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ABSTRACT Sequential patterns of neural output activity
form the basis of many biological processes, such as the cyclic
pattern of outputs that control locomotion. I show how such
sequences can be generated by a class of model neural net-
works that make defined sets of transitions between selected
memory states. Sequence-generating networks depend upon
the interplay between two sets of synaptic connections. One set
acts to stabilize the network in its current memory state, while
the second set, whose action is delayed in time, causes the net-
work to make specified transitions between the memories. The
dynamic properties of these networks are described in terms of
motion along an energy surface. The performance of the net-
works, both with intact connections and with noisy or missing
connections, is illustrated by numerical examples. In addition,
I present a scheme for the recognition of externally generated
sequences by these networks.

Cyclic patterns of motor neuron activity are involved in the
production of many rhythmic movements, such as locomo-
tion. The neural circuits that control the muscles involved in
executing the movements are typically referred to as central
pattern generators (CPGs) (for reviews see refs. 1-3). A
common feature of CPGs is that sequence generation can
occur in the absence of both sensory feedback and feedback
from other neural centers. A second feature of some CPGs is
that they do not contain intrinsic pacemakers. Thus the cy-
clic activity, and the timing of this activity, is a collective
property of the CPG.

In this paper I present a formal model of sequence genera-
tion in the context of networks of model neurons, such as
those discussed by Hopfield (4, 5) (see also refs. 6-13). Hop-
field networks use highly interconnected model neurons to
perform complex computational tasks. These tasks, such as
recalling information by association (4, 9, 13) or solving opti-
mization problems (14), involve networks that seek a single,
stationary state as their output. The sequential state genera-
tors that I describe do not come to rest in a single state.
Rather they make transitions between selected states and
thus generate sequential patterns of bit sequences. Se-
quence-generating networks provide a formal setting for un-
derstanding some CPGs. They also provide a basis for the
sequential recall of information in associative memories.

THEORY

Background. As an antecedent to understanding sequence
generation, we consider a network consisting of N model
neurons that functions as an associative memory (inner cir-
cuit, Fig. 1) (4, 5). Neurons are represented by nonlinear am-
plifiers whose output, V;(#), saturates when the input, u;(#),
exceeds a threshold value. The detailed form of this behavior
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does not affect the function of these networks. We take

+1 if w(H) = 1/8
Bu(n if -1/B<u() <1/B,
-1 if w(r) < -1/B

where B is the gain of the neuron in the linear operating re-
gion.

A state of the network at time ¢, V(¢), is defined by a se-
quence of N numbers that specify the value of the output of
each neuron. Under saturating conditions, neurons are ei-
ther fully active (+1) or qulescent (—1) and V(z) is defined by
a binary sequence. There are 2V possible binary sequences.
Memories, M”*, are represented by specific .states chosen
from the 2N possibilities. For example, M* =-(+1 -1 -1

. .) implies that neuron 1 is active, neurons 2 and 3 are qui-
escent, etc.

Each model neuron receives input from all other neurons
via a set of pairwise synaptic connections (Fig. 1). The net-
work functions as an associative memory when the strength
of each synapse is determined from the memories according
to the outer-product rule (e.g., ref. 9):

1
Vi) =

1 n
Ty=§ 2 MM G#)), [2]

where 7 is the number of stored memories and T; = 0. The T
matrix is essentially a sum of projection operators that map
the present state of the network to the closest memory—i.e.,
the memory with the least number of differing bits. The out-
put of the network will converge from an arbitrary initial
state to a stationary memory according to the circuit equa-
tions (5) (Fig. 2):

dy;
wid) + mg; 2l

dt 3]

y X
= 2; TiV;(0),
e

where 75; = RgiCs; is the charging time of the ith neuron and
Rg; is related to the input resistance of the neuron, rg;, and
the synaptic resistances t;; and d;; (next section) by

N N
1/Rs; = 1/rs; + Z; 1/t; + Zl 1/d;;. [4]
i= j=

The magnitudes of the synaptic strengths T;; are given by

|T; JI Rs;/t;j, with negative values of T;; obtained by using
the inverted value of the output, —V;(¢) (Brokcn lines in Fig.
1.

