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ABSTRACT The storage and retrieval of information in networks of biological neurons can be modeled by certain types

of content addressable memaries (CAMs). We demonstrale numerically that the amount of information that can be
stored in such CAMs is substantially increased by an unlearning algorithm. Mechanisms for the increase in capacity are
identified and illustrated in terms of an energy function that describes the convergence properties of the network.

INTRODUCTION

Content addressable memories {CAMs) function by
retrieving information based on partial knowledge of the
contents of the desired memory, as opposed to knowledge
of the location of the memory. Some of these systems
exhibit many features in common with the way informa-
tion is stored and retrieved in biological memories. Thus,
these CAMs appear to be useful models for studying
networks of biological neurons (Nakano, 1972; Cooper,
1973; Little and Shaw, 1975; Anderson et al, 1977:
Hopfield, 1982, 1984; Peretto, 1984; Amit et al,
1985a) (for review, see Kohonen [1977] and Hopfield and
Tank [1986]).

Crick and Mitchison (1983, 1986) proposed that the
performance of biological memories may be improved by
the selective *“uniearning” of stored information. In sup-
port of this conjecture, Hopfield et al. (1983) used their
model neural network to demonstrate that a mathemati-
cally analogous process improves the accessibility of infor-
mation stored in a CAM. In this work, we examine
numerically the information storage capacity of the CAM
described by Hopfield (1982). We quantify, in terms of an
entropic measure, the effect of unlearning on the capacity.
The results are discussed in the context of an energy
function (Hopfield, 1982; Cohen and Grossberg, 1983)
that determines the dynamic properties of the network.
Finally, we examine the effect of unlearning on the conver-
gence properties of the network.

Description of the CAM

We consider 2 CAM consisting of &V bits, or neurons. Each
neuron is either active (+ 1) or quiescent (—1). A state of
the network, S, is defined by a sequence of NV bits that
specifies the output of each neuron. For example, S =
(+1 =1 —1 -..) implies that neuron 1 is active, neurons 2
and 3 are quiescent, etc. There are 2" possible states.
Memories are represented by specific states chosen from
the 2" possibilities.

Each neuron receives inputs from all other neurons via a
set of pair-wise connections. The strength of each connec-
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tion, 7y, is determined from the stored memory states, M’,
according to the outer-product rule (Nakano, 1972; Coop-

er, 1973; Hopfield, 1982)

MM
T,-j= v=1 - (1)
0 t=J

where # is the number of memories. Note that M* and its
complimentary state, —M, give identical T;s; thus both
states are stored as memories. The state of the CAM will
converge from an arbitrary initial state to an unchanging
state, i.e., a stable state, when the output of each neuron is
updated according to the rule (e.g., Hopficld, 1982)

N
S, «—sgn (Z T,]S,) (2)
joul
where
+1 ifz=0
sgn (z) = {unchanged ifz=0 (3)
—1 ifz<0.

The updating is performed asynchronously, i.e., the value
of the index i is chosen at random. This procedure simu-
lates variations in the setting times of biological neurons.

When relatively few memories are stored, i.e., n < N, the
stable states of the network will correspond to the stored
memory states. However, as the number of stored memo-
ries becomes large, the stable states may differ from the
memory states (Hopficld, 1982). In particular, the storage
algorithm {Eq. 1) produces spurious stable states that do
not correspond to stored memories {Hopfield et al., 1983;
Amit et al., 1985q).
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The Hamming distance between two states is defined as
the number of bits that are different between the bit
sequences that specify each state. This definition can be
used to give a geometric interpretation to the update rule
(Eg. 2). In terms of the Hamming distance, H’, between
the present state of the network, S, and the »th memory,
M’, Eg. 2 becomes

A I’g "

S;«—sgn g(l*N—/z)Mi*NSi (4)
When the present state is close to the »th memory H” is
close to zero. The weight for that memory is (1 — H*[N /2])
~ 1. When the present state is far from the »th memory, H*
approaches the value N/2. The weight is now close to zero.
Thus the present state should converge to the closest
memory state. Note that the term (#//N)S, in Eq. 4, which
results from the constraint T3, = 0, will weaken the conver-
gence property of the network when the number of stored
memories is large, i.e., n = V.,

The convergence properties of the network can be
characterized in terms of an average (Hamming) radius of
convergence, H,;,. When the state of the CAM differs from
the nearest memory by less than H., bits, the network is
most likely to converge to that memory. When the state
differs from the nearest memory by a larger distance, the
network preferentially converges to a different stable state.
The number of states, ¥, enclosed within A, is given by

i)

The value of ¥ cannot be larger than the average number
of states available per stored state, i.c.

