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We compared the spike activity of individual neurons in the
Aplysia abdominal ganglion with the movement of the gill during
the gill-withdrawal reflex. We discriminated four populations that
collectively encompass approximately half of the active neurons
in the ganglion: (1) second-order sensory neurons that respond
to the onset and offset of stimulation of the gill and are active
before the movement starts; (2) neurons whose activity is corre-
lated with the position of the gill and typically have a tonic output
during gill withdrawal; (3) neurons whose activity is correlated

with the velocity of the movement and typically fire in a phasic
manner; and (4) neurons whose activity is correlated with both
position and velocity. A reliable prediction of the position of the
gill is achieved only with the combined output of 15–20 neurons,
whereas a reliable prediction of the velocity depends on the
combined output of 40 or more cells.
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Neural systems can be viewed as complex input–output devices.
The input can be an external stimulus, and the output is the
generated behavior. From the point of view of neuronal computa-
tion, two essential and related questions emerge. First, how is the
sensory input and intended motor output represented? Second,
how distributed is the processing in the neural system?

To help answer the above questions, we had monitored the
activity of a large fraction of the population of the neurons that
generated a behavioral response. Here we determined how well the
behavior could be both fit and predicted with weighted summations
of the spike activity of the individual neurons. In particular, we
analyzed the spike activity of 149 neurons in the abdominal gan-
glion of Aplysia and the simultaneously recorded gill movements
that occurred after stimulation of the siphon with a light mechan-
ical touch (Wu et al., 1994). The spike data were obtained from
voltage-sensitive dye recordings that allowed simultaneous moni-
toring of the activity of a substantial fraction of the active popula-
tion of neurons. These neurons are thought to be mainly interneu-
rons and motor neurons because the primary sensory neurons for
light touch are probably in the periphery and the sensory neurons
in the ganglion have a very modest response to the mechanical
stimulus that was used in these experiments (Hickie et al., 1997).

It had been suggested that there is a simple functional architec-
ture for the gill-withdrawal reflex. Specifically, Byrne et al. (1978)
estimated that the feedforward circuit formed by monosynaptic
connections between eight LE sensory neurons and six gill motor
neurons can account for 60% of the motor neuron postsynaptic
potential. However, more recent evidence shows that the contribu-
tion of the monosynaptic LE sensory component to the movement

is actually an order of magnitude smaller, ;5 versus 60%, and that
contributions from other sensory neurons as well as interneurons
are important (Hawkins et al., 1981; Frost et al., 1988; Cohen et al.,
1991; Trudeau and Castellucci, 1992; Hickie et al., 1997; Walters
and Cohen, 1997). In addition, voltage-sensitive dye measurements
(Zecevic et al., 1989; Nakashima et al., 1992; Tsau et al., 1994;
Hopp et al., 1996) suggest that ;300 of the ;1000 neurons in the
ganglion are activated during gill-withdrawal reflex; this allows the
possibility that the coding of gill movement may be distributed
among many neurons.

Here we analyze the previously recorded spike data, and ask the
following. (1) Are different aspects of the gill-withdrawal move-
ment, position as opposed to velocity, independently coded by
neurons in the abdominal ganglion? (2) If different aspects are
independently coded, does this involve overlapping or separate
pools of neurons? (3) How large a population of neurons in the
abdominal ganglion is required to reliably predict the movement of
the gill based on the weighted output of neuronal activity?

MATERIALS AND METHODS
The experimental data for spike activity that we analyzed were obtained
earlier by Wu et al. (1994). The experiments were performed on an
isolated siphon preparation developed by Kupfermann et al. (1971). The
data consist of recordings made during seven separate light mechanical
touches, each consisting of a force of 10 mN that was applied to the siphon
for 400 msec. The interstimulus interval was 15 min and was chosen to
minimize habituation. The neuronal activity in the ganglion was deter-
mined by measuring the light transmitted through a ganglion stained with
the voltage-sensitive oxonol dye JPW1131 (ne RH155) (Grinvald et al.,
1980). Because of the limited signal-to-noise ratio in the measurements, it
was estimated that only half of the active neurons in the ganglion were
detected (Wu et al., 1994). The behavioral data consists of a time series
that represents the area of the gill. The top of Figure 1 shows a portion of
the spike recordings, before as well as after the siphon stimulation (Fig. 1,
S), and the bottom shows the recordings of the gill area; these areas were
remeasured for this study to improve the temporal accuracy. The data from
trial 8 in the data of Wu et al. (1994) was omitted because there were fewer
spikes during that trial and subsequent analysis of that trial was numeri-
cally unstable.