Sequence Generation. Projection operators that map the:
state of the network from one memory to the next—i.e.,
terms of the form M/*! M—should generate transitions

Abbreviation: CPG, central pattern generator.
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Fi6. 1. Diagram of the neural network sequence generator and related circuits. The ith neuron is modeled by a nonlinear amplifier (triangle

labeled B) that buffers a capacitive charging circuit; there are N neurons. Broken lines correspond to inverted output signals. The inner circuit,
consisting of the neurons and the synaptic strengths T;; « 1/t;;, constitutes an associative memory. The addition of time delays, @(¢, mp;), linear
buffering amplifiers (open triangles), and the synaptic strengths D;; « 1/d;; forms the sequence generator. Sequence recognition is performed
on the external inputs, E,(f), multiplied by the synaptic strengths F;; « 1/f;;. .

from the vth to the (v + 1)th memories (4, 15, 16). However,
when terms of this form were added to the T matrix, only
sequences of limited length were achieved (4). The difficulty
with this construction is that the network does not become
stationary in one memory before the transition to the next
memory begins. This causes the state of the network to be-
come progressively mixed among all the memories making
up a sequence, which makes the generation of arbitrarily
long linear sequences, or cyclic sequences, unattainable.

The essential requirement for sequence generation is to
allow the network to become stationary in one memory be-
fore inducing a transition to another memory. The transi-
tions between memories can be delayed by having the input
to each neuron depend upon the history of the network via a
set of delayed output states, Vp;(#). These states are defined
as the convolution of V;(f) with a (normalized) delay func-
tion, B(¢, mp)—i.e.,

VDj(t) = fo Vj(f - x)?b(x, TDj)dX. [5]

The delay time, 7p;, must be long compared to the charging
time, 7s;. For the propagation delays inherent in nondisper-
sive cables or with active propagation along axons, %(¢, 7p;)
= 8(t — mp;) and Vp;(#) = V;(t — mp;). For the delays associ-
ated with charging a capacitor, @(¢, 7p;) = e 0/ Tpy.

The delayed outputs form a second set of inputs to the
neurons via the synaptic connections D;; (Fig. 1). The
strengths of these connections are chosen to cause transi-
tions through a sequence of memories. For each independent
sequence of length m, m < n:

1 m
Dy =+ Zl MIMY G #)) (61
with D; = 0. The magnitudes of the strengths D;; are related
to the resistances d;; and Rg; by |D;;| = Rs;/d;;. To generate
cyclic sequences the sum in Eq. 6 is performed modulo m.
The circuit equations describing the dynamics of the se-
quence generator are

dl.l,'(t)
dt

N N
u;(t) + 75 = Zl T V() + Zl D;jVp;i(). (7]
= =

Binary Limit with Delta Function Delay. The model dis-
cussed above uses neurons with a graded input-output rela-
tion (Eq. 1). It is useful to consider the “binary” limit of this
model—i.e., B — » and 75; - 0—with the additional con-
straint @(¢, 7p;) = 8(t — 7p). This case simplifies the analysis
of the sequence generator without changing the essential fea-
tures of its dynamics. The input to the ith neuron is now

N N
(k) = Zl Ti;V;(k) + Zl D;;V;k — p), 8]
Jj= Jj=

where the time step k approximates the charging time, 7s.
The delay interval, p, is taken to be the same for all neurons
and is equivalent to kp = 7p/7s. The outputs V;(k) are updat-
ed to either +1 or —1 depending upon the sign of u;(k) (Eq. 1
with B — ). The updating is performed asynchronously—
i.e., the value of the index i is chosen at random to simulate
variations in 7s; between neurons. :

Sequence Dynamics. The dynamic properties of the se-
quence generator can be qualitatively understood by exam-
ining the input to each neuron as a function of V() and V(k —
kp). To place this analysis in a physical setting, we illustrate
the dynamics in terms of motion on a quadratic, “energy,”
surface defined by

N N
E= —(Z Vilk) TyV; 00 + 2, V(D Vytk - KD)). 91
ij N

Fig. 2 shows contour plot of the energy (E) as a function of
Y(k) and V(k — kp) for the case of orthogonal memories—
i.e.,

1 N
N}Z} MPM/ = 8(v — V). [10]

Memories appear as minima, or bowls, with E = —2. They
are separated by relatively broad saddles with E = —1.

We consider a network soon after it has settled into the
vth memory—i.e., V(k) = M” (point a, Fig. 2). For a time
short compared to kp, the value of the delayed state is
V(k — kp) = M*, The energy of the network is presently at
a minimum and the input to the ith neuron is (Eqs. 8 and 10):
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N N .