_ 2y

The factor of 2 in the denominator above results from the
symmetry of the network. The largest possible value of H,,
is found by equating Egs. 5 and 6.

The accumulation of errors in the network, and the
removal of these errors by unlearning, will be illustrated in
a later section by energy diagrams. The energy of a state,
S, is defined by (Hopfield, 1982).

N

E--1y S sas, )

=1 -1

In terms of the Hamming distance between S and the sth
stored memory, Eq. 7 becomes

N & H' Y n
E—T[E(I—Nﬂ)aﬁ]. (8)

The stable states in the network, either memories or
spurious states, correspond to the minima in £, When S is
close to a particular memory, but far from all others, the
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value of E is both large and negative. When S is far from
all memories, the value of £ is small.

The unlearning process is a repetitive algorithm that
selectively modifies the connections in the network (Hop-
field, et al., 1983; Clark et al., 1984; Clark et al., 1985).
Each repeating unit in the algorithm, denoted as a trial,
begins by initializing the network in a randomly chosen
state. The neurons are updated until the network converges
to a stable state, 8'. The connection strengths are then
changed to “unlearn” this state, i.c.

—eSS)
AT';\;nlearn _ ) ', (9)
0 i=j

where the unlearning strength, e, is a small {¢ <« 1) con-
stant. The procedure is repeated for m trials (m > 1). The
optimum choice of ¢ and m will be discussed later. Note
that unlearning increases the energy of the state S’ by

N? 1
AEunlearn: +e—|1 = —]|. 10
€5 ( N) (10}

The increase in the energy of neighboring states falls off
quadratically with increasing Hamming distance from S

Storage Capacity

The probability of an error occurring when storing data (a
spatial process) is equivalent to the probability of an error
occurring when transmitting data (a temporal process).
This equivalence suggests that the storage capacity of a
network may be quantified in terms of the number of errors
that occur when recalling memories. We define P as the
(normalized) average number of bits that differ between
the stored memory states and the stable states that corre-
spond to these memories, i.e., the retrieved memories. The
storage capacity, C, is defined in analogy with Shannon’s
{1948) entropic measure for the transmission capacity of a
(binary symmetric) data channel, i.e.

C=nN[1l+ Plog,P+ (1 — P)logy(1 — P)].  (11)

The average number of differing bits, P, is calculated
from

N

1
PW;xp(x), (12)

where p(x) is the probability that x bits differ between the
stored bit sequence and the retrieved sequence of a memory
(sce next section). When the retrieved memories are free of
errors, P = O and the capacity scales linearly with the
number of memories stored, i.e., C = n/V. When there is no
relation between the stored memories and the stable states
in the network, the average number of bits in erroris P = 1A
and therefore C = 0.
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METHODS

Calculations were performed primarily with networks consisting of 30
neurons. This number was large enough to serve as a useful model
network but small enough to keep computation times acceptable. Unless
noted otherwise, stored memories were composed of bit sequences chosen
at random.

The number of bits that differed between a stored memory and the
retrieved value of the memory, x, was determined by starting the network
in the state corresponding to the stored memory and randomly updating
the neurons (Eqs. 2 and 3). The updating was stopped when the network
reached a stable state. This process was repeated for all stored memories
to determine the distribution of p(x)’s, i.e., the probabilities for x bits
differing. To decrease the statistical uncertainty in the p{x)’s we averaged
the results from separate simulations. From the probabilities p(x) and
Eqs. 11 and 12 we calculated the storage capacity, C.

The probability of converging to a memory state was determined by
starting the network in a state a specified Hamming distance, H, from a
retrieved memory and updating the network until a stable state was
reached. The probability of convergence was calculated from the number
of times the network returned to the original memory, averaged over
many starting states. This process was repeated for consecutively larger

values of H. The radius of convergence, H_;,, equaled the (interpolated)
value of H for which the convergence probability was ¥%.

Diagrams of the energy values were constructed along selected paths
through the state-space of the network, where each location in state-space
corresponds to one of the 2¥ possible states of the network. The energy of a
state was calculated from Eq. 7.

