
 

Software Version 2.90 

 

 

 

 

 

USER’S GUIDE TO:  

 

 

 

www.andor.com          Andor plc 2009 

 

 

 

http://www.andor.com/


         TABLE OF CONTENTS 

SDK         TABLE OF CONTENTS 
Page 2 

 

PAGE 

SECTION 1 - INTRODUCTION 10 

TECHNICAL SUPPORT 11 

SOFTWARE IMPROVEMENTS AND ADDITIONAL FEATURES 11 

SECTION 2 - SOFTWARE INSTALLATIONS 22 

PC requirements 22 

SDK WINDOWS INSTALLATION 22 
Windows Troubleshooting 24 

SDK LINUX INSTALLATION 26 

LABVIEW INSTALLATION 26 
Linux Troubleshooting 27 

SECTION 3 - READOUT MODES 28 

INTRODUCTION 28 
Full Vertical Binning 29 
Single-Track 29 
Multi-Track 30 
Random-Track 31 
Image 32 
Cropped 33 

SECTION 4 - ACQUISITION MODES 34 

ACQUISITION MODE TYPES 34 
Single Scan 35 
Accumulate 36 
Kinetic Series 37 
Run Till Abort 39 
Fast Kinetics 42 
Frame Transfer 43 

SECTION 5 - TRIGGERING 49 

TRIGGER MODES 49 
Internal 50 
External 51 
External Start 53 
External Exposure 54 
External FVB EM 56 
Software 57 

SECTION 6 - SHIFT SPEEDS 58 



         TABLE OF CONTENTS 

SDK         TABLE OF CONTENTS 
Page 3 

SECTION 7 - SHUTTER CONTROL 59 

SHUTTER MODES 59 
Fully Auto 59 
Hold Open 59 
Hold Closed 59 

SHUTTER TYPE 60 

SHUTTER TRANSFER TIME 61 

SECTION 8 - TEMPERATURE CONTROL 63 

SECTION 9 - SPECIAL GUIDES 64 

CONTROLLING MULTIPLE CAMERAS 64 

USING MULTIPLE CAMERA FUNCTIONS 65 

DATA RETRIEVAL METHODS 67 
How to determine when new data is available 67 
Retrieving Image Data 69 

DETERMINING CAMERA CAPABILITIES 70 
Retrieving capabilities from the camera 70 
Other Capabilities 74 
Output Amplifiers 75 

iCam 78 

OptAcquire 80 

SECTION 10 - EXAMPLES 84 

INTRODUCTION 84 

RUNNING THE EXAMPLES 85 
C 85 
LabVIEW 85 
Visual Basic 85 

FLOW CHART OF THE FUNCTION CALLS NEEDED TO CONTROL ANDOR CAMERA 86 

SECTION 11 - FUNCTIONS 91 
AbortAcquisition 91 
CancelWait 91 
CoolerOFF 92 
CoolerON 93 
DemosaicImage 94 
EnableKeepCleans 95 
FreeInternalMemory 95 
Filter_GetAveragingFactor 95 
Filter_GetAveragingFrameCount 96 
Filter_GetDataAveragingMode 96 
Filter_GetMode 96 



         TABLE OF CONTENTS 

SDK         TABLE OF CONTENTS 
Page 4 

Filter_GetThreshold 97 
Filter_SetAveragingFactor 97 
Filter_SetAveragingFrameCount 97 
Filter_SetDataAveragingMode 98 
Filter_SetMode 98 
Filter_SetThreshold 98 
GetAcquiredData 99 
GetAcquiredData16 99 
GetAcquiredFloatData 100 
GetAcquisitionProgress 100 
GetAcquisitionTimings 101 
GetAdjustedRingExposureTimes 101 
GetAIIDMAData 102 
GetAmpDesc 102 
GetAmpMaxSpeed 103 
GetAvailableCameras 103 
GetBackground 103 
GetBaselineClamp 104 
GetBitDepth 104 
GetCameraEventStatus 105 
GetCameraHandle 105 
GetCameraInformation 106 
GetCameraSerialNumber 106 
GetCapabilities 107 
GetControllerCardModel 123 
GetCountConvertWavelengthRange 123 
GetCurrentCamera 123 
GetDDGPulse 124 
GetDDGIOCFrequency 125 
GetDDGIOCNumber 125 
GetDDGIOCPulses 126 
GetDetector 127 
GetDICameraInfo 127 
GetDualExposureTimes 127 
GetEMCCDGain 128 
GetEMGainRange 128 
GetFastestRecommendedVSSpeed 129 
GetFIFOUsage 129 
GetFilterMode 129 
GetFKExposureTime 130 
GetFKVShiftSpeed 130 
GetFKVShiftSpeedF 131 
GetHardwareVersion 132 
GetHeadModel 132 
GetHorizontalSpeed 133 
GetHSSpeed 134 
GetHVflag 134 
GetID 135 
GetImageFlip 135 
GetImageRotate 135 
GetImages 136 
GetImages16 137 
GetImagesPerDMA 137 
GetIRQ 137 
GetKeepCleanTime 138 
GetMaximumBinning 138 
GetMaximumExposure 139 



         TABLE OF CONTENTS 

SDK         TABLE OF CONTENTS 
Page 5 

GetMCPGain 139 
GetMCPGainRange 139 
GetMCPVoltage 140 
GetMetaDataInfo 140 
GetMinimumImageLength 141 
GetMostRecentColorImage16 142 
GetMostRecentImage 143 
GetMostRecentImage16 143 
GetMSTimingsData 144 
GetMSTimingsEnabled 144 
GetNewData 144 
GetNewData16 145 
GetNewData8 145 
GetNewFloatData 146 
GetNumberADChannels 146 
GetNumberAmp 146 
GetNumberAvailableImages 146 
GetNumberDevices 147 
GetNumberFKVShiftSpeeds 147 
GetNumberHorizontalSpeeds 147 
GetNumberHSSpeeds 148 
GetNumberNewImages 148 
GetNumberPhotonCountingDivisions 149 
GetNumberPreAmpGains 149 
GetNumberRingExposureTimes 149 
GetNumberIO 149 
GetNumberVerticalSpeeds 151 
GetNumberVSAmplitudes 151 
GetNumberVSSpeeds 151 
GetOldestImage 152 
GetOldestImage16 152 
GetPhysicalDMAAddress 153 
GetPixelSize 153 
GetPreAmpGain 153 
GetPreAmpGainText 154 
GetQE 154 
GetReadOutTime 155 
GetRegisterDump 155 
GetRingExposureRange 155 
GetSensitivity 156 
GetSizeOfCircularBuffer 157 
GetSlotBusDeviceFunction 157 
GetSoftwareVersion 158 
GetSpoolProgress 158 
GetStatus 159 
GetTemperature 160 
GetTemperatureF 160 
GetTemperatureRange 161 
GetTemperatureStatus 161 
GetTotalNumberImagesAcquired 161 
GetIODirection 162 
GetIOLevel 162 
GetVersionInfo 163 
GetVerticalSpeed 163 
GetVirtualDMAAddress 164 
GetVSSpeed 164 
GPIBReceive 165 



         TABLE OF CONTENTS 

SDK         TABLE OF CONTENTS 
Page 6 

GPIBSend 165 
I2CBurstRead 166 
I2CBurstWrite 166 
I2CRead 167 
I2CReset 167 
I2CWrite 168 
IdAndorDll 168 
InAuxPort 168 
Initialize 169 
InitializeDevice 169 
IsCoolerOn 170 
IsCountConvertModeAvailable 170 
IsInternalMechanicalShutter 170 
IsAmplifierAvailable 171 
IsPreAmpGainAvailable 171 
IsTriggerModeAvailable 172 
Merge 172 
OA_AddMode 173 
OA_DeleteMode 173 
OA_EnableMode 174 
OA_GetFloat 174 
OA_GetInt 175 
OA_GetModeAcqParams 175 
OA_GetNumberOfAcqParams 176 
OA_GetNumberOfPreSetModes 176 
OA_GetNumberOfUserModes 176 
OA_GetPreSetModeNames 177 
OA_GetString 177 
OA_GetUserModeNames 178 
OA_SetFloat 179 
OA_SetInt 179 
OA_SetString 180 
OA_WriteToFile 180 
OutAuxPort 181 
PrepareAcquisition 182 
PostProcessCountConvert 183 
PostProcessNoiseFilter 184 
PostProcessPhotonCounting 185 
SaveAsBmp 186 
SaveAsCommentedSif 187 
SaveAsEDF 187 
SaveAsFITS 188 
SaveAsRaw 188 
SaveAsSif 189 
SaveAsSPC 190 
SaveAsTiff 190 
SaveAsTiffEx 191 
SaveEEPROMToFile 192 
SaveToClipBoard 192 
SelectDevice 192 
SendSoftwareTrigger 192 
SetAccumulationCycleTime 193 
SetAcqStatusEvent 193 
SetAcquisitionMode 194 
SetAcquisitionType 194 
SetADChannel 194 
SetAdvancedTriggerModeState 195 



         TABLE OF CONTENTS 

SDK         TABLE OF CONTENTS 
Page 7 

SetBackground 196 
SetBaselineClamp 196 
SetBaselineOffset 196 
SetCameraStatusEnable 197 
SetComplexImage 198 
SetCoolerMode 199 
SetCountConvertMode 200 
SetCountConvertWavelength 200 
SetCropMode 201 
SetCurrentCamera 202 
SetCustomTrackHBin 202 
SetDACOutputScale 203 
SetDACOutput 203 
SetDataType 204 
SetDDGAddress 204 
SetDDGGain 204 
SetDDGGateStep 204 
SetDDGInsertionDelay 205 
SetDDGIntelligate 205 
SetDDGIOC 206 
SetDDGIOCFrequency 207 
SetDDGIOCNumber 208 
SetDDGTimes 208 
SetDDGTriggerMode 209 
SetDDGVariableGateStep 209 
SetDelayGenerator 210 
SetDMAParameters 211 
SetDriverEvent 212 
SetDualExposureMode 213 
SetDualExposureTimes 213 
SetEMAdvanced 214 
SetEMCCDGain 214 
SetEMClockCompensation 215 
SetEMGainMode 215 
SetExposureTime 216 
SetFanMode 216 
SetFastKinetics 217 
SetFastKineticsEx 218 
SetFastExtTrigger 219 
SetFilterMode 219 
SetFilterParameters 219 
SetFKVShiftSpeed 220 
SetFPDP 220 
SetFrameTransferMode 220 
SetFullImage 221 
SetFVBHBin 221 
SetGain 222 
SetGate 222 
SetGateMode 223 
SetHighCapacity 224 
SetHorizontalSpeed 224 
SetHSSpeed 225 
SetImage 226 
SetImageFlip 227 
SetImageRotate 228 
SetIsolatedCropMode 229 
SetKineticCycleTime 230 



         TABLE OF CONTENTS 

SDK         TABLE OF CONTENTS 
Page 8 

SetMCPGain 230 
SetMCPGating 231 
SetMessageWindow 231 
SetMetaData 231 
SetMultiTrack 232 
SetMultiTrackHBin 233 
SetMultiTrackHRange 233 
SetNextAddress 234 
SetNextAddress16 234 
SetNumberAccumulations 234 
SetNumberKinetics 234 
SetNumberPrescans 235 
SetOutputAmplifier 235 
SetOverlapMode 236 
SetPCIMode 237 
SetPhotonCounting 238 
SetPhotonCountingDivisions 238 
SetPhotonCountingThreshold 238 
SetPixelMode 239 
SetPreAmpGain 240 
SetRandomTracks 241 
SetReadMode 242 
SetRegisterDump 242 
SetRingExposureTimes 243 
SetSaturationEvent 244 
SetShutter 245 
SetShutterEx 246 
SetShutters 247 
SetSifComment 247 
SetSingleTrack 247 
SetSingleTrackHBin 248 
SetSpool 249 
SetSpoolThreadCount 250 
SetStorageMode 250 
SetTemperature 250 
SetTriggerInvert 252 
SetTriggerMode 252 
SetIODirection 253 
SetIOLevel 253 
SetUserEvent 254 
SetVerticalRowBuffer 254 
SetVerticalSpeed 255 
SetVirtualChip 255 
SetVSAmplitude 256 
SetVSSpeed 257 
ShutDown 257 
StartAcquisition 258 
UnMapPhysicalAddress 259 
WaitForAcquisition 260 
WaitForAcquisitionByHandle 260 
WaitForAcquisitionByHandleTimeOut 262 
WaitForAcquisitionTimeOut 263 
WhiteBalance 264 

SECTION 12 - ERROR CODES 265 



         TABLE OF CONTENTS 

SDK         TABLE OF CONTENTS 
Page 9 

SECTION 13 - DETECTOR.INI 266 

DETECTOR.INI EXPLAINED 266 

[SYSTEM] 267 

[COOLING] 268 

[DETECTOR] 269 
Format 269 
DummyPixels 269 
DataHShiftSpeed 269 
DataVShiftSpeed 269 
DummyHShiftSpeed 270 
DummyVShiftSpeed 270 
VerticalHorizontalTime 270 
CodeFile 270 
FlexFile 271 
Cooling 271 
Type 271 
FKVerticalShiftSpeed 271 
Gain 271 
PhotonCountingCCD 271 
EMCCDRegisterSize 272 
iStar 272 
SlowVerticalSpeedFactor 272 
HELLFunction 272 
HELLLoop1 272 
ADChannels 272 
AD2DataHSSpeed 272 
AD2DumpHSSpeed 273 
AD2BinHSSpeed 273 
AD2Pipeline 273 
iXon 273 

EXAMPLE DETECTOR.INI FILES 273 
DH220 273 
DV420 273 
DV437 274 

[CONTROLLER] 275 
ReadOutSpeeds 275 
PipeLine 275 
Type 275 

 

 



                         INTRODUCTION 

SDK            SECTION 1 
Page 10 

 

SECTION 1 - INTRODUCTION 
The Andor Software Development Kit (SDK) gives the programmer access to the Andor range of CCD and 

Intensified CCD cameras. The key part of the SDK is the Dynamic Link Library (DLL) which can be used with a 

wide variety of programming environments, including, C, C++, C#, Visual Basic and LabVIEW. The library is 

compatible with Windows 2000, XP, Vista and Windows 7. A Linux version of the SDK is also available. 

Currently, Andor provides both 32-bit and 64-bit versions of the SDK, for Windows and Linux. 

The SDK provides a suite of functions that allow you to configure the data acquisition process in a number of 

different ways. There are also functions to control the CCD temperature and shutter operations. The driver will 

automatically handle its own internal memory requirements. 

To use the SDK effectively, the user must develop a software package to configure the acquisition, provide 

memory management, process the data captured, and create the user interface. 

The manual is broken into several sections, and it is recommended that the user read Sections 1 - 10 before 

starting to use the SDK. These sections describe the installation process, camera initialization/configuration 

and data capture.  

Section 11 is a complete function reference detailing the function syntax, parameters passed and error codes 

returned. 

To further aid the user there is a comprehensive list of examples included with the SDK. The examples 

illustrate the use of C, Visual Basic and LabVIEW. 

 



                         INTRODUCTION 

SDK            SECTION 1 
Page 11 

 

TECHNICAL SUPPORT 

Contact details for your nearest representative can be found on our website. 

 

SOFTWARE IMPROVEMENTS AND ADDITIONAL FEATURES 

Version 2.90.30004.0 

New features: 

• USB iStar now supported 

• Added function GetNumberPhotonCountingDivisions 

• Added function GetPreAmpGainText 

• Added 64-bit C# wrapper 

• Added Shamrock C# wrapper 

• Added 64-bit VB.NET header 

• Added 64-bit LabVIEW support 

• Added support for 50kHz and 1MHz on iKonM-PV inspector system 
 

Bug fixes: 

• GetKeepCleanTime not implemented for DV885 

• The maximum binning should be limited by the size of the AD pipeline 

• Recursive filter was not being reset between acquisitions. 

• Frame Averaging filter was not working in frame transfer mode. 

• Fixed crash on shudown with iKon-L 

• Fixed crash if GetAcquisitionTimings is called for random tracks before tracks are set up. 

• Removed some memory leaks 

• Incorrect timings from GetAcquisitionTimings on Clara. 

• Fixed saving random tracks to Fits. 

• Luca S did not support temperature control. 

• Minimum image length for a DU860 increased to 6 to avoid problems with isolated crop mode. 

• Fixed SetPreAmpGain and IsPreAmpGainAvailable functions to check that the preamp gain index 
parameter is within range. 

• Fixed data glitch on DV885 in frame transfer, external exposure mode (requires firmware upgrade) 
 

Version 2.88.30002.0 

New features: 

• Added SDK function IsCountConvertModeAvailable to limit acquisition settings available for count 
convert.  

• Added support for new iKon-L systems. 

• Added support for new iKon-M systems. 

• Added OptAcquire support for DV885 systems. 
 

Bug fixes: 

• Fixed race condition in WaitForAcquisitionTimeout. 

• Image in crop mode on DU860 was shifting by 4 pixels for heights of less than 4. 

• Fixed SR303 hardware issue where the step position of the wavelength drive will move when 
powered on. 

• SetPCIMode should return DRV_NOT_SUPPORTED when not using the CCI-23/CCI-24 card. 

• All Shamrock LabVIEW function names prepended with shamrock_ to avoid conflicts. 
 



                         INTRODUCTION 

SDK            SECTION 1 
Page 12 

 

Version 2.88.30000.0 

New features: 

• Added OptAcquire feature to simplify configuration of iXon systems 

• Added Count Convert feature to return data as photons or electrons 

• Added Data Averaging feature for real time and post processing 

• Added Spurious noise Filters for both real time and post processing 

• Added Photon Counting post processing option 

• Andor LabVIEW library updated to use version 8.0 

• Added Dual Exposure Mode for iKon-L 

• Updated SIFIO to enable the retrieval of calibration data 

• Updated Shamrock SDK to include a calibration for Zolix spectrographs 

• Added SDK function and capability for GetBaselineClamp 
• Changed keep clean in FVB mode for iXon to prevent temperature drift 
 

Bug fixes: 

• Updated capability options for C# 

• Updated Andor LabVIEW library 

• Shutter open/close times fixed for Auto mode 

• Fixed EM gain control when using multiple systems from the same executable 

• Fixed isolated crop mode when data is being accumulated 

• Fixed issues with control of multiple systems with multiple threads 

• Fixed exposure time in software trigger mode when using large cycle time 

• Fixed memory leak in GetAvailableCameras function 

• Fixed random tracks stopping in video mode 
 

Version 2.87.30000.0 

New features: 

• Clara E now supported 

• Newton DU970/71P cameras now supported 

• Cycle time reduced for imaging on Newton and iVac systems  

• Number of accumulations can now be set in a kinetic series in overlap mode 

• FVB cycle time reduced in crop mode provided only the height of the sensor has been cropped 

  
Bug fixes: 

• Clara near infra red mode not operating correctly when using FVB read mode 

• Minimum exposure time increased to 1 millisecond for Clara near infra red mode 

• Change to remove odd/even pixel noise after a number of accumulations in iDus 

• Change to resolve image wrap around on Newton sensors 

• Image was being shifted between frames when photon counting was being used on a Clara 

• Fast kinetics now working in FVB mode 

• First pulse missed in ring of exposures on Clara 

• Updated bitmap header data to allow avi's to play in Windows 7  

• Multiple systems was not supported for 64-bit Windows 

• TimeStamp from Clara meta data was incorrect for a kinetic series of accumulations 

• Video mode was eventually freezing in iCam PCI systems 

• Fix for Spooling to fits issue in Windows 7 

• Fix for image shift seen in DU940P newton cameras 

 



                         INTRODUCTION 

SDK            SECTION 1 
Page 13 

Version 2.86.30000.0 

New features: 

• Clara meta data now stored in sif file format 

• Vertical and horizontal flip tags added to the FITS header 

• Newton now supports multiple images per USB interrupt to reduce CPU load 

• Support added for new revision of Newton DU920P 

• Control of gate mode added to iStar floating toolbar 

  
Bug fixes: 

• Fixed bug where SetPhotonCountingThreshold was always returning DRV_NOT_SUPPORTED 

• Fixed reported acquisition timings for external trigger non frame transfer mode 

• Fixed the SDK flipper mirror issue (problem with the port numbers being used) and updated shipped 

examples  

• GetFIFOUsage is now thread safe 

• USB driver for SR500 and SR750 updated to avoid conflicts with servo controllers 

• Fixed External trigger, frame transfer, video mode operation 

Version 2.85.30000.0 

New features: 

• Andor Clara image quality improved 

• Option to run external exposure in a kinetic series for all cameras which support iCam 

• Photon Counting check added to GetCapabilities 

• Added kinetic cycle time tag to spooled tiff files  

• PrepareAcquisition now returns an error if insufficient memory available 

 
Bug fixes: 

• SetSpool now returns DRV_NOT_AVAILABLE under Linux when trying to spool to FITS 

• Fixed crash on initialize when no Andor cameras were connected 

• Fixed problem with reinitializing Shamrock models SR500 and SR750 

• Fixed problem where calling IsCoolerOn during an acquisition could stop the acquisition 

• Fixed issue where events from a previous acquisition were not getting cleared 

• Additional pixel shift removed from overlap mode on Clara 

Version 2.84.30000.0 

New features: 

• Andor Clara now supported 

 SetDACOutput 

 SetDACOutputScale 

 GetNumberIO 

 SetIODirection 

 SetIOLevel 

 GetIOLevel 

 GetIODirection 

 SetTriggerInvert 

 IsAmplifierAvailable 

 SetOverlapMode 



                         INTRODUCTION 

SDK            SECTION 1 
Page 14 

 SetMetaData 

 GetMetaDataInfo 

 
Bug fixes: 

• Spooled files beyond 4GB could not be opened 

• Data was being lost when spooled files of small images went beyond 4GB 

• Spooled FITS file had cycle time saved as 0 

• IsPreAmpAvailable should use channel passed rather than current one 

• Random tracks data corrupted for consecutive tracks for cameras other than iXon+ 

• GetImages16 LabVIEW wrapper was calling wrong SDK function 

 

Version 2.83.30001.0 

New features: 

• Added SetImageFlip and SetImageRotate functions to LabView wrapper 
 

Bug fixes: 

• Added ShamrockGetCalibration function to the Shamrock SDK help 

 

Version 2.83.30000.0 

New features: 

• iVac systems now fully supported  

• Shamrock spectrographs SR500 and SR750 now fully supported  

• Fast kinetics now available for Luca-R  

• Added High Capacity Mode support for DW936 cameras 
 

Bug fixes: 

• Fixes to Delphi header  

• Fixed discrepancies between cycle times for multi-track and random track  

• Fixed problem in fast kinetics when there was an odd number of super pixels  

• Removed corrupted fire pulse in fast kinetics, external trigger  

• Fix to resolve oscillations in data for certain Newton systems  

• Fix for potential fail of auto cooling on Luca systems  

• Fixed maximum number in series in fast kinetics for frame transfer systems  

• Fixed exposure time reported in fast kinetics  

 

Version 2.82.30000.0 

New features: 

• Added option for horizontal binning in random track mode 

• Added capabilities for Horizontal Binning, MultiTrackHRange, and No Gaps in Random Tracks  

• New capability added to test for overlapped external exposure mode  



                         INTRODUCTION 

SDK            SECTION 1 
Page 15 

• Deprecated SetGain for SetMCPGain which is a more accurate naming convention  

• Added Dud column support to SDK – allows SDK to be configured to interpolate bad columns  
 

Bug fixes: 

• Fixed minimum exposure for Luca-R 

• Updated documentation – error code correction for get data functions. 

• Fixed missing cases of GetTemperature in LabVIEW wrapper. 

• Updated documentation – Corrected contact information. 

• StartAcquisition now returns an error if horizontal binning does not divide evenly into range for 
multi-tracks 

• Fixed crash when StartAcquisition is called in random track mode before random tracks are setup 

• Fixed default EM gain – Set to off when system initialized 

• SetRandomTracks no longer returns an error if not in random track mode 

• Image mode Linux example will now work with an InGaAs 

• SetRandomTracks was not returning an error for certain incorrect track combinations 

• Fixed SetBaselineClamp and SetBaselineOffset – The test for availability was not complete 

• Fixed GetRingExposureRange - Now uses same limit as SetRingExposureTimes 

• Fixed SetRandomTracks - Was failing for some valid tracks 

• Fixed SetGain error code - Now returns DRV_NOT_SUPPORTED if not an ICCD 

• Fixed bug in SetRandomTracks to prevent negative numbers for number of tracks with correct 
return code 

• GetAmpMaxSpeed now tests for NULL array parameter 

• SetCustomTrackHBin returns DRV_NOT_SUPPORTED if not available for a system 

• Fixed GetAmpDesc – Tests negative value for 3rd parameter – could cause crash 

• Fixed GetAmpDesc – could return unterminated string 

• Luca R cooler control was never supported but SDK returned DRV_SUCCESS - SDK functions 
now return proper error codes 

• Fixed bug in Initialisation/Shutdown cycling – could cause crash 

• Extra fire pulse when using kinetic series external exposure on DU885 

• Fixed incorrect data when using kinetic series external exposure on Luca-R 

• Fixed external exposure trigger mode for Luca-S 

Version 2.81.30004.0 

New features: 

• Improved noise performance on DZ936 cameras at 3 and 5MHz horizontal readout speeds 
 

Bug fixes: 

• None 

 

Version 2.81.30003.1 

New features: 

• None 



                         INTRODUCTION 

SDK            SECTION 1 
Page 16 

 

Bug fixes: 

• Fixed some documentation errors in LabVIEW context help 

• Fixed Shamrock close and re-initialisation in C interface of Shamrock SDK 

• Fixed Shamrock close operation in LabVIEW 

 

Version 2.81.30002.0 

New features: 

• None 
 

Bug fixes: 

• Fixed cooling issue on Fibre Optic systems 

• Fixed hot column issue on iXon DU888 cameras. 

• Fixed crash in External Trigger on Newton 

• Fixed DLL error on Windows Install program. 

 

Version 2.81 

New features: 

• Improved shutdown in Linux during abnormal termination (Ctrl+C etc.) – signal handlers added  

• CCI-24 support added to Linux SDK 
 

Bug fixes: 

• Removed Linux Device Driver compilation warnings for Kernel 2.6.23 and above.  

• Crash could occur if GetAcquiredData was called before PrepareAcquisition or StartAcquisition.  

• SetDriverEvent causes crash when called when system not initialized.  

• GetImagesPerDMA did not return correct value unless PrepareAcquisition has been called.  

• Timings incorrect for Frame Transfer in iCam mode.  

• GetMostRecentImage[16] now returns correct data when used in Accumulate acquisition mode  

• Fixed crash that would occur if GetNumberAvailableImages called before acquisition started  

• Acquisitions now complete correctly if camera is reinitialised after being previously shutdown  

• 64-bit SDK will now initialise USB cameras without the necessity of having libusb0_x64.dll in same 
directory as executable.  

• Calibration values returned from Shamrock SDK were offset by 2 pixels from correct locations  

• Fixed memory leak in SaveAsSif 

• Fixed Luca re-initialisation issue - temperature reporting incorrect 

• Documentation updates and corrections 

 

Version 2.80 

New features: 

• iKon-L support added 



                         INTRODUCTION 

SDK            SECTION 1 
Page 17 

• Added SetAccumulationCycleTime to LabVIEW library 

• Random and multi tracks now available in frame transfer mode for iXon+ 

• SetNumberPrescans function added 

• New timing functions added 

        GetKeepCleanTime 

        GetReadOutTime 
Bug fixes: 

• SetEMAdvanced was not working on Luca-R 

• Random tracks external start was broken on a DU888 

• InGaAs was not working in last release 

• Multiple USB cameras could not be controlled 

• Fast Kinetics external trigger was not working on early DV885 cameras 

• Kinetic cycle time calculated wrongly when accumulating 

 



                         INTRODUCTION 

SDK            SECTION 1 
Page 18 

 

Version 2.79 

New features: 

• Memory allocation improved to allow larger kinetic series to be acquired without spooling 

• Luca-R range supported 

• iKon-L supported 

• GetImageFlip and GetImageRotation added 

• Multi tracks available in frame transfer mode for iXon+ 

• Random tracks available in frame transfer mode for iXon+ 

• Capability added to test for multi and random tracks in frame transfer 

• SetMultiTrackHRange added 

• Random tracks can now be configured with no gaps in between for iXon+ 
Bug fixes: 

• Temperature drifting is now handled for all cameras 

• GetTemperatureStatus did not return result for iXon 

• Pixel values for last column on DU885 incorrect 

• Fast kinetics, external trigger not operating correctly on a DU885 

• Crash when initiailising multiple usb cameras 

• Kinetic cycle time could not be set reliably 

• Shutter timings not correct at 35MHz on a DU885 

• SetShutter function not functioning correctly for iXon+ 

• Grams files created not compatible with certain software packages 

• EM gain could not be turned off completely 

• Glitches were found in fire pulse for FVB mode on iXon+ 

• Image flipping and rotation properties incorrect in sif file 

• CCI-20 controller card not initialising (ERROR_ACK) 
 

Version 2.78.5 

New features: 

• SetIsolatedCropMode added to LabVIEW library 

• SaveAsTiffEx function added to provide choice of whether data is scaled 

Bug fixes: 

• SaveAsTiff function for a kinetic series saved the same image for every frame 

• SaveAsTiff now checks for available memory to avoid crash 

• GetHeadModel function was returning model in lowercase 

• iXon FPGA version not being read properly in Initialize function 

• SetIsolatedCropMode function repaired 

• GetAvailableCameras did not update with USB devices plugged in & out 

• Using GetCameraEventStatus on fast acquisitions caused acquisition to fail 

• Long kinetic series of FITS was not working 



                         INTRODUCTION 

SDK            SECTION 1 
Page 19 

 

Version 2.78 

 

New features: 

• Support for Luca 285 added. 

• Data transfer from USB cameras improved. 

• SetIsolatedCropMode function added to provide crop mode option (added for iXon+):   

• Improved support for integrate on chip: Added 

GetDDGIOCFrequency 

GetDDGIOCNumber 

SetDDGIOCNumber 

• Option to export to raw data:  

 SaveAsRaw 

Bug fixes: 

• SaveAsSif in SDK not storing readout speed correctly. 

• Shutter now works correctly for Classic cameras when the software is run for the first time after 

rebooting PC. 

• Data was wrapping at 65K if taking a kinetic series of accumulations. 

Version 2.77 

 

New features: 

• Supports 32 and 64-bit Windows XP and Vista 

• Moved to new USB device driver libUSB 

• iCam: New Run Till Abort functionality for latest iXon (with CCI-23 controller card), and  Luca 

 Cameras: 

 SendSoftwareTrigger 

 SetRingExposureTimes 

 GetAdjustedRingExposureTimes 

 GetNumberRingExposureTimes 

 GetRingExposureRange 

 IsTriggerModeAvailable 

• New image manipulation functions: 

 SetImageFlip 

 SetImageRotate 

• Save as GRAMS SPC file format – SaveAsSPC 

• Calculate the red and blue relative to green factors to white balance a colour image - WhiteBalance 



                         INTRODUCTION 

SDK            SECTION 1 
Page 20 

 

Version 2.76 

 

New features: 

• Additional capabilities added to GetCapabilities function  

• GetAmpDesc function added 

• Timeout added for WaitForAcquisition function 

Bug fixes: 

• Error returned if an invalid EM gain mode is selected 

• Fixed issues with Fast Kinetics on an iXon 

• Sometimes a camera was not ready to acquire when an acquisition event was sent 

• Fixed initialization problem when a ‘.’ was in the path send to Initialize() function 

 

Version 2.75 

 

New features: 

• Spooling to FITS, SIF and TIFF now available. 

• SetBaselineOffset function added 

• SetShutterEx added to control both an internal and external shutter through a DV8285 

• SaveAsSif now handles spooled files 

Bug Fixes: 

• GetNumberHSSpeeds now includes error checking for classics 

• GetCapabilities returns correct bit depth for an iDus 

• IsPreAmpGainAvailable now indicates yes for classic cameras as long as the gain index is zero and 

other parameters are valid 

• EMGain Capability now returned correctly for iDus, Newton, USB iStar 

• SaveAsBmp was not working in latest version 

Version 2.74 

 

New features: 

• Support for new Luca range of Cameras 

• Control of linear EM gain: 

 GetEMCCDGain 

 GetEMGainRange 

 SetEMGainMode 

• Option to save to FITS file format : SaveAsFITS 

• Crop mode available with Newton: SetCropMode 



                         INTRODUCTION 

SDK            SECTION 1 
Page 21 

 

Version 2.73 

 

New features: 

• Support for Newton and SurCam range of Cameras 

Bug fixes: 

• GetMostRecentImage does not now prevent access to images previous to the one obtained 

• Controller type can be tested. 

 



                                                          INSTALLATION 

SDK           SECTION 2 
Page 22 

 

SECTION 2 - SOFTWARE INSTALLATIONS 

 

PC requirements 

Please consult the Specification Sheet for your camera for the minimum and the recommended PC 

requirements. 

 

SDK WINDOWS INSTALLATION 

The installation of the Andor SDK software is a straightforward process, the steps for which are outlined 

below. Before proceeding with the installation, it is recommended that you read the remainder of this 

section first. 

1. Insert the CD supplied with the SDK, and execute the "SETUP.EXE" program. This will take you 

through the complete installation process. You will be prompted to select the type of camera you 

have purchased as the installation needs to configure, were required, the "Detector.ini" file 

appropriately. You will also be requested to select a destination directory; this should be a directory 

that all users planning to use the SDK have full read/write privileges to. The directory will be 

created if it does not already exist. It is recommended that if you are performing an upgrade or 

reinstall that you do it to a clean directory. 

Example programs will be copied into sub-directories of the installation directory specified above. 

2. If not already installed, proceed with installing camera hardware. Consult your User guide for 

details. You may have to restart the PC to complete the installation 

3. Navigate to the directory ‘<destination directory>\Examples\C’ directory. Go into any 

sub directory and run the ‘.exe’ file that you see there. If this runs successfully then your 

installation has completed. If it does not run with a successful message please consult the 

troubleshooting guide later in this section. 

The installation process will copy the following files into the specified base directory: 

ATMCD32D.DLL (32-bit Dynamic Link Library) 

ATMCD64D.DLL (64-bit Dynamic Link Library) 

DETECTOR.INI (Classic CCD, ICCD and iStar cameras only) 

ATMCD32D.H ( C, C++ only) 

ATMCD32D.LIB (Borland compatible library,  C, C++ only) 

ATMCD32M.LIB (Microsoft compatible library, C, C++ only) 

ATMCD32D.BAS ( Visual Basic only) 

ATMCD32D.PAS ( Pascal only) 

ATMCD32CS.DLL (C# only) 

ATMCD32D.VB (VB.net) 



                                                          INSTALLATION 

SDK           SECTION 2 
Page 23 

NOTE: The files are also copied into each example directory. This is to allow each example to be 

run as a stand-alone program. 

A device driver required to support the camera will also be installed. The actual driver installed will depend 

on the camera type and operating system version, i.e.: 

• For PCI systems the driver file is atmcdwdm.sys for 32-bit operating systems, or 

atmcdwdm64.sys for 64-bit operating systems.  

• For USB cameras the driver file is libusb0.sys for 32-bit operating systems, or libusb0_x64.sys 

for 64-bit operating systems. 

NOTE: Do not have more than one example or other SDK software (e.g. Andor Solis™, iQ™) 
running at the same time.  

 



                                                          INSTALLATION 

SDK           SECTION 2 
Page 24 

 

Windows Troubleshooting 

Installing on Windows 7 

• Some users have experienced difficulty installing the SDK on Windows 7, if so please see the 
Window 7 Driver Installation Guide. 

 

If you are running a PCI camera 

 

• Check that the Andor Technology PCI driver appears in the Ensure that an Andor section in exists 
in the Device Manager and that an Andor Technology PCI driver appears in it. To access the 
Device Manager, go to the Control Panel and click on the “System” control. From here, select the 
Hardware tab and then click on the Device Manager button. 

• Shut down the PC and ensure that the PCI card is seated correctly 

• For 32-bit OS, ensure that the file atmcdwdm.sys file appears in the 

C:\WINDOWS\system32\drivers directory. The latest version is 4.29.0.0 

• For 64-bit OS, ensure that the file atmcdwdm64.sys file appears in the 

C:\WINDOWS\system32\drivers directory. The latest version is 4.29.0.0 

• If the Windows NT driver atmcd.sys is in the “Drivers” directory delete it and restart the PC.  

 

If you are experiencing communication problems with the Andor USB cameras carry out the following 
actions: 

 

• Confirm that the PC being used is USB 2.0 compatible and that a USB 2.0 port is being used for the 

camera 

• Check the power to the iDus camera. 

• Check the USB cable from the PC to the iDus camera. 

• Ensure that a LibUSB-Win32 Devices section exists in the Device Manager and tab and that your 

camera is listed. To access the Device Manager, go to the Control Panel and click on the “System” 

control. From here, select the Hardware tab and then click on the Device Manager button. If the 

entry does not exist or there is an exclamation mark beside it carry out the following actions 

1. Power the camera off and on and after the new hardware is detected, follow the instructions to 

install a driver for the new device. When asked for a location, point to the directory where the 

software was installed. 

2. If there is a USB device with an exclamation mark beside it and you cannot account for this 

device then it is probably the Andor camera and the driver is not installed. Install the driver as 

described previously or right click on the entry and update driver. 

3. Close down any Andor software, remove the USB cable from either the camera or the PC and 

reconnect it again. Run the software to see if the camera is now detected.  

4. If still not connected then , remove the USB cable from either the PC or the camera, power the 

camera off and on the camera and reconnect the USB cable again.  

5. Run the software to see if the camera is now detected.  

 



                                                          INSTALLATION 

SDK           SECTION 2 
Page 25 

NOTE: If the camera is still not detected after step 6, please contact the appropriate technical 

support person  



                                                          INSTALLATION 

SDK           SECTION 2 
Page 26 

 

SDK LINUX INSTALLATION 

The first step is to unpack the archive that you have received. With the following steps replace <version> 
with the version number of the archive you have. E.g. 2.15 

 

1. Open a terminal 

2. Change the directory to where the andor-<version>.tar.gz file is located 

3. Type 'tar -zxvf andor-<version>.tar.gz' 

 

A new directory named 'andor' is created. 

 

To install the SDK run the script ‘install_andor’ from the ‘andor’ directory. See the ‘INSTALL’ file located in 
the same directory, for further information. 

 

LABVIEW INSTALLATION 

When you install the SDK onto a machine with LabVIEW installed, the SDK DLL and LabVIEW files are 
automatically copied into the LabVIEW install directory. 

 

All Andor SDK function wrappers are present in a LabVIEW library file, "atmcd32d.llb", installed in your 
“user.lib” directory in you LabVIEW install folder. 

 

The library can be added to any of your palette views. Instructions for adding the SDK to your palette view 
are described below. 

 

Note: Depending on the version of LabVIEW you are using, the menu structure may be different. Please 
consult your LabVIEW manual for general help on adding LLBs if you have any issues. 

 

1) Select the menu item "Tools -> Advanced -> Edit Palette Views..." 

2) Right Click on the Functions tool bar & select "Insert -> Submenu..." 

3) In the dialog select "Link to LLB library..." 

4) Navigate to the user.lib directory and select "atmcd32d.llb" - The submenu with all SDK functions 
has been added 

5) Right click on the new palette view and select "Rename Submenu..." 

6) Change the name to "Andor SDK" 

7) Repeat steps 2-6 for the Controls tool bar. 

 
 



                                                          INSTALLATION 

SDK           SECTION 2 
Page 27 

 

Linux Troubleshooting 

If you are having trouble running your camera under the Linux operating system please check the following 

before contacting Technical Support 

For PCI, 

• Check that the device driver is loaded. Type ‘/sbin/lsmod’ – andordrvlx should be listed.  

For USB, 

• Check that libUSB is available, ‘whereis libusb’  

• Check that the Andor device is listed in the /proc/bus/usb/devices file.  

• Check that the relevant device under /proc/bus/usb/00X/00Y has write access for all users.  

 

 

 



                                            READOUT MODES                                               

SDK           SECTION 3 
Page 28 

 

SECTION 3 - READOUT MODES 

INTRODUCTION 

Andor systems are based on a detector known as a Charged Coupled Device (CCD). The detector is divided 

up as a 2-dimensional array of pixels, each capable of detecting light. For example, systems based on an 

EEV 30-11 CCD chip have 1024 X 256 pixels, where each pixel is 26µm
2
 (all examples given in this manual 

assume an EEV 30-11 based system). This 2-dimensional nature allows the device to be operated using a 

number of different binning patterns. We refer to these binning patterns as Readout Modes.  

Andor has several different readout modes as follows: 

• Full Vertical Binning (FVB) 

• Single-Track 

• Multi-Track 

• Random-Track 

• Image 

• Cropped 

Figure 1 shows the binning patterns : 

 
 

Figure 1: Binning patterns 

We will now look at each of these modes in more detail. 

NOTE: All of the patterns described can be simulated by the user in software but by carrying out 
the pattern in the camera greatly increases speed and improves Signal to Noise ratio. 



                                            READOUT MODES                                               

SDK           SECTION 3 
Page 29 

 

Full Vertical Binning 

Full Vertical Binning (FVB) is the simplest mode of operation. It allows you to use the CCD chip as a Linear 

Image Sensor (similar to a photo diode array).  The charge from each column of pixels is vertically binned 

into the shift register. This results in a net single charge per column. Therefore, for a 30-11 CCD an 

acquisition using FVB will result in 1024 data points. 

To set-up a Full Vertical Binning acquisition  call: 

 SetReadMode(0) 
 

 
Figure 2: Full Vertical Binning 

Single-Track 

Single-Track mode is similar to the Full Vertical Binning mode discussed previously in that upon completion 

of an acquisition you will have a single spectrum. However, that is where the similarities end.  

With Single-Track you can specify not only the height (in pixels) of the area to be acquired but also its vertical 

position on the CCD. To ensure the best possible Signal to Noise ratio all the rows within the specified area 

are binned together into the shift register of the CCD and then digitized. 

 

Figure 3: Single-track 

Single-Track mode is useful because you are able to precisely define only the area of the CCD sensor that is 

illuminated by light. This is particularly important in low light level applications as it allows you to minimize the 

contribution of dark current in the measured signal. Also, if you are using an imaging spectrograph, such as 

the Shamrock, with a multiple core fiber, this mode allows you to select a single fiber for examination. 

To set-up a Single-Track acquisition you need to call the following functions: 

 SetReadMode(3);  

 SetSingleTrack(128,20);  

NOTE: If a non frame-transfer camera is used, a shutter may be required to prevent light (which would 

otherwise fall on the CCD-chip outside the specified track) from corrupting the data during binning. 

Please refer to SECTION 8 - SHUTTER CONTROL for further information. 

 



                                            READOUT MODES                                               

SDK           SECTION 3 
Page 30 

 

Multi-Track 

Multi-Track mode allows you to create one or more tracks (each of which behaves like the Single-Track 

above). With Multi-Track you specify the number of tracks and the track height. The driver internally sets the 

actual position of each track so that the tracks are evenly spaced across the CCD. The tracks can be 

vertically shifted, en masse, by specifying a positive or negative offset about a central position. For greater 

control over the positioning of the tracks use Random-Track mode. 

 

Figure 4: Multi-Track 

Multi-Tracks will allow you to simultaneously acquire a number of spectra, delivered typically via a fiber 

bundle. If you are using a non-frame transfer camera and a continuous source, you will need to use a shutter 

to avoid streaking the spectra during the binning process. Please refer to SECTION 8 - SHUTTER 

CONTROL for further information. 

To set-up a Multi-Track acquisition you need to call the following functions: 

 SetReadMode(1); 

 SetMultiTrack(5,20,0,bottom, gap);  

The SetMultiTrack function also returns the position of the first pixel row of the first track “bottom”, together 

with the gap between tracks, “gap”. This allows the user to calculate the actual position of each track. 

NOTE: 

1. Before using Multi-Track mode with fiber bundles it is often useful to acquire a full resolution 

image of the output. Having observed the vertical position and spacing of the individual 

spectra, you can vary track height and offset accordingly. 

2. Imaging spectrographs vertically invert input light (i.e. light from the top fiber will fall on the 

bottom track on the CCD-chip.) 



                                            READOUT MODES                                               

SDK           SECTION 3 
Page 31 

 

                                                                  Random-Track 

In Random-Track mode the position and height of each track is specified by the user, unlike Multi-Track 

mode were the driver sets the position of each track automatically. 