Ui(k) = Zl T,'ijv'f' Zl D,'ijv~1 = 2'M,-V. [11]
Jj= J=

Contributions from both the current state and the delayed
state thus stabilize the network in the yth memory.

After the network has remained stationary in the »th mem-
ory for an interval ~ «p, the value of V(k — kp) shifts toward
M? (path a-b, Fig. 2). This change increases the energy of
the network such that it moves towards the top of a bowl in
the energy surface (point b, Fig. 2). When V(k — «p) finally
equals M?, the input to the ith neurons becomes

N N
u;(k) = Zl T,'ijy + z] D,'ijvz MY+ M,'V+1. [12]
i= =

These new values for u;(k) place the network in a mixed,
nonstationary state from which it can make the transition
from M* to M**1, The transition corresponds to moving
across a saddle region on the energy surface (path b—c, Fig.
2) and falling into the adjacent bowl (path c-d, Fig. 2). The

network will remain in the new memory for an interval ~ xp, .

after which it will make a transition to the next memory in
the sequence, etc.

Sequence Recognition. An extension of the sequence gen-
erator can be used to recognize external sequences (Fig. 1).
Recognition is defined as a completed set of transitions of
the sequence generator in response to a particular external
input, E(k) (17). We require that the sequence of states, L%,
composing the external input can be mapped onto the se-
quence of memories used to form the D matrix (Eq. 6). A set
of synaptic connections that produce this mapping are

1 < .
Fy=5 2 ML G#)), 131

where F;; connects the ith component of the external input
to the jth neuron, and F; = 0. The external input is clocked
with an average period of xg. The circuit equations for the
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Mv+‘l L |
>
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CURRENT STATE, V(k)

F1G. 2. Contour plot of the energy function, E, for the sequence
generator. The plot was constructed by using Eq. 9 with orthogonal
memory states. The arrows indicate a segment of the path the output
of the network follows in the limit 8 — « (Eq. 1) with a delta func-
tion delay.
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recognition network, shown in Fig. 1, are

' N "N
wk) = 21 Ti;V;(k) + A E; D;;V;(k — «p)
= J=
N
+e ,-Zl F,E; (k). [14]

The coefficient X is adjusted so that the contribution to u;(k)
from the delayed states alone is insufficient to cause transi-
tions between memories. Sequence generation is now possi-
ble only when the external input can assist in driving the
transitions. Thus, a completed set of transitions occurs when
the externally generated sequence of states is equivalent to
the internal sequence of memories (Eq. 12). This set is com-
pleted in a period Ak = m- kg with cyclic sequences. In this
scheme, £ must be large enough to elicit transitions but small
enough so that E(k) does not dominate the inputs to the indi-
vidual neurons. The external period must be longer than the
delay time—i.e., kg > kp. '

The recognition scheme can be interpreted in terms of the
energy diagram of Fig. 2. With A << 1, inputs from the de-
layed state can force the network toward the top of an ener-
gy bowl (point b, Fig. 2) but not out of that bowl. The addi-
tional force required to move the network up to the saddle
region and over into the next bowl, or memory, must be sup-
plied by the external input.

- NUMERICAL SIMULATIONS

Sequence Generation. I first demonstrate the functioning
of the sequence generator (Egs. 1, 2, 6, and 8) with a small
network. Fig. 3a shows the individual neural outputs from a
network containing 7 neurons and 3 memories with a delay
interval xkp = 6. The statistical independence of the memo-
ries used to form the T and D matrices was ensured by se-
lecting nearly orthogonal memories (Eq. 10). Starting from a
randomly selected initial state, the network converged to-
ward a memory and subsequently made cyclic transitions be-
tween all three memories. Relatively smooth transitions,
however, did not occur until after the first few cycles; this is
illustrated by the output of neuron 7 (Fig. 3a), which was
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- No obd xS
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Fi1G. 3. Simulation of a network with 7 neurons and 3 memories,
labeled M!, M?, and M?, that generates cyclic sequences; see text
for details. (a) Output of each neuron, V;(k), plotted as a function of
the time step k. (b) Overlap of the current state of the network with
each of the memories (Eq. 14), (V(k):M") (top three traces); the
overlap of the current state with the delayed state, (V(k)-V(k — «p))
(bottom trace).
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specified to have the value V;(k) = —1 for all 3 memories.
Details of the sequential behavior can be highlighted by
examining the overlap of V(k) with each of the memories, as
opposed to examining the outputs of the individual neurons
(23). We define the (normalized) overlap, (V(k)-M"), as