Analysis. We have both the time series representing the gill movement
and the simultaneously recorded spike data from ;150 neurons in seven
consecutive trials. We attempted to reconstruct the gill movement from the
spike times of the individual neurons in two different ways. First, we fit the
behavior from each trial from the spikes times of that trial in terms of a set
of weights that parameterized the fit. This allowed us to examine the form
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and consistency of the weights derived from independent trials. Specifi-
cally, we attempted to fit the gill movement in terms of the optimal linear
combination of the output of each neuron. The weights used for each
neuron, between 21.0 and 11.0, are the free parameters of the fit; these
weights are adjusted by an algorithm (see below) that minimizes the
difference between the recorded movement and the fitted pattern.

As a second measure of the relationship between the spike times and
behavior, we predicted the behavior of one trial using a single set of
synaptic weights fitted as an average over the other six trials. If the neuron
weights are consistent from trial to trial, then the behavioral curve of the
one remaining trial should be reasonably well predicted.

We made several simplifying assumptions that were common to both
analyses. First, we assumed that each spike in a train would make an equal
contribution to the behavior, and thus, we did not consider synaptic
facilitation or depression. Second, we assumed that there was a linear
relationship between spikes in neurons and the position of the gill and the
velocity of the gill movement, and thus, we did not consider possible
interactions between neurons. Last, because the spikes are discrete events
and the behavioral response is a continuous function of time, we repre-
sented each spike by a gaussian curve with an SD of 70 msec. After this
transformation, the output activity of each neuron is represented by a
sequence of gaussian time courses.

Figure 1. The experimental data. Top, The activity of 95 of the 149 neurons that were recorded optically during seven 13 sec trials separated by 15 min.
The 400 msec siphon touch began at the time of the dashed lines labeled S. Not included in the figure are the 16 second-order sensory neurons and neurons
the made less than five spikes in the seven trials. This data were taken from Wu et al. (1994). Bottom, The gill contraction was recorded on video tape.
The traces were digitized by taking the ratio of white pixels (gill) to the total screen area.
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Algorithms. We define the predicted behavioral response, either the
position or the velocity of the gill, to be a linear combination of neural
activity during that trial. Formally, this is given by:

Bk
pre~t! 5 O

i51

N

wiSi
k~t!, (1)

where k is the trial number, N is the number of neurons considered for the
fit (n 5 133 for the cells included) and the wi are the weights that describe
the relative influence of individual neurons on the behavioral pattern.
Those weights are the free parameters of the fit.

Spike train representation. The time series Sk
i represent the temporal

activity of a single neuron in terms of its spike times. Ideally, because the
spikes are discrete events and the behavioral response is a continuous
function of time, one would smooth each spike by convoluting it with a
postsynaptic response function. However, as a simplifying procedure that
preserves the essence of our analysis, every spike is converted to a
normalized gaussian with the width of s that is centered at the time of the
spike, i.e.,

Si
k~t! 5

1

Î2ps
O
$sik%

expS 2
~tik 2 t!2

2s 2 D , (2)

where t denotes time, sik denotes the spike train of i-th neuron in k-th trial,
and tik is the time of a single spike in that spike train. The gaussian
smoothing may be viewed as assigning a probability distribution that a
given neuron fired at a particular time, under the assumption that this
probability is the highest at the time the neuron de facto fired and is
symmetrical. The SD was set to s 5 70 msec for both velocity and position
fits. Qualitatively similar results were obtained with values for s between
30 and 200 msec.

Because the changes in the position component are much slower then 70
msec used for the fits, the fits of this component were additionally
smoothed with a sliding window of 1000 msec width. The smoothed fits
(see Fig. 4) were used in the calculation of the error of fit.

