper-

ties of distribution networks that are embedded not in 2-dimensions, but in 3-dimensions [26,

65], where relationships between topology and geometric structure or spatial layout may be

more complex.

Conclusion

In this study, we used network-based methods to quantitatively compare and contrast the

structural skeleton of mycelial networks and vasculature networks from the surface of rodent

brains. Both systems are two-dimensional, planar, biological transport networks, whose orga-

nization arises through natural processes in the absence of global rules for network construc-

tion. However, despite similarities, these networks have different developmental and transport

mechanisms, and exist in distinct environments. While such differences are likely to differen-

tially impact the network structure of vasculature and mycelia, little work has focused on com-

parative analyses of network traits across the two systems. Here we characterized the

vasculature and mycelial networks using both classic network metrics, as well as a collection of

measures inspired by the functional requirements and physical constraints of and on these sys-

tems. We quantified and described both conserved features of network organization across the

two types of transport networks, as well as differences in topological structure and in tradeoffs

between network correlates of wiring length, efficiency, and structural robustness. This work

illustrates the utility of network science to uncover common organizational properties across

different kinds of networks, as well as variabilities that may be important to or reflect differ-

ences in the evolution, functional requirements, or capabilities of different systems.
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S1 Text. Additional figures, further description of methods, and supplementary analyses.

The supplementary text includes figures showing examples of the different kinds of mycelial

networks and vasculature networks examined in this study. It also provides more in-depth

descriptions and formal definitions of the standard topological graph metrics utilized in this

study, further details on the modeling and simulations of the optimal transport networks,

additional information regarding the physical and topological Rentian scaling analysis, a sup-

plementary examination of structural network robustness, and a more in-depth description

and investigation of the reduced versions of the vasculature networks in which penetrating

arteriole offshoots are discarded.
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