 

Figure 5: Random-Track 

Random-Track will allow you to simultaneously acquire a number of spectra, delivered typically via a fiber 

bundle. Unless you are acquiring data from a pulsed source you will need to use a shutter to avoid streaking 

the spectra during the binning process. To set-up a Random-Track acquisition you need to call the following 

functions: 

 SetReadMode(2);  

 int position[6]; 

 position[0] = 20;   

 position[1] = 30;  //end of track 1, 11 rows height 

 position[2] = 40;  //start of track 2 

 position[3] = 40;  //end of track 2, 1 row height 

 position[4] = 100; //start of track 3 

 position[5] = 150; //end of track 3, 51 rows height 

 SetRandomTracks(3,position);  

The SetRandomTracks function validates all the entries and then makes a local copy of the tracks positions. 

For the array of tracks to be valid the track positions MUST be in ascending order. 

NOTES: 

1. A track of 1 row in height will have the same start and end positions. 

2. Before using Random-Track mode with fiber bundles it is often useful to acquire a Full 

Resolution Image of the output.  

3. Having observed the vertical positions of the individual spectra set the Random-Track mode 

accordingly. 

4. Imaging spectrographs vertically invert input light (i.e. light from the top fiber will fall on the 

bottom track on the CCD-chip.) 



                                            READOUT MODES                                               

SDK           SECTION 3 
Page 32 

 

Image 

In Image mode the CCD is operated much like a camera. In this mode you get a measured value for each 

pixel on the CCD, in effect allowing you to ‘take a picture’ of the light pattern falling on the pixel matrix of the 

CCD. To prevent smearing the image, light must be prevented from falling onto the CCD during the readout 

process. Please refer to SECTION 8 - SHUTTER CONTROL for further information. 

 

Figure 6: Image mode 

 

To reduce the file size and increase the speed of readout it is possible to specify a sub-area of the CCD to be 

read out. It is also possible to bin pixels together horizontally and vertically to create super pixels. 

To set up a “Full Resolution Image” acquisition you need to call the following functions: 
  

 SetReadMode(4);  

 SetImage(1,1,1,1024,1,256); 

To acquire a sub-area with lower left co-ordinates of (19, 10), with binning of 4 in both the horizontal and 

vertical directions, and 100x16 pixels in the acquired image you would call the SetImage function with the 

following parameters: 

 SetImage(4,4,19,118,10,25); 

By a process of binning charge vertically into the shift register from several rows at a time (e.g. 4) and then 

binning charge horizontally from several columns of the shift register at a time (e.g. 4) the ANDOR SDK 

system is effectively reading out charge from a matrix of super pixels which each measure 4 x 4 real pixels. 

The result is a more coarsely defined image, but faster processing speed, lower storage requirements, and a 

better signal to noise ratio (since for each element or super pixel in the resultant image, the combined charge 

from several pixels is being binned and read out, rather than the possibly weak charge from an individual 

pixel). 

 



                                            READOUT MODES                                               

SDK           SECTION 3 
Page 33 

 

Cropped 

In Cropped mode, we can "fool" the sensor into thinking it is smaller than it actually is, and readout 

continuously at a much faster frame rate. The spectral time resolution is dictated by the time taken to readout 

the smaller defined section of the sensor. 

If your experiment dictates that you need fast time resolution but cannot be constrained by the storage size of 

the sensor, then it is possible to readout the EMCCD in a "cropped sensor" mode, as illustrated below. 

 

 

  

Figure 7: Cropped mode 

 

To set up the CCD with a cropped image, as in figure 7, see SetIsolatedCropMode. 

NOTE: It is important to ensure that no light falls on the excluded region otherwise the 

acquired data will be corrupted. 



                                       ACQUISITION MODES 

SDK           SECTION 4 
Page 34 

 

SECTION 4 - ACQUISITION MODES 

ACQUISITION MODE TYPES 

In the previous section the different ReadOut Modes (binning patterns) supported by the Andor SDK were 

discussed. In addition the Andor SDK allows you to control the number and the timing details of acquisitions made 

using the various binning patterns. To simplify the process of controlling these acquisitions the Andor SDK has 

divided the acquisition process into several different Acquisition Modes: 

• Single Scan  

• Accumulate 

• Kinetic Series 

• Run Till Abort 

• Fast Kinetics  

Single Scan is the simplest form of acquisition where a single scan is captured. 

Accumulate mode takes a sequence of single scans and adds them together. 

Kinetic Series mode captures a sequence of single scans, or possibly, depending on the camera, a sequence of 

accumulated scans. 

Run Till Abort continually performs scans of the CCD until aborted. 

If your system is a Frame Transfer CCD, the acquisition modes can be enhanced by setting the chip operational 

mode to Frame Transfer.  

In the remainder of this section we will discuss in detail what each of these modes actually are and what needs to 

be specified to fully define an acquisition.  

The table below summarizes the information that is needed for each acquisition mode: 

MODE 
EXPOSURE 

TIME 

ACCUMULATE 

CYCLE 

TIME 

NO.  

OF 

ACCUMULATIONS 

KINETIC 

CYCLE 

TIME 

NO. 

IN 

KINETIC 

SERIES 

SINGLE SCAN X     

ACCUMULATE X X X   

KINETIC SERIES X X X X X 

RUN TILL ABORT X   X  

FAST KINETICS X X   X 

NOTE: For the purpose of this document an acquisition is taken to mean the complete data capture 

process. By contrast, a scan is a single readout of data from the CCD-Chip, i.e. a complete data 

acquisition comprises the capture of one or more scans. 



                                       ACQUISITION MODES 

SDK           SECTION 4 
Page 35 

 

Single Scan 

Single Scan is the simplest acquisition mode available with the Andor system. In this mode Andor SDK 

performs one scan (or readout) of the CCD and stores the acquired data in the memory of the PC.  

 

To set the acquisition mode to Single Scan call: 

 SetAcquisitionMode(1) 

 SetExposureTime(0.3) 

Here the exposure time is the time during which the CCD sensor is sensitive to light. The exposure time is set 

via the SetExposureTime function. 

NOTE: Due to the time needed to shift charge into the shift register, digitize it and operate shutters, 

where necessary, the exposure time cannot be set to just any value. For example, the minimum 

exposure time depends on many factors including the readout mode, trigger mode and the digitizing 

rate. To help the user determine what the actual exposure time will be the driver automatically 

calculates the nearest allowed value, not less than the user’s choice. The actual calculated exposure 

time used by Andor SDK may be obtained via the GetAcquisitionTimings function (this function should 

be called after the acquisition details have been fully defined i.e. readout mode, trigger mode etc. 

have been set). 



                                       ACQUISITION MODES 

SDK           SECTION 4 
Page 36 

 

Accumulate 

Accumulate mode adds together (in computer memory) the data from a number of scans to form a single 

‘accumulated scan’. This mode is equivalent to taking a series of Single Scans and “manually” adding them 

together. However, by using the built-in Accumulate mode you gain the ability to specify the time delay (or 

period) between two consecutive scans and also the total number of scans to be added. 

 

To set the acquisition mode to Accumulate call: 

SetAcquisitionMode (2) 

To fully define an Accumulate acquisition you will need to supply the follow information: 

Exposure Time. This is the time in seconds during which the CCD sensor collects light prior to readout. Set 

via the SetExposureTime function. 

Number of Accumulations. This is the number of scans to be acquired and accumulated in the memory of 

the PC. Set via the SetNumberAccumulations function. 

Accumulate Cycle Time. This is the period in seconds between the start of each scan.  

Set via the SetAccumulationCycleTime function. (This parameter is only applicable if you have selected 

Internal trigger – Please refer to SECTION 6 – TRIGGERING for further information. 

NOTES: 

1. If the exposure time or the cycle time are set too low or are not permissible values, the driver 

will automatically calculate the nearest appropriate value.  

2. The actual values used can be obtained via the GetAcquisitionTimings function (this 

function should be called after the acquisition has been fully defined (i.e. readout mode, 

trigger mode etc. have been set). 

3. In External Trigger mode the delay between each scan making up the acquisition is not 

under the control of the Andor system but is synchronized to an externally generated trigger 

pulse. 



                                       ACQUISITION MODES 

SDK           SECTION 4 
Page 37 

 

Kinetic Series 

Kinetic Series mode captures a sequence of single scans, or a sequence of accumulated scans, into 

memory. This mode is equivalent to manually taking a series of single scans (or accumulated scans). 

However, by using the built-in Kinetic Series mode you gain the ability to specify the time delay (or period) 

between two consecutive scans and also the total number of scans to be acquired. 

 

 

NOTE: In External Trigger mode the delay between each scan making up the acquisition is not under 

the control of the Andor SDK, but is synchronized to an externally generated trigger pulse. 



                                       ACQUISITION MODES 

SDK           SECTION 4 
Page 38 

 

To set the acquisition mode to Kinetic Series call:  

SetAcquisitionMode(3) 

 

To fully define a Kinetic Series acquisition you will need to supply the following information: 

Exposure Time. This is the time in seconds during which the CCD collects light prior to readout.  

Set via the SetExposureTime function. 

 

Number of Accumulations. This is the number of scans you want to add together to create each member of 

your kinetic series. The default value of 1 means that each member of the kinetic series will consist of a 

single scan.  

Set via the SetNumberAccumulations function. 

 

Accumulate Cycle Time. This is the period in seconds between the start of individual scans (see Number of 

Accumulations above) that are accumulated in computer memory to create each member of your kinetic 

series - each member of the series is an ‘accumulated scan’.  

Set via the SetAccumulationCycleTime function. 

(This parameter is only applicable if you have selected the Internal trigger and the Number of Accumulations 

is greater than 1- Please refer to SECTION 6 – TRIGGERING for further information.) 

 

Number in Kinetic Series. This is the number of scans (or ‘accumulated scans’) you specify to be in your 

series. 

Set via the SetNumberKinetics function. 

 

Kinetic Cycle Time. This is the period in seconds between the start of each scan (or set of accumulated 

scans, if you have set the Number of Accumulations to more than 1) in the series. 

Set via the SetKineticCycleTime function. 

(This parameter is only applicable if you have selected the Internal trigger - see Trigger Modes.) 

NOTE: 

1. If the exposure time or the cycle time are set too low or are not permissible values, the driver 

will automatically calculate the nearest appropriate value.  

2. The actual values used can be obtained via the GetAcquisitionTimings function. This function 

should be called after the acquisition has been fully defined i.e. readout mode, trigger mode 

etc. have been set). If you are using a shutter, please refer to SECTION 8 – SHUTTER 

CONTROL for further information 



                                       ACQUISITION MODES 

SDK           SECTION 4 
Page 39 

 

Run Till Abort 

Run Till Abort mode continually performs scans of the CCD at the rate set by the user, until the acquisition is 

stopped by calling the AbortAcquisition function. The minimum possible delay between each scan will be the 

minimum Kinetic Cycle Time.  

 

To set the acquisition mode to Run Till Abort call: 

SetAcquistionMode(5) 

SetExposureTime(0.3) 

SetKineticCycleTime(0) 

Here the exposure time is the time during which the CCD sensor is sensitive to light. 

NOTES: 

1. The total number of images acquired during the acquisition can be obtained at any time by 

calling the GetTotalNumberImagesAcquired function. The data acquired during the 

acquisition will be stored in the circular buffer until it is overwritten by new scans.  The 

capacity of the circular buffer can be obtained by calling the GetSizeOfCircularBuffer 

function. To retrieve all valid data from the circular buffer before it is overwritten by new data 

the GetNumberNewImages and GetImages functions should be used. Alternatively, to retrieve 

only the most recent image the GetMostRecentImage function can be used. Finally, to retrieve 

the oldest image the GetOldestImage function can be used. 

2. Due to the time needed to shift charge into the shift register, digitize it and operate shutters, 

where necessary, the exposure time cannot be set to just any value. For example, the 

minimum exposure time depends on many factors including the readout mode, trigger mode 

and the digitizing rate.  To help the user determine what the actual exposure time will be, the 

driver automatically calculates the nearest allowed value that is not less than the user’s 

choice. Thus, the actual calculated exposure time used by Andor SDK may be obtained via 

GetAcquisitionTimings (this function should be called after the acquisition details have been 

fully defined i.e. readout mode, trigger mode etc. have been set). 

 

 

 

 



                                       ACQUISITION MODES 

SDK           SECTION 4 
Page 40 

iCam Run Till Abort 

When in this mode of operation (Run Till Abort) some systems have an enhanced trigger mode and 

enhanced exposure time capability. To check if these enhanced features are available with your system, 

use the function GetCapabilities and check the ulTriggerModes variable for bit 3 

(AC_TRIGGERMODE_CONTINUOUS) being set. 

The enhanced features include:·  

1. Ring of exposures  

2. Software Trigger or External trigger 

3. Ability to change exposure times during acquisition without aborting the run.  

4. External Level Exposure (Bulb) Trigger 

These enhanced features are particular useful in situations where you need to acquire data at a fast rate but 

not at some predefined rate or when you need to change the exposure time between successive scans. A 

good example would be calcium imaging where you need to take 2 images at different wavelengths with 

possibly different light levels. With this new mode of operation you would set the experiment up as follows: 

1. Configure the camera to acquire an image 

 SetReadMode, SetImage, SetFrameTransferMode 

2. Select Run-till-abort mode SetAcquisitionMode 

3. Select Software trigger SetTriggerMode(10) 

 Confirm with IsTriggerModeAvailable(10)  

4. Set exposure time. SetExposureTime or SetRingExposureTimes 

5. Move filter to first position 

6. Start acquisition. StartAcquisition 

7. Send software Trigger. SendSoftwareTrigger 

8. Wait for an acquisition event. See SetDriverEvent 

9. Move Filter to next position. 

10. Change exposure time. See SetExposureTime 

11. Retrieve data see GetAcquiredData 

12. Go to  step 7 

 

In the procedure outlined above we manually changed the exposure during the sequence. However, we 

could have used the new “Ring of exposures” feature to set up the two exposure times in advance and let 

the camera automatically switch between them as necessary. see SetRingExposureTimes 

 

There is also the ability to detect the end of the exposure and start reconfiguring the experiment for the next 



                                       ACQUISITION MODES 

SDK           SECTION 4 
Page 41 

acquisition while the readout of the first scan is still in progress. See SetAcqStatusEvent. 

NOTE: This will also work in External trigger mode SetTriggerMode, with an external trigger source 

determining the start of an exposure instead of the SendSoftwareTrigger command. In external 

trigger care must be taken to ensure that the external trigger occurs when the camera is ready for it 

i.e. the frequency of the external trigger source has to be within the capabilities of the camera with 

the current settings. 

 

With External Exposure trigger mode the width of the trigger pulse source will determine the exposure time 

and the Ring of Exposures will not be applicable.  

 

See also Acquisition Modes. GetAdjustedRingExposureTimes GetNumberRingExposureTimes 

GetRingExposureRange IsTriggerModeAvailable SendSoftwareTrigger SetRingExposureTimes 

SetTriggerMode 

 



                                       ACQUISITION MODES 

SDK           SECTION 4 
Page 42 

 

Fast Kinetics 

Fast Kinetics is a special readout mode that uses the actual sensor as a temporary storage medium and 
allows an extremely fast sequence of images to be captured. The capture sequence is described with the 
following steps: 

Step 1: both the Image and Storage areas of the sensor are fully cleaned out (the Keep Clean Cycle) 

Step 2: the Keep Clean Cycle stops and the acquisition begins. The image builds up on the illuminated section 
of the sensor which is typically a small number of rows at the top of the sensor 

Step 3: the sensor remains in this state until the exposure time has elapsed, at which point the complete 
sensor is clocked vertically by the number of rows specified by the user. 

Steps 4 & 5: the process is continued until the number of images stored equals the series length set by the 
user. 

Step 6: at this point the sequence moves into the readout phase by first vertically shifting the first image to the 
bottom row of the sensor. The sensor is then read out in the standard method.  

Points to consider for Fast Kinetics Mode: 

• Light MUST only be allowed to fall on the specified sub-area. Light falling anywhere else will contaminate the 
data. 

• The maximum number of images in the sequence is set by the position of the sub-area, the height of the sub-
area and the number of rows in the CCD (Image and Storage area) 

• There are no Keep Clean cycles during the acquisition sequence. 

• The industry fastest vertical shift speeds of the iXon
EM

+ enables fastest time resolution with minimal vertical 
smearing.  

• A range of internal trigger and external trigger options are available for Fast Kinetics Readout.  



                                       ACQUISITION MODES 

SDK           SECTION 4 
Page 43 

 

Frame Transfer 

Frame transfer is a mode of operation of the chip that is only available if your system contains a Frame 

Transfer CCD (FT CCD). It can be switched on for any acquisition mode. 

A FT CCD differs from a standard CCD in 2 ways: 

• Firstly, a FT CCD contains 2 areas, of approximately equal size (see figure 7 below).  

1. The first area is the Image area, this area is at the top and farthest from the readout 

register. It is in this area that the CCD is sensitive to light.  

2. The second area is the Storage area and sits between the Image area and the readout 

register. This area is covered by an opaque mask, usually a metal film, and hence is not 

sensitive to light.  

• The second way in which a FT CCD differs from a standard CCD is that the Image and the Storage 

areas can be shifted independently of each other.  

These differences allow a FT CCD to be operated in a unique mode where one image can be read out while 

the next image is being acquired. It also allows a FT CCD to be used in imaging mode without a shutter. 

 

Figure 7: Frame Transfer CCD 



                                       ACQUISITION MODES 

SDK           SECTION 4 
Page 44 

 

Figure 8 takes you through the capture sequence for an FT CCD: 

 

Figure 8: Capture sequence for a Frame Transfer CCD 

Step 1: Both Image and Storage areas of the CCD are fully cleaned out. This is known as a Keep Clean 

Cycle. Keep Clean Cycles occur continuously to ensure that the camera is always ready to start an 

acquisition when required.  

Step 2: On receipt of a start acquisition command the CCD stops the Keep Clean Cycle. This allows the 

image, photoelectric charge, to build up in the Image area of the CCD. The CCD remains in this state until the 

exposure time has elapsed, at which point the readout process starts. 

Step 3: In this step the charge, built up in the Image area, is quickly shifted into the Storage area. The time 

required to move the charge into the storage area is calculated as follows: 

No. of Rows in the Image Area x Vertical Shift Rate. 

Once the Image area has been shifted into the storage area the Image area stops vertically shifting and 

begins to accumulate charge again, i.e. the next exposure starts.  

Step 4: While the Image area is accumulating charge the Storage area is being read out. This readout phase 

can take tens of milliseconds to seconds depending on the image size, readout pattern and readout speed.  

Step 5 & 6: On completion of the readout, the system will wait until the exposure time has elapsed before 

starting the next readout (Step 6).  

As the captured image is quickly shifted into the Storage area, a Frame Transfer CCD system can be used 

without a mechanical shutter. 

 

NOTES:  

• When using Frame Transfer mode, the minimum exposure time for a FT CCD operated in 

frame transfer mode is the time taken to readout the image from the storage area. 



                                       ACQUISITION MODES 

SDK           SECTION 4 
Page 45 

• The Accumulation Cycle Time and the Kinetic Cycle Time are fully dependent on the 

exposure time and hence cannot be set via the software. 

• For our Classic CCD range of cameras with frame transfer type sensors the camera can be 

operated in External Trigger mode. In this mode there are no keep cleans and the external 

trigger starts the "Readout" phase. The exposure time is the time between external triggers 

and hence the user cannot set the exposure or cycle times. 

• For our iXon range of cameras the external trigger mode is more flexible. With these 

cameras the user can define the amount of time between the external trigger event 

occurring and the readout starting. This can be useful in those situations where the TTL 

trigger occurs before the light event you are trying to capture. As in the Classic Camera 

case, no keep cleans are running and the true exposure time is the time between triggers. 

However, the exposure window has moved in time by the exposure time. 

• There is no need for a mechanical shutter. As the exposure time is long compared to the 

time required to shift the image into the storage area and therefore, image streaking will be 

insignificant. 

 



                                       ACQUISITION MODES 

SDK           SECTION 4 
Page 46 

 

It is also possible to operate a FT CCD in a non-frame transfer mode. In this standard mode of operation, an 

FT CCD acts much like a standard CCD.  The capture sequence for this standard mode is illustrated here: 

 

• Step 1: Both Image and Storage areas of the CCD are fully cleared out (the Keep Clean Cycle).  

• Step 2: When an acquisition begins, the CCD stops the Keep Clean Cycle. The image builds up in 

the Image area of the CCD. The CCD remains in this state until the exposure time has elapsed, at 

which point the readout process starts. 

• Step 3: The charge built up in the Image area is quickly shifted, into the Storage area. The time 

required to move the charge into the Storage area is the same as in the Frame Transfer mode. 

• Step 4: With the image now in the Storage area the captured image is read out. The time taken to 

read out the image is again the same as in the Frame Transfer mode.  

• Step 5: On completion of the readout, the CCD is again completely cleared, ready to acquire the next 

image. The CCD remains in the Keep Clean Cycle until the end of the accumulation or kinetic cycle 

time, depending on the acquisition mode, i.e. back to Step 1. As at least one Keep Clean Cycle is 

performed between each exposure, the minimum exposure time is no longer set by the time to read 

out the image. 

As the captured image is quickly shifted into the Storage area, even in non-Frame Transfer mode, the 

system may still be used without a mechanical shutter. 



                                       ACQUISITION MODES 

SDK           SECTION 4 
Page 47 

 

NOTES:   

• When using an FT CCD as a standard CCD, the Exposure Time, Accumulation Cycle Time 

and Kinetic Cycle Time can be set independently. 

• The minimum exposure time is not related to the time taken to read out the image. 

• External trigger operates as if the CCD was a Non-FT CCD. 

• As the captured image is quickly shifted into the storage area, even in non-frame transfer 

mode, the system may still be used without a mechanical shutter.  

• For short exposure times the image may appear streaked as the time taken to shift the 

image area into the storage area may be of similar magnitude. 

• Light falling on the Image area while the Storage area is being read out may contaminate 

the image in the Storage area due to charge spilling vertically along a column from the 

Image area.  The slower the readout rate or the shorter the exposure time the greater the 

possibility of corruption. To see why this is the case, consider the following situation:  

“During a 100us exposure enough light has fallen on a pixel to register 10000 counts, or 100,000 

electrons assuming 10e/count. The image is then shifted into the Storage area. To read out the 

image, assuming 1000x1000 pixels, it would take approximately 100ms at 10MHx readout rate. This 

means that during the reading out of the image 10 million counts (10000 * 1000) will have been 

acquired into the pixel described above. As a pixel saturates at approximately 160,000 electrons this 

means that the pixel will over saturated by 60 times. All the excess charge has to go somewhere, and 

spreads vertically along the CCD column. As the clocks in the Image area are not actively shifting the 

charge, the mobility of the charge will be low and you may not see any effect. However, when you 

consider that more than one pixel in any given column could be exposed to 10000 counts per 100us, 

the chance of corrupting data is correspondingly increased. Changing the readout rate to 1 

microsecond per pixel will greatly decrease the possibility of data corruption due to the reduced time 

to read out the image. Reducing the amount of light falling on the CCD and increasing the exposure 

time accordingly will also reduce the possibility of data corruption.” 



                                       ACQUISITION MODES 

SDK           SECTION 4 
Page 48 

 

By default the system is set to non-Frame Transfer mode. To set the chip operation mode to Frame Transfer 

call: 

 SetFrameTransferMode(1) 
 

To switch back to non-frame transfer mode call  

 SetFrameTransferMode(0) 
 

To fully define a Frame Transfer acquisition you will need to supply the following information: 

• Exposure Time: Time in seconds during which the CCD collects light prior to readout. Set via the 

SetExposureTime function. 

• Number of Accumulations: Number of scans you want to add together to create each member 

of your kinetic series. The default value of 1 means that each member of the kinetic series will 

consist of a single scan. Set via the SetNumberAccumulations function. 

• Number in Kinetic Series: Number of scans (or accumulated scans) you specify to be in your 

series. Set via the SetNumberKinetics function. 



                                                                TRIGGERING 

SDK           SECTION 5 
Page 49 

 

SECTION 5 - TRIGGERING 

TRIGGER MODES 

To assist the user in synchronizing data capture with external events the Andor system supports several 

modes of triggering, including  

Internal 

External 

External Start 

External Exposure (Bulb) 

External FVB EM (only valid for EM Newton models in FVB mode)  (needs added) 

Software 

 

The trigger mode is set via the SetTriggerMode function. In the remainder of this section we will examine 

the modes in detail and give some indication on the appropriate application of each trigger mode. 



                                                                TRIGGERING 

SDK           SECTION 5 
Page 50 

 

Internal 

In Internal Trigger Mode once an acquisition has been started via the StartAcquisition function the Andor 

system determines when data is actually acquired. Before the camera starts the data capture process it 

ensures that the CCD is in the appropriate state. This ensures that all acquisitions are identical no matter 

how long a time has elapsed since data was last acquired (in fact the camera continually reads out the 

CCD to help prevent it from being saturated by light falling on it whilst it is not acquiring data). The camera 

also generates all the necessary pulses for shuttering and firing external sources. These pulses are 

accessed directly on the camera or via the Auxiliary Connector depending on the model. The Fire Output 

defines the position in time during which it is safe to allow a pulsed source to fire. The figure below 

illustrates the timing sequence for this mode of operation. 

 

 Internal Trigger Mode is ideal for situations where you are using ‘continuous wave’ (CW) light sources (an 

ordinary room light for instance) and incoming data, for the purposes of your observation, are steady and 

unbroken: thus you can begin acquisitions ‘at will’. 

You may use Internal Trigger Mode when you are able to send a trigger signal or ‘Fire Pulse’ to a short-

duration, pulsed source (a laser, for example): in this case, initiating the data acquisition process can also 

signal the pulsed source to fire.  



                                                                TRIGGERING 

SDK           SECTION 5 
Page 51 

 

External 

In External Trigger Mode once an acquisition has been started via the StartAcquisition function the 

camera is placed into a special dumping version of the ‘Keep Clean’ mode, which ensures that the CCD is 

not saturated before the external trigger occurs. Once the External Trigger is received the Keep Clean 

sequence is stopped and the acquisition is initiated. 

The figure below illustrates the timing sequence for this mode of operation: 

 

The external trigger can be fed in a number of ways: 

• EXT TRIG socket of the I/O Box (available separately, model #IO160) 

• Pin 13 of the Auxiliary Connector on the Andor PCI Card 

• The head in the case of iDus / iXon. 

 

External Trigger mode is suited to data acquisitions involving a ‘pulsed source’ (e.g. a laser) where the 

source does NOT allow a trigger pulse to be sent to it but can generate one. It is possible to increase the 

frame rate when in external trigger mode by enabling the Fast External Trigger option, see 

SetFastExtTrigger.  

When this option is enabled the system will not wait for a Keep Clean cycle to be completed before allowing 

an external trigger to initiate an acquisition. This may cause the background to change from one scan to 

another. 



                                                                TRIGGERING 

SDK           SECTION 5 
Page 52 

 

NOTES: 

1. If you have a shutter connected, and are using an external trigger, you must ensure that the 

shutter is open before the optical signal you want to measure occurs. When a camera is 

operated in frame transfer mode the external trigger sequence is different. Please refer to 

the camera user manual for a full description. 

2. Some cameras may support the iCam technology. If they do, it will be fully operational in 

external trigger mode. It is very similar to the Software trigger functionality except that 

instead of a Software command instigating the acquisition, an external source does so. All 

the benefits described in the Software Trigger section can also be applied to the external 

trigger mode. It is set up in the same way with the same modes except that the trigger mode 

is set to External. 

Frame transfer is also fully functional in iCam External Trigger mode. When Frame Transfer is on it 

means that the Arm signal from the camera will be enabled during the current readout at a point to 

ensure the next exposure will end after the current readout is finished. This will give the fastest 

frame rate and also ensure that the next exposure cannot end until the previous one has been 

readout. 

 



                                                                TRIGGERING 

SDK           SECTION 5 
Page 53 

 

External Start 

In External Start Trigger Mode, once an acquisition has been started via the StartAcquisition function, the 

camera system is placed into an external keep clean mode, which ensures that the CCD is not saturated 

before the external trigger occurs. Once the External Trigger is received, the Keep Clean sequence is 

stopped and the acquisition is initiated. After the initial acquisition the system will then continue to operate as 

in internal trigger mode. The figure below illustrates the timing sequence for this mode of operation. 

 

External Start trigger in Fast Kinetics mode 

 

 



                                                                TRIGGERING 

SDK           SECTION 5 
Page 54 

 

External Exposure 

The External Exposure trigger is a mode of operation where the exposure time is fully controlled by the 

external trigger input. While the trigger input is high the CCD is accumulating charge in the Image area. 

When the external trigger goes low, the accumulated charge is quickly shifted into the Storage area and then 

read out in the normal manner. The figures below illustrate the timing sequences for this mode of operation. 

 

External Exposure Trigger in Frame Transfer mode (885 model only) 

 

 



                                                                TRIGGERING 

SDK           SECTION 5 
Page 55 

 

 

External Exposure Trigger in Non-Frame Transfer mode 

Note that not all systems support External Exposure mode. To check if this feature is available with your 

system, use the function GetCapabilities and check the ulTriggerModes variable for bit 5 

(AC_TRIGGERMODE_EXTERNALEXPOSURE) being set. If this bit is set, please use the function 

GetCapabilities again and check the ulFeatures variable for bit 12 

(AC_FEATURES_FTEXTERNALEXPOSURE) being set when Frame Transfer mode is used, and bit 13 

(AC_FEATURES_KINETICEXTERNALEXPOSURE) being set when Kinetc and Frame Transfer modes are 

used together.  

 



                                                                TRIGGERING 

SDK           SECTION 5 
Page 56 

 

External FVB EM 

IExternal FVB EM Trigger Mode is much like operating an acquisition in FVB read mode with EM gain 

applied using external trigger with Keep cleans turned off.  The difference surrounds the readout of the 

collected data and therefore the associated readout time: 

When using EM gain a second (EM) register is used to apply the gain to the acquired data, The diagram 

below gives a quick overview of the readout process used in both processes.   

Imagine a ‘pixel’ at position A. 

 

Normally for the readout cycle to complete, this pixel will have to shift along the shift register and then along 

the entire length of the EM Register to C before the next acquisition can begin. 

 

When using FVB EM Trigger Mode however, the EM Register Is used as a temporary storage area and so 

the pixel at A no longer needs to travel all the way to C but can stop at position B as this leaves sufficient 

space in the shift register for the next acquisition; the data is in effect ‘pipelined’. 

 

 

  

Note that not all systems support External FVB EM Trigger mode. To check if this enhanced feature is 

available with your system, use the function GetCapabilities and check the ulFeature variable for bit 10 

(AC_FEATURES_KEEPCLEANCONTROL) being set.  

 



                                                                TRIGGERING 

SDK           SECTION 5 
Page 57 

 

Software 

In Software Trigger Mode, once an acquisition has been started via the StartAcquisition function, the user 

software determines when data is actually acquired via the SendSoftwareTrigger command. This will give 

full control to the user software to ensure that it only requests an acquisition when it is ready. It permits the 

highly efficient upload of new exposure times between acquisitions and even allows a pre-load of up to 16 

exposures to the camera which will be cycled through with each acquisition. It also permits the user 

software to perform certain actions before requesting the next acquisition, such as moving an external 

stage or even to change the exposure time. 

 

Note that not all systems support Software Trigger mode. To check if these enhanced features are 

available with your system, use the function GetCapabilities and check the ulTriggerModes variable for bit 3 

(AC_TRIGGERMODE_CONTINUOUS) being set. If this bit is set and the system is configured with the 

following modes: 

• Read mode set to image 

• Acquisition mode set to Run till abort 

• Trigger mode set to 10 

Then the SendSoftwareTrigger command will cause the acquisition to be taken.  

It is recommended that you call IsTriggerModeAvailable(10) to check if your system is set up to use the  

SendSoftwareTrigger function. 

 

 If a SendSoftwareTrigger command is issued when the camera is not ready for it, it will be ignored and an 

appropriate return code returned. 

The extra functionality of pre-loading exposures (up to a maximum of 16) to the camera is configured with 

the SetRingExposureTimes command. When the first acquisition is requested (SendSoftwareTrigger) the 

camera will take an acquisition with the first exposure in its list. When the second acquisition is requested 

the next exposure in the list will be used and so on. When the camera uses the final exposure in its list it 

will loop to the beginning again. 

Notes on Frame Transfer 

• On Frame Transfer systems, the Frame Transfer mode can be activated or deactivated. Currently, 

not all cameras can take advantage of the frame transfer operation in Software Trigger mode. By 

the nature of frame transfer, an exposure can be occurring when the previous acquisition is being 

read out. Currently, no PCI connected cameras can be sent a software trigger when the 

camera is reading out.  

• USB cameras that support Software trigger can be sent a software trigger command during 

readout. 

• Frame transfer is fully supported in external trigger mode. 



                                                           SHIFT SPEEDS 

SDK           SECTION 6 
Page 58 

 

SECTION 6 - SHIFT SPEEDS 

The Andor system allows you to set the speed at which charge is shifted horizontally and vertically on the 

CCD.  

The horizontal and vertical shift speeds are set via the SetHSSpeed and SetVSSpeed functions respectively. 

 The vertical shift speed is the speed at which each row on the CCD is shifted vertically into the Shift 

Register. The number of vertical shift speeds and their actual values are determined via the 

GetNumberVSSpeeds and GetVSSpeed functions.  

The horizontal shift speed is the speed at which the charge in the shift register is shifted horizontally. It is also 

the speed at which the signal is digitized via the on board A/D converters. The number of horizontal shift 

speeds and their actual values are determined via the GetNumberHSSpeeds and GetHSSpeed functions. 

The horizontal shift speed is dependant on the CCD type and the model of plug-in card in the system. The 

shift speeds are always returned fastest first. 

The following example retrieves the number of horizontal speeds allowed and their actual values in 

microseconds. Finally, it selects the fastest speed as follows: 

 GetNumberHSSpeeds(0, 0, &a); //first A-D, request data speeds for (I = 0; I < a;I++) 

 GetHSSpeed(0, 0, I, &speed[I]); 

 SetHSSpeed(0, 0);  /* Fastest speed */ 



                                           SHUTTER CONTROL 

SDK           SECTION 7 
Page 59 

 

SECTION 7 - SHUTTER CONTROL 

SHUTTER MODES 

In the sections on Acquisition modes and Readout modes the use of a shutter was highlighted to prevent the 

smearing of data. Smearing occurs if light is allowed to fall on to the CCD while the pixel charges are being 

binned into the shift register prior to readout. The Andor system has a dedicated shutter control line that 

ensures that the shutter is correctly operated at all times.  

The SetShutter and SetShutterEx functions provide you with a selection of options that determine when and 

how a shutter should be used.  

Fully Auto 

Fully Auto is the simplest shutter mode because it leaves all shuttering decisions to the Andor system. The 

shutter opens and closes automatically in accordance with any acquisition parameters you have set.  

This option will automatically provide suitable shuttering for the majority of data acquisitions. 

Hold Open 

If the shutter mode is set to Hold Open the shutter will be open before, during and after any data acquisition. 

Choose this option if you wish to take a series of acquisitions with the shutter opened at all times (e.g. if you 

are taking a series of acquisitions with a pulsed source with little or no background illumination). 

Hold Closed 

If the shutter mode is set to Hold Close the shutter remains closed before, during and after any data 

acquisition. Choose this option if you wish to take an acquisition in darkness (e.g. if you are acquiring a 

background scan). 

 



                                           SHUTTER CONTROL 

SDK           SECTION 7 
Page 60 

 

SHUTTER TYPE 

The shutter control line is a TTL compatible pulse, which can be either active high or active low to allow the 

control of an external shutter. 

NOTE: If the camera has an internal shutter (the function IsInternalMechanicalShutter can be used to 

test this) but cannot control the internal and external shutter independently (check the capability 

AC_FEATURES_SHUTTEREX) then the TTL pulse will always be active high.   

• If you set the shutter type to TTL High with SetShutter or SetShutterEx, the Andor SDK will cause 

the output voltage to go ‘high’ to open the shutter.  

• If you set the shutter type to TTL Low with SetShutter or SetShutterEx, the Andor SDK will cause the 

output voltage to go ‘low’ to open the shutter. 

For Classic systems this pulse will be sent through the Andor PCI card. For other systems this pulse will 

be sent through the shutter SMB connector on the camera. 

The documentation supplied by the shutter manufacturer will advise the user whether your shutter opens at a 

high or a low TTL level.   

NOTE: With Full Vertical Binning there is no shutter pulse. The shutter will always be in the Open 

position. See Shutter Mode on the previous page and Shutter Transfer Time on the next page. 

 

The I/O Box also contains a 30V shutter jack socket, which produces the same signal as the TTL output but 

is always high to open (see User Guide for further details). NOTE: Only applicable to classic systems. 

 

For iXon+ cameras that have independent shutter control (capability AC_FEATURES_SHUTTEREX) we can 

control the TTL type and mode of the internal (if available) and external shutter independently using function 

SetShutterEx, The external shutter signal will be output through the Shutter SMB port on the rear of the 

camera. The internal and external shutters will have the same opening and closing times. 

 



                                           SHUTTER CONTROL 

SDK           SECTION 7 
Page 61 

 

SHUTTER TRANSFER TIME 

Mechanical shutters take a finite time to open or close. This is sometimes called the Shutter Transfer Time 

and can be of the order of tens to hundreds of milliseconds. The Transfer Time is important for many 

reasons.  

Firstly, if your shutter takes 40ms to open and you specify an exposure time of 20ms then the shutter will 

simply not get the time to open fully. Similarly, if you are triggering a pulse light source via the Fire pulse then 

you will want to ensure that the Fire pulse goes high only when the shutter is opened. Also, if you are 

acquiring data in an imaging mode (Multi-Track, Random-Track, Single-Track or Image), with either a 

continuous light source or a large high background illumination with a pulsed source, the shutter must be fully 

closed before readout begins. Otherwise, a smeared image will result. 

The SetShutter and SetShutterEx functions allow you to specify a Transfer Time for both opening and closing 

the shutter.  

The time you specify for the shutter opening time will affect the minimum exposure time you can set via the 

SetExposureTime function. For example, if you set the opening time to 0ms then the minimum exposure time 

will be set to the amount of time needed to clean the shift register on the CCD. However, if the opening time 

is set to a larger value than is needed to clean the shift register, say 50ms, then the minimum exposure time 

will be 51ms i.e. 1ms more than the time needed to open the shutter.  

The SetExposureTime is in effect setting the length of time the shutter output will be in the ‘open’ state. The 

rising edge of the Fire output signal follows the start of the shutter open state after a delay, equal to the value 

you set for the opening time via the SetShutter functions. 

Andor SDK also automatically adds the Transfer Time for the closing of the shutter to the end of the 

acquisition sequence, introducing an appropriate delay between the start of the shutter ‘closed’ state and the 

commencement of the data being read out. This value is set via the closing time parameter in the SetShutter 

and SetShutterEx functions. 

Figures 10 & 11 on the next page show the timing sequence for both Internal and External triggering modes. 

 



                                           SHUTTER CONTROL 

SDK           SECTION 7 
Page 62 

 

 
Figure 9: Timing diagram for shutter and fire pulses in internal trigger mode 

 

 

Figure 10: Timing diagram for shutter and fire pulses in external trigger mode 

NOTES:  

1. In the case of external triggering, the external trigger pulse, the shutter pulse and the fire 

pulse are all coincident. If you are using a shutter and externally triggering the Andor 

system then the external trigger must be pulsed early enough to ensure that the shutter is 

fully opened before the light pulse arrives. Please consult the documentation supplied by 

the shutter manufacturer to get an indication of the transfer time you can expect from your 

particular shutter. 

2. If you do not have a shutter connected, set the Closing Time and Opening Time parameters 

to 0. Setting these parameters to any other value will insert extra delays into cycle time 

calculations. 



                          TEMPERATURE CONTROL 

SDK           SECTION 8 
Page 63  

 

SECTION 8 - TEMPERATURE CONTROL 

The Andor camera incorporates a CCD, which is fabricated using a process known as Multi-Pin Phasing 

(MPP). As a result the dark current is reduced by a factor of approximately 100 compared to standard devices 

at the same temperature. To reduce the dark current even further Andor SDK allows you to cool and monitor 

the CCD temperature through a number of functions. The desired temperature is set via the SetTemperature 

function whilst the actual cooling mechanism is switched On and Off via the CoolerON and CoolerOFF 

functions. 

The table below shows a typical example of temperatures attainable with the various systems available, with 

and without the assistance of water-cooling. Please refer to the specification supplied with your particular 

model for full details. The possible temperature range available to the SetTemperature function can be 

obtained using the GetTemperatureRange function. 

 

Moderate Cooling High Cooling Ultra-High Cooling 

Air Water Air Water Air Water 

-5°C -25°C -30°C -55°C -75°C -90°C 

 

NOTES:  

1. Because rapid cooling and heating can cause thermal stresses in the CCD the rate of cooling 

and heating is regulated to be <10°°°°C per minute on some systems.  

2. While the system is cooling, or heating, you can acquire data but the ‘Background Level’ WILL 

change with temperature. The current temperature can be read using the GetTemperature 

function. This function also returns the status of any cooling process including whether the 

cooler is ON or OFF.  

3. If the GetTemperature function returns the DRV_TEMP_STABILIZED status flag then the 

temperature is within 3°°°°C of the set temperature and the microprocessor is no LONGER 

regulating the cooling rate. At this point the temperature regulation is controlled via analog 

electronics. 

 

 



                                                   SPECIAL GUIDES 

SDK           SECTION 9 
Page 64 

 

SECTION 9 - SPECIAL GUIDES 

CONTROLLING MULTIPLE CAMERAS 

Using the SDK It is possible to control multiple Andor cameras. The following SDK functions permit the 

selection and use of one Andor camera at a time. 

• GetAvailableCameras 

• GetCameraHandle 

• SetCurrentCamera 

• GetCurrentCamera 

• Initialize 

 

*NOTE: If only one camera is available it is not necessary to use any of these functions since that 

camera will be selected by default.  

A maximum of eight cameras can be controlled by the SDK.  This can be a combination of USB and PCI 

cameras but the maximum number of PCI cameras that can be supported is two. 

While using more than one camera the other SDK functions are used in the normal way.  When a function is 

called it only affects the currently selected camera and is not sent to all cameras.  This allows each camera to 

be programmed individually but it also means that each camera has to be individually initialized and shut 

down.   

Another aspect of this control method is that cameras cannot be simultaneously triggered using the software - 

if simultaneous triggering is required then external triggers should be used. 



                                                   SPECIAL GUIDES 

SDK           SECTION 9 
Page 65 

 

USING MULTIPLE CAMERA FUNCTIONS 

The GetAvailableCameras function is used to return the number of Andor cameras available.  A handle for 

each camera is obtained using the GetCameraHandle function (this handle should be stored for the lifetime of 

the application).   

Any of the available cameras can then be selected by calling the SetCurrentCamera function and passing in 

the camera handle.  Once a camera has been selected any other SDK function can be called as normal but it 

will only apply to the selected camera. Initialize must be called once for each camera that you wish to use.  At 

any stage the GetCurrentCamera function can be called and it will return the handle of the currently selected 

camera.  

NOTE: 

1. It is not possible to unplug any cameras or plug in new ones during the lifetime of the 

application. 

2. It is not possible to trigger cameras simultaneously using software.  To simultaneously trigger 

more than one camera external triggers can be used or alternatively one camera can be 

triggered by software and the fire pulse from this camera used to trigger the others. 

3. Currently, if only one camera is installed there is no need to obtain the camera handle or select 

it since this camera will be used by default. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                   SPECIAL GUIDES 

SDK           SECTION 9 
Page 66 

This example pseudo code demonstrates how to use the functions relating to the operation of multiple 

cameras: 

 

Figure 11: Example of Multiple Camera Pseudo Code 



                                                   SPECIAL GUIDES 

SDK           SECTION 9 
Page 67 

 

DATA RETRIEVAL METHODS 

How to determine when new data is available 

There are a wide of range of functions available for retrieving data from the camera. Deciding which functions 

should be used depends on whether the data will be retrieved during an acquisition or once the acquisition is 

complete. See Retrieving Image Data 

For certain cases it may be useful to know what stage an acquisition is at. The GetStatus function can be 

used to get the current status of the acquisition. It will return information such as, the acquisition is in 

progress or it is finished. See GetStatus for full list of return information.  