Individual trial fits. The aim of the method is to optimize the weights of
the neurons in such a way that the behavior reconstructed from the spike
series will best match the position or velocity during the withdrawal reflex.
This is done through the standard procedure (Korn and Korn, 1968) of
minimizing a quadratic error function, Ek,

Ek 5
1
T E

0

T

dt@Bk
pre~t! 2 Bk

obs~t!# 2, (3)

where Bobs
k denotes the recorded behavior, either position or velocity of

the gill, B pre
k is the fit that is being optimized, and t 5 0 denotes the

onset of stimulation whereas T 5 10 sec is the time at the end of the record.
The function Ek measures the difference between predicted and observed
behavior. Our aim is to find the set of weights that minimizes the error
function on a given trial. Those weights are be then used to reconstruct the
movement.

The values of the weights that minimize the error function are obtained
directly from:

­Ek

­w3
5 0, (4)

which has to be fulfilled to find the minimum of function Ek by varying the
weights w; the arrow in Equation 4 denotes a vector of the weights of all the
neurons. We noticed that the solution to this equation can be written in the
analytical form:

w3 5 F21C, (5)

where F is a matrix defined by:

Fij
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The function F represents the overlap of activity of the spikes from the i-th
and j-th neurons. It estimates the relative importance of the given neuron.
If there are many neurons that fire in a similar pattern, the relative
importance of the single cell from that group is smaller; on the other hand,
if there is a single cell with a given pattern of activity, its relative
importance to the fit may be higher. Thus, if two neurons spike at the same
time, the exponent achieves its maximal value. If the spike times do not
match, the exponent will tend to 0. The weights are proportional to the
inverse of this matrix.

The matrix F is sparse because of the relatively low spike rate of most
cells. In particular, only 24 of the 133 neurons had more than three spikes
in all seven trials, and only 13 of the 133 had more then five. This

sparseness may cause F to be singular and is expected to lead to numerical
instabilities in the algorithm during the matrix inversion. To calculate the
inverse of matrix F under such conditions, we performed a spectral
decomposition (Golub and Van Loan, 1996) and used the leading eigen-
vectors from that decomposition to estimate the inverse of F.

The function C is defined as:

C j
k 5

1

Î2ps E
0

T

dt Bk
obs~t! O

$Sik%

expS 2
~tik 2 t!2

2s 2 D (7)

and measures the correlation of the recorded position or velocity compo-
nent of the movement with the spike trains of a given neuron. The position
and velocity were rescaled in such a way that the values of the position and
velocity before the stimulus were considered as the baseline and were set
to 0. All trials and fits were normalized, so that the position had maximum
value of 1. Note that the weights were obtained through numerical solution
of Equation 5 and not through a numerical search for minima of the error
function surface extended in the space of all possible weights. This avoided
the problem of converging on local minima. The calculations were written
and performed in Interactive Data Language (Research Systems Inc,
Boulder, CO).

Optimal weights for novel trial predictions. To predict the movement in
one trial based on the measurements for the other six trials, either the
position or velocity, we performed an analogous procedure as described
above. However, the error function is now defined so that the sum of errors
of the six other trials is, i.e.,
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0
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The weights that result from this minimization are then used to reconstruct
the behavioral curve, position or velocity, of the remaining trial. This
procedure is repeated for every permutation of trials. As before, Equation
5 is an analytical solution to the minimization problem with the vector C
and the matrix F now given by:
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RESULTS
The neuronal data (Fig. 1, top) suggests a possible dichotomy
between two populations of neurons. As shown at the top of the
raster diagram, there is a small population of cells that respond to
the stimulus by firing tonically, with a slow modulation. On the
other hand, there is a large population of neurons that fire infre-
quently but to some extent synchronously. This leads to the spec-
ulation that the two groups of cells might correlate with aspects of
the gill movement that occur on different time scales. In particular,
the recorded movement of the gill (Fig. 1, bottom) can be charac-
terized by two dynamic components: (1) slow contractions and
relaxations that can be described on a time scale of 500–1000 msec;
and (2) fast contractions that always occurred at the beginning of
the gill withdrawal and sometimes occurred later in the response.
The relevant time scale for the fast contractions is ;100 msec.