RESULTS

Storage Capacity

When four or less memories were stored in the network, the
probability of a bit being in error between a stored memory
and the retrieved value of the memory was, within statisti-
cal uncertzinty, zero. This finding is in accord with the
prediction of Amit et al. (1985h) for the behavior of
asymptotically large networks. The subsequent storage of
additional memories led to the onset of errors. The distri-
butien of bit errors p(x) following the storage of 8, 11, and
14 memories is shown in Fig. 1 a4, b, and ¢, respectively
(note the logarithmic scale). The prabability of an error
occurring in any bit [i.e., 1 — p(0)] as well as the average
number of bits in the error {i.c., NP), increased sharply
with increasing n (compare Fig. 1, a—c).

The unlearning algorithm substantially reduced both
the total number of bits in error and the average size of the
error. This decrease is illustrated in Fig. 1, a—¢, with ¢ =
1/N = 0.033 and m as indicated. For example, with 11
memories stored {(Fig. 1 #) only ~25% of the memories
were free of incorrect bits before unlearning ( p(0) =~ 0.25);
this value increased to ~350% after 30 unlearning trials and
~95% after 120 trials.

The storage capacity was determined as a function of the
number of memories stored using Egs. 11 and 12 and
calculations of p(x) vs. x (e.g., Fig. 1, a—c); this is shown in
Fig. 2. Consider first the capacity of the network before
unlearning. When the number of memories was small, i.e.,
n <« NN, the probability of a bit being in error was also small
and the capacity scaled linearly with the number of
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FIGURE | The distribution of bit errors in the stable states correspond-
ing to memories for a network of 30 neurons; note the logarithmic scale.
Results are shown for (a) 8, (b} 11, and (¢) 14 stored memories.
Calculations were performed both before and after unlearning with e =
0.033 and m as indicated. Each datum represents the average of 200
simulations; the relative standard deviation of the mean for all data points
was 8p/p = 0.09.

memories stored, i.e., C = #N (dashed line, Fig. 2). As the
number of memories was increased toward n ~ N, the
probability of a bit being in error increased such that C
passed through a broad maximum and asymptotically
reached a constant nonzero value. Note that the oscillatory
behavior in C is a consequence of the small size of the
network. It results from alternately summing over an odd
then even number of stored states in the update rule (see
Eq. 4).

The effect of unlearning on the capacity is shown in Fig.
2, with e = 1/N = 0.033 and m as noted. Unlearning
extended the region over which C scaled linearly with n
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FIGURE 2 The information storage capacity, C (see Egs. | | and and 12), as a function of the number of memories stored, n, for a neiwork of
30 neurons. Calculations were performed before unlearning and, for n > 4, afier unlearning with ¢ = 0.033 and m as indicated. Each datum

represents the average of 100 simulations; the relative standard deviation of the mean for all points was 8C/C = 0.04. The solid lincs were

drawn as guides to the eye.

(dashed line, Fig. 2). This in turn increased the number of
memories that could be stored subject to a maximum error
rate. For example, after 120 unlearning trials C reached its
maximum value after the storage of 14 memories, as
opposed to 8 memories before unlearning. This imprave-
ment represents an approximately twofold increase in the
capacity after unlearning, compared with the value before
unlearning.

We assessed the sensitivity of the unlearning process to
the size of the unlearning strength, e. In these studies the
product mze, which represents the maximum possible
change in a connection strength T;, was fixed. The increase
in storage capacity after unlearning was found to be
independent of the size of e for e < 1 /n, but the extent of the
increase diminished for larger values of €. This is illustrated
in Fig. 3 for the case me = 4 and n as noted. Similar
behavior was found for other values of me. This result
justifies the choice ¢ = 1//N used in the previous simula-
tions (Figs. 1 and 2). It also suggests that memories must
be sampled only once on average for unlearning to be
effective.

The dependence of the storage capacity on the number
of unlearning trials, m, was studied for fixed values of e
We found that the capacity increased with successive
unlearning trials, until a maximum value (for n < N/2) of
C ~ nN was reached. The maximum value of the capacity
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FIGURE 3 The information storage capacity, C (see Eqgs. 11 and 12}, as
a function of the normalized unlearning strength, ne, for a network of 30
neurons, For each value of n an increasingly larger value of € was used in
the unlearning procedure with m determined {rom the constraint emr = 4.
Each datum represents the average of 225 simulations; the relative
standard deviation of the mean for all points was 8C/C = 0.03. The solid
lines were drawn as guides to the eye.
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remained essentially constant over the range 0.3n < me <
0.6n. Larger values of me caused a decrease in C concomi-
tant with the magnitude of the 7,’s approaching e. This is
illustrated in Fig. 4, withe = 1/V and » as noted. When 14
memories were stored, unlearning increased the storage
capacity by more than a factor of 3.

