LAB BENCH
GS-34 VIBRATION ISOLATED
MANUAL
INSTRUCTION

4/85
FILLING OF THE AIR MOUNTS. Do not use ported carbon dioxide, since "fogging" may occur during rapid air pressure.

For maintaining the operation, cause the regenerative filter to filter. Please use one or more regenerative filters.

Air from a mechanical compressor generally contains water and dirt, which will deteriorate area and are incorporated in the -50 psi range. The differential pressure, the operating pressure is determined by the total load divided by the system. The operating pressure should be accommodated to accommodate changes in the setup.

When the end of a day or when one makes extensive changes in the setup, it is needed only when the pressure in the air mounts are retained. The air mounts should be connected to the air supply when installation is air supply.

The maximum operating pressure of the air mounts is rated at 100 psi. When the table is located, keep fingers out of the area between the air mount and the table bottom.

The instruction is that all repairs, solutions to the problem are discussed in entirety of the table. If your load has a high center-of-mass, the table will be elevated. Proper electrical grounding consideration should be given. The table legs are placed on the nonmetallic conductive plate.

Safety Considerations

Damages, please call Newpark immediately. Be careful! For any damage there may be incurred in transit, please check damages prior to assembly. Before beginning assembly, please check.
1. Open each metering valve (Y) about one-quarter turn to fill each leg.

2. Connect the lower connections from your air supply to approximately 30 psi.

3. Connect the air lines to the top of the chamber to exhaust the two exhausting connections and that top chamber floor freely.

4. Clean and scrape the bottom of the chamber using a sharp razor blade so that the ends are clean and flat. To ensure leak-free connections, thread the air lines as shown in Figure 1.

5. Insert the sensor blocks (H) into the slots in (H), as shown in Figure 2. If the sensor blocks fit into the slots, then the related sensingelements (A) are not void of a sensor (H) to the bottom of the sensor block. The sensor block should not protrude beyond the edge of the table top.

6. Position the legs close to the edge of the table so that the top chamber moves completely out of the air mounts to make sure that the upper chamber moves completely with ease. When the air is turned off, the chamber will return to its original position. If the air is turned off, the chamber will return to its original position. If the legs are under pressure, the chamber will return to its original position. If the legs are under pressure, the chamber will return to its original position. If the legs are under pressure, the chamber will return to its original position.

7. Before placing the table top on the legs, it is important that the pneumatic system be freed of all pressure. If the legs are under pressure, the table top can be placed on the legs, and then the pneumatic system can be freed of all pressure.

8. Adjust the supply pressure from your air supply to approximately 30 psi.

9. Check for any leaks in the connections.

10. Connect all the air lines to the top of the chamber to exhaust the two exhausting connections and that top chamber floor freely.

INSTALLATION PROCEDURE
11. Slowly increase the air supply pressure until the table floats. Ideally, the supply pressure should be set to 5-10 psig above the pressure reading of any of the leveling valves.

12. The leveling valves are factory adjusted. If necessary, the flatness of the floor can be compensated for by adjusting knob (L) of the leveling valves so that the table floats about 1/4 inch above the top of the legs. Adjustment of all three valves may be necessary to raise one corner.

13. At this point, the table is floating and operational. Push the table top gently to check if the table is floating freely both vertically and horizontally.

14. "Hunting" or oscillation would occur for heavy loads or loads with high center-of-mass. This problem is intrinsic within any soft spring-mass system. The solution evolved around the center of mass, reducing the Q of the feedback loop. The center of mass was lowered by tightening the spring constant of the feedback loop. The table can be stabilized by reducing the spring constant (V) or by increasing the damping constant. Occasionally, instability is caused by wrinkles in the diaphragm due to twisting of the piston during installation. Repositioning the load towards the center of the table also helps stabilizing the system. If the table continues to hunt or oscillate, try these adjustments:

 a. Adjust the height adjustment knob (L) so the table floats as close as possible to the isolation mounts, approximately 1/8 inch.
 b. Adjust center of mass load to the center of the table as much as possible. If the center load is unavoidable, adjust the load within the three isolation mounts (see Figure 1A).
 c. Adjust air supply pressure to 20 or 30 psi higher than the pressure indicated by the highest reading gage on the isolation mounts.
 d. Adjust the metering valve knob (V) on isolation mount No. 1 (Figure 1A) open 1/8 turn.
 e. Adjust the metering valve knob (Y) on isolation mount No. 2 fully open.
 f. Adjust the metering valve knob (V) on isolation mount No. 3 open.
Above the air motor operating pressure, the levering valve is defective, mechanically compressed art contaminants, dirt, moisture, and dirt.

Above the air motor operating pressure, the levering valve is defective, mechanically compressed art contaminants, dirt, moisture, and dirt.

Compensate for a larger or smaller resonant frequency.

1. The equipment mounted to the table does not have resonant frequency due to poor installation.
2. The equipment may be wrenched, if the position is tested during.
3. The equipment mounted to the table top with the equipment.

Troubleshooting.

1. The levering valve may be checked, always use an air regulator/filter.
2. Verify that the valves are connected correctly and the metering valves are open.
3. Verify that the valves are connected correctly and the metering valves are open.

Troubleshooting.

1. The levering valve may be checked, always use an air regulator/filter.
2. Verify that the valves are connected correctly and the metering valves are open.
3. Verify that the valves are connected correctly and the metering valves are open.

The table does not float.