1 <
(VM) = & 2 V,(0M;. [15]
=

A magnitude of 1 implies that the network is in the vth mem-
ory. These overlaps are plotted in Fig. 3b for the 7-neuron
sequence generator. The width of each overlap, ~ «p, corre-
sponds to the time spent in each memory. I also show in
Fig. 3b the overlap of the current state with the delayed
state, (V(k):V(k — kp)). This overlap peaks when the net-
work is undergoing a transition. The maximum value
(V(k)*V(k — kp)) = 1 occurs just prior to a transition. It cor-
responds to the network sitting on the upper edge of a bowl
in the energy surface (point b, Fig. 2). The width of the peak,
2-3 time steps, corresponds to the transition time between
memories.

We now focus on sequence generators containing 100 neu-
rons, in which the statistical properties of large neural net-
works should emerge. For these studies we used memories
composed of bit sequences chosen at random. Fig. 4 illus-
trates the cyclic output of a network with xp = 6 and 14
memories; 14 memories is just above the value for which
retrieval errors can occur with associative memories (18).
Approximately two complete cycles were required before
the output reached a steady periodicity, after which the cy-
cle period remained constant. Details of the initial transient
behavior depended on both the initial state of the network,
V(0), and the value of kp; with longer delays fewer cycles
were required to reach steady conditions.

The cyclic output of these networks continued essentially
indefinitely for sequences of length m = n < 25 and delay
intervals kp = 5. With shorter values of «p the network did
not become stationary in each memory and often became
trapped in a spurious stable state (19). The period for each
cycle under steady conditions was approximately Ak =

T T T T T T T T T T T T T T T

{= CYCLE PERIOD

—r
Lo PSR ST S TS W B S S

OVERLAP, {V(k) - M”>

%

145 1wl g hodonsndns ]

| S TR S ST ST WU NUN N SN NN SN Y SO Y SN SN S SR S

o) 50 1000
TIME STEP, k

FiG. 4. Simulation of a network with 100 neurons and 14 memo-
ries that generates cyclic sequences; see text for details. The overlap
of the current state of the network with each of the memories is
plotted as a function of the time step, k. The bar in the lower left
indicates an overlap value of 1.
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n*(kp + 2); the time step of 2 corresponds to the transition
time between memories.

Fault Tolerance. Neural networks are expected to function
properly with errors in their synaptic connections. Qualita-
tively, this occurs because n-N bits of information are con-
tained in the memories while the D and T matrices each con-
tain N*(N — 1):logn >> n-N bits. Errors in the values of
some synaptic strengths are offset by the redundant storage
of information in the synapses.

I assessed the ability of the sequence generator to function
with noisy synaptic connections by randomly incrementing
or decrementing the T;; and D;; connections (i # j) in one-bit -
increments. For a network of 100 neurons with 14 memories
(Fig. 4), the sequential output remained essentially unaffect-
ed with root mean square (rms) noise levels up to approxi-
mately twice the rms value of the synaptic strength. At this
threshold level for failure, the rms signal-to-noise of the in-
put to each neuron is reduced from the intrinsic value of
~(N/n)Y? = 3 to a value of ~1.5.

I examined the effect of stochastic removal of synaptic
connections on sequence generation by setting randomly se-
lected T;; and D;; connections to zero. For a network of 100
neurons and 14 memories (Fig. 4) the cyclic behavior was
essentially unperturbed so long as 40% or fewer of the con-
nections were removed. However, when additional connec-
tions were removed the output degraded rapidly, ceasing
within one cycle with 50% of the connections missing.

A second method for removing 50% of the connections is
to set one randomly chosen member of each T;; and T;; pair
and each D;; and Dj; pair to zero. Sequence generation was
essentially unaffected by this alteration. This shows that the
sequence generator functions without bidirectional connec-
tions between neurons. In contrast to the first method, the
second method removes connections in a relatively uniform
manner and therefore did not cause the large fluctuations in
the D matrix necessary to halt transitions.