To quantify the two dynamic components, we decomposed the
movement data, as illustrated for trials 1 and 5 (Fig. 2A). (In this
and subsequent figures, the onset of the mechanical stimulus is the
0 time.) Gill position is found by filtering the recorded movement
with a low-pass filter (cutoff frequency of 0.6 Hz) to remove the fast
contractions from the recorded movement (Fig. 2B); the peaks of
gill contraction were not shifted compared with the original traces.
The fast contractions are equated with the velocity of the gill
movement, given by the first derivative of the movement (Fig. 2C).
In addition, Figure 2D shows the two cumulative histograms of the
spike activity of all the neurons from Figure 1 for the two trials.
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Note that there are peaks in the histograms that are coincident with
peaks in the velocity traces (Fig. 2C). This coincidence, combined
with the results in Figure 1, suggests that there is a subpopulation
of cells whose activity correlates with velocity. This hypothesis is
quantitatively analyzed below.

Second-order sensory neurons
A subpopulation of “sensory” neurons was defined by identifying
neurons that spiked during the period of stimulus presentation (400
msec) but before the movement started. To avoid including neu-
rons that fired during the stimulation period by chance, we added
the constraint that the neuron had to have at least five spikes in the
seven trials during this period. This group consisted of 16 neurons.
Figure 3B shows the cumulative histograms of the activity of these
16 cells for two trials, as well as the velocity traces for those two
trials. In both trials, the first peak in the histogram comes before
the onset of the movement. There is a second peak that, in some
instances, is synchronized with a velocity peak. However, previous
results from habituated preparations, in which there is no gill
movement, strongly suggests that the second burst is the response
to the offset of the mechanical stimulus (Falk et al., 1993). The size,
location in the ganglion, and sensitivity to altered Ca21 concen-

trations of this “sensory” class makes it likely that they are second-
order sensory neurons (Hickie et al., 1997). We removed the group
of 16 putative second-order sensory neurons from computations
shown in this paper.

Fast and slow gill movements correlate with activity of
different neural populations
We fit the gill position and velocity with the neural activity in each
of the seven trials separately. Examples of the gill position and
velocity fits from two trials are presented in Figure 4A; the gill
position and velocity are shown in gray, and the fits are thin dark
lines. The entire neural population, except the second-order sen-
sory neurons, was used to calculate both fits. Comparison of the
behavior and the fits shows that both velocity and position are well
reproduced by the fitting algorithm (Eqs. 5–7), indicating that both
position and velocity have their cellular correlates.

We quantify the goodness of the fit in terms of a “percentage
error,” denoted PEk. This is a normalized measure, defined as the
mean-square distance between the position (or velocity) traces and
their respective fits (Eq. 3) divided by the mean-square amplitude
of the position (or velocity), times 100, i.e.,

PEk 5 100

1
T E

0

T

dt@Bk
pre~t! 2 Bk

obs~t!#2

1
T E

0

T

dt@Bk
obs~t!#2

%, (11)

where B(t) refers to the position or the velocity component of the
behavior (Fig. 2B,C). The percentage error is PEk 5 0% if the fit
is perfect, and it tends toward 100% as the fit worsens. The

Figure 2. The gill-withdrawal movement ( A) was divided into two com-
ponents, position and velocity. Position (B) was obtained by filtering the
original traces (A) with a low-pass filter of 0.6 Hz. Velocity (C) was
obtained by calculating the derivative of the movement shown in A. D shows
a smoothed (using sliding window of size 500 msec) cumulative histogram
of all of the spike times (excluding the 16 sensory neurons). In this and
subsequent figures, time 0 is the beginning of the 400 msec mechanical
stimulus. Trials 1 and 5 from Figure 1 are shown.

Figure 3. The cumulative histograms of the activity of 16 second-order
sensory cells are shown in B for comparison with the velocity of the
movement shown in A. The sensory cells were identified by activity that
starts just after the stimulus presentation and before the movement. Trials
1 and 5 from Figure 1 are shown.