Another way to know if an acquisition is finished is with the WaitForAcquisition function. When an acquisition 

is started, the WaitForAcquisition function can be called, it does not return from this function until the 

acquisition is finished. The function can be cancelled by calling the CancelWait function although this will 

require the user application to be multi-threaded. 

 

Figure 12: Example of WaitForAcquisition Pseudo Code 



                                                   SPECIAL GUIDES 

SDK           SECTION 9 
Page 68 

 

The SetDriverEvent function can be used in conjunction with event handles. If an event is created using the 

WIN32 CreateEvent function and passed to the SDK using the SetDriverEvent function an event handle now 

exists which the SDK can use to inform the application that something has occurred.   

To ensure that the event has been set by a new image arriving and not something else (e.g. temperature 

change) the GetTotalNumberImagesAcquired function can be used. This function will return the total number 

of images acquired and transferred to the Andor SDK, and which are now available to be retrieved by the 

user.(see section Retrieving Image Data). Comparing the new value to a previously stored one is an effective 

way of checking that there are new images available. 

 

Figure 13: Example of SetDriverEvent Pseudo Code 



                                                   SPECIAL GUIDES 

SDK           SECTION 9 
Page 69 

 

Retrieving Image Data 

Depending on the image settings there may be more than one image available after each notification.  It is 

important to ensure that all of the new images are retrieved if they are required. The recommended functions 

for retrieving image data are as follows: 

• GetOldestImage  

• GetMostRecentImage  

• GetImages 

• GetAcquiredData  

GetOldestImage, GetMostRecentImage, and GetImages are used to retrieve data from an internal 48MB 

circular buffer that is written to by all acquisition modes.  They are particularly useful for retrieving data while 

an acquisition is taking place especially during run till abort mode but can also be used when the acquisition 

is complete. For all acquisition modes (except Run Till Abort) the GetAcquiredData function can be used to 

retrieve all the acquired data once the acquisition is complete.   

NOTE: All functions mentioned here refer to retrieving 32-bit data but there are also 16-bit versions of 

these functions available. 

GetOldestImage will retrieve the oldest available image from the circular buffer.  Once the oldest image has 

been retrieved it is no longer available and calling GetOldestImage again will retrieve the next image.  This is 

a useful function for retrieving a number of images.  For example if there are 5 new images available, calling 

GetOldestImage 5 times will retrieve them all.  GetMostRecentImage will retrieve the most recent image from 

the circular buffer. This provides a method for displaying the most recent image on screen while the 

acquisition is in progress (should be used in conjunction with the GetNumberNewImages function).   

The GetNumberNewImages function returns the start and end index of the images that are available in the 

circular buffer. These indexes should be used along with the GetImages function to retrieve all of the 

available data.  This provides an effective way of retrieving a number of new images in one function call. 

GetAcquiredData should be used once the acquisition is complete to retrieve all the data from the series.  

This could be a single scan or an entire kinetic series. 



                                                   SPECIAL GUIDES 

SDK           SECTION 9 
Page 70 

 

DETERMINING CAMERA CAPABILITIES 

Retrieving capabilities from the camera 

It is important to be able to determine the capabilities of the camera.  This allows the user to take the full 

benefit of all the features available.   

There are a number of functions available which can be used to obtain this information and these can be found 

in the following areas of this section. 

• Horizontal Pixel Shift Capabilities 

• Vertical Pixel Shift Capabilities 

• Other Capabilities 



                                                   SPECIAL GUIDES 

SDK           SECTION 9 
Page 71 

 

Horizontal Pixel Shift Capabilities 

Depending on the camera type and model there will be variations in the number of A/D channels, the number 

of Output Amplifiers, the number & range of Horizontal Shift Speeds and the number & range of Pre-Amp 

Gains. The first step in this process is to determine the following: 

• Number of A/D channels using the GetNumberADChannels function  

• Number of output amplifiers using the GetNumberAmp function  

• Maximum number of pre-amp gains using the GetNumberPreAmpGains function 

NOTE: Not all PRE-AMP gains are available for each horizontal shift speed. The 

IsPreAmpGainAvailable function is used to determine which are valid for a particular horizontal shift 

speed and this will be explained later.   

The bit depth of each A/D channel can be found using the GetBitDepth function. 

Once this information has been obtained the next step is to find the number of available horizontal shift 

speeds for each output amplifier on each A/D channel using the GetNumberHSSpeeds function.  Following 

this the value of each horizontal shift speed can be found using the GetHSSpeed function. 

Each horizontal shift speed has an associated number of valid pre-amp gains.  The next step is to obtain the 

value of each pre-amp gain using the GetPreAmpGain function.  Not all pre-amp gains are available for each 

horizontal shift speed so using the IsPreAmpGainAvailable function it is possible to check which pre-amp 

gains are valid. Once the information has been retrieved the relevant selections can be made using the 

functions that follow: 

• SetADChannel  

• SetOutputAmplifier  

• SetHSSpeed 

• SetPreAmpGain 

 

 

 

 

 

 

 

 

 

 

 



                                                   SPECIAL GUIDES 

SDK           SECTION 9 
Page 72 

An example of the pseudo code for this capability is shown here: 

 

Figure 14: Example of Horizontal Pixel Shift Pseudo Code 



                                                   SPECIAL GUIDES 

SDK           SECTION 9 
Page 73 

 

Vertical Pixel Shift Capabilities 

Depending on the camera type and model there will be variations in the number of Vertical Shift Speeds 

available. 

The first step in this process is to determine the number of vertical shift speeds using the 

GetNumberVSSpeeds function.  Following this the value of each vertical shift speed can be found using the 

GetVSSpeed function. 

Since the camera may be capable of operating at more than one vertical shift speed the 

GetFastestRecommendedVSSpeed function will return the index and the value of the fastest recommended 

speed available.  The very high vertical shift speeds may require an increase in the amplitude of the vertical 

clock voltage using the SetVSAmplitude function.   

The GetFastestRecommendedVSSpeed function returns the fastest speed which does not require the vertical 

clock voltage to be adjusted.  If the fastest recommended speed is selected the vertical clock voltage should 

be set as normal.  

NOTE: Exercise caution when increasing the amplitude of the Vertical Clock voltage, since higher 

clocking voltages may result in increased Clock-Induced Charge in your signal. In general, only the 

very highest speeds are likely to benefit from increased vertical clock voltage amplitude. 

Once the information has been retrieved the relevant selections can be made using these functions: 

• SetVSSpeed  

• SetVSAmplitude 

An example of the pseudo code for this capability is shown in figure 15: 

 

Figure 15:  Example of vertical pixel shift pseudo code 



                                                   SPECIAL GUIDES 

SDK           SECTION 9 
Page 74 

 

Other Capabilities 

Other information about the camera can be obtained using the following functions: 

• GetCapabilities  

• IsInternalMechanicalShutter   

The GetCapabilities function populates an AndorCapabilities structure with information associated with 

the camera.  Afterwards this structure can be used to determine details about the camera e.g. supported 

acquisition modes, supported trigger types.  

The IsInternalMechanicalShutter function is used to determine if the camera has an internal mechanical 

shutter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



                                                   SPECIAL GUIDES 

SDK           SECTION 9 
Page 75 

Output Amplifiers 

Depending on the camera type and model there will be variations Output Amplifiers that can be applied to 

your acquisition: 

• EMCCD Gain 

• Extended NIR 

• High Capacity  

By using the GetCapabilities function you can determine which amplifiers are available to your camera, the 

ulSetFunctions field will return the revevent information. 

EMCCD Gain 

EMCCD is a quantitative digital camera technology that is capable of detecting single photon events whilst 

maintaining high Quantum Efficiency, achievable by way of a unique electron multiplying structure built into 

the sensor. If ulSetFunctions bit 5 returns 1 then EM Gain can be set by either the SetOutputAmplifier or 

the SetHSSpeed functions. (figure 16). 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

                                                                           Figure 16: Example of EMCCD Gain Pseudo Code 

 

 

 

 

 

 



                                                   SPECIAL GUIDES 

SDK           SECTION 9 
Page 76 

 

Extended NIR 

When using Extended is increased. This in turn increases the response of the sensor to these wavelengths 

with a QE increase from 40% Near Infra-Red Mode the increased thickness of the silicon on which the CCD 

is formed and by manipulating the voltages applied to the silicon substrate, the depth of the region where 

red and NIR light can convert to photoelectrons to 60% at 650 nm. If ulSetFunctions bit 7 returns 1 then 

Extended NIR mode can be activated by using either the SetOutputAmplifier or the SetHSSpeed functions. 

(figure 17).  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

                                                       Figure 17: Example of Extended NIR Pseudo Code 

 

 

 

 

 

 

 

 

 

 

 



                                                   SPECIAL GUIDES 

SDK           SECTION 9 
Page 77 

 

High Capacity 

With High capacity enabled the responsivity of the sensor is reduced thus allowing the reading of larger 

charge packets during binning operations. If ulSetFunctions bit 7 returns 1 then High Capacity mode can be 

activated bu using the SetHighCapacity function. 

(figure 19). 

 

Figure 18: Example of High Capacity mode Pseudo Code 

 

 

 

 

 

 

 

 

 

 

                                                           

 

 

 

 

 

 

 

 

 

 



                                                   SPECIAL GUIDES 

SDK           SECTION 9 
Page 78 

 

iCam 

iCam technology is a combined firmware and software innovation that has been incorporated into Andor’s 

EMCCD imaging cameras. iCam offers enhanced performance for acquisitions whether software triggered or 

hardware (externally) triggered, with absolute minimal overheads. It allows for faster frame rates in software 

by dedicated timing patterns that eliminate unnecessary overhead times. This, alongside the bi-directional 

communication between camera and PC, facilitates unparalleled synchronization with other peripheral 

equipment. A ring mode offers the capacity to use up to 16 different timing patterns uploaded into the camera 

head, thus trigger events can yield virtually instantaneous switching between exposure channels. 

 

This new functionality has been added to the Run Till Abort acquisition mode and currently will only operate 

with Image readout mode. Cameras must contain a suitable firmware and if a PCI card is being used it must 

be a CCI-23 card and have a suitable firmware loaded. If you are unsure if your current Hardware is iCam 

compatible please download the ‘iCam compatibility checker’ from andor.com. 

It will operate in Software and External trigger mode, with both Frame Transfer and Non Frame Transfer 

mode. 

The idea behind this is that the SDK puts the camera into a ‘heightened state of readiness’ and when a 

trigger comes (either software or hardware) the acquisition can be taken immediately. 

 

If you hardware is compatible and needs to be upgraded please contact productsupport@andor.com for a 

further application which will upgrade your system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:productsupport@andor.com


                                                   SPECIAL GUIDES 

SDK           SECTION 9 
Page 79 

 

 

iCam technology is a combined firmware and software innovation that has been incorporated into Andor’s 

EMCCD imaging cameras. iCam offers enhanced performance for acquisitions whether software triggered or 

hardware (externally) triggered, with absolute minimal overheads. It allows for faster frame rates in software 

by dedicated timing patterns that eliminate unnecessary overhead times. This, alongside the bi-directional 

communication between camera and PC, facilitates unparalleled synchronization with other peripheral 

equipment. A ring mode offers the capacity to use up to 16 different timing patterns uploaded into the camera 

head, thus trigger events can yield virtually instantaneous switching between exposure channels. 

 

This new functionality has been added to the Run Till Abort acquisition mode and currently will only operate 

with Image readout mode. Cameras must contain a suitable firmware and if a PCI card is being used it must 

be a CCI-23 card and have a suitable firmware loaded. If you are unsure if your current Hardware is iCam 

compatible please download the ‘iCam compatibility checker’ from andor.com. 

It will operate in Software and External trigger mode, with both Frame Transfer and Non Frame Transfer 

mode. 

The idea behind this is that the SDK puts the camera into a ‘heightened state of readiness’ and when a 

trigger comes (either software or hardware) the acquisition can be taken immediately. 

 

If you hardware is compatible and needs to be upgraded please contact productsupport@andor.com for a 

further application which will upgrade your system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:productsupport@andor.com


                                                   SPECIAL GUIDES 

SDK           SECTION 9 
Page 80 

OptAcquire 

 

This is a unique interface whereby a user can choose from a pre-determined list of camera set-up 
configurations. The user need only choose how they would like their camera to be optimized, e.g. for 
‘Sensitivity and Speed’, ‘Dynamic Range and Speed’, ‘Time Lapse’.  Parameters such as EM gain 
value, vertical shift speed, vertical clock amplitude, pre-amp sensitivity and horizontal readout speed 
will then be optimized accordingly, ‘behind the scenes’.   Furthermore, the option exists to create 
additional user-defined configurations.  Pre-defined OptAcquire modes include: 
 
1. Sensitivity and Speed (EM Amplifier) 
Optimized for capturing weak signal at fast frame rates, with single photon sensitivity. Suited to the 
majority of EMCCD applications. 
2. Dynamic Range and Speed (EM Amplifier) 
Configured to deliver optimal dynamic range at fast frame rates. Moderate EM gain applied. 
3. Fastest Frame Rate (EM Amplifier) 
For when it’s all about speed! Optimized for absolute fastest frame rates of the camera. Especially 
effective when combined with sub-array/binning selections. 
4. Time Lapse (EM Amplifier) 
Configured to capture low light images with time intervals between exposures. Overlap ('frame 
transfer') readout is deactivated. 
5. Time Lapse and Short Exposures (EM Amplifier) 
Configured to minimize vertical smear when using exposure times less than 3ms. 
6. EMCCD Highest Dynamic Range (EM Amplifier) 
Combines EMCCD low light detection with the absolute highest dynamic range that the camera can 
deliver.  Since this requires slower readout, frame rate is sacrificed. 
7. CCD Highest Dynamic Range (Conventional Amplifier) 
Optimized for slow scan CCD detection with highest available dynamic range. Recommended for 
brighter signals OR when it is possible to apply long exposures to overcome noise floor. 
8. Photon Counting EM 
Configuration recommended for photon counting with individual exposures < 10sec. 
9. Photon Counting with Long Exposures (> 1sec) 
Configuration recommended for photon counting with individual exposures > 1sec. 

 

The following list details the valid acquisition parameters and input values for use with OptAcquire functions. 

 

Parameter: output_amplifier 

Type: String 

Valid Values: “Conventional or “Electron Multiplying”. 

 

Parameter: frame_transfer 

Type: String 

Valid Values: “ON” or “OFF”. 
 

Parameter: readout_rate 

Type: Float 

Valid Values: A valid and supported value which can be retrieved by subsequent calls to 
GetNumberHSSpeeds() and GetHSSpeed(). 
 
 
 
 
 
 



                                                   SPECIAL GUIDES 

SDK           SECTION 9 
Page 81 

 

Parameter: shift_speed 

Type: Float 

Valid Values: A valid and supported value which can be retrieved by subsequent calls to 
GetNumberVSSpeeds() and GetVSSpeed(). 
 

Parameter: electron_multiplying_gain 

Type: Integer 

Valid Values: A valid and supported value which can be retrieved from a call to GetEMGainRange(). 

 

Parameter: vertical_clock_amplitude 

Type: Integer 

Valid Values: A valid and supported integer value in the range 0 – 4. 

 

Parameter: preamplifier_gain 

Type: Integer 

Valid Values: A valid and supported value which can be retrieved from subsequent calls to 
GetNumberPreAmpGains() and GetPreAmpGain(). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                   SPECIAL GUIDES 

SDK           SECTION 9 
Page 82 

 

An example of the pseudo code for using OptAcquire is shown in figure 16 and figure 17: 

 

 

Figure 16:  Example of OptAcquire using Preset Modes 

 

 

 

 

 

 

 

 

 

 



                                                   SPECIAL GUIDES 

SDK           SECTION 9 
Page 83 

 

 

 

 

 

Figure 17:  Example of OptAcquire Adding a New Mode 



                                                                     EXAMPLES 

SDK           SECTION 10 
Page 84  

 

SECTION 10 - EXAMPLES 

INTRODUCTION 

We present here a number of examples of controlling Andor SDK to acquire data. Source code for each 

example can be found on the disk. Each example is presented in three different languages, Visual Basic, 

LabVIEW and C. 

The examples were devised to demonstrate the wide versatility and range of the data acquisition 

mechanisms available with Andor SDK. The examples are all based on variations of the flowchart 

described on the following pages. 

The flowchart is a basic demonstration of how to set up and control the Andor system to acquire data with 

the appropriate Andor SDK commands located just to the right of the flowchart. 

The flowchart is divided into three sections, the first deals with the initialization of the system and controlling 

the sensor temperature. The second section deals with the data acquisition process while the third 

illustrates the proper shutdown procedure. 

NOTE: Do not have more than one example or other SDK software (e.g. Andor Solis™, iQ™) 

running at the same time. 

 

 

 

 

 



                                                                     EXAMPLES 

SDK           SECTION 10 
Page 85  

 

RUNNING THE EXAMPLES 

C 

The C examples are supplied as ready to run executable files (both 32-bit and 64-bit) and with complete 

source code. The code has been tested with Microsoft VC++ 5.0 and Borland Developer Studio 2006. 

You are free to modify the example source code in the “C” directory to be compatible with your own compiler.  

In order to compile your own C or C++ programs you will need the following files: 

• ATMCD32D.H        C Header File 

• ATMCD32D.LIB / ATMCD64D.LIB   Import Library (Borland compatible) 

• ATMCD32M.LIB / ATMCD64M.LIB    Import Library (Microsoft compatible) 

LabVIEW 

The LabVIEW examples are contained in the sub-directory “LabVIEW” of the installation directory. The 

LabVIEW examples are in the form of VI's and must be run through LabVIEW 7.0 or higher (32-bit). 

Visual Basic 

The Visual Basic examples are contained in the sub-directory VBasic of the installation directory. Each 

example contains all the source code, forms and project files to re-build executable files.  

Each of the Visual Basic examples comes with a ready to run executable file. 

When building you own projects you must include the file ATMCD32D.BAS. This file contains the Andor SDK 

function prototypes for interfacing with the dynamic link library ATMCD32D.DLL 

NOTE: To run any of the examples you will need the following files: 

• ATMCD32D.DLL / ATMCD64D.DLL (depending on system) 

• DETECTOR.INI: Contains initialization information (not required on iDus, iXon or Newton systems) 

 



                                                                     EXAMPLES 

SDK           SECTION 10 
Page 86  

 

FLOW CHART OF THE FUNCTION CALLS NEEDED TO CONTROL ANDOR CAMERA 

 

1. The application initializes the camera then obtains information relating to the capabilities of the system.  

NOTE: The Andor SDK takes several seconds to Auto-Calibrate the on-board A/D converter 

whenever the Initialize function is called. 

2. The CCD sensor’s operating temperature is set to some value within the allowed temperature range (e.g. 

-2 °C), and the cooler is switched on. 

3 - 4. The current temperature is periodically monitored to check if the temperature has stabilized to the set 

value. The temperature can take several minutes to stabilize and with the appropriate programming 

techniques the user should be able to set up other tasks, as illustrated in the C examples. 

Once the CCD sensor temperature has stabilized you can start acquiring data. 



                                                                     EXAMPLES 

SDK           SECTION 10 
Page 87  

 

 

5. The acquisition parameters are programmed to match the specifications of the user, e.g. acquisition 

mode (single scan etc.), readout mode (full vertical binning etc.) and the trigger mode (Internal etc.). 

6. You are now ready to start an acquisition. 

7 - 8. The current acquisition status is periodically monitored to check if the data acquisition is complete. 

9. After a successful data acquisition the data is transferred from the Andor driver into the application. 

10. At this point the user may choose to capture a new acquisition or not. 

11. Yes: capture a new scan. The user may decide to alter the acquisition set-up (e.g. change the exposure 

time) or simply use the current parameters. 



                                                                     EXAMPLES 

SDK           SECTION 10 
Page 88  

 

 

12. When the user has completely finished acquiring data the shutdown procedure is started. The cooler is 

switched off. It is important to control both the heating and cooling rates of the CCD sensor otherwise the 

temperature gradients may damage the sensor. Thus it is highly recommended that the user uses the 

correct exiting procedure rather than, for example, simply switching off the computer. 

13 – 14. The current temperature is periodically monitored to check if the temperature has risen to a 

sufficiently high value. 

15. For Classic & ICCD systems wait until the temperature has risen above -20°°°°C.  The user may now shut 

down the Andor SDK system. 

16. The program releases any memory still being used and exits the application. 

 



                                                                     EXAMPLES 

SDK           SECTION 10 
Page 89  

 

Cooler 

This example is different from all the previous examples in that its main goal is not to acquire data but to 

demonstrate the proper use of the cooling capabilities of the Andor SDK System. It includes the taking of a 

single FVB scan for completeness. This example is an expanded version of Example 1. 

DDG
TM
 

The digital delay generator for iStar systems is demonstrated by this example. The user can control the gate 

times, gain level and integrate on chip parameters. The acquisition is set to a kinetic series of full vertically 

binned scans. 

EMCCD 

This example demonstrates acquisitions with an EMCCD detector, and in particular the Gain setting that can 

be applied to these devices 

Events 

The events example shows the alternative method of handling acquisitions, using Windows events to signal 

when the acquisition is complete instead of timer polling used in other examples. A kinetic series of full 

vertically binned scans is taken and the events signalled by the Andor SDK are indicated in the status window 

as they arrive 

Frame Transfer 

The frame transfer example is similar to the kinetics example, except that the accumulate cycle and kinetic 

series times can not be set independently, as they rely solely on the exposure time setting 

FVB 

This example illustrates the simplest mode of operation of the Andor system. It initializes the system and then 

acquires a single spectrum using the Full Vertical Binning readout mode. The user is given the ability to specify 

the trigger mode and exposure time (as the examples progress the user is given more and more options to 

set). 

Image 

This example is slightly more complicated than the first example with the addition of a shutter. In general a 

shutter must be used whenever the readout mode is anything other than Full Vertical Binning. For this example 

we will use the readout mode Image with the horizontal and vertical binning set to 1. The user is given the 

ability to specify the exposure time, trigger mode and some of the shutter details. 

Image Binning 

This example shows how to acquire single images with possible binning. The sub image to be read can be 

entered and the binning for each dimension can be set. 

Kinetics/Accumulate 

For this example we go back to the Full Vertical Binning readout mode as in example 1. However, we 

introduce a new acquisition mode, Kinetic Series. Kinetic Series is the most complex acquisition mode with up 

to 5 parameters to be set. The user is given the ability to specify the number of accumulations per scan, 

accumulation cycle time, number of scans in Kinetic series, Kinetic cycle time and the exposure time. 



                                                                     EXAMPLES 

SDK           SECTION 10 
Page 90  

 

Kinetic Image 

This example is a combination of the imaging and kinetic examples. 

Multi-Track 

This example illustrates the use of the Multi-Track readout mode. The acquisition mode is constrained to 

Single Scan and uses internal triggering. As this example uses imaging we again use a shutter. The user has 

the ability to specify both the shutter and Multi-Track parameters 

Random-Track 

This example is similar to Multi-Track readout mode as described above. The user has the ability to 

add/select their own track parameters, i.e. Start & Stop, number of tracks (Maximum of 20 tracks for iDus) and 

they can also select the shutter parameters. 

Spool 

This example demonstrates the use of spooling to disk. Spooling can be enabled or disabled and the stem of 

the created spool files can be entered. The acquisition mode is set to Kinetic Series 

Continuous mode 

This is a simple example to demonstrate the iCam functionality that some cameras may have.  

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 91   

 

SECTION 11 - FUNCTIONS 

This section provides details of the various Functions available.   

AbortAcquisition 

unsigned int WINAPI AbortAcquisition(void) 

Description This function aborts the current acquisition if one is active. 

Parameters NONE 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_IDLE 

DRV_VXDNOTINSTALLED 

DRV_ERROR_ACK 

Acquisition aborted.  

System not initialized. 

The system is not currently acquiring. 

VxD not loaded. 

Unable to communicate with card. 

See also GetStatus StartAcquisition 

CancelWait 

unsigned int WINAPI CancelWait(void) 

Description This function restarts a thread which is sleeping within the WaitForAcquisition function. 

The sleeping thread will return from WaitForAcquisition with a value not equal to 

DRV_SUCCESS. 

Parameters NONE 

Return unsigned int  

 DRV_SUCCESS Thread restarted successfully. 

See also WaitForAcquisition 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 92   

 

CoolerOFF 

unsigned int WINAPI CoolerOFF(void) 

Description Switches OFF the cooling. The rate of temperature change is controlled in some models 

until the temperature reaches 0º. Control is returned immediately to the calling 

application. 

Parameters NONE 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_ERROR_ACK 

DRV_NOT_SUPPORTED 

Temperature controller switched OFF. 

System not initialized. 

Acquisition in progress. 

Unable to communicate with card. 

Camera does not support switching cooler off. 

See also CoolerON, SetTemperature, GetTemperature, GetTemperatureF, 

GetTemperatureRange, GetStatus 

NOTE: Not available on Luca R cameras – always cooled to -20. 

NOTE: (Classic & ICCD only) 

1. When the temperature control is switched off the temperature of the sensor is gradually 

raised to 0ºC to ensure no thermal stresses are set up in the sensor.  

2. When closing down the program via ShutDown you must ensure that the temperature of the 

detector is above -20ºC, otherwise calling ShutDown while the detector is still cooled will 

cause the temperature to rise faster than certified. 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 93   

 

CoolerON 

unsigned int WINAPI CoolerON(void) 

Description Switches ON the cooling. On some systems the rate of temperature change is controlled 

until the temperature is within 3º of the set value. Control is returned immediately to the 

calling application. 

Parameters NONE 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_ERROR_ACK 

Temperature controller switched ON. 

System not initialized. 

Acquisition in progress. 

Unable to communicate with card. 

See also CoolerOFF, SetTemperature, GetTemperature, GetTemperatureF, 

GetTemperatureRange, GetStatus 

NOTE:  

The temperature to which the detector will be cooled is set via SetTemperature. The temperature 

stabilization is controlled via hardware, and the current temperature can be obtained via 

GetTemperature. The temperature of the sensor is gradually brought to the desired temperature to 

ensure no thermal stresses are set up in the sensor.    

Can be called for certain systems during an acquisition.  This can be tested for using 

GetCapabilities. 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 94   

 

DemosaicImage 

unsigned int WINAPI DemosaicImage(WORD* grey, WORD* red, WORD* green, WORD* blue, 

ColorDemosaicInfo* info) 

Description For colour sensors only 

Demosaics an image taken with a CYMG CCD into RGB using the parameters stored in 

info. Below is the ColorDemosaicInfo structure definition and a description of its 

members: 

typedef struct COLORDEMOSAICINFO { 
 int iX;   // Number of X pixels. Must be >2.  
 int iY;   // Number of Y pixels. Must be >2.  
 int iAlgorithm;  // Algorithm to demosaic image.  
 int iXPhase;  // First pixel in data (Cyan or Yellow/Magenta or Green).  
 int iYPhase;  // First pixel in data (Cyan or Yellow/Magenta or Green).  
 int iBackground;  // Background to remove from raw data when demosaicing.  
} ColorDemosaicInfo; 

• iX and iY are the image dimensions. The number of elements in the input red, 
green and blue arrays is iX x iY. 

• iAlgorithm sets the algorithm to use: 0 for a 2x2 matrix demosaic algorithm or 1 
for a 3x3 one. 

The CYMG CCD pattern can be broken into cells of 2x4 pixels, e.g.: 

 

• iXPhase and iYPhase store what colour is the bottom-left pixel. 

• iBackground sets the numerical value to be removed from every pixel in the 
input image before demosaicing is done. 

Parameters WORD* grey: pointer to image to demosaic 

WORD* red: pointer to the red plane storage allocated by the user. 

WORD* green: pointer to the green plane storage allocated by the user. 

WORD* blue: pointer to the blue plane storage allocated by the user. 

ColorDemosaicInfo* info: pointer to demosaic information structure. 

Return unsigned int  

 DRV_SUCCESS 

DRV_P1INVALID 

DRV_P2INVALID 

DRV_P3INVALID 

DRV_P4INVALID 

DRV_P5INVALID 

Image demosaiced 

Invalid pointer (i.e. NULL). 

Invalid pointer (i.e. NULL). 

Invalid pointer (i.e. NULL). 

Invalid pointer (i.e. NULL).  

One or more parameters in info is out of range 

See also GetMostRecentColorImage16, WhiteBalance 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 95   

 

EnableKeepCleans 

unsigned int WINAPI EnableKeepCleans (int mode) 

Description This function is only available on certain cameras operating in FVB external trigger 
mode.  It determines if the camera keep clean cycle will run between acquisitions.   

When keep cleans are disabled in this way the exposure time is effectively the exposure 
time between triggers. 

The Keep Clean cycle is enabled by default. 

The feature capability AC_FEATURES_KEEPCLEANCONTROL determines if this 
function can be called for the camera. 

Parameters int mode: mode 

 0  OFF 

 1  ON 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_NOT_AVAILABLE 

Keep clean cycle mode set. 

System not initialized. 

Feature not available.  

See also GetCapabilities 

NOTE:   Currently only available on Newton and iKon cameras operating in FVB external 
trigger mode. 

  

FreeInternalMemory 

unsigned int WINAPI FreeInternalMemory(void) 

Description The FreeInternalMemory function will deallocate any memory used internally to store the 

previously acquired data. Note that once this function has been called, data from last 

acquisition cannot be retrived. 

Parameters NONE 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_ERROR_ACK 

Memory freed. 

System not initialized. 

Acquisition in progress.  

Unable to communicate with card. 

See also GetImages, PrepareAcquisition 

 

Filter_GetAveragingFactor 

unsigned int WINAPI Filter_GetAveragingFactor (int * averagingFactor) 

Description Returns the current averaging factor value. 

Parameters int * averagingFactor: The current averaging factor value. 

Return unsigned int   

 DRV_SUCCESS Averaging factor returned. 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 96   

DRV_NOT_INITIALIZED 

DRV_ACQUIRING   

DRV_P1INVALID 

System not initialized.                                                                     

Acquisition in progress.                                                                 

Invalid averagingFactor (i.e. NULL pointer). 

See also Filter_SetAveragingFactor 

 

Filter_GetAveragingFrameCount 

unsigned int WINAPI Filter_GetAveragingFrameCount (int * frames) 

Description Returns the current frame count value. 

Parameters int * frames: The current frame count value. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING    

DRV_P1INVALID 

Frame count returned. 

System not initialized.                                                                     

Acquisition in progress.                                                                 

Invalid frame count (i.e. NULL pointer). 

See also Filter_SetAveragingFrameCount 

 

Filter_GetDataAveragingMode 

unsigned int WINAPI Filter_GetDataAveragingMode (int * mode) 

Description Returns the current averaging mode. 

Parameters int * mode: The current averaging mode. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED           

DRV_ACQUIRING   

DRV_P1INVALID 

Averaging mode returned. 

System not initialized.                                                                     

Acquisition in progress.                                                                 

Invalid threshold (i.e. NULL pointer). 

See also Filter_SetDataAveragingMode 

 

Filter_GetMode 

unsigned int WINAPI Filter_GetMode (unsigned int * mode) 

Description Returns the current Noise Filter mode. 

Parameters unsigned int * mode:  Noise Filter mode. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_NOT_SUPPORTED 

DRV_P1INVALID 

Filter mode returned. 

System not initialized.                                                                     

Noise Filter processing not available for this camera.             

Invalid mode (i.e. NULL pointer) 

See also Filter_SetMode 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 97   

 

Filter_GetThreshold 

unsigned int WINAPI Filter_GetThreshold (float * threshold) 

Description Returns the current Noise Filter threshold value. 

Parameters float * threshold: The current threshold value. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_NOT_SUPPORTED 

DRV_P1INVALID 

Threshold returned. 

System not initialized.                                                                     

Noise Filter processing not available for this camera.             

Invalid threshold (i.e. NULL pointer). 

See also Filter_SetThreshold 

 

Filter_SetAveragingFactor 

unsigned int WINAPI Filter_SetAveragingFactor (int averagingFactor) 

Description Sets the averaging factor. 

Parameters int averagingFactor: The averaging factor to use. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING   

DRV_P1INVALID 

Averaging factor set. 

System not initialized.                                                                     

Acquisition in progress.                                                                  

Invalid averagingFactor. 

See also Filter_GetAveragingFactor 

 

Filter_SetAveragingFrameCount 

unsigned int WINAPI Filter_SetAveragingFrameCount (int frames) 

Description Sets the averaging frame count. 

Parameters int frames: The averaging frame count to use. 

  Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING   

DRV_P1INVALID 

Averaging frame count set. 

System not initialized.                                                                     

Acquisition in progress.                                                                      

Invalid frame count. 

See also Filter_GetAveragingFrameCount 

 

 

 

 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 98   

 

Filter_SetDataAveragingMode 

unsigned int WINAPI Filter_SetDataAveragingMode (int mode) 

Description Sets the current data averaging mode. 

Parameters int mode: The averaging  factor mode to use. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING   

DRV_P1INVALID 

Averaging mode set. 

System not initialized.                                                                     

Acquisition in progress.                                                                 

Invalid mode. 

See also Filter_GetDataAveragingMode 

 

Filter_SetMode 

unsigned int WINAPI Filter_SetMode (unsigned int mode) 

Description Set the Noise Filter to use. 

Parameters unsigned int mode: Filter mode to use. 

Valid options are:       0 – No Filter 

                                   1 – Median Filter 

                                   2 – Level Above Filter 

                                   3 – Interquartile Range Filter 

                                   4 – Noise Threshold Filter 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_NOT_SUPPORTED 

DRV_P1INVALID 

Filter set. 

System not initialized.                                                                    

Noise Filter processing not available for this camera.             

Invalid mode. 

See also Filter_GetMode 
 

 

Filter_SetThreshold 

unsigned int WINAPI Filter_SetThreshold (float threshold) 

Description Sets the threshold value for the Noise Filter. 

Parameters float threshold: Threshold value used to process image. 

Valid values are: 0 – 65535  for Level Above filter. 

                            0 – 10 for all other filters.  

 unsigned int   

 DRV_SUCCESS Threshold set. 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 99   

DRV_NOT_INITIALIZED 

DRV_NOT_SUPPORTED 

DRV_P1INVALID 

System not initialized.                                                                     

Noise Filter processing not available for this camera.             

Invalid threshold. 

See also Filter_GetThreshold 
 
 

GetAcquiredData 

unsigned int WINAPI GetAcquiredData(at_32* arr, unsigned long size) 

Description This function will return the data from the last acquisition. The data are returned as long 

integers (32-bit signed integers). The “array” must be large enough to hold the complete 

data set. 

Parameters at_32* arr: pointer to data storage allocated by the user. 

unsigned long size: total number of pixels. 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_ERROR_ACK 

DRV_P1INVALID 

DRV_P2INVALID 

DRV_NO_NEW_DATA 

Data copied.  

System not initialized. 

Acquisition in progress. 

Unable to communicate with card. 

Invalid pointer (i.e. NULL). 

Array size is incorrect. 

No acquisition has taken place 

See also GetStatus, StartAcquisition, GetAcquiredData16  
 

GetAcquiredData16 

unsigned int WINAPI GetAcquiredData16(WORD* arr, unsigned long size) 

Description 16-bit version of the GetAcquiredData function. The “array” must be large enough to 
hold the complete data set. 

Parameters WORD* arr: pointer to data storage allocated by the user. 

long size: total number of pixels. 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_ERROR_ACK 

DRV_P1INVALID 

DRV_P2INVALID  

DRV_NO_NEW_DATA 

Data copied.  

System not initialized. 

Acquisition in progress. 

Unable to communicate with card. 

Invalid pointer (i.e. NULL). 

Array size isincorrect.  

No acquisition has taken place 

See also GetStatus, StartAcquisition, GetAcquiredData  

 
 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 100   

GetAcquiredFloatData 

unsigned int WINAPI GetAcquiredFloatData (float* arr, unsigned long size) 

Description THIS FUNCTION IS RESERVED. 

 

GetAcquisitionProgress 

unsigned int WINAPI GetAcquisitionProgress(long* acc, long* series) 

Description This function will return information on the progress of the current acquisition. It can be 

called at any time but is best used in conjunction with SetDriverEvent.  

The values returned show the number of completed scans in the current acquisition.  

If 0 is returned for both accum and series then either:- 

• No acquisition is currently running 

• The acquisition has just completed 

• The very first scan of an acquisition has just started and not yet completed 

GetStatus can be used to confirm if the first scan has just started, returning  

DRV_ACQUIRING, otherwise it will return DRV_IDLE. 

For example, if accum=2 and series=3 then the acquisition has completed 3 in the series 

and 2 accumulations in the 4 scan of the series. 

 

Parameters long* acc: returns the number of accumulations completed in the current kinetic scan. 

long* series: return the number of kinetic scans completed 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED  

Number of accumulation and series scans completed. 

System not initialized.  

See also SetAcquisitionMode, SetNumberAccumulations, SetNumberKinetics, SetDriverEvent 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 101   

 

GetAcquisitionTimings 

unsigned int WINAPI GetAcquisitionTimings(float* exposure, float* accumulate, float* kinetic) 

Description This function will return the current “valid” acquisition timing information. This function 

should be used after all the acquisitions settings have been set, e.g. SetExposureTime, 

SetKineticCycleTime and SetReadMode etc. The values returned are the actual times 

used in subsequent acquisitions.  

This function is required as it is possible to set the exposure time to 20ms, accumulate 

cycle time to 30ms and then set the readout mode to full image. As it can take 250ms to 

read out an image it is not possible to have a cycle time of 30ms. 

Parameters float* exposure: valid exposure time in seconds 

float* accumulate: valid accumulate cycle time in seconds 

float* kinetic: valid kinetic cycle time in seconds 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_INVALID_MODE 

Timing information returned. 

System not initialized. 

Acquisition in progress. 

Acquisition or readout mode is not available. 

See also SetAccumulationCycleTime, SetAcquisitionMode, SetExposureTime, SetHSSpeed, 

SetKineticCycleTime, SetMultiTrack, SetNumberAccumulations, SetNumberKinetics, 

SetReadMode, SetSingleTrack, SetTriggerMode, SetVSSpeed  

 

GetAdjustedRingExposureTimes 

unsigned int WINAPI GetAdjustedRingExposureTimes (int inumTimes, float * fptimes) 

Description This function will return the actual exposure times that the camera will use. There may be 

differences between requested exposures and the actual exposures. 

Parameters int inumTimes:  Numbers of times requested. 

float * fptimes:  Pointer to an array large enough to hold _inumTimes floats. 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_P1INVALID 

Success. 

System not initialized 

Invalid number of exposures requested 

See also GetNumberRingExposureTimes,  SetRingExposureTimes 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 102   

 

GetAIIDMAData 

unsigned int WINAPI GetAllDMAData (at_32* arr, unsigned long size) 

Description THIS FUNCTION IS RESERVED. 

 

GetAmpDesc 

unsigned int WINAPI GetAmpDesc (int index , char* name, int len) 

Description This function will return a string with an amplifier description.  The amplifier is selected 

using the index. The SDK has a string associated with each of its amplifiers. The 

maximum number of characters needed to store the amplifier descriptions is 21. The user 

has to specify the number of characters they wish to have returned to them from this 

function. 

Parameters Int index: The amplifier index. 

char* name:  A user allocated array of characters for storage of the description. 

int len: The length of the user allocated character array. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_P1INVALID 

DRV_P2INVALID 

DRV_P3INVALID 

Description returned. 

System not initialized. 

The amplifier index is not valid. 

The desc pointer is null. 

The len parameter is invalid (less than 1) 

See also GetNumberAmp 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 103   

 

GetAmpMaxSpeed 

unsigned int WINAPI GetAmpMaxSpeed (int index , float* speed) 

Description This function will return the maximum available horizontal shift speed for the amplifier 

selected by the index parameter. 

Parameters Int index:amplifier index 

float* speed:horizontal shift speed 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_P1INVALID 

Speed returned. 

System not initialized. 

The amplifier index is not valid 

See also GetNumberAmp 

 
 

GetAvailableCameras 

unsigned int WINAPI GetAvailableCameras(long* totalCameras) 

Description This function returns the total number of Andor cameras currently installed. It is possible 

to call this function before any of the cameras are initialized. 

Parameters long* totalCameras: the number of cameras currently installed 

Return unsigned int  

 DRV_SUCCESS 

DRV_GENERAL_ERRORS 

 

Number of available cameras returned. 

An error occurred while obtaining the number of 

available cameras. 

See also SetCurrentCamera, GetCurrentCamera, GetCameraHandle 
 

GetBackground 

unsigned int WINAPI GetBackground (at_32* arr, unsigned long size) 

Description THIS FUNCTION IS RESERVED. 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 104   

 

GetBaselineClamp 

unsigned int WINAPI GetBaselineClamp(int* state) 

Description This function returns the status of the baseline clamp functionality. With this feature 

enabled the baseline level of each scan in a kinetic series will be more consistent across 

the sequence. 

Parameters int * state: Baseline clamp functionality Enabled/Disabled 

  1 – Baseline Clamp Enabled 

  0 – Baseline Clamp Disabled 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_NOT_SUPPORTED 

DRV_P1INVALID 

Parameters set. 

System not initialized. 

Acquisition in progress. 

Baseline Clamp not supported on this camera 

State parameter was not zero or one. 

See also SetBaselineClamp, SetBaselineOffset 

  
 

GetBitDepth 

unsigned int WINAPI GetBitDepth(int channel, int* depth) 

Description This function will retrieve the size in bits of the dynamic range for any available AD 

channel. 

Parameters int channel: the AD channel. 

int* depth: dynamic range in bits 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_P1INVALID 

Depth returned. 

System not initialized. 

Invalid channel 

See also GetNumberADChannels, SetADChannel 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 105   

 

GetCameraEventStatus 

unsigned int WINAPI GetCameraEventStatus (DWORD * camStatus) 

Description This function will return if the system is exposing or not. 

Parameters DWORD * camStatus: The status of the firepulse will be returned  that the firepulse is low 

0 Fire pulse low 

1 Fire pulse high 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

Status returned 

System not initialized 

See also SetAcqStatusEvent, SetPCIMode 

NOTE This is only supported by the CCI23 card. 
 

GetCameraHandle 

unsigned int WINAPI GetCameraHandle(long cameraIndex, long* cameraHandle) 

Description This function returns the handle for the camera specified by cameraIndex.  When multiple 

Andor cameras are installed the handle of each camera must be retrieved in order to 

select a camera using the SetCurrentCamera function.  

The number of cameras can be obtained using the GetAvailableCameras function. 

Parameters long cameraIndex: index of any of the installed cameras. 

 Valid values 0 to NumberCameras-1 where NumberCameras is the value  

   returned by the GetAvailableCameras function. 

long* cameraHandle: handle of the camera. 

Return unsigned int  

 DRV_SUCCESS 

DRV_P1INVALID 

Camera handle returned. 

Invalid camera index. 

See also              SetCurrentCamera, GetAvailableCameras, GetCurrentCamera  

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 106   

 

GetCameraInformation 

unsigned int WINAPI GetCameraInformation (int index, long * information) 

Description This function will return information on a particular camera denoted by the index. 

Parameters Int index: (reserved) 

Long* information: current state of camera 

 Bit:1   1 - USB camera present 

 Bit:2   1 - All dlls loaded properly  

 Bit:3   1 - Camera Initialized correctly 

 

Return unsigned int  

 DRV_SUCCESS 

DRV_VXDNOTINSTALLED 

DRV_USBERROR 

Driver status return 

Driver not installed  

USB device error 

See also GetCameraHandle, GetHeadModel, GetCameraSerialNumber, GetCapabilities 

NOTE Only available in iDus. The index parameter is not used at present so should be 

set to 0. For any camera except the iDus The value of information following a call 

to this function will be zero. 

 

GetCameraSerialNumber 

unsigned int WINAPI GetCameraSerialNumber (int* number) 

Description This function will retrieve camera’s serial number. 

Parameters int *number: Serial Number. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

Serial Number returned. 

System not initialized. 

See also GetCameraHandle, GetHeadModel, GetCameraInformation, GetCapabilities 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 107   

 

GetCapabilities 

unsigned int WINAPI GetCapabilities(AndorCapabilities* caps) 

Description This function will fill in an AndorCapabilities structure with the capabilities associated with 

the connected camera.  Before passing the address of an AndorCapabilites structure to the 

function the ulSize member of the structure should be set to the size of the structure. In 

C++  this can be done with the line: 

 caps->ulSize = sizeof(AndorCapabilities); 

Individual capabilities are determined by examining certain bits and combinations of bits in 

the member variables of the AndorCapabilites structure. The next few pages contain a 

summary of the capabilities currently returned. 