Capacitative Delays. An exponential weighting function
was used as the time delay—i.e., Bk, kp) = e~ ¥**/kp—for

T T T T T T T T T T T T T T T T T

- MEMORIES pLus EXTERNAL INPUTS
AD, =260°  A®=O°
| v mkg =
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j\"’_"\—’*’“—"\,/‘-/\‘\mvf\h;—mm ]

RN VNN T T S T W W B B 1

<
n
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T
s
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TR g M
o 500 1000
TIME STEP, k

F1G. 5. Recognition of an external cyclic sequence by a network
with 100 neurons and 14 memories; see text for details. The overlap
of the current state with each of the memories is plotted as a func-
tion of the time step, k. The bar in the lower left indicates an overlap
value of 1.
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simulations with networks of 100 neurons. Sequential output
was obtained with delay intervals as short as kp = 3, al-
though the maximum length of a sequence was limited to
m = n = 7. This result implies that sequence generation does
not depend on the detailed form of the time delay. Further-
more, sequential output was maintained only if the peak val-
ue of (V(k)' Vp(k)) exceeded ~0.8 prior to a transition; for a
delta function delay the peak value is =1.0. This suggests
that reliable transitions occur only if the trajectory of the
network along its energy surface comes close to the top of a
bowl (point b, Fig. 2).

Sequence Recognition. I demonstrate the sequence recog-
nition scheme (Egs. 1, 2, 6, 13, and 14) with a network of 100
neurons and 14 randomly selected memories. The threshold
value of A, below which sequence generation does not occur,
was found to be A = 0.5. Thus I choose A = 0.4 and ¢ = 0.2
as parameters for the simulation to ensure that only the ex-
ternal input, E(k), could elicit sequential outputs. The exter-
nal sequence was clocked with a period kg = 3-kp = 18. The
sequence consisted of 14 randomly chosen statés that were
mapped onto the memories via synapses with strengths Fi;
(Eq. 13). The initial state of the network was set to V(0) =
M! and the initial state of the external input was E(0) = L%,
The difference between the states, Av = 10, corresponds to
an initial phase difference of A®, = (Av/n)-360° = 260° be-
tween the internal and external states.

The output of the sequence recognizer is shown in Fig. 5.
At first the output fluctuated between memories, concomi-
tant with the phase difference between E(k) and V(k) con-
verging toward zero. Sequential outputs emerged when the
states of the external sequence and the memories of the se-
quence generator varied in synchrony—i.e., A® = 0°. The
period of the cyclic output (m = n) was Ak = n-kg = 250, as
compared with Ak = 110 for the free-running sequence gen-
erator (Eq. 14 with A = 1 and ¢ = 0); cf. Figs. 4 and 5. The
time required for the external and internal sequences to syn-
chronize included contributions from the overall settling
time of the network (Fig. 4) and corresponded roughly to
2'n* kg, independent of the value of Ad,.

DISCUSSION

I have shown that the generation of sequential output states
can be understood in the context of a model neural network.
This network contains no intrinsic oscillators and functions
in the absence of external inputs. Sequence generation is an
emergent property of the network that depends upon the in-
terplay between two sets of synaptic connections. One set
stabilizes the network in its current memory state, while a
second set, whose action is delayed in time, causes the net-
work to make transitions between memories. _

The model I demonstrated contains connections between
all pairs of neurons, while biological systems almost univer-
sally have a lesser degree of connectivity. Reducing the
number of connections in the model network will decrease
the number of memories that can be incorporated into se-
quences. However, sequence generation will still occur with
a reduced number of conneéctions if, on average, a T;; con-
nection is paralleled by a D;; connection of the opposite sign.
This corresponds in biological systems to balancing short-
term inhibition by delayed excitation, and vice versa. Recip-
rocal connections of the same sign, which can cause oscilla-
tions between pairs of neurons (3), are not necessary for
CPGs to function.

How does the behavior of the model compare with the
measured properties of CPGs? Details of the networks that
underlie CPGs have been studied in a number of prepara-
tions (1-3). We focus on the analysis by Getting (20, 21) of
the CPG controlling the escape swimming response in the
mollusk Tritonia diomedea. This CPG functions with 4 neu-
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ral groups and 2 stable states (M and —M). Despite these
small numbers, it has many features in common with the
model network. The neurons exhibit well-defined on (burst-
ing) and off (quiescent) states. None of the neurons are in-
trinsic pacemakers. Many of the synaptic connections show
both a short-term and a long-term response (kp = 20). The
connections exhibit short-term excitation followed by de-
layed inhibition and short-term inhibition followed by de-
layed excitation (D;; = —T;;).