8488 J. Neurosci., November 15, 2000, 20(22):8485–8492 Zochowski et al. • Neural Coding of Two Components of the Gill Movement



percentage error for the two position fits in Figure 4 are PE1 5 4%
and PE5 5 6%. The percentage error for the two velocity fits in
Figure 4 are PE1 5 13% and PE5 5 28%. The trial average
percentage error (Eq. 11 with PEk averaged over k) was 5 6 1%
(mean 6 SD of the mean) for all seven position fits and 25 6 6%
for the velocity fits.

To determine whether the different aspects of the gill withdrawal
are correlated with separate or overlapping populations of neurons,
we examined the distribution of the weights for the two fits. Figure
5 shows the weights of the 32 neurons assigned the largest weights
(uwu . 0.25 for the fit to either gill position or velocity); the mean
value of each weight is an average over all trials of the separate fits
to position and velocity, and the bars denote the SD. We observe
that approximately half of the cells that correlate with position, i.e.,
which have a weight whose magnitude is large when fitted to the
position traces, do not correlate with velocity (Fig. 5, red symbols).
Furthermore, there is a group of neurons that correlates with
velocity but not with position (Fig. 5, blue symbols). Thus, the major
fraction of neurons exclusively correlates with only one component
of the motion. A substantial group of neurons, however, also
correlates with both position and velocity. This latter population is
distinguished by containing both positive and negative weights for
the velocity component.

It is instructive to examine the firing patterns of the populations
of neurons as a means to understand their differences in output in

relation to the movement of the gill. Figure 4B shows the activity
of the six neurons with the largest positive weights for position and
velocity for trials 1 and 5. Some of the neurons whose activity is
positively correlated with position have many spikes, and their
cumulative activity tends to be distributed over the whole interval
of the response. On the other hand, the positive weighted neurons
whose activity is correlated with the velocity are phasic and fire
much less frequently albeit somewhat synchronously.

Although neurons that significantly contribute to the position do
so almost exclusively through positive weights (Fig. 5), the velocity
receives a significant contribution from negatively weighted neu-
rons (Fig. 5). For example, in both trials 1 and 5, one of the
tonically firing neurons that has large positive weight for position
also has a large negative weight for velocity (Fig. 4C, , ,). This
neuron was silent when the velocity was large; an increase in
velocity may correspond to a release from inhibition from this
neuron.

Position and velocity correlates are different
To quantify the above differences between the activity of the
neurons driving position and velocity, we measured the entropy of
the cumulative spike histograms of the 20 largest positively
weighted cells in the two fits. The entropy quantifies the degree of
randomness of the distribution of neuronal spiking over time and is
defined as:

Figure 4. The fits for position and velocity are presented in A for two trials (1 and 5). The behavioral time courses (thick gray line) and the respective
fits (thin black line) are shown. The percentage errors (Eq. 11) for the two trials are PE1 5 4% and PE5 5 6% for position, and PE1 5 13% and PE5 5
28% for velocity. The position fits were smoothed by averaging the signal in a sliding window of width of 1000 msec. The velocity fits involved no additional
smoothing beyond the substitution of a gaussian (s 5 70 msec) for the spike times before the fitting (Eq. 3). B shows the activity of the six neurons with
the largest average positive weights for position and velocity. C shows the four neurons with largest negative weights. The values in brackets to the lef t of
the traces indicate the weights that were the average from the fits over all seven trials.
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S 5 2O
I

pI log2 pI, (12)

where pI is the probability of the event at the given time and I labels
the time bin, whose width is taken to be the same as that for the
gaussian broadening spike, i.e., s 5 70 msec (Eq. 2). The average
entropy for the group of neurons used to fit position was S 5 2.4 6
0.1 bits (mean 6 SEM), whereas for the group of neurons used to
fit velocity the value was S 5 2.0 6 0.1 bits. This difference, 0.4 bits,
is statistically significant ( p 5 0.001) and is consistent with the
observation that most of the neurons that generate the velocity
component fire phasically and to some extent synchronously,
whereas many of the neurons whose activity correlate with the
position fire spikes tonically and in an incoherent manner.