Parameters Andor capabilities* caps: the 

capabilities structure to be filled in. 

 

Return unsigned int  

 DRV_NOT_INITIALIZED 

DRV_SUCCESS 

DRV_P1INVALID 

System not initialized 

Capabilities returned. 

Invalid caps parameter (i.e. NULL). 

See also              GetCameraHandle, GetCameraSerialNumber, GetHeadModel, GetCameraInformation  



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 108   

 

GetCapabilities (Acquisition Modes) 

Acquisition Modes - AndorCapabilities Member: ulAcqModes 

 

Capability: AC_ACQMODE_SINGLE 

Description: Single Scan Acquisition Mode available using SetAcquisitionMode. 

Bit: 0 

State: 1 
 

Capability: AC_ACQMODE_VIDEO 

Description: Video (Run Till Abort) Acquisition Mode available using SetAcquisitionMode. 

Bit: 1 

State: 1 

 

Capability: AC_ACQMODE_ACCUMULATE 

Description: Accumulation Acquisition Mode available using SetAcquisitionMode. 

Bit: 2 

State: 1 
 

Capability: AC_ACQMODE_KINETIC 

Description: Kinetic Series Acquisition Mode available using SetAcquisitionMode. 

Bit: 3 

State: 1 
 

Capability: AC_ACQMODE_FRAMETRANSFER 

Description: Frame Transfer Acquisition Mode available using SetAcquisitionMode. 

Bit: 4 

State: 1 

 

Capability: AC_ACQMODE_FASTKINETICS 

Description: Fast Kinetics Acquisition Mode available using SetAcquisitionMode. 

Bit: 5 

State: 1 

 

Capability: AC_ACQMODE_OVERLAP 

Description: Overlap Acquisition Mode available using SetAcquisitionMode. 

Bit: 6 

State: 1 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 109   

 

GetCapabilities (Read Modes) 

Read Modes - AndorCapabilities Member: ulReadModes 

 

Capability: AC_READMODE_FULLIMAGE 

Description: Full Image Read Mode available using SetReadMode. 

Bit: 0 

State: 1 
 

Capability: AC_READMODE_SUBIMAGE 

Description: Sub Image Read Mode available using SetReadMode. 

Bit: 1 

State: 1 
 

Capability: AC_READMODE_SINGLETRACK 

Description: Single track Read Mode available using SetReadMode. 

Bit: 2 

State: 1 
 

Capability: AC_READMODE_FVB 

Description: Full Vertical Binning Read Mode available using SetReadMode. 

Bit: 3 

State: 1 
 

Capability: AC_READMODE_MULTITRACK 

Description: Multi Track Read Mode available using SetReadMode. 

Bit: 4 

State: 1 
 
 

Capability: AC_READMODE_RANDOMTRACK 

Description: Random-Track Read Mode available using SetReadMode. 

Bit: 5 

State: 1 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 110   

 

GetCapabilities (Read Modes compatible with Frame Transfer mode) 

Read Modes - AndorCapabilities Member: ulFTReadModes 

 

Capability: AC_READMODE_FULLIMAGE 

Description: Full Image Read Mode available using SetReadMode. 

Bit: 0 

State: 1 
 

Capability: AC_READMODE_SUBIMAGE 

Description: Sub Image Read Mode available using SetReadMode. 

Bit: 1 

State: 1 
 

Capability: AC_READMODE_SINGLETRACK 

Description: Single track Read Mode available using SetReadMode. 

Bit: 2 

State: 1 
 

Capability: AC_READMODE_FVB 

Description: Full Vertical Binning Read Mode available using SetReadMode. 

Bit: 3 

State: 1 
 

Capability: AC_READMODE_MULTITRACK 

Description: Multi Track Read Mode available using SetReadMode. 

Bit: 4 

State: 1 
 
 

Capability: AC_READMODE_RANDOMTRACK 

Description: Random-Track Read Mode available using SetReadMode. 

Bit: 5 

State: 1 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 111   

 

GetCapabilities (Trigger Modes) 

Trigger Modes - AndorCapabilities Member: ulTriggerModes 

 

Capability: AC_TRIGGERMODE_INTERNAL 

Description: Internal Trigger Mode available using SetTriggerMode. 

Bit: 0 

State: 1 

 

Capability: AC_TRIGGERMODE_EXTERNAL 

Description: External Trigger Mode available using SetTriggerMode. 

Bit: 1 

State: 1 

 

Capability: AC_TRIGGERMODE_EXTERNAL_FVB_EM 

Description: External FVB EM Trigger Mode available using SetTriggerMode. 

Bit: 2 

State: 1 

 

Capability: AC_TRIGGERMODE_CONTINUOUS 

Description: Continuous Trigger Mode available using SetTriggerMode. 

Bit: 3 

State: 1 

 

Capability: AC_TRIGGERMODE_EXTERNALSTART 

Description: External Start Trigger Mode available using SetTriggerMode. 

Bit: 4 

State: 1  

 

Capability: AC_TRIGGERMODE_BULB 

Description: Bulb Trigger Mode available using SetTriggerMode. 

Bit: 5 

State: 1 

Note: This capability is deprecated by AC_TRIGGERMODE_EXTERNALEXPOSURE. 

 

Capability: AC_TRIGGERMODE_EXTERNALEXPOSURE 

Description: External Exposure Trigger Mode available using SetTriggerMode. 

Bit: 5 

State: 1 

 

Capability: AC_TRIGGERMODE_INVERTED 

Description: Inverted Trigger Mode available using SetTriggerInvert. 

Bit: 6 

State: 1 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 112   

 

GetCapabilities (Camera Type) 

Camera Type - AndorCapabilities Member: ulCameraType 

 

Capability: AC_CAMERATYPE_PDA 

Description: Camera is an Andor PDA. 

Bits: 0-31 

Value: 0 
 

Capability: AC_CAMERATYPE_IXON 

Description: Camera is an Andor iXon. 

Bits: 0-31 

Value: 1 
 

Capability: AC_CAMERATYPE_ICCD 

Description: Camera is an Andor ICCD. 

Bits: 0-31 

Value: 2 
 

Capability: AC_CAMERATYPE_EMCCD 

Description: Camera is an Andor EMCCD. 

Bits: 0-31 

Value: 3 
 

Capability: AC_CAMERATYPE_CCD 

Description: Camera is an Andor CCD. 

Bits: 0-31 

Value: 4 
 

Capability: AC_CAMERATYPE_ISTAR 

Description: Camera is an Andor iStar. 

Bits: 0-31 

Value: 5 
 

Capability: AC_CAMERATYPE_VIDEO 

Description: Camera is a third party camera. 

Bits: 0-31 

Value: 6 

 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 113   

 

GetCapabilities (Camera Type) - continued 

Capability: AC_CAMERATYPE_IDUS 

Description: Camera is an Andor iDus. 

Bits: 0-31 

Value: 7 

  

Capability: AC_CAMERATYPE_NEWTON 

Description: Camera is an Andor Newton. 

Bits: 0-31 

Value: 8 

 

Capability: AC_CAMERATYPE_SURCAM 

Description: Camera is an Andor Surcam. 

Bits: 0-31 

Value: 9 

 

 Capability: AC_CAMERATYPE_USBISTAR 

Description: Camera is an Andor USBiStar. 

Bits: 0-31 

Value: 10 

  

Capability: AC_CAMERATYPE_LUCA 

Description: Camera is an Andor Luca. 

Bits: 0-31 

Value: 11 

  

Capability: AC_CAMERATYPE_RESERVED 

Description: Reserved. 

Bits: 0-31 

Value: 12 

  

Capability: AC_CAMERATYPE_IKON 

Description: Camera is an Andor iKon. 

Bits: 0-31 

Value: 13 

 

Capability: AC_CAMERATYPE_INGAAS 

Description: Camera is an Andor InGaAs. 

Bits: 0-31 

Value: 14 

 

Capability: AC_CAMERATYPE_IVAC 

Description: Camera is an Andor iVac. 

Bits: 0-31 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 114   

Value: 15 

 

Capability: AC_CAMERATYPE_CLARA 

Description: Camera is an Andor Clara. 

Bits: 0-31 

Value: 17 

 

All other values reserved. 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 115   

 

GetCapabilities (Pixel Mode) 

Pixel Mode - AndorCapabilities Member: ulPixelModes 

 

Capability: AC_PIXELMODE_8BIT 

Description: Camera can acquire in 8-bit mode. 

Bit: 0 

State: 1 
 

Capability: AC_PIXELMODE_14BIT 

Description: Camera can acquire in 14-bit mode. 

Bit: 1 

State: 1 
 

Capability: AC_PIXELMODE_16BIT 

Description: Camera can acquire in 16-bit mode. 

Bit: 2 

State: 1 
 

Capability: AC_PIXELMODE_32BIT 

Description: Camera can acquire in 32-bit mode. 

Bit: 3 

State: 1 
 
 

Capability: AC_PIXELMODE_MONO 

Description: Camera acquires data in grey scale. 

Bits: 16-31 

Value: 0 
 

Capability: AC_PIXELMODE_RGB 

Description: Camera acquires data in RGB mode. 

Bits: 16-31 

Value: 1 
 

Capability: AC_PIXELMODE_CMY 

Description: Camera acquires data in CMY mode. 

Bits: 16-31 

Value: 2 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 116   

 

GetCapabilities (Available Set Functions) 

Available Set Functions - AndorCapabilities Member: ulSetFunctions 

 

Capability: AC_SETFUNCTION_VREADOUT 

Description: The vertical readout speed can be set with the SetVSSpeed function. 

Bit: 0 

State: 1 

 

Capability: AC_SETFUNCTION_HREADOUT 

Description: The horizontal readout speed can be set with the SetHSSpeed function. 

Bit: 1 

State: 1 
 

Capability: AC_SETFUNCTION_TEMPERATURE 

Description: The target temperature can be set using the SetTemperature function. 

Bit: 2 

State: 1 
 

Capability: AC_SETFUNCTION_MCPGAIN (AC_SETFUNCTION_GAIN Deprecated) 

Description: Gain through the SetMCPGain function is available. 

Bit: 3 

State: 1 
 

Capability: AC_SETFUNCTION_EMCCDGAIN 

Description: Gain through the SetEMCCDGain function is available. 

Bit: 4 

State: 1 
 

Capability: AC_SETFUNCTION_BASELINECLAMP 

Description: Baseline clamp can be turned on or off with the SetBaselineClamp function. 

Bit: 5 

State: 1 

  

Capability: AC_SETFUNCTION_VSAMPLITUDE 

Description: The vertical clock voltage can be set with the SetVSAmplitude function. 

Bit: 6 

State: 1 

  

Capability: AC_SETFUNCTION_HIGHCAPACITY 

Description: High capacity mode can be turned on or off with the SetHighCapacity function. 

Bit: 7 

State: 1 

 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 117   

 

GetCapabilities (Available Set Functions) - Continued 

Capability: AC_SETFUNCTION_BASELINEOFFSET 

Description: The baseline offset can be set with the SetBaselineOffset function. 

Bit: 8 

State: 1 

  

Capability: AC_SETFUNCTION_PREAMPGAIN 

Description: The pre amp gain can be set with the SetPreAmpGain function. 

Bit: 9 

State: 1 

  

Capability: AC_SETFUNCTION_CROPMODE 

Description: Crop mode can be selected using the SetCropMode or SetIsolatedCropMode functions. 

Bit: 10 

State: 1 

  

Capability: AC_SETFUNCTION_DMAPARAMETERS 

Description: The DMA parameters can be set with the SetDMAParameters function. 

Bit: 11 

State: 1 

  

Capability: AC_SETFUNCTION_HORIZONTALBIN 

Description: The horizontal binning can be set for the relative read mode. 

Bit: 12 

State: 1          See Note. 

  

Capability: AC_SETFUNCTION_MULTITRACKHRANGE 

Description: The multitrack horizontal range can be set using the SetMultiTrackHRange function. 

Bit: 13 

State: 1 

  

Capability: AC_SETFUNCTION_RANDOMTRACKNOGAPS 

Description: Random tracks can be set with no gaps inbetween with the SetRandomTracks or 
SetComplexImage functions.  

Bit: 14 

State: 1 

NOTE: For iDus, the horizontalbin capability will be 0, as it is not recommended, but it is possible.  

  

Capability: AC_SETFUNCTION_EMADVANCED 

Description: Extended EM gain range can be accessed using SetEMAdvanced.  

Bit: 15 

State: 1 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 118   

 

GetCapabilities (Available Get Functions) 

Available Get Functions - AndorCapabilities Member: ulGetFunctions 

 

Capability: AC_GETFUNCTION_TEMPERATURE 

Description: The current temperature can be determined using the GetTemperature function. 

Bit: 0 

State: 1 

 

Capability: AC_GETFUNCTION_TEMPERATURERANGE 

Description: The range of possible temperatures can be determined using the GetTemperatureRange 

function. 

Bit: 2 

State: 1 

 

Capability: AC_GETFUNCTION_DETECTORSIZE 

Description: The dimensions of the detector can be determined using the GetDetector function. 

Bit: 3 

State: 1 

 

Capability: AC_GETFUNCTION_MCPGAIN (AC_GETFUNCTION_GAIN deprecated) 

Description: Reserved capability. 

Bit: 4 

State: 1 

  

Capability: AC_GETFUNCTION_EMCCDGAIN 

Description: The gain can be determined using the GetEMCCDGain function.  

Bit: 5 

State: 1 

  

Capability: AC_GETFUNCTION_BASELINECLAMP 

Description: The gain can be determined using the GetBaselineClamp function.  

Bit: 15 

State: 1 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 119   

 

GetCapabilities (SDK Features Available) 

SDK Features Available - AndorCapabilities Member: ulFeatures 

 

Capability: AC_FEATURES_POLLING 

Description: The status of the current acquisition can be determined through the GetStatus function call. 

Bit: 0 

State: 1 

 

Capability: AC_FEATURES_EVENTS 

Description: A Windows Event can be passed to the SDK to alert the user at certain stages of the 

Acquisition. See SetDriverEvent  

Bit: 1 

State: 1 
 

Capability: AC_FEATURES_SPOOLING 

Description: Acquisition Data can be made to spool to disk using the SetSpool function. 

Bit: 2 

State: 1 

 

Capability: AC_FEATURES_SHUTTER 

Description: Shutter settings can be adjusted through the SetShutter function. 

Bit: 3 

State: 1 

 

Capability: AC_FEATURES_SHUTTEREX 

Description: Shutter settings can be adjusted through the SetShutterEx function. 

Bit: 4 

State: 1 

 

Capability: AC_FEATURES_EXTERNAL_I2C 

Description: The camera has its own dedicated external I2C bus. 

Bit: 5 

State: 1 

  

Capability: AC_FEATURES_SATURATIONEVENT 

Description: Sensor saturation can be determined through the SetSaturationEvent function. 

Bit: 6 

State: 1 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 120   

 

GetCapabilities (SDK Features Available) - Continued 

Capability: AC_FEATURES_FANCONTROL 

Description: Fan settings can be adjusted through the SetFanMode function. 

Bit: 7 

State: 1 

  

Capability: AC_FEATURES_MIDFANCONTROL 

Description: It is possible to select a low fan setting through the SetFanMode function. 

Bit: 8 

State: 1 

  

Capability: AC_FEATURES_TEMPERATUREDURINGACQUISITION 

Description: It is possible to read the camera temperature during an acquisition with the GetTemperature 

function. 

Bit: 9 

State: 1 

 

Capability: AC_FEATURES_KEEPCLEANCONTROL 

Description: It is possible to turn off keep cleans between scans. 

Bit: 10 

State: 1 

 

Capability: AC_FEATURES_DDGLITE 

Description: Reserved for internal use. 

Bit: 11 

State: 1 

 

Capability: AC_FEATURES_FTEXTERNALEXPOSURE 

Description: The combination of Frame Transfer and External Exposure modes is available. 

Bit: 12 

State: 1 

 

Capability: AC_FEATURES_KINETICEXTERNALEXPOSURE 

Description: External Exposure trigger mode is available in Kinetic acquisition mode. 

Bit: 13 

State: 1 

 

Capability: AC_FEATURES_DACCONTROL 

Description: Reserved for internal use. 

Bit: 14 

State: 1 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 121   

Capability: AC_FEATURES_METADATA 

Description: Reserved for internal use. 

Bit: 15 

State: 1 

 

Capability: AC_FEATURES_IOCONTROL 

Description: Configurable IO’s available.  See SetIOLevel. 

Bit: 16 

State: 1 

 

Capability: AC_FEATURES_PHOTONCOUNTING 

Description: System supports photon counting.  See SetPhotonCounting . 

Bit: 17 

State: 1 

 

Capability: AC_FEATURES_COUNTCONVERT 

Description: System supports Count Convert. 

Bit: 18 

State: 1 

 

Capability: AC_FEATURES_DUALMODE 

Description: Dual exposure mode.  See SetDualExposureMode. 

Bit: 19 

State: 1 

 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 122   

 

GetCapabilities (PCI Card Capabilities) 

PCI Card Capabilities - AndorCapabilities Member: ulPCICard 

Description: Maximum speed in Hz PCI controller card is capable of. 
 

GetCapabilities (Gain Features Available) 

 

Gain Features Available - AndorCapabilities Member: ulEMGainCapability 

 

Capability: AC_EMGAIN_8BIT 

Description:.8-bit DAC settable. 

Bit: 0 

State: 1  

 

Capability: AC_EMGAIN_12BIT 

Description:.12-bit DAC settable 

Bit: 1 

State: 1  

 

Capability: AC_EMGAIN_LINEAR12 

Description:.Gain setting represent a linear gain scale. 12-bit DAC used internally. 

Bit: 2 

State: 1 

 

Capability: AC_EMGAIN_REAL12 

Description:.Gain setting represents the real EM Gain value. 12-bit DAC used internally. 

Bit: 3 

State: 1 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 123   

 

GetControllerCardModel 

unsigned int WINAPI GetControllerCardModel (char* controllerCardModel) 

Description This function will retrieve the type of PCI controller card included in your system. This 

function is not applicable for USB systems. The maximum number of characters that can be 

returned from this function is 10. 

Parameters char* controllerCardModel: A user allocated array of characters for storage of the controller 

card model.  

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

Name returned. 

System not initialized 

See also GetHeadModel, GetCameraSerialNumber, GetCameraInformation, GetCapabilities 
 

GetCountConvertWavelengthRange 

unsigned int WINAPI GetCountConvertWavelengthRange(float* min_wave, float* max_wave) 

Description This function returns the valid wavelength range available in Count Convert mode. 

Parameters float* min_wave: minimum wavelength permited. 

float* max_wave: maximum wavelength permited. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_NOT_SUPPORTED 

Count Convert wavelength set. 

System not initialized. 

Count Convert not supported on this camera 

See also GetCapabilities, SetCountConvertMode, SetCountConvertWavelength 

 
 

GetCurrentCamera 

unsigned int WINAPI GetCurrentCamera(long* cameraHandle) 

Description When multiple Andor cameras are installed this function returns the handle of the 

currently selected one. 

Parameters long* cameraHandle: handle of the currently selected camera 

Return unsigned int   

 DRV_SUCCESS 

 

 Camera handle returned. 

 

See also              SetCurrentCamera, GetAvailableCameras, GetCameraHandle  
 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 124   

 

GetDDGPulse 

unsigned int WINAPI GetDDGPulse(double width, double resolution, double* Delay, double* Width) 

Description This function attempts to find a laser pulse in a user-defined region with a given resolution. 

The values returned will provide an estimation of the location of the pulse. 

Parameters double width: the time in picoseconds of the region to be searched. 

double resolution: the minimum gate pulse used to locate the laser. 

double* Delay: the approximate start of the laser pulse. 

double* Width: the pulse width, which encapsulated the laser pulse. 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_ERROR_ACK 

Location returned. 

System not initialized. 

Acquisition in progress. 

Unable to communicate with card. 

NOTE: Available in iStar. 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 125   

 

GetDDGIOCFrequency 

unsigned int WINAPI GetDDGIOCFrequency(double*frequency) 

Description This function can be used to return the actual IOC frequency that will be triggered. It should 

only be called once all the conditions of the experiment have been defined. 

Parameters double*frequency: the number of integrate on chip pulses triggered within the fire pulse. 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED  

DRV_ERROR_ACK 

Number returned 

System not initialized  

Unable to communicate with card 

See also SetDDGIOCFrequency SetDDGIOCNumber GetDDGIOCNumber GetDDGIOCPulses 
SetDDGIOC 

NOTE: Available in iStar. 
 

GetDDGIOCNumber 

unsigned int WINAPI GetDDGIOCNumber(unsigned long* numberPulses) 

Description This function can be used to return the actual number of pulses that will be triggered. It 

should only be called once all the conditions of the experiment have been defined. 

Parameters unsigned long* numberPulses: the number of integrate on chip pulses triggered within 

the fire pulse. 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED  

DRV_ERROR_ACK 

Number returned 

System not initialized  

Unable to communicate with card 

See also SetDDGIOCFrequency GetDDGIOCFrequency SetDDGIOCNumber GetDDGIOCPulses 
SetDDGIOC 

NOTE: Available in iStar. 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 126   

 

GetDDGIOCPulses 

unsigned int WINAPI GetDDGIOCPulses(int* pulses) 

Description This function can be used to calculate the number of pulses that will be triggered with the 

given exposure time, readout mode, acquisition mode and integrate on chip frequency. It 

should only be called once all the conditions of the experiment have been defined. 

Parameters int* pulses: the number of integrate on chip pulses triggered within the fire pulse. 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_ERROR_ACK 

Number returned. 

System not initialized. 

Acquisition in progress. 

Unable to communicate with card. 

See also SetDDGIOCFrequency GetDDGIOCFrequency SetDDGIOCNumber 
GetDDGIOCNumber SetDDGIOC 

NOTE: Available in iStar. 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 127   

 

GetDetector 

unsigned int WINAPI GetDetector(int* xpixels, int* ypixels) 

Description This function returns the size of the detector in pixels. The horizontal axis is taken to be 

the axis parallel to the readout register. 

Parameters int* xpixels: number of horizontal pixels. 

int* ypixels: number of vertical pixels. 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

Detector size returned. 

System not initialized. 

 

GetDICameraInfo 

unsigned int WINAPI GetDICameraInfo (void *info) 

Description THIS FUNCTION IS RESERVED. 

 

GetDualExposureTimes 

unsigned int WINAPI GetDualExposureTimes(float* exposure1, float* exposure2) 

Description This function will return the current “valid” acquisition timing information for dual exposure 

mode.  This mode is only available for certain sensors in run till abort mode, external 

trigger, full image. 

Parameters float* exposure1: valid exposure time in seconds for each odd numbered frame. 

float* exposure2: valid exposure time in seconds for each even numbered frame. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_NOT_SUPPORTED  

DRV_NOT_AVAILABLE 

DRV_ACQUIRING  

DRV_P1INVALID 

DRV_P2INVALID 

Parameters set. 

System not initialized. .  

Dual exposure mode not supported on this camera.  

Dual exposure mode not configured correctly. 

Acquisition in progress. 

exposure1 has invalid memory address. 

exposure2 has invalid memory address. 

See also GetCapabilities, SetDualExposureMode, SetDualExposureTimes 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 128   

 

GetEMCCDGain 

unsigned int WINAPI GetEMCCDGain(int* gain) 

Description Returns the current gain setting. The meaning of the value returned depends on the EM 

Gain mode. 

Parameters Int*gain: current EM gain setting 

Return   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ERROR_ACK 

Gain returned. 

System not initialized. 

Unable to communicate with card. 

 

GetEMGainRange 

unsigned int WINAPI GetEMGainRange(int* low, int* high) 

Description Returns the minimum and maximum values of the current selected EM Gain mode and 

temperature of the sensor. 

Parameters int* low: lowest gain setting 

int* high: highest gain setting 

Return   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

Gain range returned. 

System not initialized. 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 129   

 

GetFastestRecommendedVSSpeed 

unsigned int WINAPI GetFastestRecommendedVSSpeed (int* index, float* speed) 

Description As your Andor SDK system may be capable of operating at more than one vertical shift 

speed this function will return the fastest recommended speed available.  The very high 

readout speeds, may require an increase in the amplitude of the Vertical Clock Voltage 

using SetVSAmplitude.  This function returns the fastest speed which does not require the 

Vertical Clock Voltage to be adjusted.  The values returned are the vertical shift speed 

index and the actual speed in microseconds per pixel shift. 

Parameters Int* index: index of the fastest recommended vertical shift speed 

float* speed: speed in microseconds per pixel shift. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

Speed returned. 

System not initialized. 

Acquisition in progress. 

See also GetVSSpeed, GetNumberVSSpeeds, SetVSSpeed 
 

GetFIFOUsage 

unsigned int WINAPI GetFIFOUsage (int* FIFOusage) 

Description THIS FUNCTION IS RESERVED. 
 

GetFilterMode 

unsigned int WINAPI GetFilterMode(int* mode) 

Description This function returns the current state of the cosmic ray filtering mode. 

Parameters int* mode: current state of filter 

 0 OFF 

 2 ON 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

Filter mode returned. 

System not initialized. 

Acquisition in progress. 

See also SetFilterMode 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 130   

 

GetFKExposureTime 

unsigned int WINAPI GetFKExposureTime(float* time) 

Description This function will return the current “valid” exposure time for a fast kinetics acquisition. This 

function should be used after all the acquisitions settings have been set, i.e. 

SetFastKinetics and SetFKVShiftSpeed. The value returned is the actual time used in 

subsequent acquisitions. 

Parameters float* time: valid exposure time in seconds 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_INVALID_MODE 

Timing information returned. 

System not initialized. 

Acquisition in progress. 

Fast kinetics is not available. 

See also SetFastKinetics, SetFKVShiftSpeed 

 

GetFKVShiftSpeed 

unsigned int WINAPI GetFKVShiftSpeed(int index, int* speed) 

Description Deprecated see Note: 

As your Andor SDK system is capable of operating at more than one fast kinetics vertical 

shift speed this function will return the actual speeds available. The value returned is in 

microseconds per pixel shift. 

Parameters int index: speed required 

 Valid values 0 to GetNumberFKVShiftSpeeds()-1 

int* speed: speed in micro-seconds per pixel shift 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID 

Speed returned. 

System not initialized. 

Acquisition in progress.  

Invalid index. 

See also GetNumberFKVShiftSpeeds, SetFKVShiftSpeed 

NOTE: Deprecated by GetFKVShiftSpeedF 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 131   

 

GetFKVShiftSpeedF 

unsigned int WINAPI GetFKVShiftSpeedF(int index, float* speed) 

Description As your Andor system is capable of operating at more than one fast kinetics vertical shift 

speed this function will return the actual speeds available. The value returned is in 

microseconds per pixel shift. 

Parameters int index: speed required 

   Valid values: 0 to GetNumberFKVShiftSpeeds()-1 

float* speed: speed in micro-seconds per pixel shift 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID 

Speed returned. 

System not initialized. 

Acquisition in progress.  

Invalid index. 

See also GetNumberFKVShiftSpeeds, SetFKVShiftSpeed 

NOTE:  Only available if camera is Classic or iStar. 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 132   

 

GetHardwareVersion 

unsigned int WINAPI GetHardwareVersion(unsigned int* PCB, unsigned int* Decode, unsigned int* 

dummy1, unsigned int* dummy2, unsigned int* CameraFirmwareVersion, unsigned int* 

CameraFirmwareBuild) 

Description This function returns the Hardware version information.  

Parameters Unsigned int* PCB: Plug-in card version 

unsigned int* Decode: Flex 10K file version 

unsigned int* dummy1 

unsigned int* dummy2 

unsigned int* CameraFirmwareVersion: Version number of camera firmware  

unsigned int* CameraFirmwareBuild: Build number of camera firmware 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_ERROR_ACK 

Version information returned. 

System not initialized. 

Acquisition in progress. 

Unable to communicate with card. 

 

GetHeadModel 

unsigned int WINAPI GetHeadModel(char* name) 

Description This function will retrieve the type of CCD attached to your system.  

Parameters char* name: A user allocated array of characters for storage of the Head Model. This 
should be declared as size MAX_PATH.  

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED  

Name returned. 

System not initialized. 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 133   

 

GetHorizontalSpeed 

unsigned int WINAPI GetHorizontalSpeed(int index, int* speed) 

Description Deprecated see Note: 

As your Andor system is capable of operating at more than one horizontal shift speed this 

function will return the actual speeds available. The value returned is in microseconds per 

pixel shift. 

Parameters int index: speed required 

   Valid values: 0 to NumberSpeeds-1, where NumberSpeeds is the parameter 

   returned by GetNumberHorizontalSpeeds. 

int* speed: speed in micro-seconds per pixel shift 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID 

Speed returned. 

System not initialized. 

Acquisition in progress.  

Invalid index. 

See also GetNumberHorizontalSpeeds, SetHorizontalSpeed 

NOTE: Deprecated by GetHSSpeed 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 134   

 

GetHSSpeed 

unsigned int WINAPI GetHSSpeed(int channel, int typ, int index, float* speed) 

Description As your Andor system is capable of operating at more than one horizontal shift speed this 

function will return the actual speeds available. The value returned is in MHz. 

Parameters int channel: the AD channel. 

int typ: output amplification. 

Valid values: 0 electron multiplication/Conventional(clara). 

  1 conventional/Extended NIR Mode(clara). 

int index: speed required 

Valid values 0 to NumberSpeeds-1 where NumberSpeeds is value returned in first  

  parameter after a call to GetNumberHSSpeeds(). 

float* speed: speed in in MHz. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED  

DRV_P1INVALID  

DRV_P2INVALID  

DRV_P3INVALID 

Speed returned. 

System not initialized.  

Invalid channel.  

Invalid horizontal read mode  

Invalid index 

See also GetNumberHSSpeeds, SetHSSpeed 

NOTE: The speed is returned in microseconds per pixel shift for iStar and Classic systems.  
 

GetHVflag 

unsigned int WINAPI GetHVflag (int* bFlag) 

Description This function will retrieve the High Voltage flag from your USB iStar intensifier. A 0 value 

indicates that the high voltage is abnormal. 

Parameters int* bFlag: pointer to High Voltage flag. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_NOT_AVAILABLE 

HV flag returned. 

System not initialized. 

Acquisition in progress. 

Not a USB iStar. 

NOTE Available only on USB iStar. 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 135   

 

GetID 

unsigned int WINAPI GetID (int devNum, int* id) 

Description THIS FUNCTION IS RESERVED. 
 

GetImageFlip 

unsigned int WINAPI GetImageFlip(int* iHFlip, int* iVFlip) 

Description This function will obtain whether the acquired data output is flipped in either the horizontal 

or vertical direction. 

Parameters int* iHFlip: Gets horizontal flipping. 
int* iVFlip: Gets vertical flipping. 
 
1 – Flipping Enabled  

0 – Flipping Disabled 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_P1INVALID 

DRV_P2INVALID 

All parameters accepted. 

System not initialized. 

HFlip parameter invalid. 

VFlip parameter invalid 

See also SetImageRotate SetImageFlip  
 

GetImageRotate 

unsigned int WINAPI GetImageRotate(int* iRotate) 

Description This function will obtain whether the acquired data output is rotated in any direction. 

Parameters int* iRotate: Rotation setting 

0 - No rotation 
1 - Rotate 90 degrees clockwise  
2 - Rotate 90 degrees anti-clockwise 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_P1INVALID 

All parameters accepted. 

System not initialized. 

Rotate parameter invalid. 

See also SetImageFlip SetImageRotate  
 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 136   

 

GetImages 

unsigned int WINAPI GetImages(long first, long last, at_32* arr, unsigned long size, long* validfirst, 

long* validlast) 

Description This function will update the data array with the specified series of images from the 

circular buffer. If the specified series is out of range (i.e. the images have been 

overwritten or have not yet been acquired then an error will be returned. 

Parameters long first: index of first image in buffer to retrieve. 

long last: index of last image in buffer to retrieve. 

at_32* arr: pointer to data storage allocated by the user. 

unsigned long size: total number of pixels. 

long* validfirst: index of the first valid image. 

long* validlast: index of the last valid image. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ERROR_ACK 

DRV_GENERAL_ERRORS 

DRV_P3INVALID 

DRV_P4INVALID 

DRV_NO_NEW_DATA 

Images have been copied into array. 

System not initialized.  

Unable to communicate with card. 

The series is out of range. 

Invalid pointer (i.e. NULL). 

Array size is incorrect. 

There is no new data yet. 

See also GetImages16, GetNumberNewImages  

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 137   

 

GetImages16 

unsigned int WINAPI GetImages16(long first, long last, WORD* arr, unsigned long size, long* 

validfirst, long* validlast) 

Description 16-bit version of the GetImages function. 

Parameters long first: index of first image in buffer to retrieve. 

long last: index of last image in buffer to retrieve. 

WORD* arr: pointer to data storage allocated by the user. 

unsigned long size: total number of pixels. 

long* validfirst: index of the first valid image. 

long* validlast: index of the last valid image. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ERROR_ACK 

DRV_GENERAL_ERRORS 

DRV_P3INVALID 

DRV_P4INVALID 

DRV_NO_NEW_DATA 

Images have been copied into array. 

System not initialized.  

Unable to communicate with card. 

The series is out of range. 

Invalid pointer (i.e. NULL). 

Array size is incorrect. 

There is no new data yet. 

See also GetImages, GetNumberNewImages  
 

GetImagesPerDMA 

unsigned int WINAPI GetImagesPerDMA (unsigned long* images) 

Description This function will return the maximum number of images that can be transferred during a 

single DMA transaction. 

Parameters unsigned long* images:   

Return unsigned int  

 DRV_SUCCESS  
 

GetIRQ 

unsigned int WINAPI GetIRQ (int* IRQ) 

Description THIS FUNCTION IS RESERVED. 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 138   

 

GetKeepCleanTime 

unsigned int WINAPI GetKeepCleanTime(float* KeepCleanTime) 

Description This function will return the time to perform a keep clean cycle. This function should be 

used after all the acquisitions settings have been set, e.g. SetExposureTime, 

SetKineticCycleTime and SetReadMode etc. The value returned is the actual times used 

in subsequent acquisitions.  

Parameters float* KeepCleanTime: valid readout time in seconds 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ERROR_CODES 

Timing information returned. 

System not initialized. 

Error communicating with camera. 

See also GetAcquisitionTimings GetReadOutTime 

NOTES NOTE: Available on iDus, iXon, Luca & Newton. 

 
 

GetMaximumBinning 

unsigned int WINAPI GetMaximumBinning (int ReadMode, int HorzVert, int* MaxBinning) 

Description This function will return the maximum binning allowable in either the vertical or horizontal 

dimension for a particular readout mode. 

Parameters int ReadMode: The readout mode for which to retrieve the maximum binning (see 

SetReadMode for possible values). 

int HorzVert: 0 to retrieve horizontal binning limit, 1 to retreive limit in the vertical. 

int* MaxBinning: Will contain the Maximum binning value on return. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_P1INVALID  

DRV_P2INVALID 

DRV_P3INVALID 

Maximum Binning returned 

System not initialized  

Invalid Readmode  

HorzVert not equal to 0 or 1 

Invalid MaxBinning address (i.e. NULL) 

See also GetMinimumImageLength, SetReadMode 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 139   

 

GetMaximumExposure 

unsigned int WINAPI GetMaximumExposure (float* MaxExp) 

Description This function will return the maximum Exposure Time in seconds that is settable by the 

SetExposureTime function. 

Parameters Float int* MaxExp: Will contain the Maximum exposure value on return. 

Return unsigned int   

 DRV_SUCCESS  

DRV_P1INVALID 

Maximum Exposure returned.  

Invalid MaxExp value (i.e. NULL) 

See also SetExposureTime 

 

GetMCPGain 

unsigned int WINAPI GetMCPGain (int* pi_gain) 

Description This function will retrieve the set value for the MCP Gain. 

Parameters int* pi_gain: Returned gain value. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_P1INVALID 

DRV_NOT_AVAILABLE 

Table returned 

System not initialized 

Acquisition in progress 

Invalid pointer (i.e. NULL) 

Not a USB iStar 

See also SetMCPGain 

NOTE Available only on USB iStar. 

This function previously returned a table of MCP gain values against 
photoelectrons per count. This is now retrieved using GetMCPGainTable. 

 

GetMCPGainRange 

unsigned int WINAPI GetMCPGainRange(int* iLow, int* iHigh) 

Description Returns the minimum and maximum values of the SetMCPGain function. 

Parameters int* iLow: lowest gain setting 

int* iHigh: highest gain setting 

Return   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

Gain range returned. 

System not initialized. 

See also SetMCPGain 

NOTE Available only iStar. 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 140   

 

GetMCPVoltage 

unsigned int WINAPI GetMCPVoltage (int* iVoltage) 

Description This function will retrieve the current Micro Channel Plate voltage. 

Parameters int* iVoltage: Will contain voltage on return. The unit is in Volts and should be between 

the range 600 – 1100 Volts. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_NOT_AVAILABLE 

DRV_GENERAL_ERRORS 

Voltage returned. 

System not initialized.  

Acquisition in progress. 

Not a USB iStar.  

EEPROM not valid 

See also GetMCPGain  

NOTE Available only on USB iStar. 

 

GetMetaDataInfo 

unsigned int WINAPI GetMetaDataInfo(SYSTEMTIME* TimeOfStart ,float *TimeFromStart, int index) 

Description This function will return the time of the initial frame and the time in milliseconds of further 

frames from this point. 

Parameters SYSTEMTIME* TimeOfStart: Structure with start time details. 

float *TimeFromStart: time in milliseconds for a particular frame from time of start. 

int index: frame for which time is required. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_MSTIMINGS_ERROR 

Timings returned 

System not initialized 

Invalid timing request 

See also SetMetaData 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 141   

 

GetMinimumImageLength 

unsigned int WINAPI GetMinimumImageLength (int* MinImageLength) 

Description This function will return the minimum number of pixels that can be read out from the chip 

at each exposure. This minimum value arises due the way in which the chip is read out 

and will limit the possible sub image dimensions and binning sizes that can be applied. 

Parameters int* MinImageLength: Will contain the minimum number of super pixels on return. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_P1INVALID 

Minimum Number of Pixels returned 

System not initialized 

Invalid MinImageLength value (i.e. NULL) 

See also SetImage  

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 142   

 

GetMostRecentColorImage16 

unsigned int WINAPI GetMostRecentColorImage16 (unsigned long size, int algorithm, WORD* red, 

WORD* green, WORD* blue)  

Description For colour sensors only. 

Color version of the GetMostRecentImage16 function. The CCD is sensitive to Cyan, 

Yellow, Magenta and Green (CYMG). The Red, Green and Blue (RGB) are calculated 

and Data is stored in 3 planes/images, one for each basic color. 

Parameters unsigned long size: total number of pixels.  

int algorithm: algorithm used to extract the RGB from the original CYMG CCD. 

  0: basic algorithm combining Cyan, Yellow and Magenta. 

  1: algorithm combining Cyan, Yellow, Magenta and Green. 

WORD* red: pointer to red data storage allocated by the user. 

WORD* green: pointer to red data storage allocated by the user. 

WORD* blue: pointer to red data storage allocated by the user. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ERROR_ACK 

DRV_P1INVALID  

DRV_P2INVALID 

DRV_P3INVALID 

DRV_P4INVALID 

DRV_P5INVALID 

DRV_NO_NEW_DATA 

Image RGB has been copied into arrays. 

System not initialized.  

Unable to communicate with card. 

Arrays size is incorrect. 

Invalid algorithm.  

Invalid red pointer (i.e. NULL)..  

Invalid green pointer (i.e. NULL)..  

Invalid bluepointer (i.e. NULL)..  

There is no new data yet. 

See also GetMostRecentImage16, DemosaicImage, WhiteBalance.  



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 143   

 

GetMostRecentImage 

unsigned int WINAPI GetMostRecentImage(at_32* arr, unsigned long size) 

Description This function will update the data array with the most recently acquired image in any 

acquisition mode. The data are returned as long integers (32-bit signed integers). The 

"array" must be exactly the same size as the complete image. 

Parameters long* arr: pointer to data storage allocated by the user. 

unsigned long size: total number of pixels. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ERROR_ACK 

DRV_P1INVALID  

DRV_P2INVALID 

DRV_NO_NEW_DATA 

Image has been copied into array. 

System not initialized.  

Unable to communicate with card. 

Invalid pointer (i.e. NULL). 

Array size is incorrect. 

There is no new data yet. 

See also GetMostRecentImage16, GetOldestImage, GetOldestImage16, GetImages 
 

GetMostRecentImage16 

unsigned int WINAPI GetMostRecentImage16(WORD* arr, unsigned long size) 

Description 16-bit version of the GetMostRecentImage function. 

Parameters WORD* arr: pointer to data storage allocated by the user. 

unsigned long size: total number of pixels. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ERROR_ACK 

DRV_P1INVALID  

DRV_P2INVALID 

DRV_NO_NEW_DATA 

Image has been copied into array. 

System not initialized.  

Unable to communicate with card. 

Invalid pointer (i.e. NULL). 

Array size is incorrect. 

There is no new data yet. 

See also GetMostRecentImage, GetOldestImage16, GetOldestImage, GetImages 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 144   

 

GetMSTimingsData 

unsigned int WINAPI GetMSTimingsData(SYSTEMTIME *TimeOfStart ,float *pfDifferences, int 

inoOfimages) 

Description THIS FUNCTION IS RESERVED. 
 

GetMSTimingsEnabled 

unsigned int WINAPI GetMSTimingsEnabled(void) 

Description THIS FUNCTION IS RESERVED. 
 

GetNewData 

unsigned int WINAPI GetNewData(at_32* arr, unsigned long size) 

Description Deprecated see Note: 

This function will update the data array to hold data acquired so far. The data are returned 

as long integers (32-bit signed integers). The “array” must be large enough to hold the 

complete data set. When used in conjunction with the SetDriverEvent and 

GetAcquisitonProgress functions, the data from each scan in a kinetic series can be 

processed while the acquisition is taking place. 

Parameters At_* array: pointer to data storage allocated by the user. 

unsigned long size: total number of pixels. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ERROR_ACK 

DRV_P1INVALID  

DRV_P2INVALID 

DRV_NO_NEW_DATA 

Data copied.  

System not initialized.  

Unable to communicate with card. 

Invalid pointer (i.e. NULL). 

Array size is incorrect. 

There is no new data yet. 

See also SetDriverEvent, GetAcquisitionProgress, SetAcquisitionMode, GetNewData8, 

GetNewData16 

NOTE: Deprecated by the following functions: 

• GetImages 

• GetMostRecentImage 

• GetOldestIimage 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 145   

 

GetNewData16 

unsigned int WINAPI GetNewData16(WORD* arr, unsigned long size) 

Description Deprecated see Note: 

16-bit version of the GetNewData function. 

Parameters WORD* arr: pointer to data storage allocated by the user. 

unsigned long size: total number of pixels. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ERROR_ACK 

DRV_P1INVALID  

DRV_P2INVALID 

DRV_NO_NEW_DATA 

Data copied.  

System not initialized.  

Unable to communicate with card. 

Invalid pointer (i.e. NULL). 

Array size is incorrect. 

There is no new data yet. 

NOTE: Deprecated by the following functions: 

• GetImages 

• GetMostRecentImage 

• GetOldestIimage 

 

GetNewData8 

unsigned int WINAPI GetNewData8(unsigned char* arr, unsigned long size) 

Description Deprecated see Note: 

8-bit version of the GetNewData function. This function will return the data in the lower 8 

bits of the acquired data. 

Parameters unsigned char* arr: pointer to data storage allocated by the user. 

unsigned long size: total number of pixels. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ERROR_ACK 

DRV_P1INVALID  

DRV_P2INVALID 

DRV_NO_NEW_DATA 

Data copied.  

System not initialized.  

Unable to communicate with card. 

Invalid pointer (i.e. NULL). 

Array size is incorrect. 

There is no new data yet. 

NOTE: Deprecated by the following functions: 

• GetImages 

• GetMostRecentImage 

• GetOldestIimage 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 146   

 

GetNewFloatData 

unsigned int WINAPI GetNewFloatData(float* arr, unsigned long size) 

Description THIS FUNCTION IS RESERVED.  
 

GetNumberADChannels 

unsigned int WINAPI GetNumberADChannels(int* channels) 

Description As your Andor SDK system may be capable of operating with more than one A-D 

converter, this function will tell you the number available.  

Parameters int* channels: number of allowed channels 

Return unsigned int   

 DRV_SUCCESS Number of channels returned. 