The output activity of many CPGs can be switched on and
off via external inputs from command neurons (22). These
neurons modulate a select fraction of the neurons in a CPG.
The corresponding control of cyclic output can be achieved
with schemes similar to that for sequence recognition. For
example, when the D;; connections are formed without in-
cluding the term M}M7", only a linear sequence can be gener-
ated (Eq. 6). Cyclic output will be enabled by an external
input E(k) = E° if the connection strengths F;; are chosen to
cause the transition from the last memory to the first memo-
ry in the sequence—i.e., F;; = MJE} (Eq. 12). Different
command rieurons can elicit different output pattérns from
the same CPG (22). This corresponds to storing multiple se-
quences in the model netwotk. A particular sequence is acti-
vated when the external input causes a transition to one of
the memories in that sequence.

Note Added in Proof. A similar theory for generating seqiiences has
been independeritly derived by Kanter and Sompolinsky (24).

I thank G. E. Blonder, H. J. Chiel, J. J. Hopfield, and H. Sompo-
linsky for many useful discussions. The sequence recognition
scheme follows a suggestion by Hopfield. D. B. Péndergraft assist-
ed with the simulations.

1. Roberts, A. & Roberts, B. L., eds. (1983) Neural Origin of
Rhythmic Movements (Cambridge Univ. Press, Cambridge).

2. Selverston, A. 1. & Moulins, M. (1985) Annu. Rev. Physiol. 417,
29-48. .

3. Cohen, A. H., Rossignol, S. & Grillner, S., eds. (1986) Neural
Control of Rhythmic Movements (Wiley, New York).

4. Hopfield, J. J. (1982) Proc. Natl. Acad. Sci. USA 79, 2554~
2558.

5. Hopfield, J. J. (1984) Proc. Natl. Acad. Sci. USA 81, 3088-

3092.

Steinbuch, K. & Piske, U. A. W. (1963) IEEE Trans. Electron.

Comput. 12, 846-862.

Caianiello, E. R. (1966) Kybernetik 3, 98-100.

Grossberg, S. (1970) Studies Appl. Math. 49, 135-166.

Nakano, K. (1972) IEEE Trans. Sys. Man Cybern. 2, 380-387.

Cooper, L. N. (1973) in Proceediiigs of the Nobel Symposium

on Collective Properties of Physical Systems, eds. Lundqgvist,

B. & Lundqvist, S. (Academic, New York), pp. 252-264.

11. Little, W. A. & Shaw, G. L. (1975) Behav. Biol. 14, 115-133.

12. Anderson, J. A., Silverstein, J. W., Ritz, S. A. & Jones, R. S.
(1977) Psych. Rev. 84, 412-451.

13. Kohonen, T. (1980) Content Addressable Memories (Springer,
Berlin).

14. Hopfield, J. J. & Tank, D. W. (1985) Biol. Cybern. 52, 141-
152.

15. Amari, S.-I. (1972) IEEE Trans. Comput. 12, 1197-1206.

16. Platt, J. C. (1985) Sequential Threshold Circuits (California In-

) stitute of Technology, Pasadena), Tech. Rep. 5197:TR:85.

17. Fukushima, K. (1973) Kybernetik 12, 58-63.

18. Amit, D. J., Gutfreund, H. & Sompolinsky, H: (1985) Phys.
Rev. Lert. 55, 1530-1533.

19. Amit, D. J., Gutfreund, H. & Sompolinsky, H. (1985) Phys.
Rev. A 32, 1007-1018.

20. Getting, P. A. (1981) J. Neurophysiol. 46, 65-79. .

21. Getting, P. A. (1983) J. Neurophysiol. 49, 1036-1050.

22. Kupfermann, I. & Weiss, K. R. (1978) Behav. Brain Sci. 1, 3—
39.

23. Peretto, P. & Niez, J. J. (1986) Disordered Systems. and Bio-
logical Organization, ed. Bienenstock, E. et al. (Springer, Ber-
lin), pp. 171-18S.

24. Kanter, I. & Sompolinsky, H. (1986) Phys. Rev. Lett., in
press. :

—
SwvwoN