Trial-averaged optimal weights and prediction of
the behavior
To investigate the consistency of the neuronal populations that
correlate with position and velocity, we used the weights from six of
the trials as a means to reconstruct the remaining trial (Eq. 1).
Specifically, we calculated the weights from a minimization proce-
dure that used activity and movement patterns of the six trials
simultaneously (Eqs. 8–10). Those weights, in conjunction with
spike activity in the seventh trial, were used to construct the
behavioral curves, both position and velocity, for that trial. If the
activity of the same population consistently correlates with a given
aspect of the movement, the predicted curve will resemble the
recorded one. The result of the predictions with trial 1 as the test
trial and trial 5 as the test trial are presented in Figure 6. For both
trials and for both position and velocity, the predictions fit the
recorded behaviors well, although not as well as the fits of individ-
ual trials (Fig. 4A). The PE values for the two predictions in Figure
6 were PE1 5 5% and PE5 5 8%, respectively, for position and PE1
5 44% and PE5 5 40%, respectively, for velocity. The match

between the measured and predicted movements of the gill was
calculated for all seven possible permutations. Critically, the pre-
diction compared favorably with the measured behavior in all trials,
although the behaviors can be quite different from trial to trial (Fig.
1). The average percentage error (Eq. 11 with PEk averaged over k)
for all seven possible predictions was 9 6 4% for position and 43 6
10% for velocity, also somewhat larger than the percentage error
for the individual fits.

Population size
As a means to assess the size of the subpopulations whose activity
correlates with position and velocity, we restricted the number of
neurons that were used for the predictive fits and examined the
effects of these restrictions on the accuracy of the predictions. The
number of cells was limited in either of two ways: (1) we used only
a limited number of the “best” neurons, i.e., those with the largest
absolute weights; or (2) we omitted a number of best neurons. For
both position and velocity, we computed the percentage error after
limiting the neuron populations to the 2, 5, 10, 15, 20, 30, 40, 50,
and 60 best, and after omitting the 10, 20, 30, 40, 50, and 60 best.
The lef t side of Figure 7 presents the percentage error (Eq. 11 with
PEk averaged over k) for the cases when the activity of a limited
number of best neurons is included in the predictions; the right side
has the percentage error for the cases when the best cells are
omitted from the predictive fit.

The results indicate that the number of position-correlated cells
required to achieve optimal prediction is ;20. The percentage
error for prediction of position worsens by one SD when we limit
the number of cells used for the prediction below ;15 (Fig. 7, lef t).
Furthermore, when the most strongly weighted cells are omitted
from the predictions (Fig. 7, right), the percentage error for the
position increases quickly, even if only 10 or 20 such cells are
omitted. In contrast to the case for position, the number of velocity-
correlated cells appears to be much larger. The prediction im-
proves monotonically when up to 60 neurons are included in the fit
and worsens monotonically when a increased number of such
strongly weighted cells is omitted.

As a control to determine the extent to which the fitting algo-

Figure 5. Average weights obtained from position fits (abscissa) and ve-
locity fits (ordinate) are plotted for the 32 cells that had an absolute value
of one of the weights (either position or velocity) above 0.25. The gray area
along the velocity axis indicates values of the weights, uwu , 0.15, that are
statistically insignificant for position. Similarly, the gray area along the
position axis indicates values of the weights, uwu , 0.15, that are statistically
insignificant for velocity. Cells that had only their position weight signifi-
cantly different from 0 are marked in red; cells with only their velocity
weight significantly different from 0 are marked in blue. The inset lists the
number of cells that belong to different groups.

Figure 6. The activity and behavioral time courses of six trials were used
to predict the behavioral time course for the remaining trial. A compares
the position predictions (thin black line) with the behavioral time courses
(thick gray line) for trials 1 and 5. B compares the velocity predictions. The
respective percentage errors for the two trials are PE1 5 5% and PE5 5 8%
for position and PE1 5 44% and PE5 5 40% for velocity.
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rithm can fit spurious data, we repeated the procedure after shift-
ing the behavior by up to 4.0 sec. The asymptotic value of the errors
of the predictions for the shifted data (using all of the neurons) are
shown as the horizontal dashed black and gray lines on Figure 7. For
the shifted data, the errors are large for both position and velocity.