See also SetADChannel 
 

GetNumberAmp 

unsigned int WINAPI GetNumberAmp(int* amp) 

Description As your Andor SDK system may be capable of operating with more than one output 

amplifier, this function will tell you the number available.  

Parameters int* amp: number of allowed channels 

Return unsigned int   

 DRV_SUCCESS Number of output amplifiers returned. 

See also SetOutputAmplifier 
 

GetNumberAvailableImages 

unsigned int WINAPI GetNumberAvailableImages (at_32* first, at_32* last) 

Description This function will return information on the number of available images in the circular 

buffer. This information can be used with GetImages to retrieve a series of images. If any 

images are overwritten in the circular buffer they no longer can be retrieved and the 

information returned will treat overwritten images as not available. 

Parameters at_32* first: returns the index of the first available image in the circular buffer. 

at_32* last: returns the index of the last available image in the circular buffer. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ERROR_ACK 

DRV_NO_NEW_DATA 

Number of acquired images returned 

System not initialized  

Unable to communicate with card 

There is no new data yet 

See also GetImages, GetImages16, GetNumberNewImages. 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 147   

 

GetNumberDevices 

unsigned int WINAPI GetNumberDevices (int* numDevs) 

Description THIS FUNCTION IS RESERVED. 

 

 

GetNumberFKVShiftSpeeds 

unsigned int WINAPI GetNumberFKVShiftSpeeds(int* number) 

Description As your Andor SDK system is capable of operating at more than one fast kinetics vertical 

shift speed this function will return the actual number of speeds available.  

Parameters int* number: number of allowed speeds 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

Number of speeds returned. 

System not initialized. 

Acquisition in progress. 

See also GetFKVShiftSpeedF, SetFKVShiftSpeed 

NOTE:  Only available if camera is Classic or iStar. 
 

GetNumberHorizontalSpeeds 

unsigned int WINAPI GetNumberHorizontalSpeeds(int* number) 

Description Deprecated see Note: 

As your Andor SDK system is capable of operating at more than one horizontal shift 

speed this function will return the actual number of speeds available.  

Parameters int* number: number of allowed horizontal speeds 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

Number of speeds returned. 

System not initialized. 

Acquisition in progress. 

See also GetHorizontalSpeed, SetHorizontalSpeed 

NOTE: Deprecated by GetNumberHSSpeeds 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 148   

 

GetNumberHSSpeeds 

unsigned int WINAPI GetNumberHSSpeeds(int channel, int typ, int* speeds) 

Description As your Andor SDK system is capable of operating at more than one horizontal shift speed 

this function will return the actual number of speeds available.  

Parameters int channel: the AD channel. 

int typ: output amplification. 

Valid values: 0 electron multiplication. 

  1 conventional. 

int* speeds: number of allowed horizontal speeds 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED  

DRV_P1INVALID 

DRV_P2INVALID 

Number of speeds returned. 

System not initialized.  

Invalid channel.  

Invalid horizontal read mode 

See also GetHSSpeed, SetHSSpeed, GetNumberADChannels 
 

GetNumberNewImages 

unsigned int WINAPI GetNumberNewImages(long* first, long* last) 

Description This function will return information on the number of new images (i.e. images which have 

not yet been retrieved) in the circular buffer. This information can be used with 

GetImages to retrieve a series of the latest images. If any images are overwritten in the 

circular buffer they can no longer be retrieved and the information returned will treat 

overwritten images as having been retrieved. 

Parameters long* first: returns the index of the first available image in the circular buffer. 

long* last: returns the index of the last available image in the circular buffer. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ERROR_ACK 

DRV_NO_NEW_DATA 

Number of acquired images returned. 

System not initialized.  

Unable to communicate with card. 

There is no new data yet. 

See also GetImages, GetImages16, GetNumberAvailableImages 

Note: This index will increment as soon as a single accumulation has been completed within the current 
acquisition. 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 149   

 

GetNumberPhotonCountingDivisions 

unsigned int WINAPI GetNumberPhotonCountingDivisions(unsigned long * noOfDivisions) 

Description Available in some systems is photon counting mode. This function gets the number of 

photon counting divisions available. The functions SetPhotonCounting and 

SetPhotonCountingThreshold can be used to specify which of these divisions is to be 

used.  

Parameters unsigned long* noOfDivisions: number of allowed photon counting divisions 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_P1INVALID  

DRV_NOT_AVAILABLE 

Number of photon counting divisions returned. 

System not initialized. 

Invalid parameter. 

Photon Counting not available 

See also SetPhotonCounting, SetPhotonCountingThreshold, GetCapabilities  
 
 

GetNumberPreAmpGains 

unsigned int WINAPI GetNumberPreAmpGains(int* noGains) 

Description Available in some systems are a number of pre amp gains that can be applied to the 

data as it is read out. This function gets the number of these pre amp gains available. 

The functions GetPreAmpGain and SetPreAmpGain can be used to specify which of 

these gains is to be used.  

Parameters int* noGains: number of allowed pre amp gains 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

Number of pre amp gains returned. 

System not initialized. 

Acquisition in progress.  

See also IsPreAmpGainAvailable, GetPreAmpGain, SetPreAmpGain, GetCapabilities 
 

GetNumberRingExposureTimes 

unsigned int WINAPI GetNumberRingExposureTimes (int * ipnumTimes) 

Description Gets the number of exposures in the ring at this moment. 

Parameters int * ipnumTimes: Numberof exposure times. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

Success 

System not initialized 

See also SetRingExposureTimes 

 

 

GetNumberIO 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 150   

unsigned int WINAPI GetNumberIO(int* iNumber) 

Description Available in some systems are a number of IO’s that can be configured to be inputs or 

outputs. This function gets the number of these IO’s available. The functions 

GetIODirection, GetIOLevel, SetIODirection and SetIOLevel can be used to specify the 

configuration.  

Parameters int* iNumber: number of allowed IO’s 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID  

DRV_NOT_AVAILABLE  

Number of  IO’s returned. 

System not initialized. 

Acquisition in progress. 

Invalid parameter. 

Feature not available.  

See also GetIOLevel GetIODirection SetIODirection SetIOLevel 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 151   

 

GetNumberVerticalSpeeds 

unsigned int WINAPI GetNumberVerticalSpeeds(int* number) 

Description Deprecated see Note: 

As your Andor system may be capable of operating at more than one vertical shift speed 

this function will return the actual number of speeds available. 

Parameters int* number: number of allowed vertical speeds 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

Number of speeds returned. 

System not initialized. 

Acquisition in progress. 

See also GetVerticalSpeed, SetVerticalSpeed 

NOTE: Deprecated by GetNumberVSSpeeds 
 

GetNumberVSAmplitudes 

unsigned int WINAPI GetNumberVSAmplitudes (int* number) 

Description This function will normally return the number of vertical clock voltage amplitues that the 
camera has. 

Parameters int *number:   

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_NOT_AVAILABLE 

Number returned 

System not initialized 

Your system does not support this feature 

 

GetNumberVSSpeeds 

unsigned int WINAPI GetNumberVSSpeeds(int* speeds) 

Description As your Andor system may be capable of operating at more than one vertical shift speed 

this function will return the actual number of speeds available. 

Parameters int* speeds: number of allowed vertical speeds 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

Number of speeds returned. 

System not initialized. 

Acquisition in progress. 

See also GetVSSpeed, SetVSSpeed, GetFastestRecommendedVSSpeed  



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 152   

 

GetOldestImage 

unsigned int WINAPI GetOldestImage(at_32* arr, unsigned long size) 

Description This function will update the data array with the oldest image in the circular buffer. Once 

the oldest image has been retrieved it no longer is available. The data are returned as 

long integers (32-bit signed integers). The "array" must be exactly the same size as the 

full image. 

Parameters at_32* arr: pointer to data storage allocated by the user. 

unsigned long size: total number of pixels. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ERROR_ACK 

DRV_P1INVALID  

DRV_P2INVALID 

DRV_NO_NEW_DATA 

Image has been copied into array. 

System not initialized.  

Unable to communicate with card. 

Invalid pointer (i.e. NULL). 

Array size is incorrect. 

There is no new data yet. 

See also GetOldestImage16, GetMostRecentImage, GetMostRecentImage16  
 

GetOldestImage16 

unsigned int WINAPI GetOldestImage16(WORD* arr, unsigned long size) 

Description 16-bit version of the GetOldestImage function. 

Parameters WORD* arr: pointer to data storage allocated by the user. 

unsigned long size: total number of pixels. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ERROR_ACK 

DRV_P1INVALID  

DRV_P2INVALID 

DRV_NO_NEW_DATA 

Image has been copied into array. 

System not initialized.  

Unable to communicate with card. 

Invalid pointer (i.e. NULL). 

Array size is incorrect. 

There is no new data yet. 

See also GetOldestImage, GetMostRecentImage16, GetMostRecentImage  
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 153   

 

GetPhysicalDMAAddress 

unsigned int WINAPI GetPhysicalDMAAddress (unsigned long* Address1, unsigned long* Address2) 

Description THIS FUNCTION IS RESERVED. 
 

GetPixelSize 

unsigned int WINAPI GetPixelSize(float* xSize, float* ySize) 

Description This function returns the dimension of the pixels in the detector in microns. 

Parameters float* xSize: width of pixel. 

float* ySize: height of pixel. 

Return unsigned int  

 DRV_SUCCESS Pixel size returned. 
 

GetPreAmpGain 

unsigned int WINAPI GetPreAmpGain(int index, float* gain) 

Description For those systems that provide a number of pre amp gains to apply to the data as it is read 

out; this function retrieves the amount of gain that is stored for a particular index. The 

number of gains available can be obtained by calling the GetNumberPreAmpGains 

function and a specific Gain can be selected using the function SetPreAmpGain. 

Parameters int index: gain index 

 Valid values: 0 to GetNumberPreAmpGains()-1 

float* gain: gain factor for this index. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_P1INVALID 

Gain returned. 

System not initialized. 

Acquisition in progress. 

Invalid index. 

See also IsPreAmpGainAvailable, GetNumberPreAmpGains, SetPreAmpGain, GetCapabilities 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 154   

 

GetPreAmpGainText 

unsigned int WINAPI GetPreAmpGainText (int index , char* name, int len) 

Description This function will return a string with a pre amp gain description.  The pre amp gain is 

selected using the index. The SDK has a string associated with each of its pre amp gains. 

The maximum number of characters needed to store the pre amp gain descriptions is 30. 

The user has to specify the number of characters they wish to have returned to them from 

this function. 

Parameters int index: gain index 

 Valid values: 0 to GetNumberPreAmpGains()-1 

char* name:  A user allocated array of characters for storage of the description. 

int len: The length of the user allocated character array. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_P1INVALID 

DRV_P2INVALID 

DRV_NOT_SUPPORTED 

Description returned. 

System not initialized. 

Invalid index. 

Array size is incorrect 

Function not supported with this camera 

See also IsPreAmpGainAvailable, GetNumberPreAmpGains, SetPreAmpGain, GetCapabilities 
 

GetQE 

unsigned int WINAPI GetQE(char * sensor, float wavelength, unsigned int mode, float * QE) 

Description Returns the percentage QE for a particular head model at a user specified wavelength. 

Parameters char* sensor: head model 

float wavelength: wavelength at which QE is required  

unsigned int mode: Clara mode (Normal (0) or Extended NIR (1)).  0 for all other systems  

float* QE: requested QE 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

QE returned. 

System not initialized. 

See also _GetHeadModel, GetCapabilities 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 155   

 

GetReadOutTime 

unsigned int WINAPI GetReadOutTime(float* ReadoutTime) 

Description This function will return the time to readout data from a sensor. This function should be 

used after all the acquisitions settings have been set, e.g. SetExposureTime, 

SetKineticCycleTime and SetReadMode etc. The value returned is the actual times used 

in subsequent acquisitions.  

Parameters float* ReadoutTime: valid readout time in seconds 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ERROR_CODES 

Timing information returned. 

System not initialized. 

Error communicating with camera. 

See also GetAcquisitionTimings GetKeepCleanTime 

NOTES NOTE: Available on iDus, iXon, Luca & Newton. 

 

GetRegisterDump 

unsigned int WINAPI GetRegisterDump (int* mode) 

Description THIS FUNCTION IS RESERVED. 
 

GetRingExposureRange 

unsigned int WINAPI GetRingExposureRange (float * fpMin, float * fpMax) 

Description With the Ring Of Exposure feature there may be a case when not all exposures can be 

met. The ring of exposure feature will guarantee that the highest exposure will be met but 

this may mean that the lower exposures may not be. If the lower exposures are too low 

they will be increased to the lowest value possible. This function will return these upper 

and lower values. 

Parameters float * fpMin: Minimum exposure 

float * fpMax: Maximum exposure. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_INVALID_MODE 

Min and max returned 

System not initialize 

Trigger mode is not available 

See also GetCapabilities, GetNumberRingExposureTimes, IsTriggerModeAvailable, 

SetRingExposureTimes  

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 156   

 

GetSensitivity 

unsigned int WINAPI GetSensitivity(int channel, int index, int amplifier, int pa, float* sensitivity) 

Description This function returns the sensitivity for a particular speed.  

Parameters int channel:  AD channel index. 

int amplifier:  Type of output amplifier. 

int index: Channel speed index. 

int pa:  PreAmp gain index. 

float* sensitivity: requested sensitivity. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_P1INVALID 

DRV_P2INVALID 

DRV_P3INVALID 

DRV_P4INVALID 

Sensitivity returned. 

System not initialized. 

Acquisition in progress. 

Invalid channel. 

Invalid amplifier. 

Invalid speed index. 

Invalid gain. 

See also GetCapabilities 

NOTE: Available only on iXon+ and Clara. 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 157   

 

GetSizeOfCircularBuffer 

unsigned int WINAPI GetSizeOfCircularBuffer(long* index) 

Description This function will return the maximum number of images the circular buffer can store 

based on the current acquisition settings. 

Parameters long* index: returns the maximum number of images the circular buffer can store. 

Return unsigned int   

 DRV_SUCCESS  

DRV_NOT_INITIALIZED 

Maximum number of images returned.  

System not initialized. 

 

GetSlotBusDeviceFunction 

unsigned int WINAPI GetSlotBusDeviceFunction (DWORD *dwSlot, DWORD *dwBus, DWORD 

*dwDevice, DWORD *dwFunction) 

Description THIS FUNCTION IS RESERVED  



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 158   

 

GetSoftwareVersion 

unsigned int WINAPI GetSoftwareVersion(unsigned int* eprom, unsigned int* cofFile, unsigned int* 

vxdRev, unsigned int* vxdVer, unsigned int* dllRev, unsigned int* dllVer) 

Description This function returns the Software version information for the microprocessor code and the 

driver. 

Parameters unsigned int* eprom: EPROM version 

unsigned int* cofFile: COF file version 

unsigned int *vxdRev: Driver revision number 

unsigned int *vxdVer: Driver version number 

unsigned int *dllRev: DLL revision number 

unsigned int *dllVer: DLL version number 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_ERROR_ACK 

Version information returned. 

System not initialized. 

Acquisition in progress. 

Unable to communicate with card. 

 

GetSpoolProgress 

unsigned int WINAPI GetSpoolProgress(long* index) 

Description Deprecated see Note: 

This function will return information on the progress of the current spool operation. The 

value returned is the number of images that have been saved to disk during the current 

kinetic scan. 

Parameters long* index: returns the number of files saved to disk in the current kinetic scan. 

Return unsigned int   

 DRV_SUCCESS  

DRV_NOT_INITIALIZED 

Spool progress returned.  

System not initialized. 

See also SetSpool  

NOTE: Deprecated by GetTotalNumberImagesAcquired 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 159   

 

GetStatus 

unsigned int WINAPI GetStatus(int* status) 

Description This function will return the current status of the Andor SDK system. This function should 

be called before an acquisition is started to ensure that it is IDLE and during an acquisition 

to monitor the process. 

Parameters int* status: current status  

DRV_IDLE 

DRV_TEMPCYCLE 

DRV_ACQUIRING 

DRV_ACCUM_TIME_NOT_MET 

DRV_KINETIC_TIME_NOT_MET 

DRV_ERROR_ACK 

DRV_ACQ_BUFFER 

 

DRV_SPOOLERROR 

 

IDLE waiting on instructions. 

Executing temperature cycle. 

Acquisition in progress. 

Unable to meet Accumulate cycle time. 

Unable to meet Kinetic cycle time. 

Unable to communicate with card. 

Computer unable to read the data via the ISA slot 

at the required rate.  

Overflow of the spool buffer. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

Status returned 

System not initialized 

See also SetTemperature, StartAcquisition 

NOTE: If the status is one of the following: 

• DRV_ACCUM_TIME_NOT_MET 

• DRV_KINETIC_TIME_NOT_MET  

• DRV_ERROR_ACK   

• DRV_ACQ_BUFFER 

then the current acquisition will be aborted automatically. 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 160   

 

GetTemperature 

unsigned int WINAPI GetTemperature(int* temperature) 

Description This function returns the temperature of the detector to the nearest degree. It also gives 

the status of cooling process. 

Parameters int* temperature: temperature of the detector 

Return unsigned int   

 DRV_NOT_INITIALIZED  

DRV_ACQUIRING 

DRV_ERROR_ACK 

DRV_TEMP_OFF 

DRV_TEMP_STABILIZED 

DRV_TEMP_NOT_REACHED 

DRV_TEMP_DRIFT 

DRV_TEMP_NOT_STABILIZED 

System not initialized. 

Acquisition in progress. 

Unable to communicate with card. 

Temperature is OFF. 

Temperature has stabilized at set point. 

Temperature has not reached set point. 

Temperature had stabilized but has since drifted 

Temperature reached but not stabilized 

See also GetTemperatureF, SetTemperature, CoolerON, CoolerOFF, GetTemperatureRange  
 

GetTemperatureF 

unsigned int WINAPI GetTemperatureF(float* temperature) 

Description This function returns the temperature in degrees of the detector. It also gives the status of 

cooling process. 

Parameters float* temperature: temperature of the detector 

Return unsigned int   

 DRV_NOT_INITIALIZED  

DRV_ACQUIRING 

DRV_ERROR_ACK 

DRV_TEMP_OFF 

DRV_TEMP_STABILIZED 

DRV_TEMP_NOT_REACHED 

DRV_TEMP_DRIFT  

DRV_TEMP_NOT_STABILIZED 

System not initialized. 

Acquisition in progress. 

Unable to communicate with card. 

Temperature is OFF. 

Temperature has stabilized at set point. 

Temperature has not reached set point. 

Temperature had stabilised but has since drifted  

Temperature reached but not stabilized 

See also GetTemperature, SetTemperature, CoolerON, CoolerOFF, GetTemperatureRange  

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 161   

 

GetTemperatureRange 

unsigned int WINAPI GetTemperatureRange(int* mintemp, int* maxtemp) 

Description This function returns the valid range of temperatures in centigrads to which the detector 

can be cooled. 

Parameters int* mintemp: minimum temperature 

int* maxtemp: maximum temperature 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

Temperature range returned. 

System not initialized. 

Acquisition in progress. 

See also GetTemperature, GetTemperatureF, SetTemperature, CoolerON, CoolerOFF  
 

GetTemperatureStatus 

unsigned int WINAPI GetTemperatureStatus (float *SensorTemp, float *TargetTemp, float 

*AmbientTemp, float *CoolerVolts) 

Description THIS FUNCTION IS RESERVED. 
 

GetTotalNumberImagesAcquired 

unsigned int WINAPI GetTotalNumberImagesAcquired(long* index) 

Description This function will return the total number of images acquired since the current acquisition 

started. If the camera is idle the value returned is the number of images acquired during 

the last acquisition. 

Parameters long* index: returns the total number of images acquired since the acquisition started. 

Return unsigned int   

 DRV_SUCCESS  

DRV_NOT_INITIALIZED 

Number of acquired images returned.  

System not initialized. 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 162   

 
 

GetIODirection 

unsigned int WINAPI GetIODirection(int index, int* iDirection) 

Description Available in some systems are a number of IO’s that can be configured to be inputs or 

outputs. This function gets the current state of a particular IO.  

Parameters int index: IO index 

           Valid values: 0 toGetNumberIO() - 1 

int* iDirection: current direction for this index. 

           0: Output 

           1: Input 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID  

DRV_P2INVALID  

DRV_NOT_AVAILABLE  

IO direction returned. 

System not initialized. 

Acquisition in progress. 

Invalid index. 

Invalid parameter. 

Feature not available.  

See also GetNumberIO GetIOLevel SetIODirection SetIOLevel 

 
 

GetIOLevel 

unsigned int WINAPI GetIOLevel(int index, int* iLevel) 

Description Available in some systems are a number of IO’s that can be configured to be inputs or 

outputs. This function gets the current state of a particular IO.  

Parameters int index: IO index 

           Valid values: 0 toGetNumberIO() - 1 

int* iLevel: current level for this index. 

           0: Low 

           1: High 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID  

DRV_P2INVALID  

DRV_NOT_AVAILABLE  

IO level returned. 

System not initialized. 

Acquisition in progress. 

Invalid index. 

Invalid parameter. 

Feature not available.  

See also GetNumberIO GetIODirection SetIODirection SetIOLevel 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 163   

 

GetVersionInfo 

unsigned int WINAPI GetVersionInfo (AT_VersionInfoId arr, char* szVersionInfo, at_u32 

ui32BufferLen) 

Description This function retrieves version information about different aspects of the Andor system. The 

information is copied into a passed string buffer. Currently, the version of the SDK and the 

Device Driver (USB or PCI) is supported. 

Parameters AT_VersionInfoId arr:  

 AT_SDKVersion: requests the SDK version information 

 AT_DeviceDriverVersion: requests the device driver version 

char* szVersionInfo: A user allocated array of characters for storage of the information  

at_u32 ui32BufferLen: The size of the passed character array, versionInfo. 

Return unsigned int   

 DRV_SUCCESS  Information returned  

DRV_NOT_INITIALIZED System not initialized  

DRV_P1INVALID  Invalid information type requested 

DRV_P2INVALID  Storage array pointer is NULL 

DRV_P3INVALID  Size of the storage array is zero 

See also GetHeadModel, GetCameraSerialNumber, GetCameraInformation, GetCapabilities 
 

GetVerticalSpeed 

unsigned int WINAPI GetVerticalSpeed(int index, int* speed) 

Description Deprecated see Note: 

As your Andor system may be capable of operating at more than one vertical shift speed 

this function will return the actual speeds available. The value returned is in 

microseconds per pixel shift. 

Parameters int index: speed required 

 Valid values 0 to GetNumberVerticalSpeeds()-1 

int* speed: speed in microseconds per pixel shift. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_P1INVALID 

Speed returned. 

System not initialized. 

Acquisition in progress.  

Invalid index. 

See also GetNumberVerticalSpeeds, SetVerticalSpeed 

NOTE: Deprecated by GetVSSpeed. 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 164   

 

GetVirtualDMAAddress 

unsigned int WINAPI GetVirtualDMAAddress(void** Address1, void** Address2) 

Description THIS FUNCTION IS RESERVED. 

 

GetVSSpeed 

unsigned int WINAPI GetVSSpeed(int index, float* speed) 

Description As your Andor SDK system may be capable of operating at more than one vertical shift 

speed this function will return the actual speeds available. The value returned is in 

microseconds. 

Parameters int index: speed required 

 Valid values 0 to GetNumberVSSpeeds()-1 

float* speed: speed in microseconds per pixel shift. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_P1INVALID 

Speed returned. 

System not initialized. 

Acquisition in progress. 

 Invalid index. 

See also GetNumberVSSpeeds, SetVSSpeed, GetFastestRecommendedVSSpeed  



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 165   

 

GPIBReceive 

unsigned int WINAPI GPIBReceive(int id, short address, char* text, int size) 

Description This function reads data from a device until a byte is received with the EOI line asserted 

or until size bytes have been read. 

Parameters int id: The interface board number 

short address: Address of device to send data 

char* text: The data to be sent 

int size: Number of characters to read 

Return unsigned int   

 DRV_SUCCESS 

DRV_P3INVALID 

 

Data received. 

Invalid pointer (e.g. NULL). 

Other errors may be returned by the GPIB device. 

Consult the help documentation supplied with these 

devices 

See also GPIBSend 
 

GPIBSend 

unsigned int WINAPI GPIBSend(int id, short address, char* text) 

Description This function initializes the GPIB by sending interface clear. Then the device described 

by address is put in a listen-active state. Finally the string of characters, text, is sent to 

the device with a newline character and with the EOI line asserted after the final 

character. 

Parameters int id: The interface board number 

short address: Address of device to send data 

char* text: The data to be sent 

Return unsigned int   

 DRV_SUCCESS 

DRV_P3INVALID 

 

Data sent. 

Invalid pointer (e.g. NULL). 

The GPIB device may return other errors. Consult the 

help documentation supplied with these devices 

See also GPIBReceive  



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 166   

 

I2CBurstRead 

unsigned int WINAPI I2CBurstRead(BYTE i2cAddress, long nBytes, BYTE* data) 

Description This function will read a specified number of bytes from a chosen device attached to the 

I
2
C data bus. 

Parameters BYTE i2cAddress: The address of the device to read from.  

long nBytes: The number of bytes to read from the device.  

BYTE* data: The data read from the device. 

Return unsigned int   

 DRV_SUCCESS 

DRV_VXDNOTINSTALLED 

DRV_INIERROR 

DRV_COFERROR 

DRV_FLEXERROR 

DRV_ERROR_ACK 

DRV_I2CDEVNOTFOUND 

DRV_I2CTIMEOUT 

DRV_UNKNOWN_FUNC 

Read successful. 

VxD not loaded. 

Unable to load “DETECTOR.INI”. 

Unable to load “*.COF”. 

Unable to load “*.RBF”. 

Unable to communicate with card.  

Could not find the specified device. 

Timed out reading from device.  

Unknown function, incorrect cof file. 

See also I2CBurstWrite, I2CRead, I2CWrite, I2cReset 
 

I2CBurstWrite 

unsigned int WINAPI I2CBurstWrite(BYTE i2cAddress, long nBytes, BYTE* data) 

Description This function will write a specified number of bytes to a chosen device attached to the I
2
C 

data bus. 

Parameters BYTE i2cAddress: The address of the device to write to. 

long nBytes: The number of bytes to write to the device. 

BYTE* data: The data to write to the device. 

Return unsigned int   

 DRV_SUCCESS 

DRV_VXDNOTINSTALLED 

DRV_INIERROR 

DRV_COFERROR 

DRV_FLEXERROR 

DRV_ERROR_ACK 

DRV_I2CDEVNOTFOUND 

DRV_I2CTIMEOUT  

DRV_UNKNOWN_FUNC 

Write successful. 

VxD not loaded. 

Unable to load “DETECTOR.INI”. 

Unable to load “*.COF”. 

Unable to load “*.RBF”. 

Unable to communicate with card.  

Could not find the specified device. 

Timed out reading from device.  

Unknown function, incorrect cof file. 

See also I2CBurstRead, I2CRead, I2CWrite, I2cReset 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 167   

 

I2CRead 

unsigned int WINAPI I2CRead(BYTE deviceID, BYTE intAddress, BYTE* pdata) 

Description This function will read a single byte from the chosen device. 

Parameters BYTE deviceID: The device to read from.  

BYTE intAddress: The internal address of the device to be read from.  

BYTE* pdata: The byte read from the device. 

Return unsigned int   

 DRV_SUCCESS 

DRV_VXDNOTINSTALLED 

DRV_INIERROR 

DRV_COFERROR 

DRV_FLEXERROR 

DRV_ERROR_ACK 

DRV_I2CDEVNOTFOUND 

DRV_I2CTIMEOUT  

DRV_UNKNOWN_FUNC 

Read successful. 

VxD not loaded. 

Unable to load “DETECTOR.INI”. 

Unable to load “*.COF”. 

Unable to load “*.RBF”. 

Unable to communicate with card.  

Could not find the specified device. 

Timed out reading from device.  

Unknown function, incorrect cof file. 

See also I2CBurstWrite, I2CBurstRead, I2CWrite, I2cReset 
 

I2CReset 

unsigned int WINAPI I2CReset(void) 

Description This function will reset the I
2
C data bus. 

Parameters  

Return unsigned int   

 DRV_SUCCESS 

DRV_VXDNOTINSTALLED 

DRV_INIERROR 

DRV_COFERROR 

DRV_FLEXERROR 

DRV_ERROR_ACK 

DRV_I2CTIMEOUT  

DRV_UNKNOWN_FUNC 

Reset successful. 

VxD not loaded. 

Unable to load “DETECTOR.INI”. 

Unable to load “*.COF”. 

Unable to load “*.RBF”. 

Unable to communicate with card. 

Timed out reading from device.  

Unknown function, incorrect cof file. 

See also I2CBurstWrite, I2CBurstRead,I2CRead, I2CWrite 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 168   

 

I2CWrite 

unsigned int WINAPI I2CWrite(BYTE deviceID, BYTE intAddress, BYTE data) 

Description This function will write a single byte to the chosen device. 

Parameters BYTE deviceID: The device to write to. 

BYTE intAddress: The internal address of the device to write to. 

BYTE data: The byte to be written to the device. 

Return unsigned int   

 DRV_SUCCESS 

DRV_VXDNOTINSTALLED 

DRV_INIERROR 

DRV_COFERROR 

DRV_FLEXERROR 

DRV_ERROR_ACK 

DRV_I2CDEVNOTFOUND 

DRV_I2CTIMEOUT  

DRV_UNKNOWN_FUNC 

Write successful. 

VxD not loaded. 

Unable to load “DETECTOR.INI”. 

Unable to load “*.COF”. 

Unable to load “*.RBF”. 

Unable to communicate with card.  

Could not find the specified device. 

Timed out reading from device.  

Unknown function, incorrect cof file. 

See also I2CBurstWrite, I2CBurstRead, I2CRead, I2cReset 
 

IdAndorDll 

unsigned int WINAPI IdAndorDll (void) 

Description THIS FUNCTION IS RESERVED. 
 

InAuxPort 

unsigned int WINAPI InAuxPort(int port, int* state) 

Description This function returns the state of the TTL Auxiliary Input Port on the Andor plug-in card. 

Parameters int port: Number of AUX in port on Andor card 

 Valid Values 1 to 4 

int* state: current state of port 

 0 OFF/LOW 

 all other ON/HIGH 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_VXDNOTINSTALLED 

DRV_ERROR_ACK 

DRV_P1INVALID 

AUX read. 

System not initialized. 

Acquisition in progress. 

VxD not loaded. 

Unable to communicate with card.  

Invalid port id. 

See also OutAuxPort 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 169   

 

Initialize 

unsigned int WINAPI Initialize(char* dir) 

Description This function will initialize the Andor SDK System. As part of the initialization procedure on 

some cameras (i.e. Classic, iStar and earlier iXion) the DLL will need access to a 

DETECTOR.INI which contains information relating to the detector head, number pixels, 

readout speeds etc. If your system has multiple cameras then see the section Controlling 

multiple cameras 

Parameters char* dir: Path to the directory containing the files 

Return unsigned int   

 DRV_SUCCESS 

DRV_VXDNOTINSTALLED 

DRV_INIERROR 

DRV_COFERROR 

DRV_FLEXERROR 

DRV_ERROR_ACK 

DRV_ERROR_FILELOAD 

DRV_ERROR_PAGELOCK 

DRV_USBERROR 

DRV_ERROR_NOCAMERA 

Initialisation successful. 

VxD not loaded. 

Unable to load “DETECTOR.INI”. 

Unable to load “*.COF”. 

Unable to load “*.RBF”. 

Unable to communicate with card. 

Unable to load “*.COF” or “*.RBF” files. 

Unable to acquire lock on requested memory.  

Unable to detect USB device or not USB2.0.  

No camera found 

See also GetAvailableCameras, SetCurrentCamera, GetCurrentCamera 
 

InitializeDevice 

unsigned int WINAPI InitializeDevice(char * dir) 

Description THIS FUNCTION IS RESERVED. 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 170   

 

IsCoolerOn 

unsigned int WINAPI IsCoolerOn (int* iCoolerStatus) 

Description This function checks the status of the cooler. 

Parameters int* iCoolerStatus:  0: Cooler is OFF. 
                                    1: Cooler is ON. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_P1INVALID 

Status returned. 

System not initialized 

Parameter is NULL 

See also CoolerON CoolerOFF 
 

IsCountConvertModeAvailable 

unsigned int WINAPI IsCountConvertModeAvailable (int mode) 

Description This function checks if the hardware and current settings permit the use of the specified 

Count Convert mode. 

Parameters int mode: Count Convert mode to be checked 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_NOT_SUPPORTED 

DRV_INVALID_COUNTCONVERT_

MODE 

Count Convert mode available. 

System not initialized.  

Count Convert not supported on this camera 

Count Convert mode not available with 

current acquisition settings 

See also GetCapabilities, SetCountConvertMode, SetCountConvertWavelength 

 

IsInternalMechanicalShutter 

unsigned int WINAPI IsInternalMechanicalShutter (int* InternalShutter) 

Description This function checks if an iXon camera has a mechanical shutter installed. 

Parameters int* InternalShutter:  0: Mechanical shutter not installed. 

                                1: Mechanical shutter installed. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_AVAILABLE  

DRV_P1INVALID 

 

Internal Shutter state returned 

Not an iXon camera. 

Parameter is NULL 

NOTE Available only on iXon. 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 171   

 

IsAmplifierAvailable 

unsigned int WINAPI IsAmplifierAvailable(int iamp) 

Description This function checks if the hardware and current settings permit the use of the specified 

amplifier. 

Parameters int iamp: amplifier to check. 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_INVALID_AMPLIFIER 

Amplifier available 

System not initialized 

Not a valid amplifier 

See also SetHSSpeed 

 
 

IsPreAmpGainAvailable 

unsigned int WINAPI IsPreAmpGainAvailable(int channel, int amplifier, int index, int pa, int* status) 

Description This function checks that the AD channel exists, and that the amplifier, speed and gain 

are available for the AD channel.  

Parameters int channel:  AD channel index. 

int amplifier:  Type of output amplifier. 

int index: Channel speed index. 

int pa:  PreAmp gain index. 

int* status:  0: PreAmpGain not available. 

  1: PreAmpGain Available. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_P1INVALID 

DRV_P2INVALID 

DRV_P3INVALID 

DRV_P4INVALID 

PreAmpGain status returned. 

System not initialized. 

Acquisition in progress. 

Invalid channel. 

Invalid amplifier. 

Invalid speed index. 

Invalid gain. 

See also GetNumberPreAmpGains, GetPreAmpGain, SetPreAmpGain  

NOTE: Available only on iXon. 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 172   

 

IsTriggerModeAvailable 

unsigned int WINAPI IsTriggerModeAvailable(int iTriggerMode) 

Description This function checks if the hardware and current settings permit the use of the specified 

trigger mode. 

Parameters int iTriggerMode: Trigger mode to check. 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_INVALID_MODE 

Trigger mode available 

System not initialize 

Not a valid mode 

See also SetTriggerMode 

 

Merge 

unsigned int WINAPI Merge(const at_32* arr, long nOrder, long nPoint, long nPixel, float* coeff, long 

fit,long hbin, at_32* output, float* start, float* step) 

Description THIS FUNCTION IS RESERVED. 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 173   

 

 

OA_AddMode 

  unsigned int WINAPI OA_AddMode (char* ModeName, unsigned int ModeNameLen, char * 
  ModeDescription, unsigned int ModeDescriptionLen) 
 

Description This function will add a mode name and description to memory.  Note that this will not add 
the mode to file, a subsequent call to OA_WriteToFile must be made. 

Parameters char* ModeName:                            A name for the mode to be defined. 

unsigned int ModeNameLen:           Mode name string length. 

char* modeDescription:                    A description of the user defined mode. 

unsigned int ModeDescriptionLen:  Mode Description string length. 

Return unsigned int   

 DRV_SUCCESS            

DRV_P1INVALID           

DRV_P3INVALID 

DRV_OA_INVALID_STRING_LENGTH 

                                 

DRV_OA_INVALID_NAMING 

                         

DRV_OA_MODE_BUFFER_FULL        

DRV_OA_INVALID_CHARS_IN_NAME        

 

DRV_OA_MODE_ALREADY_EXISTS 

DRV_OA_INVALID_CHARS_IN_NAME 

All parameters accepted                                

Null mode name.                                        

Null mode description.                                            

One or more parameters have an invalid 

length, i.e. > 255.                                   

Mode and description have the same name, 

this is not valid. 

Number of modes exceeds limit.             

Mode name and/or description contain 

invalid characters. 

Mode name already exists in the file. 

Invalid charcters in Mode Name or Mode 

Description 

See also OA_DeleteMode, OA_WriteToFile  
 

OA_DeleteMode 

  unsigned int WINAPI OA_DeleteMode (const char* const ModeName, unsigned int ModeNameLen) 
 

Description This function will remove a mode from memory.  To permanently remove a mode from file, 
call OA_WriteToFile after OA_DeleteMode.  The Preset file will not be affected. 

Parameters const char* const ModeName:   The name of the mode to be removed. 

unsigned int ModeNameLen:      Mode name string length. 

Return unsigned int  

DRV_SUCCESS             

DRV_P1INVALID                              

DRV_OA_INVALID_STRING_LENGTH 

 

 

DRV_OA_MODE_DOES_NOT_EXIST 

All parameters accepted                                

Null mode name.                                          

The mode name parameter has an invalid  

length, i.e. > 256.  

Mode does not exist. 

 

See also OA_AddMode, OA_WriteToFile 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 174   

 

OA_EnableMode 

  unsigned int WINAPI OA_EnableMode (const char* const ModeName) 
 

Description This function will set all the parameters associated with the specified mode to be used for all 
subsequent acquisitions.  The mode specified by the user must be in either the Preset file or 
the User defined file. 

Parameters const char* const ModeName:   The mode to be used for all subsequent acquisitions. 

Return unsigned int   

 DRV_SUCCESS 

DRV_P1INVALID 

DRV_OA_MODE_DOES_NOT_EXIST 

DRV_OA_CAMERA_NOT_SUPPORTED 

All parameters accepted 

Null mode name. 

Mode name does not exist.                 

Camera not supported. 

See also OA_AddMode 

 

OA_GetFloat 

  unsigned int WINAPI OA_GetFloat (const char* const ModeName, const char* const ModeParam, 
  float* FloatValue) 
 

Description This function is used to get the values for floating point type acquisition parameters. 
Values are retrieved from memory for the specified mode name. 
 

Parameters const char* const ModeName:   The name of the mode for which an acquisition parameter 

                                                    will be retrieved. 

const char* const ModeParam:  The name of the acquisition parameter for which 

                                                    a value will be retrieved. 

float* FloatValue:               The value of the acquisition parameter. 

Return unsigned int   

 DRV_SUCCESS 

DRV_P1INVALID 

DRV_P2INVALID 

DRV_P3INVALID 

All parameters accepted                                  

Null mode parameter.                                       

Null mode parameter. 

Null float value. 

 

See also OA_SetFloat 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 175   

 

OA_GetInt 

  unsigned int WINAPI OA_GetInt (const char* const ModeName, const char* const ModeParam, int* 
  IntValue) 
 

Description This function is used to get the values for integer type acquisition parameters.  Values 
are retrieved from memory for the specified mode name. 
 

Parameters const char* const ModeName:   The name of the mode for which an acquisition parameter 

                                                    will be retrieved. 

const char* const ModeParam:  The name of the acquisition parameter for which a value 

                                                    will be retrieved. 

int* IntValue:                            The buffer to return the value of the acquisition 

                                                    parameter. 

Return unsigned int   

 DRV_SUCCESS 

DRV_P1INVALID                  

DRV_P2INVALID                  

DRV_P3INVALID 

All parameters accepted. 

Null mode name.                                               

Null mode parameter.                                

Null integer value.                                          

 

See also OA_SetInt 
 

 

OA_GetModeAcqParams 

unsigned int WINAPI OA_GetModeAcqParams (const char* const ModeName,  char * const 
ListOfParams) 

Description This function will return all acquisition parameters associated with the specified mode.  
The mode specified by the user must be in either the Preset file or the User defined file.  
The user must allocate enough memory for all of the acquisition parameters. 

Parameters const char* const ModeName:  The mode for which all acquisition parameters must be 

                                                  returned. 

char * const ListOfParams:  A user allocated array of characters for storage of the  

                                                  acquisition parameters.  Parameters will be delimited by a  

                                                  ‘,’. 

 

Return unsigned int   

 DRV_SUCCESS   

DRV_P1INVALID                  

DRV_P2INVALID 

DRV_OA_NO_USER_DATA 

 

All parameters accepted.                                   

Null mode name.                                               

Null mode parameter.                                         

No data for selected mode. 

See also OA_GetNumberOfAcqParams 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 176   

 

OA_GetNumberOfAcqParams 

unsigned int WINAPI OA_GetNumberOfAcqParams (const char* const ModeName,  unsigned int* 
const NumberOfParams) 

Description This function will return the parameters associated with a specified mode.  The mode 
must be present in either the Preset file or the User defined file. 

Parameters const char* const ModeName  The mode to search for a list of acquisition 

                                                                parameters. 

unsigned int* const NumberOfParams:  The number of acquisition parameters for the 

                                                               specified mode. 

Return unsigned int   

 DRV_SUCCESS                      

DRV_P1INVALID         

DRV_P2INVALID 

DRV_OA_NULL_ERROR  

All parameters accepted. 

Null mode name.                                       

Null number of parameters.                     

Invalid pointer. 

 

See also OA_GetModeAcqParams  

 
 

OA_GetNumberOfPreSetModes 

unsigned int WINAPI OA_GetNumberOfPreSetModes (unsigned int* const NumberOfModes) 

Description This function will return the number of modes defined in the Preset file.  The Preset file 
must exist. 

Parameters unsigned int* const NumberOfModes:  The number of modes in the Andor file. 

Return unsigned int   

 DRV_SUCCESS  

DRV_P1INVALID          

DRV_OA_NULL_ERROR  

DRV_OA_BUFFER_FULL 

 

All parameters accepted. 

Null number of modes. 

Invalid pointer. 

Number of modes exceeds limit. 

 

See also OA_GetPreSetModeNames 

 
 

OA_GetNumberOfUserModes 

unsigned int WINAPI OA_GetNumberOfUserModes (unsigned int* const NumberOfModes) 

Description This function will return the number of modes defined in the User file.  The user defined 
file must exist. 

Parameters unsigned int* const NumberOfModes:  The number of modes in the user file. 

Return unsigned int   

 DRV_SUCCESS  

DRV_P1INVALID          

DRV_OA_NULL_ERROR  

DRV_OA_BUFFER_FULL 

All parameters accepted. 

Null number of modes. 

Invalid pointer. 

Number of modes exceeds limit. 

See also OA_GetUserModeNames 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 177   

 

OA_GetPreSetModeNames 

unsigned int WINAPI OA_GetPreSetModeNames (char * ListOfModes) 

Description This function will return the available mode names from the Preset file.  The mode and 
the Preset file must exist.  The user must allocate enough memory for all of the 
acquisition parameters. 

Parameters char * ListOfModes:  A user allocated array of characters for storage of the mode 

                                     names.  Mode names will be delimited by a ‘,’. 

Return unsigned int   

 DRV_SUCCESS  
DRV_P1INVALID 
DRV_OA_NULL_ERROR 

All parameters accepted.  
Null list of modes.  
Invalid pointer. 

See also OA_GetNumberOfPreSetModes 
 

 

OA_GetString 

  unsigned int WINAPI OA_GetString (const char* const ModeName, const char* const ModeParam, 
  char* StringValue, const unsigned int StringLen) 
 

Description This function is used to get the values for string type acquisition parameters.  Values 
are retrieved from memory for the specified mode name. 
 

Parameters const char* const ModeName:    The name of the mode for which an acquisition 

                                                    parameter  will be retrieved. 

const char* const ModeParam:  The name of the acquisition parameter for which a value 

                                                    will be retrieved. 

char* StringValue:                       The buffer to return the value of the acquisition 

                                                    parameter. 

const unsigned int StringLen:      The length of the buffer. 

Return unsigned int   

 DRV_SUCCESS 

DRV_P1INVALID  

DRV_P2INVALID  

DRV_P3INVALID 

DRV_P4INVALID                  

All parameters accepted.  

Null mode name. 

Null mode parameter.  

Null string value.  

Invalid string length 

See also OA_SetString 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 178   

 

OA_GetUserModeNames 

unsigned int WINAPI OA_GetUserModeNames (char * ListOfModes) 

Description This function will return the available mode names from a User defined file.  The mode 
and the User defined file must exist.  The user must allocate enough memory for all of the 
acquisition parameters. 