The previous result implies that the unlearning proce-
dure allows nearly » = N/2 memories to be stored with
essentially no errors in the retrieved content of those
memorics. To check if this result was independent of the
size of the network, we extended the simulaticns to
networks containing 100, 300, and 1,000 neurons. We
found similar results for all values of V. In fact, the larger
networks more closely approached the limit C — N?/2 for
n=Nj2.

Convergence Properties

We now examine the accessibility of the states stored in the
CAM. The accessibility was characterized by the average
radius of convergence for the retrieved memories, H. We
found that this radius decreased linearly as the number of
stored memories increased, i.e., H,; « —n. However, the
value of H,, was only weakly changed by unlearning,
increasing by less than one bit under optimal conditions of
unlearning. This shows that the reduction of errors in the
network is accompanied by only mild increases in the
radius of convergence. Note, however, that a one-bit
increase in M., increases the number of states that con-
verge to a memory by 6]’7/17 ~ N{Hg (Eq. 5 with
| « Hy <« N).

Although the radius of convergence was largely unaf-
fected by unlearning, details of the convergence properties
of the network were changed. This is illustrated for a
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FIGURE 4 The information storage capacity, C (see Egs. 11 and 12), as
a function of the total unlearning per stored state, me/a, for network of 30
neurons. For each value of # the value e = 1//V and increasing values of m,
as indicated, were used in the unlearning algorithm. The scale C/N2
corresponds to the number of memories normalized to the number of
neurons; the value C/N? = &, = 0.14 is the (pre-unlearning) limit of Amit
et al. (198556). Each datum represents the average of 100 simulations; the
relative standard deviation of the mean for all points was 6C/C =< 0.04.
The sotid lines were drawn as guides to the eye.

network with nine stored memories (Fig. 5) by plotting the
convergence probability as a function of the Hamming
distance, H, from a memory. Unlearning skews the likeli-
hood of convergence towards those states with H < H, in
contrast to the gradual dependence of the convergence on
I observed without unlearning.

The value of the H,, for all values of n, n > 2, was found
to be substantially less than the value expected if all 2V
states in the network converged to one of the memories
(Egs. 5 and 6). For example, with nine stored memories the
measured convergence radius, H; ~ 6'% (Fig.5), was
substantially less than the maximum possible radius, H..
{max) ~ 10 (Egs. 5 and 6 with N = 30 and n = 9). The
measured radius encompasses ~20 times less states than
maximum radius (Eq. 3). Where does the network con-
verge to for initial states with Hamming distances # >
H_,? We found that the network typically converged to a
spurious state. Thus the state-space of the network can be
qualitatively visualized as containing regions of attraction,
of radius H,,, around each memory (see also McEliece et
al., 1986). Outside of these regions the network is most
likely to converge to a spurious state, whose number
increases as 3" (Amit et al., 19854), as opposed to the
closest memory.

Energy Diagrams

To illustrate how unlearning increases the storage capac-
ity, we constructed a diagram of the energy values along
two paths through the state-space of a network. The
energies were calculated following the storage of one, four,
seven, and nine memories; Fig. 6, a—d. The paths begin at
the location of the first stored memory, M', and were
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FIGURE 5 The average probability of converging to a retrieved memory
state as a function of the Hamming distance, H, from that state for a
network of 30 neurons with nine stored memories. Probabilities were
calculated both before and after unlearning, with € = 0.033 and m = 120.
Each datum represents the average of 140 simulations; the standard
deviation of the mean for all points was dp = 0.02, The solid lines were
drawn as guides to the eye.
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FIGURE 6 The energy values along two 16-bit paths through the
slate-space of a 30 neuron network. Both paths begin from the state M'.
The energy, calculated from Eq. 7, is shown after the storage of (a) a
single memory (M"), (b) three memories, {¢) six memories, and (¢) nine
memories. The paths, two of [301/(30 — 16)!] = 3 . 10" possible 16-bit
paths, encompass 31 of the 2** = 1 . 10° states in the network. They were
constrained to pass through memory states M', M*, and M’ (dashed
lines) and the corresponding retrieved states, i.e., minima in the energy,
after the storage of nine memories.

constrained to pass through M', M* and M’ and the
retrieved states corresponding to these memories. With
only M' present, the energy of states at succeeding
distances away from M' had a quadratic dependence on
the Hamming distance (Fig. 6a). This dependence follows
from Eq. 7 with » = 1. As additional memories were stored,
the smoothness of the energy curve was lost (cf. Fig. 6 a
and b) and the minima correspending to M', M*, and M’
shifted from their correct position (Fig. 6 d). These shifts
correspond to a change in the bit sequence specifying the
memory, 1.€., a retrieval error.