DISCUSSION
We used optical recordings from the Aplysia abdominal ganglion
(Fig. 1) and a numerical algorithm (Eqs. 1–10) to discriminate
functionally different neuronal populations involved in the gill-
withdrawal movement. Our results indicate that the gill-withdrawal
reflex consists of two elements (Fig. 2): (1) relatively slow contrac-
tions and relaxations, i.e., position; and (2) relatively fast contrac-
tions, i.e., velocity. These two elements, which form one continuous
behavioral pattern, are correlated with two partially separate neu-
ral populations (Fig. 5) that appear to use two different coding
schemes. Position correlates, in large part, with a relatively small
population of tonically active neurons whose activity is slowly
modulated throughout the response (Fig. 4). These cells may code
for position via excitation. Velocity correlates primarily with a
relatively large population of infrequently firing cells that generate
narrow bursts of activity (Fig. 4). These cells may code for velocity
via excitation. In addition, velocity is also correlated with a few
tonically firing cells that cease firing for brief epochs during veloc-
ity peaks (Figs. 4, 5); in this case, an increase in velocity may result
from a release from inhibition.

In the group of 133 neurons that we included in the fits and
predictions, the output from ;15–20 cells are needed to reliably
predict the position of the gill (Fig. 7). The output activity of a
larger population, at least 40 neurons, is needed to predict velocity
(Fig. 7). Earlier estimates of the completeness of the optical re-
cordings (Wu et al., 1994) suggested that only half of the active

neurons were detected. Assuming that the other half of the neurons
have the same distribution of properties as the detected half, then
the best estimate for the number of neurons correlated with posi-
tion is at least 30, and the number correlated with velocity is at least
80. We emphasize that our results do not establish a causative
relationship between the activity of recorded neurons and the
movements itself. For example, we do not know whether the
neurons we found are interneurons or motor neurons.

The firing patterns of the previously identified motor neurons
(Kupfermann and Kandel, 1969; Peretz, 1969; Carew et al., 1974;
Kupfermann et al., 1974; Koester and Kandel, 1977) suggest that
they are tonically firing neurons of the type that received large
positive weights in the position fit. On the other hand, the number
of neurons that control the velocity component is large, and many
of the neurons fire very sparsely. Thus, their individual contribu-
tion to gill contraction would have been difficult to detect in
microelectrode studies. Their number and role becomes apparent
when they can be monitored as a large population of cells.

Our results indicate that different components of the gill-
withdrawal movement correlate with neuronal activity patterns
using two different coding schemes: average rate coding of fre-
quently firing cells for position, and coding primarily through
coincident activity of a large population of infrequently firing cells
for velocity. Results of experiments on mammalian motor systems
at the level of either brainstem nuclei (Precht 1979) or neocortex
(Georgopoulos et al., 1986, 1999; Schwartz, 1992; Moran and
Schwartz, 1999) suggest that few cells are specific to position or
velocity, but instead each cell codes for both parameters. Our
results, however, indicate that, in Aplysia, the neuronal populations
that are correlated with velocity and position are partially separate.
The difference between our imaging-based results for Aplysia and
the electrode-based results for cortex could be attributed to sam-
pling bias, e.g., the infrequent spiking of most neurons in the
velocity-correlated population could allow them to be overlooked
during electrode recordings.

Our results show that the activity of large populations of neurons
is needed to fit or predict both position and velocity. Additionally,
we found (Fig. 7) that limiting the number of cells included in the
prediction reduced the quality of the prediction, which indicates
that many cells are needed to reliably recreate the behavioral
curves. This implies a distributed coding of the gill-withdrawal
reflex, at least in the sense that the output from one or few neurons
has insufficient reliability to accurately code the movement of the
gill. In sensory areas of mammalian cortex, reliable decoding of
sensory input typically requires averaging over the activity of many
neurons (Seung and Sompolinsky, 1993), although examples of
reliable coding by single cortical cells have been shown (Newsome
et al., 1989; Fee et al., 1997). In further concurrence with the
results for gill withdrawal in Aplysia, only distributed processing
has been identified in the context of motor control by mammalian
cortex (Georgopoulos, 1995).
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