Parameters char * ListOfModes:  A user allocated array of characters for storage of the mode 

                                     names.  Mode names will be delimited by a ‘,’. 

Return unsigned int   

 DRV_SUCCESS  
DRV_P1INVALID 
DRV_OA_NULL_ERROR 

All parameters accepted.  
Null list of modes.  
Invalid pointer. 

See also OA_GetNumberOfUserModes 
 

 

OA_Initialize 

unsigned int WINAPI OA_Initialize (const char * const Filename, unsigned int FileNameLen) 

Description This function will initialise the OptAcquire settings from a Preset file and a User defined 
file if it exists. 

Parameters char* const Filename:          The name of a user xml file.  If the file exists then data will 

                                              be read from the file.  If the file does not exist the file name 

                                              may be used when the user calls WriteToFile(). 

unsigned int FileNameLen:   The length of the filename. 

 

Return unsigned int   

 DRV_SUCCESS 

DRV_P1INVALID 

DRV_OA_CAMERA_NOT_SUPPORTED 

DRV_OA_GET_CAMERA_ERROR 

 

DRV_OA_INVALID_STRING_LENGTH 

 

DRV_OA_ANDOR_FILE_NOT_LOADED 

DRV_OA_USER_FILE_NOT_LOADED 

DRV_OA_FILE_ACCESS_ERROR 

DRV_OA_PRESET_AND_USER_FILE_N
OT_LOADED 
 

All parameters accepted. 

Null filename. 

Camera not supported. 

Unable to retrieve information about the 

model of the Camera. 

The parameter has an invalid length, i.e. 

> 255. 

Preset Andor file failed to load. 

Supplied User file failed to load. 

Failed to determine status of file. 

Failed to load Andor and User file. 
 

See also OA_WriteToFile 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 179   

 

OA_SetFloat 

unsigned int WINAPI OA_SetFloat (const char* const ModeName, const char * ModeParam, const  
float FloatValue) 

 

Description This function is used to set values for floating point type acquisition parameters where 
the new values are stored in memory.  To commit changes to file call WriteToFile(). 
 

Parameters const char* const ModeName:   The name of the mode for which an acquisition parameter 

                                                    will be edited. 

const char * const ModeParam:  The name of the acquisition parameter to be edited. 

const float FloatValue:               The value to assign to the acquisition parameter. 

Return unsigned int   

 DRV_SUCCESS 

DRV_P1INVALID                  

DRV_P2INVALID                  

DRV_OA_INVALID_STRING_LENGTH 

                

DRV_OA_MODE_DOES_NOT_EXIST 

All parameters accepted. 

Null mode name.                                               

Null mode parameter.                                

One or more of the string parameters has 

an invalid length, i.e. > 255. 

The Mode does not exist. 

 

See also OA_GetFloat, OA_EnableMode, OA_WriteToFile 

 

OA_SetInt 

  unsigned int WINAPI OA_SetInt (const char* const ModeName, const char* ModeParam, const int 
  IntValue) 

Description This function is used to set values for integer type acquisition parameters where the 
new values are stored in memory.  To commit changes to file call WriteToFile(). 

Parameters const char* const ModeName:  The name of the mode for which an acquisition parameter 

                                                   will be edited. 

const char* const ModeParam: The name of the acquisition parameter to be edited. 

const int IntValue:              The value to assign to the acquisition parameter. 

Return unsigned int   

 DRV_SUCCESS 

DRV_P1INVALID                  

DRV_P2INVALID                   

DRV_OA_INVALID_STRING_LENGTH 

              

DRV_OA_MODE_DOES_NOT_EXIST 

All parameters accepted. 

Null mode name.                                               

Null mode parameter.                                

One or more of the string parameters has 

an invalid length, i.e. > 255. 

The Mode does not exist. 

See also OA_GetInt, OA_EnableMode, OA_WriteToFile  

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 180   

 

OA_SetString 

  unsigned int WINAPI OA_SetString (const char* const ModeName, const char* ModeParam, char* 
  StringValue, const unsigned int StringLen) 
 

Description This function is used to set values for string type acquisition parameters where the 
new values are stored in memory.  To commit changes to file call WriteToFile(). 
 

Parameters const char* const ModeName:   The name of the mode for which an acquisition parameter 
is to be edited. 

const char* const ModeParam:  The name of the acquisition parameter to be edited. 

char* StringValue:               The value to assign to the acquisition parameter. 

const unsigned int StringLen:      The length of the input string. 

Return unsigned int   

 DRV_SUCCESS 

DRV_P1INVALID 

DRV_P2INVALID 

DRV_P3INVALID 

DRV_P4INVALID 

DRV_OA_INVALID_STRING_LENGTH 

 

DRV_OA_MODE_DOES_NOT_EXIST 

All parameters accepted.  

Null mode name.  

Null mode parameter.  

Null string value.  

Invalid string length 

One or more of the string parameters has 

an invalid length, i.e. > 255.  

The Mode does not exist. 

See also OA_GetString, OA_EnableMode, OA_WriteToFile 
 

OA_WriteToFile 

  unsigned int WINAPI OA_WriteToFile (const char * const FileName , unsigned int FileNameLen) 
 

Description This function will write a User defined list of modes to the User file.  The Preset file will not 
be affected. 

Parameters const char* const FileName:  The name of the file to be written to. 

unsigned int FileNameLen:     File name string length. 

Return unsigned int   

 DRV_SUCCESS 

DRV_P1INVALID 

DRV_OA_INVALID_STRING_LENGTH 

 

DRV_OA_INVALID_FILE  

 

DRV_ERROR_FILESAVE  

DRV_OA_FILE_HAS_BEEN_MODIFIED 

 

 

DRV_OA_INVALID_CHARS_IN_NAME 

All parameters accepted.  

Null filename 

One or more of the string parameters has 

an invalid length, i.e. > 255.  

Data cannot be written to the Preset Andor 

file.  

Failed to save data to file.  

File to be written to has been modified 

since last write, local copy of file may not 

be the same.  

File name contains invalid characters. 

See also OA_AddMode, OA_DeleteMode 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 181   

 

OutAuxPort 

unsigned int WINAPI OutAuxPort(int port, int state) 

Description This function sets the TTL Auxiliary Output port (P) on the Andor plug-in card to either 

ON/HIGH or OFF/LOW. 

Parameters int port: Number of AUX out port on Andor card 

 Valid Values 1 to 4 

int state: state to put port in 

 0  OFF/LOW 

 all others ON/HIGH 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_VXDNOTINSTALLED 

DRV_ERROR_ACK 

DRV_P1INVALID 

AUX port set. 

System not initialized. 

Acquisition in progress. 

VxD not loaded. 

Unable to communicate with card.  

Invalid port id. 

See also InAuxPort 

 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 182   

 

PrepareAcquisition 

unsigned int WINAPI PrepareAcquisition(void) 

Description This function reads the current acquisition setup and allocates and configures any 

memory that will be used during the acquisition. The function call is not required as it will 

be called automatically by the StartAcquisition function if it has not already been called 

externally.  

However for long kinetic series acquisitions the time to allocate and configure any 

memory can be quite long which can result in a long delay between calling 

StartAcquisition and the acquisition actually commencing. For iDus, there is an additional 

delay caused by the camera being set-up with any new acquisition parameters. Calling 

PrepareAcquisition first will reduce this delay in the StartAcquisition call. 

Parameters NONE 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_VXDNOTINSTALLED 

DRV_ERROR_ACK 

DRV_INIERROR 

DRV_ACQERROR 

DRV_ERROR_PAGELOCK 

DRV_INVALID_FILTER 

DRV_IOCERROR 

DRV_BINNING_ERROR 

Acquisition prepared. 

System not initialized. 

Acquisition in progress. 

VxD not loaded. 

Unable to communicate with card. 

Error reading “DETECTOR.INI”. 

Acquisition settings invalid. 

Unable to allocate memory.  

Filter not available for current acquisition. 

Integrate On Chip setup error. 

Range not multiple of horizontal binning. 

See also StartAcquisition, FreeInternalMemory,  

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 183   

 

PostProcessCountConvert 

unsigned int WINAPI PostProcessCountConvert(at_32 * InputImage, at_32 * OutputImage, int 

OutputBufferSize, int NumImages, int Baseline, int Mode, int EmGain, float QE, float Sensitivity, int 

Height, int Width) 

Description This function will convert the input image data to either Photons or Electrons based on 

the mode selected by the user.  The input data should be in counts. 

Parameters at32* InputImage: The input image data to be processed. 

at32* OutputImage: The output buffer to return the processed image. 

int OutputBufferSize: The size of the output buffer. 

int NumImages: The number of images if a kinetic series is supplied as the input 

                                     data. 

int Baseline:  The baseline associated with the image. 

int Mode:  The mode to use to process the data.  Valid options are: 

 1 – Convert to Electrons 

   2 – Convert to Photons 

int EmGain:  The gain level of the input image. 

float QE:  The Quantum Efficiency of the sensor. 

float Sensitivity: The Sensitivity value used to acquire the image. 

int Height:  The height of the image. 

int Width:  The width of the image. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_P1INVALID 

DRV_P2INVALID 

DRV_P4INVALID 

DRV_P5INVALID 

DRV_P6INVALID 

DRV_P7INVALID 

DRV_P8INVALID 

DRV_P9INVALID 

DRV_P10INVALID 

DRV_P11INVALID 

DRV_ERROR_BUFFSIZE 

Acquisition prepared. 

System not initialized. 

Acquisition in progress. 

Invalid pointer (i.e. NULL). 

Invalid pointer (i.e. NULL). 

Number of images less than zero. 

Baseline less than zero. 

Invalid count convert mode. 

EMGain less than zero. 

QE less than zero. 

Sensitivity less than zero. 

Height less than zero. 

Width less than zero. 

Output buffer size too small. 

See also  
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 184   

 

PostProcessNoiseFilter 

unsigned int WINAPI PostProcessNoiseFilter(at_32 * InputImage, at_32 * OutputImage, int 
OutputBufferSize, int Baseline, int Mode, float Threshold, int Height, int Width) 

 

Description This function will apply a filter to the input image and return the processed image in the 

output buffer.  The filter applied is chosen by the user by setting Mode to a permitted 

value. 

Parameters at32* InputImage: The input image data to be processed. 

at32* OutputImage: The output buffer to return the processed image. 

int OutputBufferSize: The size of the output buffer. 

int Baseline:  The baseline associated with the image. 

int Mode:  The mode to use to process the data.  Valid options are: 

 1 – Use Median Filter. 

 2 – Use Level Above Filter. 

 3 – Use Interquartile Range Filter. 

   4 – Use Noise Threshold Filter. 

float Threshold: This is the Threshold multiplier for the Median, Interquartile 

                                      and Noise Threshold filters.  For the Level Above filter this is  

                                      Threshold count above the baseline. 

int Height:  The height of the image. 

int Width:  The width of the image. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_SUPPORTED 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_P1INVALID 

DRV_P2INVALID 

DRV_P4INVALID 

DRV_P5INVALID 

DRV_P6INVALID 

DRV_P7INVALID 

DRV_P8INVALID 

DRV_ERROR_BUFFSIZE 

Acquisition prepared. 

Camera does not support Noise filter processing. 

System not initialized. 

Acquisition in progress. 

Invalid pointer (i.e. NULL). 

Invalid pointer (i.e. NULL). 

Baseline less than zero. 

Invalid Filter mode. 

Threshold value not valid for selected mode. 

Height less than zero. 

Width less than zero. 

Output buffer size too small. 

See also  
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 185   

 
 

PostProcessPhotonCounting 

unsigned int WINAPI PostProcessPhotonCounting(at_32 * InputImage, at_32 * OutputImage, int 
OutputBufferSize, int NumImages, int NumFrames, int NumberOfThresholds, float * Threshold, int 
Height, int Width) 

 

Description This function will convert the input image data to photons and return the processed 

image in the output buffer. 

Parameters at32* InputImage: The input image data to be processed. 

at32* OutputImage: The output buffer to return the processed image. 

int OutputBufferSize: The size of the output buffer. 

int NumImages: The number of images if a kinetic series is supplied as the input 

                                     data. 

int NumFrames: The number of frames per output image. 

int NumberOfThresholds: The number of thresholds provided by the user. 

float * Threshold: The Thresholds used to define a photon. 

int Height:  The height of the image. 

int Width:  The width of the image. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_P1INVALID 

DRV_P2INVALID 

DRV_P4INVALID 

DRV_P5INVALID 

DRV_P6INVALID 

DRV_P7INVALID 

DRV_P8INVALID 

DRV_P9INVALID 

DRV_ERROR_BUFFSIZE 

Acquisition prepared.                                            

System not initialized. 

Acquisition in progress. 

Invalid pointer (i.e. NULL). 

Invalid pointer (i.e. NULL). 

Number of images less than zero. 

Invalid Number of Frames requested. 

Invalid number of thresholds. 

Invalid pointer (i.e. NULL).      

Height less than zero. 

Width less than zero. 

Output buffer size too small. 

See also  
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 186   

 

SaveAsBmp 

unsigned int WINAPI SaveAsBmp(char* path, char* palette, long ymin, long ymax) 

Description This function saves the last acquisition as a bitmap file, which can be loaded into an 

imaging package. The palette parameter specifies the location of a .PAL file, which 

describes the colors to use in the bitmap. This file consists of 256 lines of ASCII text; 

each line containing three numbers separated by spaces indicating the red, green and 

blue component of the respective color value.  

The ymin and ymax parameters indicate which data values will map to the first and last 

colors in the palette: 

• All data values below or equal to ymin will be colored with the first color.  

• All values above or equal to ymax will be colored with the last color  

• All other palette colors will be scaled across values between these limits. 

Parameters char* path: The filename of the bitmap. 

char* palette: The filename of a palette file (.PAL) for applying color to the bitmap. 

long ymin, long ymax: Range of data values that palette will be scaled across. If set to 0, 

0 the palette will scale across the full range of values. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_ERROR_ACK 

DRV_P1INVALID 

DRV_ERROR_PAGELOCK 

Data successfully saved as bitmap. 

System not initialized. 

Acquisition in progress. 

Unable to communicate with card.  

Path invalid. 

File too large to be generated in memory. 

See also SaveAsSif SaveAsEDF SaveAsFITS SaveAsRaw SaveAsSPC SaveAsTiff 

NOTE: If the last acquisition was in Kinetic Series mode, each image will be saved in a separate 

Bitmap file. The filename specified will have an index number appended to it, indicating the position 

in the series. 

 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 187   

 

SaveAsCommentedSif 

unsigned int WINAPI SaveAsCommentedSif(char* path, char* comment) 

Description This function will save the data from the last acquisition into a file. The comment text will 

be added to the user text portion of the Sif file. 

Parameters char* path: pointer to a filename specified by the user. 

char* comment: comment text to add to the sif file 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_ERROR_ACK 

DRV_P1INVALID 

Data saved.  

System not initialized. 

Acquisition in progress. 

Unable to communicate with card. 

Invalid filename. 

See also SetSifComment SaveAsSif SaveAsEDF SaveAsFITS SaveAsRaw SaveAsSPC 
SaveAsTiff SaveAsBmp  

NOTE: The comment used in SIF files created with this function is discarded once the call 

completes, i.e. future calls to SaveAsSif will not use this comment. To set a persistent comment use 

the SetSifComment function. 

 

SaveAsEDF 

unsigned int WINAPI SaveAsEDF (char* szPath, int iMode) 

Description This function saves the last acquisition in the European Synchotron Radiation Facility 

Data Format (*.edf). 

Parameters char*  szPath: the filename to save too.  

int iMode: option to save to multiple files. 

Valid values: 0 Save to 1 file 

                      1 Save kinetic series to multiple files 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_ERROR_ACK 

DRV_P1INVALID 

DRV_P2INVALID 

DRV_ERROR_PAGELOCK 

Data successfully saved. 

System not initialized. 

Acquisition in progress. 

Unable to communicate with card.  

Path invalid.  

Invalid mode 

File too large to be generated in memory. 

See also SaveAsSif SaveAsFITS SaveAsRaw SaveAsSPC SaveAsTiff SaveAsBmp 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 188   

 

SaveAsFITS 

unsigned int WINAPI SaveAsFITS (char* szFileTitle, int typ) 

Description This function saves the last acquisition in the FITS (Flexible Image Transport System) 

Data Format (*.fits) endorsed by NASA. 

Parameters char* szFileTitle: the filename to save too.  

int typ: 

Valid values: 0 Unsigned 16 

                      1 Unsigned 32 

                      2 Signed 16 

                      3 Signed 32 

                      4 Float 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_ERROR_ACK 

DRV_P1INVALID 

DRV_P2INVALID 

DRV_ERROR_PAGELOCK 

Data successfully saved. 

System not initialized. 

Acquisition in progress. 

Unable to communicate with card.  

Path invalid.  

Invalid mode 

File too large to be generated in memory. 

See also SaveAsSif SaveAsEDF SaveAsRaw SaveAsSPC SaveAsTiff SaveAsBmp 

 

SaveAsRaw 

unsigned int WINAPI SaveAsRaw(char* szFileTitle, int typ) 

Description This function saves the last acquisition as a raw data file. 

Parameters char* szFileTitle: the filename to save too.  
int typ: 
Valid values: 1 Signed 16 
                      2 Signed 32 
                      3 Float 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_ERROR_ACK 

DRV_P1INVALID 

DRV_P2INVALID 

DRV_ERROR_PAGELOCK 

Data successfully saved. 

System not initialized. 

Acquisition in progress. 

Unable to communicate with card.  

Path invalid.  

Invalid mode 

File too large to be generated in memory 

See also SaveAsSif SaveAsEDF SaveAsFITS SaveAsSPC SaveAsTiff SaveAsBmp 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 189   

 

SaveAsSif 

unsigned int WINAPI SaveAsSif(char* path) 

Description This function will save the data from the last acquisition into a file, which can be read in 

by the main application. User text can be added to sif files using the 

SaveAsCommentedSif and SetSifComment functions. 

Parameters char* path: pointer to a filename specified by the user. 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_ERROR_ACK 

DRV_P1INVALID 

DRV_ERROR_PAGELOCK 

Data saved.  

System not initialized. 

Acquisition in progress. 

Unable to communicate with card. 

Invalid filename. 

File too large to be generated in memory. 

See also SaveAsEDF SaveAsFITS SaveAsRaw SaveAsSPC SaveAsTiff SaveAsBmp 
SetSifComment, SaveAsCommentedSif  

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 190   

 

SaveAsSPC 

unsigned int WINAPI SaveAsSPC (char* path) 

Description This function saves the last acquisition in the GRAMS .spc file format 

Parameters char* path: the filename to save too. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_ERROR_ACK 

DRV_P1INVALID 

DRV_ERROR_PAGELOCK 

Data successfully saved. 

System not initialized. 

Acquisition in progress. 

Unable to communicate with card.  

Path invalid.  

File too large to be generated in memory. 

See also SaveAsSif SaveAsEDF SaveAsFITS SaveAsRaw SaveAsTiff SaveAsBmp 
 

SaveAsTiff 

unsigned int WINAPI SaveAsTiff(char* path, char* palette, int position, int typ) 

Description This function saves the last acquisition as a tiff file, which can be loaded into an imaging 

package. The palette parameter specifies the location of a .PAL file, which describes the 

colors to use in the tiff. This file consists of 256 lines of ASCII text; each line containing 

three numbers separated by spaces indicating the red, green and blue component of the 

respective color value.  

The parameter position can be changed to export different scans in a kinetic series. If the 

acquisition is any other mode, position should be set to 1. The parameter typ can be set 

to 0, 1 or 2 which correspond to 8-bit, 16-bit and color, respectively 

Parameters char* path: The filename of the tiff.  

char* palette: The filename of a palette file (.PAL) for applying color to the tiff.  

int position: The number in the series, should be 1 for a single scan.  

int typ: The type of tiff file to create.  

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_ERROR_ACK 

DRV_P1INVALID  

DRV_P2INVALID  

DRV_P3INVALID  

DRV_P4INVALID 

DRV_ERROR_PAGELOCK 

Data successfully saved as tiff. 

System not initialized. 

Acquisition in progress. 

Unable to communicate with card.  

Path invalid.  

Invalid palette file 

position out of range 

type not valid 

File too large to be generated in memory. 

See also SaveAsSif SaveAsEDF SaveAsFITS SaveAsRaw SaveAsSPC SaveAsBmp 
SaveAsTiffEx 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 191   

 

SaveAsTiffEx 

unsigned int WINAPI SaveAsTiffEx(char* path, char* palette, int position, int typ, int mode) 

Description This function saves the last acquisition as a tiff file, which can be loaded into an imaging 

package. This is an extended version of the SaveAsTiff function. The palette parameter 

specifies the location of a .PAL file, which describes the colors to use in the tiff. This file 

consists of 256 lines of ASCII text; each line containing three numbers separated by 

spaces indicating the red, green and blue component of the respective color value. The 

parameter position can be changed to export different scans in a kinetic series. If the 

acquisition is any other mode, position should be set to 1. The parameter typ can be set to 

0, 1 or 2 which correspond to 8-bit, 16-bit and color, respectively. The mode parameter 

specifies the mode of output. Data can be output scaled from the min and max count 

values across the entire range of values (mode 0) or can remain unchanged (mode 1).Of 

course if the count value is higher or lower than the output data range then even in mode 1 

data will be scaled. 

Parameters char* path: The filename of the tiff.  

char* palette: The filename of a palette file (.PAL) for applying color to the tiff.  

int position: The number in the series, should be 1 for a single scan.  

int typ: The type of tiff file to create.  

int mode: The output mode 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_ERROR_ACK 

DRV_P1INVALID  

DRV_P2INVALID  

DRV_P3INVALID  

DRV_P4INVALIDDRV_P5INVALID 

DRV_ERROR_PAGELOCK 

Data successfully saved as tiff 

System not initialized. 

Acquisition in progress. 

Unable to communicate with card.  

Path invalid.  

Invalid palette file 

position out of range 

type not validmode not valid 

File too large to be generated in memory 

See also SaveAsSif SaveAsEDF SaveAsFITS SaveAsRaw SaveAsSPC SaveAsTiff SaveAsBmp 
 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 192   

 

SaveEEPROMToFile 

unsigned int WINAPI SaveEEPROMToFile(char *cFileName) 

Description THIS FUNCTION IS RESERVED. 
 

SaveToClipBoard 

unsigned int WINAPI SaveToClipBoard(char* palette) 

Description THIS FUNCTION IS RESERVED. 
 

SelectDevice 

unsigned int WINAPI SelectDevice(int devNum) 

Description THIS FUNCTION IS RESERVED. 
 

SendSoftwareTrigger 

unsigned int WINAPI SendSoftwareTrigger () 

Description This function sends an event to the camera to take an acquisition when in Software 

Trigger mode. Not all cameras have this mode available to them. To check if your camera 

can operate in this mode check the GetCapabilities function for the Trigger Mode 

AC_TRIGGERMODE_CONTINUOUS. If this mode is physically possible and other 

settings are suitable (IsTriggerModeAvailable) and the camera is acquiring then this 

command will take an acquisition. 

Parameters NONE 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_INVALID_MODE 

DRV_IDLE 

DRV_ERROR_CODES 

DRV_ERROR_ACK 

Trigger sent 

System not initialized 

Not in SoftwareTrigger mode 

Not Acquiring 

Error communicating with camera 

Previous acquisition not complete 

See also GetCapabilities, IsTriggerModeAvailable, SetAcquisitionMode, SetReadMode, 

SetTriggerMode  

NOTES The settings of the camera must be as follows: 

ReadOut mode is full image 

RunMode is Run Till Abort 

TriggerMode is 10 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 193   

 

SetAccumulationCycleTime 

unsigned int WINAPI SetAccumulationCycleTime(float time) 

Description This function will set the accumulation cycle time to the nearest valid value not less than 

the given value. The actual cycle time used is obtained by GetAcquisitionTimings. Please 

refer to SECTION 5 – ACQUISITION MODES for further information. 

Parameters float time: the accumulation cycle time in seconds. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_P1INVALID 

Cycle time accepted. 

System not initialized. 

Acquisition in progress.  

Exposure time invalid. 

See also SetNumberAccumulations, GetAcquisitionTimings 
 

SetAcqStatusEvent 

unsigned int WINAPI SetAcqStatusEvent(HANDLE statusEvent) 

Description This function passes a Win32 Event handle to the driver via which the driver can inform 

the user software that the camera has started exposing or that the camera has finished 

exposing. To determine what event has actually occurred call the 

GetCameraEventStatus funtion. This may give the user software an opportunity to 

perform other actions that will not affect the readout of the current acquisition. The 

SetPCIMode function must be called to enable/disable the events from the driver. 

Parameters HANDLE statusEvent: Win32 event handle. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_NOT_SUPPORTED 

Mode set 

System not initialized 

Function not supported for operating system 

See also GetCameraEventStatus SetPCIMode 

NOTE This is only available with the CCI23 PCI card. 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 194   

 

SetAcquisitionMode 

unsigned int WINAPI SetAcquisitionMode(int mode) 

Description This function will set the acquisition mode to be used on the next StartAcquisition. 

Parameters int mode: the acquisition mode. 

Valid values:  

  1 Single Scan 

  2 Accumulate 

  3 Kinetics 

  4 Fast Kinetics 

  5 Run till abort 

   

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID 

Acquisition mode set. 

System not initialized. 

Acquisition in progress. 

Acquisition Mode invalid. 

See also StartAcquisition 

NOTE: In Mode 5 the system uses a “Run Till Abort” acquisition mode. In Mode 5 only, the camera 

continually acquires data until the AbortAcquisition function is called. By using the SetDriverEvent 

function you will be notified as each acquisition is completed.  

 

SetAcquisitionType 

unsigned int WINAPI SetAcquisitionType (int typ) 

Description THIS FUNCTION IS RESERVED. 
 

SetADChannel 

unsigned int WINAPI SetADChannel(int channel) 

Description This function will set the AD channel to one of the possible A-Ds of the system. This AD 

channel will be used for all subsequent operations performed by the system. 

Parameters int index: the channel to be used 

Valid values: 0 to GetNumberADChannels-1 

Return unsigned int   

 DRV_SUCCESS  

DRV_P1INVALID 

AD channel set.  

Index is out off range. 

See also GetNumberADChannels 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 195   

 

SetAdvancedTriggerModeState 

unsigned int WINAPI SetAdvancedTriggerModeState (int iState) 

Description This function will set the state for the iCam functionality that some cameras are capable 

of. There may be some cases where we wish to prevent the software using the new 

functionality and just do it the way it was previously done. 

Parameters int iState: 

0: turn off iCam  

1: Enable iCam. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_P1INVALID 

State set 

System not initialized 

state invalid 

See also iCam 

NOTE By default the advanced trigger functionality is enabled. 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 196   

 

SetBackground 

unsigned int WINAPI SetBackground(at_32* arr, unsigned long size) 

Description THIS FUNCTION IS RESERVED. 
 

SetBaselineClamp 

unsigned int WINAPI SetBaselineClamp(int state) 

Description This function turns on and off the baseline clamp functionality. With this feature enabled 

the baseline level of each scan in a kinetic series will be more consistent across the 

sequence. 

Parameters int state: Enables/Disables Baseline clamp functionality 

  1 – Enable Baseline Clamp 

  0 – Disable Baseline Clamp 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_NOT_SUPPORTED 

DRV_P1INVALID 

Parameters set. 

System not initialized. 

Acquisition in progress. 

Baseline Clamp not supported on this camera 

State parameter was not zero or one. 

 

SetBaselineOffset 

unsigned int WINAPI SetBaselineOffset(int offset) 

Description This function allows the user to move the baseline level by the amount selected. For 

example “+100” will add approximately 100 counts to the default baseline value. The 

value entered should be a multiple of 100 between -1000 and +1000 inclusively. 

Parameters Int offset: Amount to offset baseline by 

Return unsigned int   

 
 
DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_NOT_AVAILABLE 

DRV_ACQUIRING 

DRV_P1INVALID 

 
Parameters set 

System not initialized 

Baseline Clamp not available for this camera 

Acquisition in progress 

Offset out of range 

NOTE Only available on iXon range  
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 197   

 

SetCameraStatusEnable 

unsigned int WINAPI SetCameraStatusEnable(DWORD Enable) 

Description Use this function to Mask out certain types of acquisition status events. The default is to 

notify on every type of event but this may cause missed events if different types of event 

occur very close together. The bits in the mask correspond to the following event types: 

 0 – Fire pulse down event 

 1 – Fire pulse up event 

Set the corresponding bit to 0 to disable the event type and 1 to enable the event type. 

Parameters DWORD Enable: bitmask with bits set for those events about which you wish to be 

notified. 

Return unsigned int   

 DRV_SUCCESS 

DRV_VXDNOTINSTALLED 

Mask Set. 

Device Driver not installed. 

See also SetAcqStatusEvent SetPCIMode 

NOTE Only available with PCI systems using the CCI-23 controller card 

Fire pulse up event not available on USB systems. 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 198   

 

SetComplexImage 

unsigned int WINAPI SetComplexImage(int numAreas, int* areas) 

Description This is a function that allows the setting up of random tracks with more options that the 
SetRandomTracks function. 

The minimum number of tracks is 1. The maximum number of tracks is the number of 
vertical pixels. 

There is a further limit to the number of tracks that can be set due to memory constraints 
in the camera. It is not a fixed number but depends upon the combinations of the tracks. 
For example, 20 tracks of different heights will take up more memory than 20 tracks of 
the same height. 

If attempting to set a series of random tracks and the return code equals 
DRV_RANDOM_TRACK_ERROR, change the makeup of the tracks to have more 
repeating heights and gaps so less memory is needed. 

Each track must be defined by a group of six integers.  

-The top and bottom positions of the tracks. 
-The left and right positions for the area of interest within each track 
-The horizontal and vertical binning for each track. 

The positions of the tracks are validated to ensure that the tracks are in increasing order. 
 
The left and right positions for each track must be the same. 
For iXon the range is between 8 and CCD width, inclusive  
For idus the range must be between 257 and CCD width, inclusive. 

Horizontal binning must be an integer between 1 and 64 inclusive, for iXon. 
Horizontal binning is not implementated for iDus and must be set to 1.  
Vertical binning is used in the following way. A track of: 
1 10 1 1024 1 2 

is actually implemented as 5 tracks of height 2. . Note that a vertical binning of 1 will have 
the effect of vertically binning the entire track; otherwise vertical binning will operate as 
normal. 
1 2 1 1024 1 1 
3 4 1 1024 1 1 
5 6 1 1024 1 1 
7 8 1 1024 1 1 
9 10 1 1024 1 1 

Parameters int numAreas: 

int * areas:  

Return Unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_P1INVALID 

DRV_P2INVALID 

DRV_ERROR_FILELOAD 

DRV_RANDOM_TRACK_ERROR 

Success 

System not initialized. 

Acquisition in progress. 

Number of tracks invalid. 

Track positions invalid. 

Serious internal error 

Invalid combination of tracks, out of memory or 

mode not available. 

See also SetRandomTracks 

NOTE Only available with iXon+ and USB cameras. 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 199   

 

SetCoolerMode 

unsigned int WINAPI SetCoolerMode(int mode) 

Description This function determines whether the cooler is switched off when the camera is shut 
down. 

Parameters int mode:  

1 – Temperature is maintained on ShutDown 

0 – Returns to ambient temperature on ShutDown 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_P1INVALID 

DRV_NOT_SUPPORTED 

Parameters set. 

System not initialized. 

Acquisition in progress. 

State parameter was not zero or one. 

Camera does not support  

NOTE: Mode 0 not available on Luca R cameras – always cooled to -20. 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 200   

 

SetCountConvertMode 

unsigned int WINAPI SetCountConvertMode(int mode) 

Description This function configures the Count Convert mode. 

Parameters int mode:  

0 – Data in Counts 

1 – Data in Electrons 

2 – Data in Photons 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_NOT_AVAILABLE 

DRV_P1INVALID 

Count Convert mode set. 

System not initialized. 

Acquisition in progress. 

Count Convert not available for this camera 

Mode parameter was out of range. 

See also GetCapabilities, SetCountConvertWavelength 

 

SetCountConvertWavelength 

unsigned int WINAPI SetCountConvertWavelength(float wavelength) 

Description This function configures the wavelength used in Count Convert mode. 

Parameters float wavelength: wavelength used to determine QE 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_NOT_AVAILABLE 

DRV_P1INVALID 

Count Convert wavelength set. 

System not initialized. 

Acquisition in progress. 

Count Convert not available for this camera 

Wavelength value was out of range. 

See also GetCapabilities, SetCountConvertMode 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 201   

 

SetCropMode 

unsigned int WINAPI SetCropMode (int active, int cropHeight, int reserved) 

Description This function effectively reduces the height of the CCD by excluding some rows to 

achieve higher frame rates. This is currently only available on Newton cameras when the 

selected read mode is Full Vertical Binning. The cropHeight is the number of active rows 

measured from the bottom of the CCD. 

Note: it is important to ensure that no light falls on the excluded region otherwise the 

acquired data will be corrupted. 

Parameters int active:   1 - Crop mode is ON 

                  0 – Crop mode is OFF 

int cropHeight: The selected crop height. This value must be between 1 and the CCD 

                        height 

int reserved: This value should be set to 0. 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIAILIZED 

DRV_ACQUIRING 

DRV_P1INVALID 

DRV_P2INVALID 

 

DRV_P3INVALID 

DRV_NOT_SUPPORTED 

Parameters set. 

System not initialized. 

Acquisition in progress. 

Active parameter is not zero or one. 

Cropheight parameter is less than one or greater than 

the CCD height. 

Reserved parameter is not equal to zero. 

Either the camera is not a Newton or the read mode is 

not Full Vertical Binning. 

See also GetDetector SetIsolatedCropMode 

NOTE :  Available on Newton 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 202   

 

SetCurrentCamera 

unsigned int WINAPI SetCurrentCamera(long cameraHandle) 

Description When multiple Andor cameras are installed this function allows the user to select which 

camera is currently active.  Once a camera has been selected the other functions can be 

called as normal but they will only apply to the selected camera.  If only 1 camera is 

installed calling this function is not required since that camera will be selected by default. 

Parameters long cameraHandle: Selects the active camera 

Return unsigned int  

 

 

 DRV_SUCCESS 
DRV_P1INVALID 

Camera successfully selected. 
Invalid camera handle. 

SEE ALSO :  GetCurrentCamera, GetAvailableCameras, GetCameraHandle  
 

SetCustomTrackHBin 

unsigned int WINAPI SetCustomTrackHBin(int bin) 

Description This function sets the horizontal binning value to be used when the readout mode is set 

to Random Track.  

Parameters Int bin: Binning size. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID 

Binning set. 

System not initialized. 

Acquisition in progress. 

Invalid binning size. 

See also SetReadMode 

NOTE: For iDus, it is recommended that you set horizontal binning to 1 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 203   

 

SetDACOutputScale 

unsigned int WINAPI SetDACOutputScale(int scale) 

Description Clara offers 2 configurable precision 16-bit DAC outputs.  This function should be used to 

select the active one. 

Parameters int scale: 5 or 10 volt DAC range (1/2). 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_NOT_AVAILABLE 

DRV_P1INVALID 

DAC Scale option accepted. 

System not initialized. 

Acquisition in progress. 

Feature not available 

DAC Scale value invalid. 

See also SetDACOutput 

NOTE: Only available on Andor Clara  
 
 

SetDACOutput 

unsigned int WINAPI SetDACOutput(int option, int resolution, int value) 

Description Clara offers 2 configurable precision 16-bit DAC outputs.  This function should be used to 

set the required voltage. 

Parameters int option: DAC Output  Scale 1 or 2 (1/2). 

int resolution: resolution of DAC can be set from 2 to 16-bit in steps of 2 

int value: requested DAC value (for particular resolution) 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_NOT_AVAILABLE 

DRV_P1INVALID  

DRV_P2INVALID  

DRV_P3INVALID 

DAC Scale option accepted. 

System not initialized. 

Acquisition in progress. 

Feature not available. 

DAC range value invalid. 

Resolution unavailable. 

Requested value not within DAC range. 

See also SetDACOutputScale 

NOTE: Only available on Andor Clara  
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 204   

 
 

SetDataType 

unsigned int WINAPI SetDataType (int typ) 

Description THIS FUNCTION IS RESERVED.  
 

SetDDGAddress 

unsigned int WINAPI SetDDGAddress(BYTE t0, BYTE t1, BYTE t2, BYTE t3, BYTE address) 

Description THIS FUNCTION IS RESERVED.  
 
 

SetDDGGain 

unsigned int WINAPI SetDDGGain(int gain) 

Description Deprecated for SetMCPGain. 

 
 

SetDDGGateStep 

unsigned int WINAPI SetDDGGateStep(double step_Renamed) 

Description This function will set a constant value for the gate step in a kinetic series. The lowest 

available resolution is 25 picoseconds and the maximum permitted value is 25 seconds. 

Parameters double step_Renamed: gate step in picoseconds. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_ERROR_ACK 

DRV_P1INVALID 

Gate step set. 

System not initialized. 

Acquisition in progress. 

Unable to communicate with card. 

Gate step invalid. 

See also SetDDGTimes, SetDDGVariableGateStep 

NOTE: Available on iStar. 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 205   

 

SetDDGInsertionDelay 

unsigned int WINAPI SetDDGInsertionDelay(int state) 

Description This function controls the length of the insertion delay. 

Parameters int state: NORMAL/FAST switch for insertion delay. 

Valid values: 0 to set normal insertion delay. 

  1 to set fast insertion delay. 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_I2CTIMEOUT 

DRV_I2CDEVNOTFOUND 

DRV_ERROR_ACK 

Value for delay accepted. 

System not initialized. 

Acquisition in progress. 

I2C command timed out. 

I2C device not present. 

Unable to communicate with card.  

See also SetDDGIntelligate 

NOTE: Available on iStar. 
 
 

SetDDGIntelligate 

unsigned int WINAPI SetDDGIntelligate(int state) 

Description This function controls the MCP gating. Not available when the fast insertion delay option 

is selected. 

Parameters int state: ON/OFF switch for the MCP gating. 
Valid values: 0 to switch MCP gating OFF. 
  1 to switch MCP gating ON. 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_I2CTIMEOUT 

DRV_I2CDEVNOTFOUND 

DRV_ERROR_ACK 

Intelligate option accepted. 

System not initialized. 

Acquisition in progress. 

I2C command timed out. 

I2C device not present. 

Unable to communicate with card.  

See also SetDDGInsertionDelay 

NOTE: Available on iStar. 

 
 
 
 
 
 
 
 
 
 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 206   

 
 

SetDDGIOC 

unsigned int WINAPI SetDDGIOC(int state) 

Description This function activates the integrate on chip (IOC) option. 

Parameters int integrate: ON/OFF switch for the IOC option. 
Valid values: 0 to switch IOC OFF. 
  1 to switch IOC ON. 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_I2CTIMEOUT 

DRV_I2CDEVNOTFOUND 

DRV_ERROR_ACK 

IOC option accepted. 

System not initialized. 

Acquisition in progress. 

I2C command timed out. 

I2C device not present. 

Unable to communicate with card.  

See also SetDDGIOCFrequency GetDDGIOCFrequency SetDDGIOCNumber 
GetDDGIOCNumber GetDDGIOCPulses 

NOTE: Available on iStar. 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 207   

 

SetDDGIOCFrequency 

unsigned int WINAPI SetDDGIOCFrequency(double frequency) 

Description This function sets the frequency of the integrate on chip option. It should be called once 

the conditions of the experiment have been setup in order for correct operation. The 

frequency should be limited to 5000Hz when Intelligate is activated to prevent damage to 

the head and 50000Hz otherwise to prevent the gater from overheating. The 

recommended order is 

… 

Experiment setup (exposure time, readout mode, gate parameters, …) 

… 

SetDDGIOCFrequency (x) 

SetDDGIOC(true) 

GetDDGIOCPulses(y)  

StartAcquisition() 

Parameters double frequency: frequency of IOC option in Hz. 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_I2CTIMEOUT 

DRV_I2CDEVNOTFOUND 

DRV_ERROR_ACK 

Value for frequency accepted. 

System not initialized. 

Acquisition in progress. 

I2C command timed out. 

I2C device not present. 

Unable to communicate with card.  

See also GetDDGIOCFrequency SetDDGIOCNumber GetDDGIOCNumber GetDDGIOCPulses 
SetDDGIOC 

NOTE: Available on iStar. 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 208   

 

SetDDGIOCNumber 

unsigned int WINAPI SetDDGIOCNumber(unsigned long numberPulses) 

Description This function allows the user to limit the number of pulses used in the integrate on chip 

option at a given frequency. It should be called once the conditions of the experiment 

have been setup in order for correct operation. 

Parameters unsigned long numberPulses: the number of integrate on chip pulses triggered within the 

fire pulse. 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_I2CTIMEOUT 

DRV_I2CDEVNOTFOUND 

DRV_ERROR_ACK 

Value for IOC number accepted 

System not initialized 

Acquisition in progress 

I2C command timed out 

I2C device not present 

Unable to communicate with card 

See also SetDDGIOCFrequency GetDDGIOCFrequency GetDDGIOCNumber GetDDGIOCPulses 

SetDDGIOC 

NOTE: Available on iStar. 
 
 

SetDDGTimes 

unsigned int WINAPI SetDDGTimes(double t0, double t1, double t2) 

Description This function sets the properties of the gate pulse. t0 has a resolution of 16 nanoseconds 

whilst t1 and t2 have a resolution of 25 picoseconds. 

Parameters double t0: output A delay in nanoseconds.  

double t1: gate delay in picoseconds. 

double t2: pulse width in picoseconds. 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_I2CTIMEOUT 

DRV_I2CDEVNOTFOUND 

DRV_ERROR_ACK 

P1_INVALID 

P2_INVALID 

P3_INVALID 

Values for gate pulse accepted. 

System not initialized. 

Acquisition in progress. 

I2C command timed out. 

I2C device not present. 

Unable to communicate with card. 

Invalid output A delay. 

Invalid gate delay. 

Invalid pulse width. 

See also SetDDGGateStep 

NOTE: Available on iStar. 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 209   

 

SetDDGTriggerMode 

unsigned int WINAPI SetDDGTriggerMode(int mode) 

Description This function will set the trigger mode of the internal delay generator to either Internal or 

External 

Parameters int mode: trigger mode 

Valid values: 

  0 Internal 

  1 External 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_ERROR_ACK 

DRV_P1INVALID 

Trigger mode set. 

System not initialized. 

Acquisition in progress. 

Unable to communicate with card. 

Trigger mode invalid. 

NOTE: Available on iStar. 

 
 

SetDDGVariableGateStep 

unsigned int WINAPI SetDDGVariableGateStep(int mode, double p1, double p2) 

Description This function will set a varying value for the gate step in a kinetic series. The lowest 

available resolution is 25 picoseconds and the maximum permitted value is 25 seconds. 

Parameters int mode: the gate step mode. 

Valid values: 1 Exponential (p1*exp(p2*n)) 

  2 Logarithmic (p1*log(p2*n)) 

  3 Linear (p1 + p2*n)  

n = 1, 2, …, number in kinetic series 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_ERROR_ACK 

DRV_P1INVALID 

Gate step mode set. 

System not initialized. 

Acquisition in progress. 

Unable to communicate with card. 

Gate step mode invalid. 

See also StartAcquisition 

NOTE: Available on iStar. 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 210   

 

SetDelayGenerator 

unsigned int WINAPI SetDelayGenerator(int board, short address, int typ) 

Description This function sets parameters to control the delay generator through the GPIB card in 

your computer. 

Parameters int board: The GPIB board number of the card used to interface with the Delay 

Generator. 

short address: The number that allows the GPIB board to identify and send commands to 

the delay generator. 

Int typ: The type of your Delay Generator. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ERROR_ACK 

DRV_ACQUIRING 

DRV_P1INVALID 

DRV_P2INVALID 

DRV_P3INVALID 

Delay Generator set up. 

System not initialized.  

Unable to communicate with card. 

Acquisition in progress. 

GPIB board invalid. 

GPIB address invalid 

Delay generator type invalid. 

See also SetGate  

NOTE: Available on ICCD. 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 211   

 

SetDMAParameters 

unsigned int WINAPI SetDMAParameters(int MaxImagesPerDMA, float SecondsPerDMA) 

Description In order to facilitate high image readout rates the controller card may wait for multiple 

images to be acquired before notifying the SDK that new data is available. Without this 

facility, there is a chance that hardware interrupts may be lost as the operating system 

does not have enough time to respond to each interrupt. The drawback to this is that you 

will not get the data for an image until all images for that interrupt have been acquired.  