The minima corresponding to memories are essentially
restored to their correct positions after successive unlearn-
ing trials (Fig. 7). The mechanisms found to be responsible
for this improvement will be illustrated by considering the
effect of unlearning on two sources of retrieval errors. One
source is the formation of spurious states (Hopfield et al.,
1983; Amit et al., 19854). Although the spurious states
have relatively weak minima, they can shift the position of
the memories. This is analogous to the apparent shift in the
position of a spectroscopic absorption line caused by a
second line, which is both weaker and narrower than the
original line, that peaks close to the position of the original
line.

The energy diagrams of Fig. 6, a-d can be used to
llustrate the effect of spurious states on the position of the
memories. The minimum corresponding to M' remained
correctly positioned after three memories were stored (Fig.
6, a and b). After the sixth memory was stored a spurious
state appeared near M' (Fig. 6 ¢) and shifted the position
of the minimum corresponding to M' by two bits (Fig. 6, ¢
and d). The energy of the minimum for the spurious state
alone, however, was much less than the energy of M'. Thus
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FIGURE 7 The energy values along two paths as a function of the
number of unlearning trials. The paths are the same as those used in Fig.
6, a—d, with nine stored memories (Fig. 6 &). The values ¢ = 0.033 and m
as indicated were used in the unlearning procedure. Note that the stable
states corresponding to each memory (M', M*, and M") gradually return
to their correct positions with successive unlearning trials.

the unlearning process primarily affected, and essentially
removed, the spurious state (Fig. 7). The minimum corre-
sponding to M' consequently returned to its correct posi-
tion.

A second source of retrieval errors was found to be the
“attraction” between memories. To illustrate this point we
constructed a network with four memories; a network of
this size is free of errors when the memories are composed
of randomly chosen bit sequences (see previous section). In
this particular construction the bit sequences of the first
three memories, M, M?, and M?, were chosen at random
while the sequence of M* was chosen to be a specified
Hamming distance, ., from M?. The distance between
the stable states corresponding to M* and M*, H;,.,, was
determined for each value of H,,.,. Fig. 8 shows the shift in
this distance, Hiyjm — Hinar a8 @ function of Hi. When
M? and M* were close (H,,;;y = 8 bits) the minima for the
two states shifted toward each other, ie., Hi < Hogarn
The memory with the shallower minimum was shifted the
most. Unlearning equalized the energy of both memories,
i.e., the depth of the two minima. This in turn reduced the
shift in Hamming distance (Fig. 8). Cenversely, for a fixed
shift in Hamming distance (i.e., a fixed probability of bit
errors) unlearning allows memories to be spaced closer
together. This increases the density with which memories
can be stored in the network and suggests a geometric
interpretation for the increase in storage capacity that
accompanies unlearning.

DISCUSSION AND CONCLUSIONS

It is interesting to consider the possible physiological
significance of these results. Crick and Mitchison (1983,
1986) proposed that during REM sleep, mammals “dream
in order to forget” as a means for removing spurious,
undesirable memories from the neocortex. This process
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was conjectured to weaken obsessive memories and to
prevent inappropriate associations. In independent work,
Hopfield et al. (1983) showed that unlearning enhanced
the performance of their CAM in accessing stored memo-
ries and in minimizing the presence of spurious memories.
Their results appear to support Crick and Mitchison’s
conjecture. Based on the results found in this study, we
suggest that REM sleep also increases the efficiency of
cortical networks by increasing the number of memories
that can be recalled correctly.

We have shown that the information storage capacity of
a CAM is substantially increased by an unlearning algo-
rithm. The mechanisms for this increase were illustrated
by analyzing the energy of the states in the network. Our
results imply that hardware implementations of CAMs
may benefit from the application of such algorithms,
particularly when a priori knowledge of the contents of the
stored memories is unavailable,
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