There are 3 settings involved in determining how many images will be acquired for each 

notification (DMA Interrupt) of the controller card and they are as follows: 

1. The size of the DMA buffer gives an upper limit on the number of images that 

can be stored within it and is usually set to the size of one full image when 

installing the software. This will usually mean that if you acquire full frames there 

will never be more than one image per DMA.  

2. A second setting that is used is the maximum amount of time(SecondsPerDMA) 

that should expire between interrupts. This can be used to give an indication of 

the reponsiveness of the operating system to interrupts. Decreasing this value 

will allow more interrupts per second and should only be done for faster pcs. The 

default value is 0.03s (30ms), finding the optimal value for your pc can only be 

done through experimentation.  

3. The third setting is an overide to the number of images calculated using the 

previous settings. If the number of images per dma is calculated to be greater 

than MaxImagesPerDMA then it will be reduced to MaxImagesPerDMA. This can 

be used to, for example, ensure that there is never more than 1 image per DMA 

by setting MaxImagesPerDMA to 1. Setting MaxImagesPerDMA to zero removes 

this limit. Care should be taken when modifying these parameters as missed 

interrupts may prevent the acquisition from completing. 

Parameters int MaxImagesPerDMA: Override to the number of images per DMA if the calculated 

value is higher than this. (Default=0, ie. no override) 

float SecondsPerDMA: Minimum amount of time to elapse between interrrupts. 

(Default=0.03s)  

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_P1INVALID 

DRV_P2INVALID 

DMA Parameters setup successfully. 

System not initialized.  

MaxImagesPerDMA invalid  

SecondsPerDMA invalid 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 212   

 

SetDriverEvent 

unsigned int WINAPI SetDriverEvent(HANDLE driverEvent) 

Description This function passes a Win32 Event handle to the SDK via which the the user software 

can be informed that something has occurred. For example the SDK can “set” the event 

when an acquisition has completed thus relieving the user code of having to continually 

pole to check on the status of the acquisition.  

The event will be “set” under the follow conditions: 

1) Acquisition completed or aborted. 

2) As each scan during an acquisition is completed. 

3) Temperature as stabilized, drifted from stabilization or could not be reached. 

When an event is triggered the user software can then use other SDK functions to 

determine what actually happened. 

Condition 1 and 2 can be tested via GetStatus function, while condition 3 checked via 

GetTemperature function. 

You must reset the event after it has been handled in order to receive additional triggers. 

Before deleting the event you must call SetDriverEvent with NULL as the parameter. 

Parameters HANDLE driverEvent: Win32 event handle. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_NOT_SUPPORTED 

Event set. 

System not initialized.  

Function not supported for operating system 

See also GetStatus GetTemperature GetAcquisitionProgress 

NOTE: Not all programming environments allow the use of multiple threads and WIN32 events. 

 
 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 213   

 
 

SetDualExposureMode 

unsigned int WINAPI SetDualExposureMode(int mode) 

Description This function turns on and off the option to acquire 2 frames for each external trigger 

pulse.  This mode is only available for certain sensors in run till abort mode, external 

trigger, full image. 

Parameters int state: Enables/Disables dual exposure mode 

  1 – Enable mode 

  0 – Disable mode 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_NOT_SUPPORTED 

DRV_ACQUIRING 

DRV_P1INVALID 

Parameters set. 

System not initialized.  

Dual exposure mode not supported on this camera. 

Acquisition in progress. 

Mode parameter was not zero or one. 

See also GetCapabilities, SetDualExposureTimes, GetDualExposureTimes 

 
 

SetDualExposureTimes 

unsigned int WINAPI SetDualExposureTimes(float exposure1, float exposure2) 

Description This function configures the two exposure times used in dual exposure mode.  This mode 

is only available for certain sensors in run till abort mode, external trigger, full image. 

Parameters float exposure1: the exposure time in seconds for each odd numbered frame. 

float exposure2: the exposure time in seconds for each even numbered frame. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_NOT_SUPPORTED 

DRV_ACQUIRING  

DRV_P1INVALID 

DRV_P2INVALID 

Parameters set. 

System not initialized.  

Dual exposure mode not supported on this camera. 

Acquisition in progress. 

First exposure out of range. 

Second exposure out of range. 

See also GetCapabilities, SetDualExposureMode, GetDualExposureTimes 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 214   

 

SetEMAdvanced 

unsigned int WINAPI SetEMAdvanced(int state) 

Description This function turns on and off access to higher EM gain levels within the SDK.  Typically, 

optimal signal to noise ratio and dynamic range is achieved between x1 to x300 EM Gain. 

Higher gains of > x300 are recommended for single photon counting only. Before using 

higher levels, you should ensure that light levels do not exceed the regime of tens of 

photons per pixel, otherwise accelerated ageing of the sensor can occur. 

Parameters int state: Enables/Disables access to higher EM gain levels 

  1 – Enable access 

  0 – Disable access 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_NOT_AVAILABLE 

DRV_ACQUIRING. 

DRV_P1INVALID 

Parameters set. 

System not initialized.  

Advanced EM gain not available for this camera. 

Acquisition in progress. 

State parameter was not zero or one. 

See also GetCapabilities, GetEMCCDGain, SetEMCCDGain, SetEMGainMode 

 
 

SetEMCCDGain 

unsigned int WINAPI SetEMCCDGain(int gain) 

Description Allows the user to change the gain value. The valid range for the gain depends on what 

gain mode the camera is operating in. See SetEMGainMode to set the mode and 

GetEMGainRange to get the valid range to work with.  To access higher gain values 

(>x300) see SetEMAdvanced.  

Parameters int gain: amount of gain applied. 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_I2CTIMEOUT 

DRV_I2CDEVNOTFOUND 

DRV_ERROR_ACK 

DRV_P1INVALID 

Value for gain accepted. 

System not initialized. 

Acquisition in progress. 

I2C command timed out. 

I2C device not present. 

Unable to communicate with card.  

Gain value invalid. 

See also GetEMCCDGain  SetEMGainMode GetEMGainRange SetEMAdvanced 

NOTE: Only available on EMCCD sensor systems.  
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 215   

 

SetEMClockCompensation 

unsigned int WINAPI SetEMClockCompensation(int EMClockCompensationFlag) 

Description THIS FUNCTION IS RESERVED. 
 

SetEMGainMode 

unsigned int WINAPI SetEMGainMode(int mode) 

Description Set the EM Gain mode to one of the following possible settings.  

Mode 0: The EM Gain is controlled by DAC settings in the range 0-255. Default mode.  

         1: The EM Gain is controlled by DAC settings in the range 0-4095.  

         2: Linear mode.  

         3: Real EM gain 

To access higher gain values (if available) it is necessary to enable advanced EM gain, 

see SetEMAdvanced. 

Parameters int mode: EM Gain mode. 

Return   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID 

Mode set. 

System not initialized. 

Acquisition in progress.  

EM Gain mode invalid. 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 216   

 

SetExposureTime 

unsigned int WINAPI SetExposureTime(float time) 

Description This function will set the exposure time to the nearest valid value not less than the given 

value. The actual exposure time used is obtained by GetAcquisitionTimings. . Please 

refer to SECTION 5 – ACQUISITION MODES for further information. 

Parameters float time: the exposure time in seconds. 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID 

Exposure time accepted. 

System not initialized. 

Acquisition in progress. 

Exposure Time invalid. 

See also GetAcquisitionTimings 

NOTE: For Classics, if the current acquisition mode is Single-Track, Multi-Track or Image then this 

function will actually set the Shutter Time. The actual exposure time used is obtained from the 

GetAcquisitionTimings function. 

 

SetFanMode 

unsigned int WINAPI SetFanMode(int mode) 

Description Allows the user to control the mode of the camera fan. If the system is cooled, the fan 

should only be turned off for short periods of time. During this time the body of the 

camera will warm up which could compromise cooling capabilities.  

If the camera body reaches too high a temperature, depends on camera, the buzzer will 

sound. If this happens, turn off the external power supply and allow the system to 

stabilize before continuing. 

Parameters int mode: fan on full (0) 

                fan on low (1) 

                fan off (2) 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_I2CTIMEOUT 

DRV_I2CDEVNOTFOUND 

DRV_ERROR_ACK 

DRV_P1INVALID 

Value for mode accepted. 

System not initialized. 

Acquisition in progress. 

I
2
C command timed out. 

I
2
C device not present. 

Unable to communicate with card.  

Mode value invalid. 

See also GetCapabilities 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 217   

 

SetFastKinetics 

unsigned int WINAPI SetFastKinetics(int exposedRows int seriesLength, float time, int mode, int 

hbin, int vbin) 

Description This function will set the parameters to be used when taking a fast kinetics acquisition. 

Parameters int exposedRows: sub-area height in rows. 

int seriesLength: number in series. 

float time: exposure time in seconds. 

int mode: binning mode (0 – FVB , 4 – Image). 

int hbin: horizontal binning. 

int vbin: vertical binning (only used when in image mode). 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID 

DRV_P2INVALID 

DRV_P3INVALID 

DRV_P4INVALID 

DRV_P5INVALID 

DRV_P6INVALID 

All parameters accepted. 

System not initialized. 

Acquisition in progress.  

Invalid height. 

Invalid number in series. 

Exposure time must be greater than 0. 

Mode must be equal to 0 or 4. 

Horizontal binning. 

Vertical binning. 

See also SetFKVShiftSpeed SetFastKineticsEx 

NOTE: For classic cameras the vertical and horizontal binning must be 1 

             For iDus, it is recommended that you set horizontal binning to 1 

 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 218   

 

SetFastKineticsEx 

unsigned int WINAPI SetFastKineticsEx(int exposedRows, int seriesLength, float time, int mode, int 

hbin, int vbin, int offset) 

Description This function is the same as SetFastKinetics with the addition of an Offset parameter, 

which will inform the SDK of the first row to be used. 

Parameters int exposedRows: sub-area height in rows. 

int seriesLength: number in series. 

float time: exposure time in seconds. 

int mode: binning mode (0 – FVB , 4 – Image).  

int hbin: horizontal binning. 

int vbin: vertical binning (only used when in image mode). 

Int offset: offset of first row to be used in Fast Kinetics from the bottom of the CCD. 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID 

DRV_P2INVALID 

DRV_P3INVALID 

DRV_P4INVALID 

DRV_P5INVALID 

DRV_P6INVALID 

DRV_P7INVALID 

All parameters accepted. 

System not initialized. 

Acquisition in progress.  

Invalid height. 

Invalid number in series. 

Exposure time must be greater than 0. 

Mode must be equal to 0 or 4. 

Horizontal binning. 

Vertical binning. 

Offset not within CCD limits 

See also SetFKVShiftSpeed SetFastKinetics 

NOTE: For classic cameras the offset must be 0 and the vertical and horizontal binning must be 1 

             For iDus, it is recommended that you set horizontal binning to 1 

 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 219   

 

SetFastExtTrigger 

unsigned int WINAPI SetFastExtTrigger(int mode) 

Description This function will enable fast external triggering. When fast external triggering is enabled 

the system will NOT wait until a “Keep Clean” cycle has been completed before 

accepting the next trigger. This setting will only have an effect if the trigger mode has 

been set to External via SetTriggerMode. 

Parameters int mode:  

 0 Disabled 

 1 Enabled 

Return unsigned int  

 DRV_SUCCESS Parameters accepted. 

See also SetTriggerMode 
 

SetFilterMode 

unsigned int WINAPI SetFilterMode(int mode) 

Description This function will set the state of the cosmic ray filter mode for future acquisitions. If the 

filter mode is on, consecutive scans in an accumulation will be compared and any cosmic 

ray-like features that are only present in one scan will be replaced with a scaled version 

of the corresponding pixel value in the correct scan. 

Parameters int mode: current state of filter 

 0 OFF 

 2 ON 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID 

Filter mode set. 

System not initialized. 

Acquisition in progress.  

Mode is out off range. 

See also GetFilterMode 
 

SetFilterParameters 

unsigned int WINAPI SetFilterParameters (int width, float sensitivity, int range, float accept, int 

smooth, int noise) 

Description THIS FUNCTION IS RESERVED. 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 220   

 

SetFKVShiftSpeed 

unsigned int WINAPI SetFKVShiftSpeed(int index) 

Description This function will set the fast kinetics vertical shift speed to one of the possible speeds of 

the system. It will be used for subsequent acquisitions. 

Parameters int index: the speed to be used 

 Valid values 0 to GetNumberFKVShiftSpeeds-1 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID 

Fast kinetics vertical shift speed set. 

System not initialized. 

Acquisition in progress.  

Index is out off range. 

See also GetNumberFKVShiftSpeeds, GetFKVShiftSpeedF  

NOTE:  Only available if camera is Classic or iStar. 
 

SetFPDP 

unsigned int WINAPI SetFPDP(int state) 

Description THIS FUNCTION IS RESERVED. 
 

SetFrameTransferMode 

unsigned int WINAPI SetFrameTransferMode (int mode) 

Description This function will set whether an acquisition will readout in Frame Transfer Mode. If the 
acquisition mode is Single Scan or Fast Kinetics this call will have no affect. 

Parameters int mode: mode 

 0  OFF 

 1  ON 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID 

Frame transfer mode set. 

System not initialized. 

Acquisition in progress.  

Invalid parameter. 

See also SetAcquisitionMode 

NOTE:  Only available if CCD is a Frame Transfer chip. 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 221   

 

SetFullImage 

unsigned int WINAPI SetFullImage(int hbin, int vbin) 

Description Deprecated see Note: 

This function will set the horizontal and vertical binning to be used when taking a full 

resolution image. 

Parameters int hbin: number of pixels to bin horizontally 

int vbin: number of pixels to bin vertically 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID 

DRV_P2INVALID 

Binning parameters accepted 

System not initialized 

Acquisition in progress 

Horizontal binning parameter invalid 

Vertical binning parameter invalid 

See also SetReadMode 

NOTE: Deprecated by SetImage 
 

SetFVBHBin 

unsigned int WINAPI SetFVBHBin(int bin) 

Description This function sets the horizontal binning used when acquiring in Full Vertical Binned read 

mode.  

Parameters Int bin: Binning size. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID 

Binning set. 

System not initialized. 

Acquisition in progress. 

Invalid binning size. 

See also SetReadMode 

NOTE:   1) If the detector width is not a multiple of the binning DRV_BINNING_ERROR will be  

                     returned from PrepareAcquisition and/or StartAcquisition 

              2) For iDus, it is recommended that you set horizontal binning to 1 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 222   

 

SetGain 

unsigned int WINAPI SetGain(int gain) 

Description Deprecated for SetMCPGain. 

 

SetGate 

unsigned int WINAPI SetGate(float delay, float width, float step_Renamed) 

Description This function sets the Gater parameters for an ICCD system. The image intensifier of the 

Andor ICCD acts as a shutter on nanosecond time-scales using a process known as 

gating. 

Parameters float delay: Sets the delay(>=0) between the T0 and C outputs on the SRS box to delay 

nanoseconds. 

float width: Sets the width(>=0) of the gate in nanoseconds 

float step_Renamed: Sets the amount(<>0, in nanoseconds) by which the gate position 

is moved in time after each scan in a kinetic series. 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ERROR_ACK 

DRV_ACQUIRING 

DRV_GPIBERROR 

DRV_P1INVALID 

DRV_P2INVALID 

DRV_P3INVALID 

Gater parameters set. 

System not initialized. 

Unable to communicate with card. 

Acquisition in progress. 

Error communicating with GPIB card.  

Invalid delay 

Invalid width. 

Invalid step. 

See also SetDelayGenerator  

NOTE: Available on ICCD. 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 223   

 

SetGateMode 

unsigned int WINAPI SetGateMode(int gatemode) 

Description Allows the user to control the photocathode gating mode. 

Parameters int gatemode: the gate mode. 

Valid values: 0 Fire ANDed with the Gate input. 

  1 Gating controlled from Fire pulse only. 

  2 Gating controlled from SMB Gate input only. 

  3 Gating ON continuously. 

  4 Gating OFF continuously. 

  5 Gate using DDG (iStar only). 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_I2CTIMEOUT 

DRV_I2CDEVNOTFOUND 

DRV_ERROR_ACK 

DRV_P1INVALID 

Gating mode accepted. 

System not initialized. 

Acquisition in progress. 

I
2
C command timed out.  

I
2
C device not present. 

Unable to communicate with card.  

Gating mode invalid. 

See also SetMCPGain, SetMCPGating 

NOTE: Available on iStar. 

 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 224   

 

SetHighCapacity 

unsigned int WINAPI SetHighCapacity(int state) 

Description This function switches between high sensitivity and high capacity functionality. With high 

capacity enabled the output amplifier is switched to a mode of operation which reduces 

the responsivity thus allowing the reading of larger charge packets during binning 

operations. 

Parameters int state: Enables/Disables High Capacity functionality 

  1 – Enable High Capacity (Disable High Sensitivity)  

  0 – Disable High Capacity (Enable High Sensitivity)  

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_P1INVALID 

Parameters set. 

System not initialized. 

Acquisition in progress. 

State parameter was not zero or one. 

See also GetCapabilities 

 

SetHorizontalSpeed 

unsigned int WINAPI SetHorizontalSpeed(int index) 

Description Deprecated see Note: 

This function will set the horizontal speed to one of the possible speeds of the system. It 

will be used for subsequent acquisitions. 

Parameters int index: the horizontal speed to be used 

 Valid values 0 to GetNumberHorizontalSpeeds-1 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID 

Horizontal speed set. 

System not initialized. 

Acquisition in progress.  

Index is out off range. 

See also GetNumberHorizontalSpeeds, GetHorizontalSpeed 

NOTE: Deprecated by SetHSSpeed 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 225   

 

SetHSSpeed 

unsigned int WINAPI SetHSSpeed(int typ, int index) 

Description This function will set the speed at which the pixels are shifted into the output node during 

the readout phase of an acquisition. Typically your camera will be capable of operating at 

several horizontal shift speeds. To get the actual speed that an index corresponds to use 

the GetHSSpeed function.  

Parameters int typ: output amplification. 

Valid values: 0 electron multiplication/Conventional(clara). 

  1 conventional/Extended NIR mode(clara). 

int index: the horizontal speed to be used 

 Valid values 0 to GetNumberHSSpeeds()-1 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID 

DRV_P2INVALID 

Horizontal speed set. 

System not initialized. 

Acquisition in progress.  

Mode is invalid.  

Index is out off range. 

See also GetNumberHSSpeeds, GetHSSpeed GetNumberAmp 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 226   

 

SetImage 

unsigned int WINAPI SetImage(int hbin, int vbin, int hstart, int hend, int vstart, int vend) 

Description This function will set the horizontal and vertical binning to be used when taking a full 

resolution image. 

Parameters int hbin: number of pixels to bin horizontally. 

int vbin: number of pixels to bin vertically. 

int hstart: Start column (inclusive). 

int hend: End column (inclusive).  

int vstart: Start row (inclusive). 

int vend: End row (inclusive). 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_P1INVALID 

DRV_P2INVALID 

DRV_P3INVALID 

DRV_P4INVALID 

DRV_P5INVALID 

DRV_P6INVALID 

All parameters accepted. 

System not initialized. 

Acquisition in progress.  

Binning parameters invalid. 

Binning parameters invalid. 

Sub-area co-ordinate is invalid. 

Sub-area co-ordinate is invalid. 

Sub-area co-ordinate is invalid. 

Sub-area co-ordinate is invalid. 

See also SetReadMode 

NOTE: For iDus, it is recommended that you set horizontal binning to 1 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 227   

 

SetImageFlip 

unsigned int WINAPI SetImageFlip(int iHFlip, int iVFlip) 

Description This function will cause data output from the SDK to be flipped on one or both axes. This 

flip is not done in the camera, it occurs after the data is retrieved and will increase 

processing overhead. If flipping could be implemented by the user more efficiently then 

use of this function is not recomended. E.g writing to file or displaying on screen. 

Parameters int iHFlip: Sets horizontal flipping. 
int iVFlip: Sets vertical flipping.. 
 

1 - Enables Flipping 
0 - Disables Flipping 

If this function is used in conjunction with the SetImageRotate function the rotation will 
occur before the flip regardless of which order the functions are called. 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_P1INVALID 

DRV_P2INVALID 

All parameters accepted. 

System not initialized. 

HFlip parameter invalid. 

VFlip parameter invalid 

See also SetImageRotate  



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 228   

 

SetImageRotate 

unsigned int WINAPI SetImageRotate(int iRotate) 

Description This function will cause data output from the SDK to be rotated on one or both axes. This 

rotate is not done in the camera, it occurs after the data is retrieved and will increase 

processing overhead. If the rotation could be implemented by the user more efficiently 

then use of this function is not recomended. E.g writing to file or displaying on screen. 

Parameters int iRotate: Rotation setting 

 0 - No rotation 
1 - Rotate 90 degrees clockwise  
2 - Rotate 90 degrees anti-clockwise 
  

If this function is used in conjunction with the SetImageFlip function the rotation will occur 

before the flip regardless of which order the functions are called. 

180 degree rotation can be achieved using the SetImageFlip function by selecting both 

horizontal and vertical flipping. 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_P1INVALID 

All parameters accepted. 

System not initialized. 

Rotate parameter invalid. 

See also SetImageFlip 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 229   

 

SetIsolatedCropMode 

unsigned int WINAPI SetIsolatedCropMode(int active, int cropheight, int cropwidth, int vbin, int hbin) 

Description This function effectively reduces the dimensions of the CCD by excluding some rows or 

columns to achieve higher throughput. In isolated crop mode iXon, Newton and iKon 

cameras can operate in either Full Vertical Binning or Imaging read modes. iDus can 

operate in Full Vertical Binning read mode only. 

Note: It is important to ensure that no light falls on the excluded region otherwise 

the acquired data will be corrupted. 

Parameters int active:  1 – Crop mode is ON. 

                 0 – Crop mode is OFF. 

int cropheight:  The selected crop height. This value must be between 1 and the CCD 

                         height. 

int cropwidth:  The selected crop width. This value must be between 1 and the CCD 

                        width. 

int vbin:  The selected vertical binning. 

int hbin:  The selected horizontal binning. 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_P1INVALID 

DRV_P2INVALID 

DRV_P3INVALID 

DRV_P4INVALID 

DRV_P5INVALID 

DRV_NOT_SUPPORTED 

Parameters set 

System not initialized 

Acquisition in progress 

active parameter was not zero or one 

Invalid crop height 

Invalid crop width 

Invalid vertical binning 

Invalid horizontal binning 

Either the camera does not support isolated Crop mode 

or the read mode is invalid 

See also GetDetector SetReadMode 

NOTE: For iDus, it is recommended that you set horizontal binning to 1 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 230   

 

SetKineticCycleTime 

unsigned int WINAPI SetKineticCycleTime(float time) 

Description This function will set the kinetic cycle time to the nearest valid value not less than the 

given value. The actual time used is obtained by GetAcquisitionTimings. . Please refer to 

SECTION 5 – ACQUISITION MODES for further information. 

Parameters float time: the kinetic cycle time in seconds. 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID 

Cycle time accepted. 

System not initialized. 

Acquisition in progress.  

Time invalid. 

See also SetNumberKinetics 
 
 

SetMCPGain 

unsigned int WINAPI SetMCPGain(int gain) 

Description Allows the user to control the voltage across the microchannel plate. Increasing the gain 

increases the voltage and so amplifies the signal. The gain range can be returned using 

GetMCPGainRange. 

Parameters int gain: amount of gain applied. 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_I2CTIMEOUT 

DRV_I2CDEVNOTFOUND 

DRV_ERROR_ACK 

DRV_P1INVALID 

Value for gain accepted. 

System not initialized. 

Acquisition in progress. 

I2C command timed out. 

I2C device not present. 

Unable to communicate with device.  

Gain value invalid. 

See also GetMCPGainRange, SetGateMode, SetMCPGating 

NOTE: Available on iStar. 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 231   

 
 

SetMCPGating 

unsigned int WINAPI SetMCPGating(int gating) 

Description This function controls the MCP gating. 

Parameters int gating: ON/OFF switch for the MCP gating. 

Valid values: 0 to switch MCP gating OFF. 

  1 to switch MCP gating ON. 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_I2CTIMEOUT 

DRV_I2CDEVNOTFOUND 

DRV_ERROR_ACK 

DRV_P1INVALID 

Value for gating accepted. 

System not initialized. 

Acquisition in progress. 

I
2
C command timed out. 

I
2
C device not present. 

Unable to communicate with card.  

Value for gating invalid. 

See also SetMCPGain, SetGateMode 

NOTE: Available on some ICCD models. 

 

SetMessageWindow 

unsigned int WINAPI SetMessageWindow (HWND wnd) 

Description This function is reserved. 

 
 

SetMetaData 

unsigned int WINAPI SetMetaData(int state) 

Description This function activates the meta data option. 

Parameters int state: ON/OFF switch for the meta data option. 

Valid values: 0 to switch meta data OFF. 

  1 to switch meta data ON. 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID 

DRV_NOT_AVAILABLE 

Meta data option accepted. 

System not initialized. 

Acquisition in progress.  

Invalid state.  

Feature not available.  

See also GetMetaDataInfo 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 232   

 

SetMultiTrack 

unsigned int WINAPI SetMultiTrack(int number, int height, int offset, int* bottom, int *gap) 

Description This function will set the multi-Track parameters. The tracks are automatically spread 

evenly over the detector. Validation of the parameters is carried out in the following 

order:  

• Number of tracks,  

• Track height 

• Offset.  

The first pixels row of the first track is returned via ‘bottom’.  

The number of rows between each track is returned via ‘gap’. 

Parameters int number: number tracks 

 Valid values 1 to number of vertical pixels 

int height: height of each track 

 Valid values >0 (maximum depends on number of tracks) 

int offset: vertical displacement of tracks 

 Valid values depend on number of tracks and track height 

int* bottom: first pixels row of the first track 

int* gap: number of rows between each track (could be 0) 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID 

DRV_P2INVALID 

DRV_P3INVALID 

Parameters set.  

System not initialized. 

Acquisition in progress.  

Number of tracks invalid. 

Track height invalid. 

Offset invalid. 

See also SetReadMode, StartAcquisition SetRandomTracks 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 233   

 

SetMultiTrackHBin 

unsigned int WINAPI SetMultiTrackHBin(int bin) 

Description This function sets the horizontal binning used when acquiring in Multi-Track read mode.  

Parameters int bin: Binning size. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED   

DRV_ACQUIRING 

DRV_P1INVALID 

Binning set. 

System not initialized.   

Acquisition in progress. 

Invalid binning size. 

See also SetReadMode SetMultiTrack 

NOTE:   1) If the multitrack range is not a multiple of the binning DRV_BINNING_ERROR will be  

                     returned from PrepareAcquisition and/or StartAcquisition 

              2) For iDus, it is recommended that you set horizontal binning to 1 
 

SetMultiTrackHRange 

unsigned int WINAPI SetMultiTrackHRange (int iStart, int iEnd) 

Description This function sets the horizontal range used when acquiring in Multi Track read mode. 

Parameters int iStart: First horizontal pixel in multi track mode. 

int iEnd:  Last horizontal pixel in multi track mode. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED  

DRV_NOT_AVAILABLE 

DRV_ACQUIRING  

DRV_P1INVALID 

DRV_P2INVALID 

Range set. 

System not initialized.  

Feature not available for this camera. 

Acquisition in progress. 

Invalid start position.  

Invalid end position. 

See also SetReadMode SetMultiTrack 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 234   

 

SetNextAddress 

unsigned int WINAPI SetNextAddress(at_32* data, long lowAdd, long highAdd, long len, long 

physical) 

Description THIS FUNCTION IS RESERVED. 

 

SetNextAddress16 

unsigned int WINAPI SetNextAddress16(at_32* data, long lowAdd, long highAdd, long len, long 

physical) 

Description THIS FUNCTION IS RESERVED. 

 

SetNumberAccumulations 

unsigned int WINAPI SetNumberAccumulations(int number) 

Description This function will set the number of scans accumulated in memory. This will only take 

effect if the acquisition mode is either Accumulate or Kinetic Series. 

Parameters int number: number of scans to accumulate 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID 

Accumulations set. 

System not initialized. 

Acquisition in progress.  

Number of accumulates. 

See also GetAcquisitionTimings, SetAccumulationCycleTime, SetAcquisitionMode, 

SetExposureTime, SetKineticCycleTime, SetNumberKinetics 

 

SetNumberKinetics 

unsigned int WINAPI SetNumberKinetics(int number) 

Description This function will set the number of scans (possibly accumulated scans) to be taken 

during a single acquisition sequence. This will only take effect if the acquisition mode is 

Kinetic Series. 

Parameters int number: number of scans to store 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID 

Series length set. 

System not initialized. 

Acquisition in progress. 

Number in series invalid. 

See also GetAcquisitionTimings, SetAccumulationCycleTime, SetAcquisitionMode, 

SetExposureTime, SetKineticCycleTime 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 235   

 
 

SetNumberPrescans 

unsigned int WINAPI SetNumberPrescans(int iNumber) 

Description This function will set the number of scans acquired before data is to be retrieved. This 

will only take effect if the acquisition mode is Kinetic Series. 

Parameters int iNumber: number of scans to ignore 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID 

Prescans set. 

System not initialized. 

Acquisition in progress.  

Number of prescans invalid. 

See also GetAcquisitionTimings, SetAcquisitionMode, SetKineticCycleTime, SetNumberKinetics 

SetOutputAmplifier 

unsigned int WINAPI SetOutputAmplifier(int typ) 

Description Some EMCCD systems have the capability to use a second output amplifier. This 

function will set the type of output amplifier to be used when reading data from the head 

for these systems. 

Parameters int typ: the type of output amplifier. 

 0 – Standard EMCCD gain register (default)/Conventional(clara). 

 1 – Conventional CCD register/Extended NIR mode(clara). 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID 

Series length set. 

System not initialized. 

Acquisition in progress. 

Output amplifier type invalid. 

NOTE:    

1. Available in Clara, iXon & Newton.   

2. If the current camera HSSpeed is not available when the amplifier is set then it will default to 
the maximum HSSpeed that is. 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 236   

 
 

SetOverlapMode 

unsigned int WINAPI SetOverlapMode (int mode) 

Description This function will set whether an acquisition will readout in Overlap Mode. If the 
acquisition mode is Single Scan or Fast Kinetics this call will have no affect. 

Parameters int mode: mode 

 0  OFF 

 1  ON 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID 

Overlap mode set. 

System not initialized. 

Acquisition in progress.  

Invalid parameter. 

See also SetAcquisitionMode 

NOTE:  Only available if CCD is an Overlap sensor. 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 237   

 

SetPCIMode 

unsigned int WINAPI SetPCIMode(int mode, int value) 

Description With the CCI23 card, events can be sent when the camera is starting to expose and when 

it has finished exposing. This function will control whether those events happen or not. 

Parameters int mode: currently must be set to 1 

int value: 0 to disable the events, 1 to enable 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID 

Acquisition mode set. 

System not initialized. 

Acquisition in progress. 

Acquisition Mode invalid 

See also SetAcqStatusEvent SetCameraStatusEnable 

NOTE This is only supported by the CCI23 card. The software must register its event via 

the SetAcqStatusEvent. To specify which event the software is interested in use 

the SetCameraStatusEnable. 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 238   

 

SetPhotonCounting 

unsigned int WINAPI SetPhotonCounting(int state) 

Description This function activates the photon counting option. 

Parameters int state: ON/OFF switch for the photon counting option. 

Valid values: 0 to switch photon counting OFF. 

  1 to switch photon counting ON. 

Return unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_ERROR_ACK 

photon counting option accepted. 

System not initialized. 

Acquisition in progress.  

Unable to communicate with card.  

See also SetPhotonCountingThreshold 
 

SetPhotonCountingDivisions 

unsigned int WINAPI SetPhotonCountingDivisions(unsigned long noOfDivisions, long* divisions) 

Description This function sets the thresholds for the photon counting option. 

Parameters  

unsigned long noOfDivisions: number of thresholds to be used. 

long* divisions: threshold levels. 

Return unsigned int  

 DRV_SUCCESS 

DRV_P1INVALID 

DRV_P2INVALID 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_ERROR_ACK  

DRV_NOT_SUPPORTED 

Thresholds accepted.  

Number of thresholds outside valid range 

Thresholds outside valid range 

System not initialized. 

Acquisition in progress. 

Unable to communicate with card. 

Feature not supported. 

See also SetPhotonCounting, GetNumberPhotonCountingDivisions 
 
 

SetPhotonCountingThreshold 

unsigned int WINAPI SetPhotonCountingThreshold(long min, long max) 

Description This function sets the minimum and maximum threshold for the photon counting option. 

Parameters long min: minimum threshold in counts for photon counting.  

long max: maximum threshold in counts for photon counting 

Return unsigned int  

 DRV_SUCCESS 

DRV_P1INVALID 

DRV_P2INVALID 

DRV_NOT_INITIALIZED 

Thresholds accepted.  

Minimum threshold outside valid range (1-65535) 

Maximum threshold outside valid range 

System not initialized. 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 239   

DRV_ACQUIRING 

DRV_ERROR_ACK 

Acquisition in progress. 

Unable to communicate with card.  

See also SetPhotonCounting 
 

SetPixelMode 

unsigned int WINAPI SetPixelMode (int bitdepth, int colormode) 

Description THIS FUNCTION IS RESERVED. 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 240   

 

SetPreAmpGain 

unsigned int WINAPI SetPreAmpGain(int index) 

Description This function will set the pre amp gain to be used for subsequent acquisitions. The actual 

gain factor that will be applied can be found through a call to the GetPreAmpGain 

function.  

The number of Pre Amp Gains available is found by calling the GetNumberPreAmpGains 

function.  

Parameters int index: index pre amp gain table 

 Valid values 0 to GetNumberPreAmpGains-1 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID 

Pre amp gain set. 

System not initialized. 

Acquisition in progress.  

Index out of range. 

See also IsPreAmpGainAvailable, GetNumberPreAmpGains, GetPreAmpGain  

NOTE: Available on iDus, iXon & Newton. 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 241   

 

SetRandomTracks 

unsigned int WINAPI SetRandomTracks(int numTracks, int* areas) 

Description This function will set the Random-Track parameters. The positions of the tracks are 

validated to ensure that the tracks are in increasing order and do not overlap. The 

horizontal binning is set via the SetCustomTrackHBin function. The vertical binning is set 

to the height of each track.  

Some cameras need to have at least 1 row in between specified tracks. Ixon+ and the 

USB cameras allow tracks with no gaps in between.  

Example:  

Tracks specified as 20 30 31 40 tells the SDK that the first track starts at row 20 in the 

CCD and finishes at row 30. The next track starts at row 31 (no gap between tracks) and 

ends at row 40. 

Parameters int numTracks: number tracks 

 Valid values 1 to number of vertical pixels/2 

int* areas: pointer to an array of track positions. The array has the form 

 bottom1, top1, bottom2, top2 ….. bottomN, topN 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID 

DRV_P2INVALID 

DRV_RANDOM_TRACK_ERROR 

Parameters set.  

System not initialized. 

Acquisition in progress. 

Number of tracks invalid. 

Track positions invalid. 

Invalid combination of tracks, out of memory or 

mode not available. 

See also SetCustomTrackHBin, SetReadMode, StartAcquisition, SetComplexImage 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 242   

 

SetReadMode 

unsigned int WINAPI SetReadMode(int mode) 

Description This function will set the readout mode to be used on the subsequent acquisitions. 

Parameters int mode: readout mode 

Valid values: 0 Full Vertical Binning 

  1 Multi-Track 

  2 Random-Track 

  3 Single-Track 

  4 Image 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID 

Readout mode set. 

System not initialized. 

Acquisition in progress.  

Invalid readout mode passed. 

See also GetAcquisitionTimings, SetAccumulationCycleTime, SetAcquisitionMode, 

SetExposureTime, SetKineticCycleTime, SetNumberAccumulations, SetNumberKinetics 

 

SetRegisterDump 

unsigned int WINAPI SetRegisterDump(int mode) 

Description THIS FUNCTION IS RESERVED. 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 243   

 

SetRingExposureTimes 

unsigned int WINAPI SetRingExposureTimes(int numTimes, float* times) 

Description This function will send up an array of exposure times to the camera if the hardware 

supports the feature. See GetCapabilities.  Each acquisition will then use the next 

exposure in the ring looping round to the start again when the end is reached. There can 

be a maximum of 16 exposures. 

Parameters int numTimes: The number of exosures 

float * times: A predeclared pointer to an array of numTimes floats 

Return Unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_INVALID_MODE 

DRV_P1INVALID 

DRV_P2INVALID 

DRV_NOTAVAILABLE 

Success  

System not initialized 

This mode is not available. 

Must be between 1 and 16 exposures inclusive 

The exposures times are invalid. 

System does not support this option 

See also GetCapabilities, GetNumberRingExposureTimes, GetAdjustedRingExposureTimes, 

GetRingExposureRange IsTriggerModeAvailable 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 244   

 

SetSaturationEvent 

unsigned int WINAPI SetSaturationEvent(HANDLE saturationEvent) 

Description This is only supported with the CCI-23 PCI card. USB cameras do not have this feature. 

This function passes a Win32 Event handle to the driver via which the driver can inform 

the main software that an acquisition has saturated the sensor to a potentially damaging 

level. You must reset the event after it has been handled in order to receive additional 

triggers. Before deleting the event you must call SetEvent with NULL as the parameter. 

Parameters HANDLE saturationEvent: Win32 event handle. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_NOT_SUPPORTED 

Acquisition mode set. 

System not initialized.  

Function not supported for operating system 

See also SetDriverEvent 

NOTE The programmer must reset the event after it has been handled in order to receive 

additional triggers, unless the event has been created with auto-reset, e.g. event = 

CreateEvent(NULL, FALSE, FALSE, NULL). Also, NOT all programming 

environments allow the use of multiple threads and Win32 events. 

Only supported with the CCI-23 card. 

USB cameras do not have this feature. 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 245   

 

SetShutter 

unsigned int WINAPI SetShutter(int typ, int mode, int closingtime, int openingtime) 

Description This function controls the behaviour of the shutter. 

The typ parameter allows the user to control the TTL signal output to an external shutter. 

The mode parameter configures whether the shutter opens & closes automatically 

(controlled by the camera) or is permanently open or permanently closed.  

The opening and closing time specify the time required to open and close the shutter 

(this information is required for calculating acquisition timings – see SHUTTER 

TRANSFER TIME). 

Parameters int typ: 

 0 Output TTL low signal to open shutter 

 1 Output TTL high signal to open shutter 

int mode: 

 0 Auto 

 1 Open 

 2 Close 

int closingtime: Time shutter takes to close (milliseconds) 

int openingtime: Time shutter takes to open (milliseconds) 

Return unsigned int   

 DRV_SUCCESS 
DRV_NOT_INITIALIZED 
DRV_ACQUIRING 
DRV_ERROR_ACK 
DRV_P1INVALID 
DRV_P2INVALID 
DRV_P3INVALID 
DRV_P4INVALID 

Shutter set. 
System not initialized.  
Acquisition in progress. 
Unable to communicate with card. 
Invalid TTL type. 
Invalid mode. 
Invalid time to open. 
Invalid time to close. 

NOTE 

1. The opening and closing time can be different. 

2. For cameras capable of controlling the internal and external shutter independently 
(capability AC_FEATURES_SHUTTEREX) you MUST use SetShutterEx. 

3. Cameras with an internal shutter (use function IsInternalMechanicalShutter to test) but no 
independent shutter control (capability AC_FEATURES_SHUTTEREX) will always output a 
“HIGH to open” TTL signal through the external shutter port. 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 246   

 

SetShutterEx 

unsigned int WINAPI SetShutterEx(int typ, int mode, int closingtime, int openingtime, int extmode) 

Description This function expands the control offered by SetShutter to allow an external shutter and 

internal shutter to be controlled independently (only available on some cameras – please 

consult your Camera User Guide). The typ parameter allows the user to control the TTL 

signal output to an external shutter. The opening and closing times specify the length of 

time required to open and close the shutter (this information is required for calculating 

acquisition timings – see SHUTTER TRANSFER TIME). 

The mode and extmode parameters control the behaviour of the internal and external 

shutters. To have an external shutter open and close automatically in an experiment, set 

the mode parameter to “Open” and set the extmode parameter to “Auto”. To have an 

internal shutter open and close automatically in an experiment, set the extmode 

parameter to “Open” and set the mode parameter to “Auto”. 

To not use any shutter in the experiment, set both shutter modes to permanently open.  

Parameters Int typ: 

0 Output TTL low signal to open shutter 

1 Output TTL high signal to open shutter 

int mode: 

0 Auto 

1 Open 

2 Close 

int closingtime: time shutter takes to close (milliseconds) 

int openingtime: Time shutter takes to open (milliseconds) 

int mode: 

0 Auto 

1 Open 

2 Close 

Return Unsigned int  

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_ERROR_ACK 

DRV_P1INVALID 

DRV_P2INVALID 

DRV_P3INVALID 

DRV_P4INVALID 

DRV_P5INVALID 

Shutter set. 

System not initialized 

Acquisition in progress 

Unable to communicate with card. 

Invalid TTL type. 

Invalid internal mode 

Invalid time to open. 

Invalid time to close 

Invalid external mode 

NOTE 

1. The opening and closing time can be different. 

2. For cameras capable of controlling the internal and external shutter independently 
(capability AC_FEATURES_SHUTTEREX) you MUST use SetShutterEx. 

3. For cameras with an internal shutter (use function IsInternalMechanicalShutter to test) but 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 247   

no independent shutter control (capability AC_FEATURES_SHUTTEREX), the external 
shutter will always behave like the internal shutter and the externalMode parameter is 
meaningless. 

 

SetShutters 

unsigned int WINAPI SetShutters(int typ, int mode, int closingtime, int openingtime, int exttype, int 

extmode, int dummy1, int dummy2) 

Description THIS FUNCTION IS RESERVED. 

 

SetSifComment 

unsigned int WINAPI SetSifComment(char* comment) 

Description This function will set the user text that will be added to any sif files created with the 

SaveAsSif function. The stored comment can be cleared by passing NULL or an empty 

text string. 

Parameters char* comment: The comment to add to new sif files. 
 

Return unsigned int   

 DRV_SUCCESS Sif comment set. 

See also SaveAsSif SaveAsCommentedSif  

NOTE: To add a comment to a SIF file that will not be used in any future SIF files that are saved, use 

the function SaveAsCommentedSif.  

 

SetSingleTrack 

unsigned int WINAPI SetSingleTrack(int centre, int height) 

Description This function will set the single track parameters. The parameters are validated in the 

following order: centre row and then track height. 

Parameters int centre: centre row of track 

 Valid range 0 to number of vertical pixels. 

int height: height of track 

 Valid range > 1 (maximum value depends on centre row and number of vertical pixels). 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID 

DRV_P2INVALID 

Parameters set. 

System not initialized. 

Acquisition in progress.  

Center row invalid. 

Track height invalid. 

See also SetReadMode 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 248   

 

SetSingleTrackHBin 

unsigned int WINAPI SetSingleTrackHBin(int bin) 

Description This function sets the horizontal binning used when acquiring in Single Track read mode. 

Parameters Int bin: Binning size. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID 

Binning set. 

System not initialized. 

Acquisition in progress. 

Invalid binning size. 

See also SetReadMode 

NOTE:   1) If the detector width is not a multiple of the binning DRV_BINNING_ERROR will be  

                     returned from PrepareAcquisition and/or StartAcquisition 

              2) For iDus, it is recommended that you set horizontal binning to 1 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 249   

 

SetSpool 

unsigned int WINAPI SetSpool(int active, int method, char* path, int framebuffersize) 

Description This function will enable and disable the spooling of acquired data to the hard disk or to 
the RAM. 

With spooling method 0, each scan in the series will be saved to a separate file 
composed of a sequence of 32-bit integers.  

With spooling method 1 the type of data in the output files depends on what type of 
acquisition is taking place (see below).  

Spooling method 2 writes out the data to file as 16-bit integers.  

Spooling method 3 creates a directory structure for storing images where multiple images 
may appear in each file within the directory structure and the files may be spread across 
multiple directories. Like method 1 the data type of the image pixels depends on whether 
accumulate mode is being used.  

Method 4 Creates a RAM disk for storing images so you should ensure that there is 
enough free RAM to store the full acquisition.  

Methods 5, 6 and 7 can be used to directly spool out to a particular file type, either FITS, 
SIF or TIFF respectively. In the case of FITS and TIFF the data will be written out as 16-
bit values. 

Method 8 is similar to method 3, however the data is first compressed before writing to 
disk. In some circumstances this may improve the maximum rate of writing images to 
disk, however as the compression can be very CPU intensive this option may not be 
suitable on slower processors. 

The data is stored in row order starting with the row nearest the readout register. With 
the exception of methods 5, 6 and 7, the data acquired during a spooled acquisition can 
be retrieved through the normal functions. This is a change to previous versions; it is no 
longer necessary to load the data from disk from your own application. 

Parameters int active: Enable/disable spooling 
Valid values: 
 0 Disable spooling. 
 1 Enable spooling. 
int method: Indicates the format of the files written to disk 
Valid values: 
 0. Files contain sequence of 32-bit integers 
 1 Format of data in files depends on whether multiple accumulations are 
                         being taken for each scan. Format will be 32-bit integer if data is being 
                         accumulated each scan; otherwise the format will be 16-bit integer. 
 2. Files contain sequence of 16-bit integers. 
 3. Multiple directory structure with multiple images per file and multiple files 
                         per directory. 
 4. Spool to RAM disk. 
 5. Spool to 16-bit Fits File. 
 6. Spool to Andor Sif format. 
 7. Spool to 16-bit Tiff File. 
 8. Similar to method 3 but with data compression. 

char* path: String containing the filename stem. May also contain the path to the 

                    directory into which the files are to be stored.  

int framebuffersize: This sets the size of an internal circular buffer used as temporary 

                    storage. The value is the total number images the buffer can hold, not the  

                    size in bytes. Typical value would be 10. This value would be increased in  

                    situations where the computer is not able to spool the data to disk at the 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 250   

                    required rate. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

Parameters set. 

System not initialized. 

Acquisition in progress. 

See also GetSpoolProgress  
 

SetSpoolThreadCount 

unsigned int WINAPI SetSpoolThreadCount(int count) 

Description This function sets the number of parallel threads used for writing data to disk when 

spooling is enabled. Increasing this to a value greater than the default of 1, can 

sometimes improve the data rate to the hard disk particularly with Solid State hard disks. 

In other cases increasing this value may actually reduce the rate at which data is written 

to disk. 

Parameters int count: The number of threads to use. 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID 

Thread count is set. 

System not initialized. 

Acquisition in progress. 

Invalid thread count. 

See also SetSpool 

NOTE:   This feature is currently only available when using the Neo camera. 
 
 

SetStorageMode 

unsigned int WINAPI SetStorageMode(long mode) 

Description THIS FUNCTION IS RESERVED. 

 

SetTemperature 

unsigned int WINAPI SetTemperature(int temperature) 

Description This function will set the desired temperature of the detector. To turn the cooling ON and 

OFF use the CoolerON and CoolerOFF function respectively. 

Parameters int temperature: the temperature in Centigrade. 

Valid range is given by GetTemperatureRange 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_ERROR_ACK 

DRV_P1INVALID 

DRV_NOT_SUPPORTED 

Temperature set. 

System not initialized. 

Acquisition in progress. 

Unable to communicate with card. 

Temperature invalid. 

The camera does not support setting the temperature. 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 251   

See also CoolerOFF, CoolerON, GetTemperature, GetTemperatureF, GetTemperatureRange 

NOTE: Not available on Luca R cameras – automatically cooled to -20. 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 252   

 
 

SetTriggerInvert 

unsigned int WINAPI SetTriggerInvert(int mode) 

Description This function will set whether an acquisition will be triggered on a rising or falling edge 
external trigger. 

Parameters int mode: trigger mode 

Valid values: 

 0. Rising Edge  

 1. Falling Edge 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID 

DRV_NOT_AVAILABLE 

Trigger mode set. 

System not initialized. 

Acquisition in progress.  

Trigger mode invalid. 

Feature not available. 

See also Trigger Modes SetTriggerMode SetFastExtTrigger 
 

 

SetTriggerMode 

unsigned int WINAPI SetTriggerMode(int mode) 

Description This function will set the trigger mode that the camera will operate in. 

Parameters int mode: trigger mode 

Valid values: 

 0. Internal  

 1. External 

 6. External Start 

 7. External Exposure (Bulb) 

 9. External FVB EM (only valid for EM Newton models in FVB mode) 

 10. Software Trigger 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID 

Trigger mode set. 

System not initialized. 

Acquisition in progress.  

Trigger mode invalid. 

See also Trigger Modes SetFastExtTrigger 
 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 253   

 

SetIODirection 

unsigned int WINAPI SetIODirection(int index, int iDirection) 

Description Available in some systems are a number of IO’s that can be configured to be inputs or 

outputs. This function sets the current state of a particular IO.  

Parameters int index: IO index 

           Valid values: 0 to GetNumberIO() - 1 

int iDirection: requested direction for this index. 

           0: Output 

           1: Input 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID  

DRV_P2INVALID  

DRV_NOT_AVAILABLE  

IO direction set. 

System not initialized. 

Acquisition in progress. 

Invalid index. 

Invalid direction. 

Feature not available.  

See also GetNumberIO GetIOLevel GetIODirection SetIOLevel 

 

SetIOLevel 

unsigned int WINAPI SetIOLevel(int index, int iLevel) 

Description Available in some systems are a number of IO’s that can be configured to be inputs or 

outputs. This function sets the current state of a particular IO.  

Parameters int index: IO index 

           Valid values: 0 to GetNumberIO() - 1 

int iLevel: current level for this index. 

           0: Low 

           1: High 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID  

DRV_P2INVALID  

DRV_NOT_AVAILABLE  

IO level set. 

System not initialized. 

Acquisition in progress. 

Invalid index. 

Invalid level. 

Feature not available.  

See also GetNumberIO GetIOLevel GetIODirection SetIODirection 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 254   

 

SetUserEvent 

unsigned int WINAPI SetUserEvent(HANDLE userEvent) 

Description THIS FUNCTION IS RESERVED. 

 
 

SetVerticalRowBuffer 

unsigned int WINAPI SetVerticalRowBuffer(int rows) 

Description THIS FUNCTION IS RESERVED. 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 255   

 

SetVerticalSpeed 

unsigned int WINAPI SetVerticalSpeed(int index) 

Description Deprecated see Note: 

This function will set the vertical speed to be used for subsequent acquisitions 

Parameters int index: index into the vertical speed table 

 Valid values 0 to GetNumberVerticalSpeeds-1 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID 

Vertical speed set. 

System not initialized. 

Acquisition in progress. 

Index out of range. 

See also GetNumberVerticalSpeeds, GetVerticalSpeed 

NOTE: Deprecated by SetVSSpeed. 
 

SetVirtualChip 

unsigned int WINAPI SetVirtualChip(int state) 

Description THIS FUNCTION IS RESERVED. 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 256   

 

SetVSAmplitude 

unsigned int WINAPI SetVSAmplitude(int state) 

Description If you choose a high readout speed (a low readout time), then you should also consider 

increasing the amplitude of the Vertical Clock Voltage.  

There are five levels of amplitude available for you to choose from: 

• Normal 

• +1 

• +2 

• +3   

• +4  

Exercise caution when increasing the amplitude of the vertical clock voltage, since higher 

clocking voltages may result in increased clock-induced charge (noise) in your signal. In 

general, only the very highest vertical clocking speeds are likely to benefit from an 

increased vertical clock voltage amplitude. 

Parameters int state: desired Vertical Clock Voltage Amplitude 

 Valid values:  

  0 - Normal 

1->4 – Increasing Clock voltage Amplitude   

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED  

DRV_NOT_AVAILABLE 

DRV_ACQUIRING 

DRV_P1INVALID 

Amplitude set. 

System not initialized.  

Your system does not support this feature 

Acquisition in progress. 

Invalid amplitude parameter. 

NOTE: Available in iXon, iKon and Newton – full range of amplitude levels is not available on all 
compatible cameras. 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 257   

 

SetVSSpeed 

unsigned int WINAPI SetVSSpeed(int index) 

Description This function will set the vertical speed to be used for subsequent acquisitions 

Parameters int index: index into the vertical speed table 

 Valid values 0 to GetNumberVSSpeeds-1 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING  

DRV_P1INVALID 

Vertical speed set. 

System not initialized. 

Acquisition in progress.  

Index out of range. 

See also GetNumberVSSpeeds, GetVSSpeed, GetFastestRecommendedVSSpeed  

 

ShutDown 

unsigned int WINAPI ShutDown(void) 

Description This function will close the AndorMCD system down. 

Parameters NONE 

Return unsigned int   

 DRV_SUCCESS System shut down. 

See also CoolerOFF, CoolerON, SetTemperature, GetTemperature 

NOTE: 

1. For Classic & ICCD systems, the temperature of the detector should be above -20ºC before 

shutting down the system. 

2. When dynamically loading a DLL which is statically linked to the SDK library, ShutDown MUST be 

called before unloading. 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 258   

 

StartAcquisition 

unsigned int WINAPI StartAcquisition(void) 

Description This function starts an acquisition. The status of the acquisition can be monitored via 

GetStatus(). 

Parameters NONE 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_ACQUIRING 

DRV_VXDNOTINSTALLED 

DRV_ERROR_ACK 

DRV_INIERROR 

DRV_ACQERROR 

DRV_ERROR_PAGELOCK 

DRV_INVALID_FILTER 

DRV_BINNING_ERROR 

Acquisition started. 

System not initialized. 

Acquisition in progress. 

VxD not loaded. 

Unable to communicate with card. 

Error reading “DETECTOR.INI”. 

Acquisition settings invalid. 

Unable to allocate memory.  

Filter not available for current acquisition. 

Range not multiple of horizontal binning. 

See also GetStatus, GetAcquisitionTimings, SetAccumulationCycleTime, SetAcquisitionMode, 

SetExposureTime, SetHSSpeed, SetKineticCycleTime, SetMultiTrack, 

SetNumberAccumulations, SetNumberKinetics, SetReadMode, SetSingleTrack, 

SetTriggerMode, SetVSSpeed  

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 259   

 

UnMapPhysicalAddress 

unsigned int WINAPI UnMapPhysicalAddress(void) 

Description THIS FUNCTION IS RESERVED. 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 260   

 

WaitForAcquisition 

unsigned int WINAPI WaitForAcquisition(void) 

Description WaitForAcquisition can be called after an acquisition is started using StartAcquisition to 

put the calling thread to sleep until an Acquisition Event occurs. This can be used as a 

simple alternative to the functionality provided by the SetDriverEvent function, as all 

Event creation and handling is performed internally by the SDK library.  

Like the SetDriverEvent functionality it will use less processor resources than 

continuously polling with the GetStatus function. If you wish to restart the calling thread 

without waiting for an Acquisition event, call the function CancelWait. 

An Acquisition Event occurs each time a new image is acquired during an Accumulation, 

Kinetic Series or Run-Till-Abort acquisition or at the end of a Single Scan Acquisition. 

If a second event occurs before the first one has been acknowledged, the first one will be 

ignored. Care should be taken in this case, as you may have to use CancelWait to exit 

the function. 

Parameters NONE 

Return unsigned int   

 DRV_SUCCESS 

DRV_NOT_INITIALIZED 

DRV_NO_NEW_DATA 

Acquisition Event occurred  

System not initialized. 

Non-Acquisition Event occurred.(e.g. CancelWait () 

called) 

See also StartAcquisition, CancelWait  

 

WaitForAcquisitionByHandle 

unsigned int WINAPI WaitForAcquisitionByHandle(long cameraHandle) 

Description Whilst using multiple cameras WaitForAcquisitionByHandle can be called after an 

acquisition is started using StartAcquisition to put the calling thread to sleep until an 

Acquisition Event occurs. This can be used as a simple alternative to the functionality 

provided by the SetDriverEvent function, as all Event creation and handling is performed 

internally by the SDK library. Like the SetDriverEvent functionality it will use less 

processor resources than continuously polling with the GetStatus function. If you wish to 

restart the calling thread without waiting for an Acquisition event, call the function 

CancelWait. An Acquisition Event occurs each time a new image is acquired during an 

Accumulation, Kinetic Series or Run-Till-Abort acquisition or at the end of a Single Scan 

Acquisition. 

Parameters Long cameraHandle: handle of camera to put into wait state. 

Return unsigned int  

 DRV_SUCCESS 

DRV_P1INVALID 

Acquisition Event occurred.  

Handle not valid.  



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 261   

DRV_NO_NEW_DATA Non-Acquisition Event occurred.(eg CancelWait () called) 

See also CancelWait, GetCameraHandle, StartAcquisition, WaitForAcquisition, 

WaitForAcquisitionTimeOut, WaitForAcquisitionByHandleTimeOut. 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 262   

 

WaitForAcquisitionByHandleTimeOut 

unsigned int WINAPI WaitForAcquisitionByHandleTimeOut (long cameraHandle, int iTimeOutMs) 

Description Whilst using multiple cameras WaitForAcquisitionByHandle can be called after an 

acquisition is started using StartAcquisition to put the calling thread to sleep until an 

Acquisition Event occurs. This can be used as a simple alternative to the functionality 

provided by the SetDriverEvent function, as all Event creation and handling is performed 

internally by the SDK library. Like the SetDriverEvent functionality it will use less processor 

resources than continuously polling with the GetStatus function. If you wish to restart the 

calling thread without waiting for an Acquisition event, call the function CancelWait. An 

Acquisition Event occurs each time a new image is acquired during an Accumulation, 

Kinetic Series or Run-Till-Abort acquisition or at the end of a Single Scan Acquisition. If an 

Acquisition Event does not occur within _TimeOutMs milliseconds, 

WaitForAcquisitionTimeOut returns DRV_NO_NEW_DATA 

Parameters Long cameraHandle: handle of camera to put into wait state.  

int iTimeOutMs: Time before returning DRV_NO_NEW_DATA if no Acquisition Event 

occurs. 

Return unsigned int   

 DRV_SUCCESS 

DRV_P1INVALID 

DRV_NO_NEW_DATA 

Acquisition Event occurred.  

Handle not valid.  

Non-Acquisition Event occurred.(eg CancelWait () called, time out) 

See also CancelWait, GetCameraHandle, StartAcquisition, WaitForAcquisition, 

WaitForAcquisitionByHandle, WaitForAcquisitionTimeOut. 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 263   

 

WaitForAcquisitionTimeOut 

unsigned int WINAPI WaitForAcquisitionTimeOut (int iTimeOutMs) 

Description WaitForAcquisitionTimeOut can be called after an acquisition is started using 

StartAcquisition to put the calling thread to sleep until an Acquisition Event occurs. This 

can be used as a simple alternative to the functionality provided by the SetDriverEvent 

function, as all Event creation and handling is performed internally by the SDK library. Like 

the SetDriverEvent functionality it will use less processor resources than continuously 

polling with the GetStatus function. If you wish to restart the calling thread without waiting 

for an Acquisition event, call the function CancelWait. An Acquisition Event occurs each 

time a new image is acquired during an Accumulation, Kinetic Series or Run-Till-Abort 

acquisition or at the end of a Single Scan Acquisition. If an Acquisition Event does not 

occur within _TimeOutMs milliseconds, WaitForAcquisitionTimeOut returns 

DRV_NO_NEW_DATA 

Parameters int iTimeOutMs: Time before returning DRV_NO_NEW_DATA if no Acquisition Event 

occurs. 

Return   

 DRV_SUCCESS 

DRV_NO_NEW_DATA 

Acquisition Event occurred. 

Non-Acquisition Event occurred.(eg CancelWait () called, time out) 

See also CancelWait, StartAcquisition, WaitForAcquisition, WaitForAcquisitionByHandle, 

WaitForAcquisitionByHandleTimeOut. 

 



                                                             FUNCTIONS 

SDK              SECTION 11 
  Page 264   

 

WhiteBalance 

unsigned int WINAPI WhiteBalance (WORD* wRed, WORD* wGreen, WORD* wBlue, float * fRelR, 

float * fRelB, WhiteBalanceInfo * info) 

Description For colour sensors only 

Calculates the red and blue relative to green factors to white balance a colour image 
using the parameters stored in info.  

Before passing the address of an WhiteBalanceInfo structure to the function the iSize 
member of the structure should be set to the size of the structure. In C++ this can be 
done with the line: 

 info-> iSize = sizeof(WhiteBalanceInfo); 

Below is the WhiteBalanceInfo structure definition and a description of its members: 

typedef struct WHITEBALANCEINFO { 
 int iSize;   // Structure size.  
 int iX;   // Number of X pixels. Must be >2.  
 int iY;   // Number of Y pixels. Must be >2.  
 int iAlgorithm;  // Algorithm to used to calculate white balance.  
 int iROI_left;  // Region Of Interest from which white balance is calculated 
 int iROI_right;  // Region Of Interest from which white balance is calculated 
 int iROI_top;  // Region Of Interest from which white balance is calculated 
 int iROI_bottom;  // Region Of Interest from which white balance is calculated 
} WhiteBalanceInfo; 

iX and iY are the image dimensions. The number of elements of the input, red, green and 
blue arrays are iX x iY. 

iAlgorithm sets the algorithm to use. The function sums all the colour values per each 
colour field within the Region Of Interest (ROI) and calculates the relative to green values 
as: 0) _fRelR = GreenSum / RedSum and _fRelB = GreenSum / BlueSum; 1) _fRelR = 
2/3 GreenSum / RedSum and _fRelB = 2/3 GreenSum / BlueSum, giving more 
importance to the green field. 

iROI_left, iROI_right, iROI_top and iROI_bottom define the ROI with the constraints:  
 0 £ iROI_left < iROI_right £ iX and 0 £ iROI_ bottom < iROI_ top £ iX 

Parameters WORD* wRed: pointer to red field. 

WORD* wGreen: pointer to green field.  

WORD* wBlue: pointer to blue field.  

float* fRelR: pointer to the relative to green red factor. 

float* fRelB: pointer to the relative to green blue factor. 

WhiteBalanceInfo* info: pointer to white balance information structure 

Return unsigned int  

 SUCCESS 

DRV_P1INVALID 

DRV_P2INVALID 

DRV_P3INVALID 

DRV_P4INVALID 

DRV_P5INVALID 

DRV_P6INVALID 

DRV_DIVIDE_BY_ZERO_ERROR 

White balance calculated.  

Invalid pointer (i.e. NULL). 

Invalid pointer (i.e. NULL). 

Invalid pointer (i.e. NULL). 

Invalid pointer (i.e. NULL).  

Invalid pointer (i.e. NULL).  

One or more parameters in info is out of range 

The sum of the green field within the ROI is zero. _fRelR and _fRelB 

are set to 1 

See also DemosaicImage, GetMostRecentColorImage16 



                                                    ERROR CODES 

SDK              SECTION 12 
  Page 265   

 

SECTION 12 - ERROR CODES 

CODE ERROR CODE ERROR 

DRV_ERROR_CODES 20001 DRV_P1INVALID 20066 

DRV_SUCCESS 20002 DRV_P2INVALID 20067 

DRV_VXDNOTINSTALLED 20003 DRV_P3INVALID 20068 

DRV_ERROR_SCAN 20004 DRV_P4INVALID 20069 

DRV_ERROR_CHECK_SUM 20005 DRV_INIERROR 20070 

DRV_ERROR_FILELOAD 20006 DRV_COFERROR 20071 

DRV_UNKNOWN_FUNCTION 20007 DRV_ACQUIRING 20072 

DRV_ERROR_VXD_INIT 20008 DRV_IDLE 20073 

DRV_ERROR_ADDRESS 20009 DRV_TEMPCYCLE 20074 

DRV_ERROR_PAGELOCK 20010 DRV_NOT_INITIALIZED 20075 

DRV_ERROR_PAGE_UNLOCK 20011 DRV_P5INVALID 20076 

DRV_ERROR_BOARDTEST 20012 DRV_P6INVALID 20077 

DRV_ERROR_ACK 20013 DRV_INVALID_MODE 20078 

DRV_ERROR_UP_FIFO 20014 DRV_INVALID_FILTER 20079 

DRV_ERROR_PATTERN 20015 DRV_I2CERRORS 20080 

DRV_ACQUISITION_ERRORS 20017 DRV_DRV_I2CDEVNOTFOUND 20081 

DRV_ACQ_BUFFER 20018 DRV_I2CTIMEOUT 20082 

DRV_ACQ_DOWNFIFO_FULL 20019 DRV_P7INVALID 20083 

DRV_PROC_UNKNOWN_INSTRUCTION 20020 DRV_USBERROR 20089 

DRV_ILLEGAL_OP_CODE 20021 DRV_IOCERROR 20090 

DRV_KINETIC_TIME_NOT_MET 20022 DRV_NOT_SUPPORTED 20091 

DRV_KINETIC_TIME_NOT_MET 20022 DRV_USB_INTERRUPT_ENDPOINT_ERROR 20093 

DRV_ACCUM_TIME_NOT_MET 20023 DRV_RANDOM_TRACK_ERROR 20094 

DRV_NO_NEW_DATA 20024 DRV_INVALID_TRIGGER_MODE 20095 

DRV_SPOOLERROR 20026 DRV_LOAD_FIRMWARE_ERROR 20096 

DRV_TEMPERATURE_CODES 20033 DRV_DIVIDE_BY_ZERO_ERROR 20097 

DRV_TEMPERATURE_OFF  20034 DRV_INVALID_RINGEXPOSURES 20098 

DRV_TEMPERATURE_NOT_STABILIZED 20035 DRV_BINNING_ERROR 20099 

DRV_TEMPERATURE_STABILIZED 20036 DRV_ERROR_NOCAMERA 20990 

DRV_TEMPERATURE_NOT_REACHED 20037 DRV_NOT_SUPPORTED 20991 

DRV_TEMPERATURE_OUT_RANGE 20038 DRV_NOT_AVAILABLE 20992 

DRV_TEMPERATURE_NOT_SUPPORTED 20039 DRV_ERROR_MAP 20115 

DRV_TEMPERATURE_DRIFT  20040 DRV_ERROR_UNMAP 20116 

DRV_GENERAL_ERRORS 20049 DRV_ERROR_MDL 20117 

DRV_INVALID_AUX 20050 DRV_ERROR_UNMDL 20118 

DRV_COF_NOTLOADED 20051 DRV_ERROR_BUFFSIZE 20119 

DRV_FPGAPROG 20052 DRV_ERROR_NOHANDLE 20121 

DRV_FLEXERROR 20053 DRV_GATING_NOT_AVAILABLE 20130 

DRV_GPIBERROR 20054 DRV_FPGA_VOLTAGE_ERROR 20131 

DRV_DATATYPE 20064 DRV_BINNING_ERROR 20099 

DRV_DRIVER_ERRORS 20065 DRV_INVALID_AMPLIFIER 20100  



                                                            DETECTOR.INI 
 

SDK                                                        SECTION 13 

Page 266 

SECTION 13 - DETECTOR.INI 

DETECTOR.INI EXPLAINED 

All systems shipped from Andor contain a configuration file called "Detector.ini". This file is used to 

configure both the Andor software and hardware for the system. It contains information regarding the CCD 

chip, A/Ds and cooling capabilities. 

The file contains four sections. The start of each section is denoted by [name], where name is the name of 

the section. The following two sections are common to all detector.ini files: 

• [System] 

• [Cooling] 

The names of the remaining sections are given by entries in the [System] section. 



                                                            DETECTOR.INI 
 

SDK                                                        SECTION 13 

Page 267 

 

[SYSTEM] 

This section has 3 entries that describe the controller, head models and the mode for operation. Each entry is 

described in more detail below: 

• Controller: gives the section name where the controller (plug-in card) details can be found. Further 

details on this section are given below. 

• Head: gives the section name where the detector head details can be found. Further details on this 

section are given below. 

• Operation: this item related to the overall system type, i.e. whether the system is a PDA, CCD ICCD 

or InGaAs. This item has the effect of changing the “Acquisition” dialog within the software so that 

only those options relating to the system type are displayed.  

Possible values are as follows: 

• 2 for PDA 

• 3 for InGaAs 

• 4 for CCD 

• 5 for ICCD 

EXAMPLE: 

[System] 

Controller=CC-010 

Head=DV437 

Operation=4 



                                                            DETECTOR.INI 
 

SDK                                                        SECTION 13 

Page 268 

 

[COOLING] 

This section does not contain a fixed number of entries. However, each entry has the same basic structure 

and purpose. The purpose being to tell the software the range of temperatures to offer the user and the range 

of temperature over which the system can measure. The structure of each item is: 

Itemname =a,b,c,d 

itemname 

a 

b 

c 

d 

Example: 

[Cooling] 

Single=28,-30,28,-100 

Three=20,-60,28,-100 

Vacuum=20,-100,28,-100 



                                                            DETECTOR.INI 
 

SDK                                                        SECTION 13 

Page 269 

 

[DETECTOR] 

This section details the detector head. It is the most complex section in the file and contains 10 or more items. 

Format 

Format = x,y 

Gives the active pixel dimensions as x, y. x is the number of pixels along the readout register axis. y is the 

number of pixel perpendicular to the readout axis. 

DummyPixels 

DummyPixels = a, b, c, d 

Gives the number of columns and row that are present on the device but do not respond to light. The dummy 

columns are a combination of dark columns, which run the full height of the sensor, and dummy pixels in the 

shift register, where: 

a number of dummy columns at non-amplifier end 

b number of dummy columns at amplifier end 

c number of dummy rows at top of CCD 

d number of dummy rows at bottom of CCD 

DataHShiftSpeed 

DataHShiftSpeed = a, b, c, d, e 

Lists the speeds at which the charge can be moved in the shift register. This is also equivalent to the 

digitization speed in microseconds. Where: 

a       default speed 

b, c ,d, e   allowed speeds fastest first 

DataVShiftSpeed 

DataVShiftSpeed = a, b, c, d, e 

This lists the speeds, in microseconds, at which the CCD rows can be vertically shifted. These speeds are 

used during CCD readout. Where: 

a     default speed 

b, c, d, e   allowed speeds fastest first 



                                                            DETECTOR.INI 
 

SDK                                                        SECTION 13 

Page 270 

 

DummyHShiftSpeed 

DummyHShiftSpeed = a, b, c, d, e 

This lists the speeds, in microseconds, at which the charge can be moved in the shift register. These speeds 

are used when the charge been shifted in the amplifier does not need to be digitized. This allows faster keep 

clean cycles and faster readout when pixel skipping is implemented. Where: 

a        default speed 

b, c, d, e    allowed speeds fastest first 

DummyVShiftSpeed 

DummyVShiftSpeed = a, b, c, d, e 

This lists the speeds, in microseconds, at which the CCD rows can be vertically shifted. These speeds are 

used during CCD keep cleans. Where: 

a       default speed 

b, c, d, e    allowed speeds fastest first 

VerticalHorizontalTime 

VerticalHorizontalTime = a,b,c,d,e 

This lists the time, in microseconds, which must be taken into account when timing calculations are been 

done. Where: 

a     default speed 

b, c, d, e   allowed speeds fastest first 

CodeFile 

CodeFile = filename.ext 

This gives the file name of the micro-code uploaded to the microprocessor on the plug-in card. This field is 

typically PCI_29k.COF for standard systems and PCII29K.COF for I
2
C compatible cards. 



                                                            DETECTOR.INI 
 

SDK                                                        SECTION 13 

Page 271 

 

FlexFile 

FlexFile = filename.ext 

This gives the file name of the logic uploaded to the Field Programmable Gate Array on the plug-in card. 

(This field is only used by the PCI version of the system.) This field is typically PCI_FPGA.RBF for standard 

systems and PCIIFPGA.RBF for I
2
C compatible cards. 

Cooling 

Cooling = type 

This gives the type of cooling. The type relates back to the cooling section. 

Type 

Type = type 

This value specifies whether the head contains a Standard (0) or a Frame Transfer (1) CCD. The default is 

Standard. 

FKVerticalShiftSpeed 

FKVerticalShiftSpeed = speed 

This specifies the “Fast Kinetics” vertical shift speed. 

Gain 

Gain = a 

This specifies whether the system has software controllable Gain/Mode settings. 

0 = Not software selectable. 

1 = Software selectable. 

PhotonCountingCCD 

PhotonCountingCCD = a 

This specifies whether the system contains a L3 Vision sensor from Marconi 

0 = Standard CCD 

1 = L3 Vision sensor 



                                                            DETECTOR.INI 
 

SDK                                                        SECTION 13 

Page 272 

 

EMCCDRegisterSize 

EMCCDRegisterSize = a 

This specifies the length on the electron multiplying register in L3 Vision CCD 

iStar 

iStar = a 

This specifies whether the system is an iStar or a standard ICCD 

0 = Standard ICCD 

1 = iStar 

SlowVerticalSpeedFactor 

SlowVerticalSpeedFactor = a 

This specifies the factor by which the vertical shifted has been slowed. This is used for those CCD’s that are 

not capable at running at 16us. The only possible value is 7. 

 

HELLFunction 

HELLFunction = file 

The file specified contains the instructions required to perform readout of an iXon CCD. It is specific to each 

type of CCD. 

HELLLoop1 

HELLLoop1 = file 

The file specified contains generic instructions for readout of an iXon CCD and as such is not specific to a 

particular CCD. 

ADChannels 

ADChannels = a{,b} 

This line indicates the types of ADChannels available for use and the default selection. a is the default type 

and is followed by a list of all possible types. 

AD2DataHSSpeed 

AD2DataHSSpeed = default, min, max 

This line specifies the possible horizontal readout speeds. min and max specify the range of readout times 

available in microseconds. 



                                                            DETECTOR.INI 
 

SDK                                                        SECTION 13 

Page 273 

 

AD2DumpHSSpeed 

AD2DumpHSSpeed = default, min, max 

This is similar to AD2DataHSSpeed but specifies the readout speeds available when performing a dump (i.e. 

discarding) of data from the CCD. 

AD2BinHSSpeed 

AD2BinHSSpeed = default, min, max 

This is similar to AD2DataHSSpeed but specifies the readout speeds available when binning (i.e. summing 

values from blocks of neighbouring pixels) data from the CCD. 

AD2Pipeline 

AD2Pipeline = a, b, c: See PipeLine in the controller section 

iXon 

Ixon = a 

Specifies whether the CCD is an iXon camera; if so the line will read ‘Ixon=1’. If this line is missing the CCD 

is not an iXon. 

EXAMPLE DETECTOR.INI FILES 

DH220 

[DH220] 

Format=1024,1 

DummyPixels=0,0,0,0 

DataHShiftSpeed=16,1,2,16,32 

DataVShiftSpeed=16,16,0,0,0 

DummyHShiftSpeed=16,1,2,16,32 

DummyVShiftSpeed=16,16,0,0,0 

VerticalHorizontalTime=16,16,0,0,0 

CodeFile=Instapda.cof 

Pixel=25.0,2500.0 

Cooling=Single 
 

DV420 

[DV420] 

Format=1024,256 

DummyPixels=8,8,0,0 

DataHShiftSpeed=16,1,2,16,32 

DataVShiftSpeed=16,16,0,0,0 

DummyHShiftSpeed=16,1,2,16,32 

DummyVShiftSpeed=16,16,0,0,0 

VerticalHorizontalTime=16,16,0,0,0 

CodeFile=Pci_29k.cof 

FlexFile = pci_fpga.rbf 



                                                            DETECTOR.INI 
 

SDK                                                        SECTION 13 

Page 274 

Pixel=25.0,25.0 

Cooling=Vacuum 

FKVerticalShiftSpeed=16.0e-6 
 

DV437 

[DV437] 

Format=512,512 

DummyPixels=24,24,16,528 

DataHShiftSpeed=16,1,2,16,32 

DataVShiftSpeed=16,16,0,0,0 

DummyHShiftSpeed=16,1,2,16,32 

DummyVShiftSpeed=16,16,0,0,0 

VerticalHorizontalTime=16,16,0,0,0 

Pixel=13.0,13.0 

Cooling=Vacuum 

CodeFile=pci_29k.cof 

FlexFile=pci_fpga.rbf 

Type=1 



                                                            DETECTOR.INI 
 

SDK                                                        SECTION 13 

Page 275 

 

[CONTROLLER] 

This section details the controller card. 

ReadOutSpeeds 

ReadOutSpeeds = a,b,c,d-  

Lists the readout speeds available on the specified plug-in card. These values are used in conjunction with 

the values specified in the head section to generate the final list of available speeds. 

PipeLine 

PipeLine=a,b,c,d,e,f,g,h 

This lists the pipeline depth that must be used the microprocessor to synchronize the reading of the AD with 

the digitization process. The actual value used is based on a number of factors and is beyond this 

discussion. 

Type 

Type=a  

This specifies whether the plug-in card is ISA or PCI compatible. 

Example: 

[CC-010] 

ReadOutSpeeds=1,2,16,32 

PipeLine=2,1,1,1,0,0,0,0 

Type=PCI 

 


	SECTION 1 - INTRODUCTION
	TECHNICAL SUPPORT
	SOFTWARE IMPROVEMENTS AND ADDITIONAL FEATURES

	SECTION 2 - SOFTWARE INSTALLATIONS
	PC requirements
	SDK WINDOWS INSTALLATION
	Windows Troubleshooting

	SDK LINUX INSTALLATION
	LABVIEW INSTALLATION
	Linux Troubleshooting


	SECTION 3 - READOUT MODES
	INTRODUCTION
	Full Vertical Binning
	Single-Track
	Multi-Track
	Random-Track
	Image
	Cropped


	SECTION 4 - ACQUISITION MODES
	ACQUISITION MODE TYPES
	Single Scan
	Accumulate
	Kinetic Series
	Run Till Abort
	Fast Kinetics
	Frame Transfer


	SECTION 5 - TRIGGERING
	TRIGGER MODES
	Internal
	External
	External Start
	External Exposure
	External FVB EM
	Software


	SECTION 6 - SHIFT SPEEDS
	SECTION 7 - SHUTTER CONTROL
	SHUTTER MODES
	Fully Auto
	Hold Open
	Hold Closed

	SHUTTER TYPE
	SHUTTER TRANSFER TIME

	SECTION 8 - TEMPERATURE CONTROL
	SECTION 9 - SPECIAL GUIDES
	CONTROLLING MULTIPLE CAMERAS
	USING MULTIPLE CAMERA FUNCTIONS
	DATA RETRIEVAL METHODS
	How to determine when new data is available
	Retrieving Image Data

	DETERMINING CAMERA CAPABILITIES
	Retrieving capabilities from the camera
	Horizontal Pixel Shift Capabilities
	Vertical Pixel Shift Capabilities

	Other Capabilities
	Output Amplifiers

	iCam
	OptAcquire

	SECTION 10 - EXAMPLES
	INTRODUCTION
	RUNNING THE EXAMPLES
	C
	LabVIEW
	Visual Basic

	FLOW CHART OF THE FUNCTION CALLS NEEDED TO CONTROL ANDOR CAMERA
	
	Cooler
	DDGTM
	EMCCD
	Events
	Frame Transfer
	FVB
	Image
	Image Binning
	Kinetics/Accumulate
	Kinetic Image
	Multi-Track
	Random-Track
	Spool
	Continuous mode



	SECTION 11 - FUNCTIONS
	
	AbortAcquisition
	CancelWait
	CoolerOFF
	CoolerON
	DemosaicImage
	EnableKeepCleans
	FreeInternalMemory
	Filter_GetAveragingFactor
	Filter_GetAveragingFrameCount
	Filter_GetDataAveragingMode
	Filter_GetMode
	Filter_GetThreshold
	Filter_SetAveragingFactor
	Filter_SetAveragingFrameCount
	Filter_SetDataAveragingMode
	Filter_SetMode
	Filter_SetThreshold
	GetAcquiredData
	GetAcquiredData16
	GetAcquiredFloatData
	GetAcquisitionProgress
	GetAcquisitionTimings
	GetAdjustedRingExposureTimes
	GetAIIDMAData
	GetAmpDesc
	GetAmpMaxSpeed
	GetAvailableCameras
	GetBackground
	GetBaselineClamp
	GetBitDepth
	GetCameraEventStatus
	GetCameraHandle
	GetCameraInformation
	GetCameraSerialNumber
	GetCapabilities
	GetCapabilities (Acquisition Modes)
	GetCapabilities (Read Modes)
	GetCapabilities (Read Modes compatible with Frame Transfer mode)
	GetCapabilities (Trigger Modes)
	GetCapabilities (Camera Type)
	GetCapabilities (Camera Type) - continued
	GetCapabilities (Pixel Mode)
	GetCapabilities (Available Set Functions)
	GetCapabilities (Available Set Functions) - Continued
	GetCapabilities (Available Get Functions)
	GetCapabilities (SDK Features Available)
	GetCapabilities (SDK Features Available) - Continued
	GetCapabilities (PCI Card Capabilities)
	GetCapabilities (Gain Features Available)

	GetControllerCardModel
	GetCountConvertWavelengthRange
	GetCurrentCamera
	GetDDGPulse
	GetDDGIOCFrequency
	GetDDGIOCNumber
	GetDDGIOCPulses
	GetDetector
	GetDICameraInfo
	GetDualExposureTimes
	GetEMCCDGain
	GetEMGainRange
	GetFastestRecommendedVSSpeed
	GetFIFOUsage
	GetFilterMode
	GetFKExposureTime
	GetFKVShiftSpeed
	GetFKVShiftSpeedF
	GetHardwareVersion
	GetHeadModel
	GetHorizontalSpeed
	GetHSSpeed
	GetHVflag
	GetID
	GetImageFlip
	GetImageRotate
	GetImages
	GetImages16
	GetImagesPerDMA
	GetIRQ
	GetKeepCleanTime
	GetMaximumBinning
	GetMaximumExposure
	GetMCPGain
	GetMCPGainRange
	GetMCPVoltage
	GetMetaDataInfo
	GetMinimumImageLength
	GetMostRecentColorImage16
	GetMostRecentImage
	GetMostRecentImage16
	GetMSTimingsData
	GetMSTimingsEnabled
	GetNewData
	GetNewData16
	GetNewData8
	GetNewFloatData
	GetNumberADChannels
	GetNumberAmp
	GetNumberAvailableImages
	GetNumberDevices
	GetNumberFKVShiftSpeeds
	GetNumberHorizontalSpeeds
	GetNumberHSSpeeds
	GetNumberNewImages
	GetNumberPhotonCountingDivisions
	GetNumberPreAmpGains
	GetNumberRingExposureTimes
	GetNumberIO
	GetNumberVerticalSpeeds
	GetNumberVSAmplitudes
	GetNumberVSSpeeds
	GetOldestImage
	GetOldestImage16
	GetPhysicalDMAAddress
	GetPixelSize
	GetPreAmpGain
	GetPreAmpGainText
	GetQE
	GetReadOutTime
	GetRegisterDump
	GetRingExposureRange
	GetSensitivity
	GetSizeOfCircularBuffer
	GetSlotBusDeviceFunction
	GetSoftwareVersion
	GetSpoolProgress
	GetStatus
	GetTemperature
	GetTemperatureF
	GetTemperatureRange
	GetTemperatureStatus
	GetTotalNumberImagesAcquired
	GetIODirection
	GetIOLevel
	GetVersionInfo
	GetVerticalSpeed
	GetVirtualDMAAddress
	GetVSSpeed
	GPIBReceive
	GPIBSend
	I2CBurstRead
	I2CBurstWrite
	I2CRead
	I2CReset
	I2CWrite
	IdAndorDll
	InAuxPort
	Initialize
	InitializeDevice
	IsCoolerOn
	IsCountConvertModeAvailable
	IsInternalMechanicalShutter
	IsAmplifierAvailable
	IsPreAmpGainAvailable
	IsTriggerModeAvailable
	Merge
	OA_AddMode
	OA_DeleteMode
	OA_EnableMode
	OA_GetFloat
	OA_GetInt
	OA_GetModeAcqParams
	OA_GetNumberOfAcqParams
	OA_GetNumberOfPreSetModes
	OA_GetNumberOfUserModes
	OA_GetPreSetModeNames
	OA_GetString
	OA_GetUserModeNames
	OA_SetFloat
	OA_SetInt
	OA_SetString
	OA_WriteToFile
	OutAuxPort
	PrepareAcquisition
	PostProcessCountConvert
	PostProcessNoiseFilter
	PostProcessPhotonCounting
	SaveAsBmp
	SaveAsCommentedSif
	SaveAsEDF
	SaveAsFITS
	SaveAsRaw
	SaveAsSif
	SaveAsSPC
	SaveAsTiff
	SaveAsTiffEx
	SaveEEPROMToFile
	SaveToClipBoard
	SelectDevice
	SendSoftwareTrigger
	SetAccumulationCycleTime
	SetAcqStatusEvent
	SetAcquisitionMode
	SetAcquisitionType
	SetADChannel
	SetAdvancedTriggerModeState
	SetBackground
	SetBaselineClamp
	SetBaselineOffset
	SetCameraStatusEnable
	SetComplexImage
	SetCoolerMode
	SetCountConvertMode
	SetCountConvertWavelength
	SetCropMode
	SetCurrentCamera
	SetCustomTrackHBin
	SetDACOutputScale
	SetDACOutput
	SetDataType
	SetDDGAddress
	SetDDGGain
	SetDDGGateStep
	SetDDGInsertionDelay
	SetDDGIntelligate
	SetDDGIOC
	SetDDGIOCFrequency
	SetDDGIOCNumber
	SetDDGTimes
	SetDDGTriggerMode
	SetDDGVariableGateStep
	SetDelayGenerator
	SetDMAParameters
	SetDriverEvent
	SetDualExposureMode
	SetDualExposureTimes
	SetEMAdvanced
	SetEMCCDGain
	SetEMClockCompensation
	SetEMGainMode
	SetExposureTime
	SetFanMode
	SetFastKinetics
	SetFastKineticsEx
	SetFastExtTrigger
	SetFilterMode
	SetFilterParameters
	SetFKVShiftSpeed
	SetFPDP
	SetFrameTransferMode
	SetFullImage
	SetFVBHBin
	SetGain
	SetGate
	SetGateMode
	SetHighCapacity
	SetHorizontalSpeed
	SetHSSpeed
	SetImage
	SetImageFlip
	SetImageRotate
	SetIsolatedCropMode
	SetKineticCycleTime
	SetMCPGain
	SetMCPGating
	SetMessageWindow
	SetMetaData
	SetMultiTrack
	SetMultiTrackHBin
	SetMultiTrackHRange
	SetNextAddress
	SetNextAddress16
	SetNumberAccumulations
	SetNumberKinetics
	SetNumberPrescans
	SetOutputAmplifier
	SetOverlapMode
	SetPCIMode
	SetPhotonCounting
	SetPhotonCountingDivisions
	SetPhotonCountingThreshold
	SetPixelMode
	SetPreAmpGain
	SetRandomTracks
	SetReadMode
	SetRegisterDump
	SetRingExposureTimes
	SetSaturationEvent
	SetShutter
	SetShutterEx
	SetShutters
	SetSifComment
	SetSingleTrack
	SetSingleTrackHBin
	SetSpool
	SetSpoolThreadCount
	SetStorageMode
	SetTemperature
	SetTriggerInvert
	SetTriggerMode
	SetIODirection
	SetIOLevel
	SetUserEvent
	SetVerticalRowBuffer
	SetVerticalSpeed
	SetVirtualChip
	SetVSAmplitude
	SetVSSpeed
	ShutDown
	StartAcquisition
	UnMapPhysicalAddress
	WaitForAcquisition
	WaitForAcquisitionByHandle
	WaitForAcquisitionByHandleTimeOut
	WaitForAcquisitionTimeOut
	WhiteBalance


	SECTION 12 - ERROR CODES
	SECTION 13 - DETECTOR.INI
	DETECTOR.INI EXPLAINED
	[SYSTEM]
	[COOLING]
	[DETECTOR]
	Format
	DummyPixels
	DataHShiftSpeed
	DataVShiftSpeed
	DummyHShiftSpeed
	DummyVShiftSpeed
	VerticalHorizontalTime
	CodeFile
	FlexFile
	Cooling
	Type
	FKVerticalShiftSpeed
	Gain
	PhotonCountingCCD
	EMCCDRegisterSize
	iStar
	SlowVerticalSpeedFactor
	HELLFunction
	HELLLoop1
	ADChannels
	AD2DataHSSpeed
	AD2DumpHSSpeed
	AD2BinHSSpeed
	AD2Pipeline
	iXon

	EXAMPLE DETECTOR.INI FILES
	DH220
	DV420
	DV437

	[CONTROLLER]
	ReadOutSpeeds
	PipeLine
	Type



